201
|
Wang BS, Yu HM, Chang LW, Yen WJ, Duh PD. Protective effects of pu-erh tea on LDL oxidation and nitric oxide generation in macrophage cells. Lebensm Wiss Technol 2008. [DOI: 10.1016/j.lwt.2007.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
202
|
Rosangkima G, Rongpi T, Prasad S. Role of Glutathione and Glutathione-Related Enzymes in the Antitumor Activity of Dillenia pentagyna in Dalton`s Lymphoma-Bearing Mice. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/ijcr.2008.92.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
203
|
Genistein attenuates oxidative stress and neuronal damage following transient global cerebral ischemia in rat hippocampus. Neurosci Lett 2008; 438:116-20. [DOI: 10.1016/j.neulet.2008.04.058] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/03/2008] [Accepted: 04/07/2008] [Indexed: 11/24/2022]
|
204
|
Jiang H, Li LJ, Wang J, Xie JX. Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol 2008; 212:532-7. [PMID: 18577498 DOI: 10.1016/j.expneurol.2008.05.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 02/07/2023]
Abstract
Ghrelin, a stomach-derived hormone which induces growth hormone release and promotes positive energy balance, has been reported to inhibit cell apoptosis in endotheliocytes, osteoblasts and cardiocytes. Recent evidence has shown that ghrelin can also inhibit neuronal apoptosis of the hypothalamus and the hippocampus. However, little is known about the effects of ghrelin on the substantia nigra pars compacta (SNpc) neurons in which ghrelin's receptor, growth hormone secretagogue receptor (GHSR)-1a, is highly expressed. In the present study, we investigated whether ghrelin could protect nigral dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. We observed that ghrelin, acting through GHS-R 1a, inhibited MPTP-induced dopaminergic neuronal loss in the SNpc as well as dopamine depletion in the striatum. Ghrelin could also reverse the down-regulated the expression of Bcl-2, up-regulated the expression of Bax, and caspase-3 activation caused by MPTP. This study demonstrated that ghrelin might be a potential protector of dopaminergic neurons in a therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Disciplines: Physiology (in incubation), Department of Physiology, Medical College of Qingdao University, Qingdao, China
| | | | | | | |
Collapse
|
205
|
Abstract
BCL-2 was the first antideath gene discovered, a milestone that effectively launched a new era in cell death research. Since its discovery more than 2 decades ago, multiple members of the human Bcl-2 family of apoptosis-regulating proteins have been identified, including 6 antiapoptotic proteins, 3 structurally similar proapoptotic proteins, and several structurally diverse proapoptotic interacting proteins that operate as upstream agonists or antagonists. Bcl-2-family proteins regulate all major types of cell death, including apoptosis, necrosis, and autophagy. As such, they operate as nodal points at the convergence of multiple pathways with broad relevance to biology and medicine. Bcl-2 derives its name from its original discovery in the context of B-cell lymphomas, where chromosomal translocations commonly activate the BCL-2 protooncogene, endowing B cells with a selective survival advantage that promotes their neoplastic expansion. The concept that defective programmed cell death contributes to malignancy was established by studies of Bcl-2, representing a major step forward in current understanding of tumorigenesis. Experimental therapies targeting Bcl-2 family mRNAs or proteins are currently in clinical testing, raising hopes that a new class of anticancer drugs may be near.
Collapse
|
206
|
Cheng WC, Leach KM, Hardwick JM. Mitochondrial death pathways in yeast and mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1272-9. [PMID: 18477482 DOI: 10.1016/j.bbamcr.2008.04.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/14/2008] [Accepted: 04/25/2008] [Indexed: 12/30/2022]
Abstract
In mammals, mitochondria are important mediators of programmed cell death, and this process is often regulated by Bcl-2 family proteins. However, a role for mitochondria-mediated cell death in non-mammalian species is more controversial. New evidence from a variety of sources suggests that mammalian mitochondrial fission/division proteins also have the capacity to promote programmed cell death, which may involve interactions with Bcl-2 family proteins. Homologues of these fission factors and several additional mammalian cell death regulators are conserved in flies, worms and yeast, and have been suggested to regulate programmed cell death in these species as well. However, the molecular mechanisms by which these phylogenetically conserved proteins contribute to cell death are not known for any species. Some have taken the conserved pro-death activity of mitochondrial fission factors to mean that mitochondrial fission per se, or failed attempts to undergo fission, are directly involved in cell death. Other evidence suggests that the fission function and the cell death function of these factors are separable. Here we consider the evidence for these arguments and their implications regarding the origins of programmed cell death.
Collapse
Affiliation(s)
- Wen-Chih Cheng
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
207
|
Yiming L, Wei H, Aihua L, Fandian Z. Neuroprotective effects of breviscapine against apoptosis induced by transient focal cerebral ischaemia in rats. J Pharm Pharmacol 2008; 60:349-55. [PMID: 18284815 DOI: 10.1211/jpp.60.3.0010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Breviscapine, a flavonoid isolated from the traditional Chinese medicinal herb Erigerin breviscapus, has been proved to be effective in protecting the brain against ischaemic damage, but the mechanisms remain unknown. In this study, we have demonstrated the effects of breviscapine on neuronal apoptosis in a rat model of transient focal cerebral ischaemia. Rats were administered with breviscapine (50 or 100 mg kg(-1)/day) intragastrically for seven successive days, then subjected to 2-h brain ischaemia induced by middle cerebral artery occlusion, followed by 24-h reperfusion. After reperfusion, the rats were killed and the brain samples were collected. Haematoxylin-eosin staining was used to evaluate the histopathological changes. Terminal deoxynucleotidyl transferase-mediated biotiny-lated UTP nick end labeling (TUNEL) and flow cytometry (FCM) analysis were used to detect the level of apoptosis. The expressions of bcl-2 and caspase-3 in the cortex were determined by Western blot. Significant increases in the number of haematoxylin-eosin- and TUNEL-positive staining cells and DNA fragmentation were observed at 24 h after reperfusion, and the increases were inhibited by breviscapine (50 and 100 mg kg(-1)). Breviscapine at both doses markedly inhibited the expression and activation of caspase-3 and up-regulated the expression of bcl-2. These findings suggested that breviscapine attenuated neuroapoptosis and regulated the protein expression related to apoptosis after transient focal cerebral ischaemia, which may have contributed, in part, to the protective effects of breviscapine on cerebral ischaemic damage.
Collapse
Affiliation(s)
- Liu Yiming
- Central Laboratory of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510120, China.
| | | | | | | |
Collapse
|
208
|
Protective effects of olanzapine and haloperidol on serum withdrawal-induced apoptosis in SH-SY5Y cells. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:633-42. [PMID: 18055082 DOI: 10.1016/j.pnpbp.2007.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/15/2007] [Accepted: 11/02/2007] [Indexed: 11/21/2022]
Abstract
PURPOSE Recent clinical studies have suggested that treatment with second generation antipsychotic drugs such as olanzapine may prevent progressive alterations of brain structure in patients with schizophrenia. However, the molecular mechanisms underlying these different effects remain to be determined. We investigated the mechanisms of action of olanzapine and haloperidol, on serum withdrawal apoptosis in human neuroblastoma SH-SY5Y cells. METHODS SH-SY5Y cells were cultured with olanzapine and haloperidol in medium with or without serum. We determined the effects of the drugs on cell viability against serum withdrawal by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, to explore the drugs' actions, Western blot was performed to examine the expression of key genes involved in GSK-3beta-mediated signaling, notably GSK-3beta, beta-catenin, and Bcl-2. RESULTS SH-SY5Y cells suffered about a 38% loss in cell number under serum-free conditions for 48 h. Olanzapine (10-200 muM) up to 100 muM significantly attenuated serum withdrawal-induced cell loss (p<0.01), and a dose of 100 muM also increased cell viability (p<0.05). In contrast, haloperidol (0.01-10 muM) did not affect cell viability but exacerbated cell death at 10 muM under serum-free conditions (p<0.01). Western blot analysis showed that olanzapine, but not haloperidol, prevented the serum withdrawal-induced decrease in levels of neuroprotective proteins such as p-GSK-3beta, beta-catenin, and Bcl-2 (p<0.01), whereas haloperidol robustly reduced the levels of these proteins at a 10 muM dose in serum-starved cells (p<0.05). Moreover, olanzapine alone significantly increased phosphorylation of GSK-3beta under normal conditions (p<0.05). CONCLUSIONS This study showed that olanzapine may have neuroprotective effects, whereas haloperidol was apparently neurotoxic. The actions of signaling systems associated with GSK-3beta may be key targets for olanzapine and haloperidol, but their effects are distinct. These differences suggest different therapeutic effects of first and second generation antipsychotic drugs in patients with schizophrenia.
Collapse
|
209
|
Miyamoto N, Zhang N, Tanaka R, Liu M, Hattori N, Urabe T. Neuroprotective role of angiotensin II type 2 receptor after transient focal ischemia in mice brain. Neurosci Res 2008; 61:249-56. [PMID: 18455256 DOI: 10.1016/j.neures.2008.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 03/05/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
This study assessed the time course of angiotensin (Ang) II type 1 and type 2 receptor expression after 60 min of ischemia/reperfusion in mice treated with a nonhypotensive dose of valsartan, an angiotensin II type 1 receptor antagonist. We also examined the potential neuroprotective mechanisms mediated by angiotensin II type 2 receptor. Mice were divided into two groups (n=64, each): valsartan-treated and control, vehicle groups. Infarct volume and neurological deficit scores were evaluated at several time points after ischemia, while immunohistochemical analyses were performed at serial time points after reperfusion. Valsartan significantly reduced the infarct volume and improved the neurological deficit scores (P<0.05). Both angiotensin II type 1 and type 2 receptors were upregulated at 24h and peaked at 72 h with type I receptors dominating in the ischemic penumbra of the vehicle group. Interestingly, angiotensin II type 2 receptor expression levels were significantly higher in the valsartan group than vehicle controls (P<0.001). Moreover, angiotensin II type 2 receptor upregulated phosphosignal transducer and activator of transcription-3, and B-cell lymphoma protein-2 (P<0.05). Our results indicated that angiotensin II type 2 receptor has antiapoptotic activity by activating the B-cell lymphoma protein-2 via the janus kinase/signal transducer and activator of transcription signaling pathway.
Collapse
Affiliation(s)
- Nobukazu Miyamoto
- Department of Neurology, Juntendo University School of Medicine 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | |
Collapse
|
210
|
Bigdeli MR, Khoshbaten A. In vivo preconditioning with normobaric hyperoxia induces ischemic tolerance partly by triggering tumor necrosis factor-alpha converting enzyme/tumor necrosis factor-alpha/nuclear factor-kappaB. Neuroscience 2008; 153:671-8. [PMID: 18423996 DOI: 10.1016/j.neuroscience.2008.02.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 01/03/2023]
Abstract
Recent studies suggest that intermittent and prolonged normobaric hyperoxia (HO) results in brain ischemic tolerance (BIT), reducing ischemic brain injury. We have attempted to determine the time course of HO-induced BIT, and to explore the putative roles of tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE), TNF-alpha, and nuclear factor-kappaB (NF-kappaB) activation in mediating this effect. Two core experimental protocols were applied to rats (experiments 1 [E1] and 2 [E2] respectively). E1 rodents comprised six subgroups, breathing room air (RA; O(2)=21%), or 95% oxygen (HO) for 4, 8, 16 h (4RA, 8RA, 16RA and 4HO, 8HO, 16HO respectively). E2 rodents were divided into subgroups, exposed to 95% inspired HO for 4 h/day for six consecutive days (intermittent hyperoxia, InHO) or for 24 continuous hours (prolonged hyperoxia, PrHO). Each of these had a control group exposed to 21% oxygen in the same chamber. Twenty-four hours after pretreatment, each group was randomly divided to receive 60 min right middle cerebral artery occlusion (MCAO-operated), sham-operation (without MCAO), or no operation (intact). After 24 h reperfusion, neurologic deficit score (NDS), brain water content, Evans Blue extravasation (as a marker of blood-brain barrier permeability), TACE expression, serum TNF-alpha, and phosphor- kappaBalpha levels were assessed in all animals, and infarct volume in the MCAO-operated subgroups. E1: Compared with the control (RA) group, infarct volume was reduced by 58.6% and 64.4% in 16 h and 24 h respectively. NDS and Evans Blue extravasation was also reduced in 16 h and 24 h. There was no statistical difference among 4 h and 8 h. E2: Preconditioning with prolonged and intermittent HO decreased NDS, infarct volume and upregulated TACE and increased phosphor-kappaBalpha and serum TNF-alpha level significantly. Although further studies are needed to clarify the mechanisms of brain ischemic tolerance, InHO and PrHO may partly exert their effects via triggering TACE/TNF-alpha/NF-kappaB.
Collapse
Affiliation(s)
- M R Bigdeli
- Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran.
| | | |
Collapse
|
211
|
Feuerstein GZ, Yue TL. Monthly Update Cardiovascular & Renal: Apoptosis in cardiac health and disease. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.10.1391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
212
|
Spence P, Franco R, Wood A, Moyer JA. Section Review Central & Peripheral Nervous Systems: Mechanisms of apoptosis as drug targets in the central nervous system. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.4.345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
213
|
He J, Luo H, Yan B, Yu Y, Wang H, Wei Z, Zhang Y, Xu H, Tempier A, Li X, Li XM. Beneficial effects of quetiapine in a transgenic mouse model of Alzheimer's disease. Neurobiol Aging 2008; 30:1205-16. [PMID: 18079026 DOI: 10.1016/j.neurobiolaging.2007.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 10/11/2007] [Accepted: 11/02/2007] [Indexed: 11/17/2022]
Abstract
Previous studies have suggested that quetiapine, an atypical antipsychotic drug, may have beneficial effects on cognitive impairment, and be a neuroprotectant in treating neurodegenerative diseases. In the present study, we investigated the effects of quetiapine on memory impairment and pathological changes in an amyloid precursor protein (APP)/presenilin-1 (PS-1) double transgenic mouse model of Alzheimer's disease (AD). Non-transgenic and transgenic mice were treated with quetiapine (0, 2.5, or 5mg/(kg day)) for 1, 4, and 7 months in drinking water from the age of 2 months. After 4 and 7 months of continuous quetiapine administration, memory impairment was prevented, and the number of beta-amyloid (Abeta) plaques decreased in the cortex and hippocampus of the transgenic mice. Quetiapine also decreased brain Abeta peptides, beta-secretase activity and expression, and the level of C99 (an APP C-terminal fragment following cleavage by beta-secretase) in the transgenic mice. Furthermore, quetiapine attenuated anxiety-like behavior, up-regulated cerebral Bcl-2 protein, and decreased cerebral nitrotyrosine in the transgenic mice. These findings suggest that quetiapine can alleviate cognitive impairment and pathological changes in an APP/PS1 double transgenic mouse model of AD, and further indicate that quetiapine may have preventive effects in the treatment of AD.
Collapse
Affiliation(s)
- Jue He
- Laboratory of Neuropharmacology, Wenzhou Medical College, Wenzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Kaur T, Gupta R, Vaiphei K, Kapoor R, Gupta N, Khanduja K. Interplay Between Oncoproteins and Antioxidant Enzymes in Esophageal Carcinoma Treated Without and With Chemoradiotherapy: A Prospective Study. Int J Radiat Oncol Biol Phys 2008; 70:563-71. [DOI: 10.1016/j.ijrobp.2007.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 06/01/2007] [Accepted: 06/11/2007] [Indexed: 10/22/2022]
|
215
|
Cimen MYB. Free radical metabolism in human erythrocytes. Clin Chim Acta 2008; 390:1-11. [PMID: 18243141 DOI: 10.1016/j.cca.2007.12.025] [Citation(s) in RCA: 314] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/13/2007] [Accepted: 12/21/2007] [Indexed: 02/07/2023]
Abstract
As the red cell emerges from the bone marrow, it loses its nucleus, ribosomes, and mitochondria and therefore all capacity for protein synthesis. However, because of the high O(2) tension in arterial blood and heme Fe content, reactive oxygen species (ROS) are continuously produced within red cells. Erythrocytes transport large amount of oxygen over their lifespan resulting in oxidative stress. Various factors can lead to the generation of oxidizing radicals such as O(2)(-), H(2)O(2), HO in erythrocytes. Evidence indicates that many physiological and pathological conditions such as aging, inflammation, eryptosis develop through ROS action. As such, red cells have potent antioxidant protection consisting of enzymatic and nonenzymatic pathways that modify highly ROS into substantially less reactive intermediates. The object of this review is to shed light on the role of ROS both at physiological and pathological levels and the structural requirements of antioxidants for appreciable radical-scavenging activity. Obviously, much is still to be discovered before we clearly understand mechanisms of free radical systems in erythrocytes. Ongoing trends in the field are recognition of undetermined oxidant/antioxidant interactions and elucidation of important signaling networks in radical metabolism.
Collapse
Affiliation(s)
- M Y Burak Cimen
- Mersin University, Medical Faculty, Department of Biochemistry, 33079 Mersin/Turkey.
| |
Collapse
|
216
|
Abstract
More than half of the initially-formed neurons are deleted in certain brain regions during normal development. This process, whereby cells are discretely removed without interfering with the further development of remaining cells, is called programmed cell death (PCD). The term apoptosis is used to describe certain morphological manifestations of PCD. Many of the effectors of this developmental cell death program are highly expressed in the developing brain, making it more susceptible to accidental activation of the death machinery, e.g. following hypoxia-ischemia or irradiation. Recent evidence suggests, however, that activation and regulation of cell death mechanisms under pathological conditions do not exactly mirror physiological, developmentally regulated PCD. It may be argued that the conditions after e.g. ischemia are not even compatible with the execution of PCD as we know it. Under pathological conditions cells are exposed to various stressors, including energy failure, oxidative stress and unbalanced ion fluxes. This results in parallel triggering and potential overshooting of several different cell death pathways, which then interact with one another and result in complex patterns of biochemical manifestations and cellular morphological features. These types of cell death are here called "pathological apoptosis," where classical hallmarks of PCD, like pyknosis, nuclear condensation and caspase-3 activation, are combined with non-PCD features of cell death. Here we review our current knowledge of the mechanisms involved, with special focus on the potential for therapeutic intervention tailored to the needs of the developing brain.
Collapse
Affiliation(s)
- Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
217
|
Miyaji EN, Menck CFM. Human BCL-2 Expression Delays Ultraviolet-Induced Apoptosis in Marsupial Cells. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1998.tb02535.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
218
|
Du J, Di HS, Guo L, Li ZH, Wang GL. Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. J Therm Biol 2008. [DOI: 10.1016/j.jtherbio.2007.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
219
|
Song HG, Moon C, Park MH, Moon JI, Moon C. Decrease in Intracellular Glutathione Level Alters Expressions of B-cell CLL/Lymphoma 2 Family Members in the Mouse Retina. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyoung-Gon Song
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Cheil Moon
- Department of Oral Anatomy and Neurobiology Kyungpook National University School of Dentistry
| | - Myoung-Hee Park
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea
| | - Jung-Il Moon
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea
| | - Chanil Moon
- Department of Cardiology, Gil Medical Center, Gachon University
| |
Collapse
|
220
|
Park YW, Chae SH, Lee JW, Kwon OJ, Shin JP, Jeon CJ, Kim SY. N-Methyl-D-Aspartate (NMDA)-induced Apoptosis in Rabbit Retina. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2008. [DOI: 10.3341/jkos.2008.49.7.1146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yong Wook Park
- Department of Ophthalmology, Kyungpook National University, College of Medicine, Daegu, Korea
| | - Sun Hwa Chae
- Department of Ophthalmology, Kyungpook National University, College of Medicine, Daegu, Korea
| | - Ji-Woong Lee
- Department of Ophthalmology, Kyungpook National University, College of Medicine, Daegu, Korea
| | - Oh Ju Kwon
- Department of Ophthalmic Optics, Busan College of Information Technology, Pusan, Korea
| | - Jae Pil Shin
- Department of Ophthalmology, Kyungpook National University, College of Medicine, Daegu, Korea
| | - Chang Jin Jeon
- Department of Biology, Kyungpook National University, College of Natural Science, Daegu, Korea
| | - Si Yeol Kim
- Department of Ophthalmology, Kyungpook National University, College of Medicine, Daegu, Korea
| |
Collapse
|
221
|
Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:1-15. [PMID: 18176884 DOI: 10.1080/10937400701436460] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The lung is a highly specialized organ that facilitates uptake of oxygen and release of carbon dioxide. Due to its unique structure providing enormous surface area to outside ambient air, it is vulnerable to numerous pathogens, pollutants, oxidants, gases, and toxicants that are inhaled continuously from air, which makes the lung susceptible to varying degrees of oxidative injury. To combat these unrelenting physical, chemical, and biological insults, the respiratory epithelium is covered with a thin layer of lining fluid containing several antioxidants and surfactants. Inhaled toxic agents stimulate the generation of reactive oxygen/nitrogen species (ROS/RNS), which in turn provoke inflammatory responses resulting in the release of proinflammatory cytokines and chemokines. These subsequently stimulate the influx of polymorphonuclear leukocytes (PMNs) and monocytes into the lung so as to combat the invading pathogens or toxic agents. In addition to the beneficial effects, persistent inhalation of the invading pathogens or toxic agents may result in overwhelming production of ROS/RNS, producing chronic inflammation and lung injury. During inflammation, enhanced ROS/RNS production may induce recurring DNA damage, inhibition of apoptosis, and activation of proto-oncogenes by initiating signal transduction pathways. Therefore, it is conceivable that chronic inflammation-induced production of ROS/RNS in the lung may predispose individuals to lung cancer. This review describes the complex relationship between lung inflammation and carcinogenesis, and highlights the role of ROS/RNS in cancer development.
Collapse
Affiliation(s)
- Neelam Azad
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA
| | | | | |
Collapse
|
222
|
Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN, Feng JQ, Chen PX. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 2007; 11:943-53. [PMID: 16547587 DOI: 10.1007/s10495-006-6715-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of present study is to explore the cytoprotection of curcumin against 1-methyl-4-phenylpridinium ions (MPP(+))-induced apoptosis and the molecular mechanisms underlying in PC12 cells. Our findings indicated that MPP(+) significantly reduced the cell viability and induced apoptosis of PC12 cells. Curcumin protected PC12 cells against MPP(+)-induced cytotoxicity and apoptosis not only by inducing overexpression of Bcl-2, but also reducing the loss of mitochondrial membrane potential (MMP), an increase in intracellular reactive oxygen species (ROS) and overexpression of inducible nitric oxide synthase (iNOS). The selective iNOS inhibitor AG partly blocked MPP(+)-induced apoptosis of PC12 cells. The results of present study suggested that the cytoprotective effects of curcumin might be mediated, at least in part, by the Bcl-2-mitochondria-ROS-iNOS pathway. Because of its non-toxic property, curcumin could be further developed to treat the neurodegenerative diseases which are associated with oxidative stress, such as Parkinson's disease (PD).
Collapse
Affiliation(s)
- J Chen
- Department of Physiology, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, 510080, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Odat O, Matta S, Khalil H, Kampranis SC, Pfau R, Tsichlis PN, Makris AM. Old yellow enzymes, highly homologous FMN oxidoreductases with modulating roles in oxidative stress and programmed cell death in yeast. J Biol Chem 2007; 282:36010-23. [PMID: 17897954 DOI: 10.1074/jbc.m704058200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H(2)O(2)-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Delta oye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H(2)O(2)-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H(2)O(2)-induced PCD in wild type cells, but accelerate PCD in Delta oye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Delta oye2 oye3) is highly resistant to H(2)O(2)-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H(2)O(2)-induced cell death: in Delta oye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.
Collapse
Affiliation(s)
- Osama Odat
- Department of Natural Products, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | | | | | | | | | | | | |
Collapse
|
224
|
Salerno C, Capuozzo E, Crifò C, Siems W. α-Tocopherol increases caspase-3 up-regulation and apoptosis by β-carotene cleavage products in human neutrophils. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1052-6. [PMID: 17618090 DOI: 10.1016/j.bbadis.2007.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 05/20/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
It has been found that beta-carotene cleavage products (CarCP), besides having mutagenic and toxic effects on mitochondria due to their prooxidative properties, also initiate spontaneous apoptosis of human neutrophils. Therefore, it was expected that antioxidants such as alpha-tocopherol would inhibit the stimulation of apoptosis and caspase-3 activity by CarCP. However, we found that alpha-tocopherol increases caspase-3 up-regulation and stimulation of apoptosis of human neutrophils by CarCP. Ascorbic acid does not alter this caspase-3 up-regulating and proapoptotic effect exerted by alpha-tocopherol. Both alpha-tocopherol and ascorbic acid, in the absence of CarCP, decrease intracellular caspase-3 activity and spontaneous apoptosis of neutrophils. Uric acid alone or in combination with CarCP does not exert apparent effects on caspase-3 activity and apoptosis. Up-regulating effect of alpha-tocopherol is not observed in the presence of retinol that markedly stimulates apoptosis by itself, whereas increase of caspase-3 activity is induced by concomitant addition of alpha-tocopherol and beta-ionone, a cyclohexenyl degradation product of beta-carotene with shorter aliphatic chain.
Collapse
Affiliation(s)
- C Salerno
- Department of Gynecology, Perinatology and Child Health, Sapienza University of Rome, via dei Sardi 58, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
225
|
Zimmermann AK, Loucks FA, Schroeder EK, Bouchard RJ, Tyler KL, Linseman DA. Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria. J Biol Chem 2007; 282:29296-304. [PMID: 17690097 PMCID: PMC2386251 DOI: 10.1074/jbc.m702853200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcl-2 protects cells against mitochondrial oxidative stress and subsequent apoptosis. However, the mechanism underlying the antioxidant function of Bcl-2 is currently unknown. Recently, Bax and several Bcl-2 homology-3 domain (BH3)-only proteins (Bid, Puma, and Noxa) have been shown to induce a pro-oxidant state at mitochondria (1-4). Given the opposing effects of Bcl-2 and Bax/BH3-only proteins on the redox state of mitochondria, we hypothesized that the antioxidant function of Bcl-2 is antagonized by its interaction with the BH3 domains of pro-apoptotic family members. Here, we show that BH3 mimetics that bind to a hydrophobic surface (the BH3 groove) of Bcl-2 induce GSH-sensitive mitochondrial dysfunction and apoptosis in cerebellar granule neurons. BH3 mimetics displace a discrete mitochondrial GSH pool in neurons and suppress GSH transport into isolated rat brain mitochondria. Moreover, BH3 mimetics and the BH3-only protein, Bim, inhibit a novel interaction between Bcl-2 and GSH in vitro. These results suggest that Bcl-2 regulates an essential pool of mitochondrial GSH and that this regulation may depend upon Bcl-2 directly interacting with GSH via the BH3 groove. We conclude that this novel GSH binding property of Bcl-2 likely plays a central role in its antioxidant function at mitochondria.
Collapse
Affiliation(s)
- Angela K Zimmermann
- Eleanor Roosevelt Institute, Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | | | |
Collapse
|
226
|
Arrigo AP. The cellular "networking" of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:14-26. [PMID: 17205671 DOI: 10.1007/978-0-387-39975-1_2] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells possess effective mechanisms to cope with chronic or acute disturbance of homeostasis. Key roles in maintaining or restoring homeostasis are played by the various heat shock or stress proteins (Hsps). Among the Hsps, the group of proteins characterized by low molecular masses (between 20 to 30 kDa) and homology to alpha-crystallin are called small stress proteins (denoted sHsps). The present chapter summarizes the actual knowledge of the protective mechanisms generated by the expression of mammalian Hsp27 (also denoted HspB1 in human) against the cytotoxicity induced by heat shock and oxidative stress. It also describes the anti-apoptotic properties of Hsp27 and their putative consequences in different pathological conditions.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Laboratoire Stress Oxydant, Chaperons et Apoptose, CNRS UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard, 16 rue Dubois, 69622 Villeurbanne Cedex, France.
| |
Collapse
|
227
|
Efferth T, Giaisi M, Merling A, Krammer PH, Li-Weber M. Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PLoS One 2007; 2:e693. [PMID: 17668070 PMCID: PMC1933253 DOI: 10.1371/journal.pone.0000693] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 07/01/2007] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND A major obstacle for successful cancer treatment often is the development of drug resistance in cancer cells during chemotherapy. Therefore, there is an urgent need for novel drugs with improved efficacy against tumor cells and with less toxicity on normal cells. Artesunate (ART), a powerful anti-malarial herbal compound, has been shown to inhibit growth of various tumor cell lines in vitro and of xenografted Kaposi's sarcoma in mice in vivo. However, the molecular mechanisms by which ART exerts its cytotoxicity have not been elucidated. The ART-class of anti-malarial compounds is attractive due to their activity against multidrug-resistant Plasmodium falciparum and Plasmodium vivax strains. Another salient feature of these compounds is the lack of severe side effects in malaria patients. METHODOLOGY AND PRINCIPAL FINDINGS In this study, we used T-cell leukemias as a model system to study the molecular mechanisms of ART-induced apoptosis. The most typical anticancer drugs are DNA intercalators such as Doxorubicin. To investigate drug sensitivity and resistance, we chose a Doxorubicin-resistant leukemia cell line and investigated the killing effect of ART on these cells. We show that ART induces apoptosis in leukemic T cells mainly through the mitochondrial pathway via generation of reactive oxygen species (ROS), a mechanism different from Doxorubicin. This is confirmed by the fact that the antioxidant N-Acetyle-Cysteine (NAC) could completely block ROS generation and, consequently, inhibited ART-induced apoptosis. Therefore, ART can overcome the Doxorubicin-resistance and induce the Doxorubicin-resistant leukemia cells to undergo apoptosis. We also show that ART can synergize with Doxorubicin to enhance apoptotic cell death in leukemic T cells. This synergistic effect can be largely explained by the fact that ART and Doxorubicin use different killing mechanisms. CONCLUSIONS Our studies raise the possibility to develop ART in combination with other established anticancer drugs which induce apoptosis through the pathways or mechanisms different from ART.
Collapse
Affiliation(s)
- Thomas Efferth
- Pharmaceutical Biology of Natural Products, German Cancer Research Center, Heidelberg, Germany
| | - Marco Giaisi
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | - Annette Merling
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | - Peter H. Krammer
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | - Min Li-Weber
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
228
|
Schmitt E, Paquet C, Beauchemin M, Bertrand R. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B 2007; 8:377-97. [PMID: 17565509 PMCID: PMC1879163 DOI: 10.1631/jzus.2007.b0377] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving "sensor" proteins that sense the damage, and transmit signals to "transducer" proteins, which, in turn, convey the signals to numerous "effector" proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.
Collapse
Affiliation(s)
- Estelle Schmitt
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Claudie Paquet
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Myriam Beauchemin
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Richard Bertrand
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
- Medicine Department, University of Montreal, Montreal (Que) H3C 3J7, Canada
- †E-mail:
| |
Collapse
|
229
|
Voehringer DW, Meyn RE. Reversing drug resistance in bcl-2-expressing tumor cells by depleting glutathione. Drug Resist Updat 2007; 1:345-51. [PMID: 17092816 DOI: 10.1016/s1368-7646(98)80010-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1998] [Revised: 09/16/1998] [Accepted: 09/17/1998] [Indexed: 02/06/2023]
Abstract
The immense research effort in cancer cell physiology has led to an appreciation of the molecular and biochemical pathways that regulate cellular responses to endogenous and exogenous insults. Similarly, in tumor cells, there are multiple overlapping pathways that, once activated, impart resistance to therapeutic intervention. The multi drug resistance pathway is one such pathway. In this review, we will present current ideas concerning a mechanism of tumor cell resistance that involves the inability to undergo apoptosis. The bcl-2 family of proteins are known to regulate apoptosis in response to a wide variety of toxic agents. Additionally, recent evidence points to bcl-2 involvement in the regulation of antioxidant pathways mediated by glutathione. This new information will be discussed in some detail and strategies for overcoming these resistance mechanisms that may have clinical utility will be presented.
Collapse
Affiliation(s)
- D W Voehringer
- Department of Genetics, Stanford University Medical School, Stanford, CA, USA
| | | |
Collapse
|
230
|
Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 2007; 581:2935-42. [PMID: 17544409 DOI: 10.1016/j.febslet.2007.05.048] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 11/24/2022]
Abstract
Cell death in yeast (Saccharomyces cerevisiae) involves several apoptotic processes. Here, we report the first evidence of the following processes, which are also characteristic of apoptosis, in ethanol-induced cell death in yeast: chromatin condensation and fragmentation, DNA cleavage, and a requirement for de novo protein synthesis. Mitochondrial fission protein, Fis1, appears to mediate ethanol-induced apoptosis and ethanol-induced mitochondrial fragmentation. However, mitochondrial fragmentation in response to elevated ethanol levels was not correlated with cell death. Further, in the presence of ethanol, generation of reactive oxygen species was elevated in mutant fis1Delta cells. Our characterization of ethanol-induced cell death in yeast as being Fis1-mediated apoptosis is likely to pave the way to overcoming limitations in large-scale fermentation processes, such as those employed in the production of alcoholic beverages and ethanol-based biofuels.
Collapse
|
231
|
Crambescidin 800, a pentacyclic guanidine alkaloid, protects a mouse hippocampal cell line against glutamate-induced oxidative stress. J Nat Med 2007. [DOI: 10.1007/s11418-007-0148-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
232
|
Palozza P, Serini S, Verdecchia S, Ameruso M, Trombino S, Picci N, Monego G, Ranelletti FO. Redox regulation of 7-ketocholesterol-induced apoptosis by beta-carotene in human macrophages. Free Radic Biol Med 2007; 42:1579-90. [PMID: 17448905 DOI: 10.1016/j.freeradbiomed.2007.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 02/16/2007] [Accepted: 02/19/2007] [Indexed: 12/29/2022]
Abstract
The aim of this study was to verify the hypothesis that beta-carotene may prevent 7-ketocholesterol (7-KC)-induced apoptosis in human macrophages. Therefore, THP-1 macrophages were exposed to 7-KC (5-50 microM) alone and in combination with beta-carotene (0.25-1 microM). 7-KC inhibited the growth of macrophages in a dose- and a time-dependent manner by inducing an arrest of cell cycle progression in the G0/G1 phase and apoptosis. Concomitantly, p53, p21, and Bax expressions were increased by 7-KC, whereas the levels of AKT, Bcl-2, and Bcl-xL were decreased. beta-Carotene prevented the growth-inhibitory effects of 7-KC in a dose- and time-dependent manner as well as the effects of 7-KC on the expression of cell cycle- and apoptosis-related proteins. 7-KC also enhanced reactive oxygen species (ROS) production through an increased expression of NAD(P)H oxidase (NOX-4). The effects of 7-KC were counteracted by the addition of the NAD(P)H oxidase inhibitor DPI or by cotransfection of siNOX-4 mRNA. beta-Carotene prevented 7-KC-induced increase in ROS production and in NOX-4 expression, as well as the phosphorylation of p38, JNK, and ERK1/2 induced by 7-KC. These data suggest a possible antiatherogenic role of beta-carotene through the prevention of 7-KC toxicity in human macrophages.
Collapse
Affiliation(s)
- Paola Palozza
- Institute of General Pathology, Catholic University School of Medicine, L. Go F. Vito, 1 00168 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Cui N, Li S, Zhao X, Zhang T, Zhang C, Yu L, Zhu Z, Xie K. Expression of Bcl-2, Bax and Caspase-3 in nerve tissues of rats chronically exposed to 2,5-hexanedione. Neurochem Res 2007; 32:1566-72. [PMID: 17492505 DOI: 10.1007/s11064-007-9359-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Occupational exposure and experimental intoxication with n-hexane or its metabolite 2,5-hexanedione (HD) produce a central-peripheral neuropathy. However, the mechanism remains unknown. We hypothesized that HD affected the expression of Bcl-2, Bax and Caspase-3 in the central nervous system (CNS) and the peripheral nervous system (PNS). Male adult Wistar rats were administered by intraperitoneal injection at a dosage of 200 or 400 mg/kg HD, five days per week for 8 weeks. Samples of the cerebral cortex, cerebellum, spinal cord and sciatic nerves were collected and examined for Bcl-2, Bax and Caspase-3 expression using Western blotting. Subchronic exposure to HD resulted in significantly increased expression of both anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax and Caspase-3 in cerebral cortex and cerebellum, which exhibited a dose-dependent pattern. Though little change was detected in spinal cord, our results showed that the expression of Bcl-2, Bax and Caspase-3 was markedly enhanced in the sciatic nerves. These findings suggested that the changes of apoptosis-related protein level in rat nerve tissues were associated with the intoxication of HD, which might be involved in early molecular regulatory mechanism of apoptosis in the HD-induced neuropathy.
Collapse
Affiliation(s)
- Ning Cui
- Institute of Toxicology, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Charron RA, Fenwick JC, Lean DRS, Moon TW. Ultraviolet-B Radiation Effects on Antioxidant Status and Survival in the Zebrafish, Brachydanio rerio¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720327ubreoa2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
235
|
Vantieghem A, Xu Y, Declercq W, Vandenabeele P, Denecker G, Vandenheede JR, Merlevede W, De Witte PA, Agostinis P. Different Pathways Mediate Cytochrome c Release After Photodynamic Therapy with Hypericin. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740133dpmccr2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
236
|
Arakawa M, Yasutake M, Miyamoto M, Takano T, Asoh S, Ohta S. Transduction of anti-cell death protein FNK protects isolated rat hearts from myocardial infarction induced by ischemia/reperfusion. Life Sci 2007; 80:2076-84. [PMID: 17467744 DOI: 10.1016/j.lfs.2007.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 03/13/2007] [Accepted: 03/18/2007] [Indexed: 12/29/2022]
Abstract
Artificial anti-cell death protein FNK, a Bcl-x(L) derivative with three amino acid-substitutions (Y22F, Q26N, and R165K) has enhanced anti-apoptotic and anti-necrotic activity and facilitates cell survival in many species and cell types. The objectives of this study were (i) to investigate whether the protein conjugated with a protein transduction domain (PTD-FNK) reduces myocardial infarct size and improves post-ischemic cardiac function in ischemic/reperfused rat hearts, and (ii) to understand the mechanism(s) by which PTD-FNK exerts a protective effect. Isolated rat hearts were subjected to 35-min global ischemia, followed by 120-min reperfusion using the Langendorff methods. PTD-FNK (a total of 30 microl) was injected intramuscularly into the anterior wall of the left ventricle either at 1 min after induction of global ischemia (group A) or at 30 min after induction of global ischemia (at 5 min before reperfusion) (group B). In group A, infarct size was significantly reduced from 47.8+/-6.8% in the control to 30.4+/-5.2, 28.7+/-3.8, and 30.4+/-6.8% with PTD-FNK at 5, 50, and 500 nmol/l, respectively (p<0.05). Temporal recovery of left ventricular developed pressure at 60 min and 120 min after reperfusion was significantly better in PTD-FNK (50 and 500 nmol/l)-treated groups than in the control (p<0.05). In contrast, PTD-FNK treatment had no effect on group B. Western blot analysis showed that PTD-FNK markedly inhibited procaspase-3 cleavage (activation of caspase-3) and reduced the number of nuclei stained by a terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphoshate nick-end labeling (TUNEL) assay. These findings suggest that PTD-FNK reduces the volume of myocardial infarction with corresponding functional recovery, at least in part, through the suppression of myocardial apoptosis following ischemia/reperfusion.
Collapse
Affiliation(s)
- Masayuki Arakawa
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8533, Japan
| | | | | | | | | | | |
Collapse
|
237
|
Shen XY, Zacal N, Singh G, Rainbow AJ. Alterations in Mitochondrial and Apoptosis-regulating Gene Expression in Photodynamic Therapy-resistant Variants of HT29 Colon Carcinoma Cells¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00188.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
238
|
Yang C, Jo SH, Csernus B, Hyjek E, Liu Y, Chadburn A, Wang YL. Activation of peroxisome proliferator-activated receptor gamma contributes to the survival of T lymphoma cells by affecting cellular metabolism. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:722-32. [PMID: 17255338 PMCID: PMC1851856 DOI: 10.2353/ajpath.2007.060651] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a metabolic regulator involved in maintaining glucose and fatty acid homeostasis. Besides its metabolic functions, the receptor has also been implicated in tumorigenesis. Ligands of PPARgamma induce apoptosis in several types of tumor cells, leading to the proposal that these ligands may be used as antineoplastic agents. However, apoptosis induction requires high doses of ligands, suggesting the effect may not be receptor-dependent. In this report, we show that PPARgamma is expressed in human primary T-cell lymphoma tissues and activation of PPARgamma with low doses of ligands protects lymphoma cells from serum starvation-induced apoptosis. The prosurvival effect of PPARgamma was linked to its actions on cellular metabolic activities. In serum-deprived cells, PPARgamma attenuated the decline in ATP, reduced mitochondrial hyperpolarization, and limited the amount of reactive oxygen species (ROS) in favor of cell survival. Moreover, PPARgamma regulated ROS through coordinated transcriptional control of a set of proteins and enzymes involved in ROS metabolism. Our study identified cell survival promotion as a novel activity of PPARgamma. These findings highlight the need for further investigation into the role of PPARgamma in cancer before widespread use of its agonists as anticancer therapeutics.
Collapse
Affiliation(s)
- Chunyan Yang
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
239
|
Sehara Y, Hayashi T, Deguchi K, Zhang H, Tsuchiya A, Yamashita T, Lukic V, Nagai M, Kamiya T, Abe K. Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats. Brain Res 2007; 1151:142-9. [PMID: 17459352 DOI: 10.1016/j.brainres.2007.01.149] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 01/03/2023]
Abstract
Recently, granulocyte colony-stimulating factor (G-CSF) is expected to demonstrate beneficial effects on cerebral ischemia. Here, we showed the potential benefit of G-CSF administration after transient middle cerebral artery occlusion (tMCAO). Adult male Wistar rats received vehicle or G-CSF (50 microg/kg) subcutaneously after reperfusion, and were treated with 5-bromodeoxyuridine (BrdU, 50 mg/kg) once daily by the intraperitoneal route for 3 days after tMCAO. Nissl-stained sections at 7 days after tMCAO showed significant reduction of the infarction area (31%, P<0.01). At 7 days after tMCAO, BrdU plus NeuN double-positive cells increased by 43.3% in the G-CSF-treated group (P<0.05), and BrdU-positive endothelial cells were increased 2.29 times in the G-CSF-treated group, to a level as high as that in the vehicle-treated group (P<0.01), in the periischemic area. Our results indicate that G-CSF caused potentiation of neuroprotection and neurogenesis and is expected to have practical therapeutic potential in treating individuals after ischemic brain injury.
Collapse
Affiliation(s)
- Yoshihide Sehara
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Wu Y, Shang Y, Sun S, Liu R. Antioxidant effect of erythropoietin on 1-methyl-4-phenylpyridinium-induced neurotoxicity in PC12 cells. Eur J Pharmacol 2007; 564:47-56. [PMID: 17362920 DOI: 10.1016/j.ejphar.2007.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 01/20/2007] [Accepted: 02/02/2007] [Indexed: 01/29/2023]
Abstract
The neuroprotective effects of erythropoietin on 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative stress and apoptosis in cultured PC12 cells as well as the underlying mechanism were investigated. Treatment of PC12 cells with MPP(+) caused the loss of cell viability, which was associated with the elevation in apoptotic rate, the formation of reactive oxygen species and the disruption of mitochondrial transmembrane potential. It was also shown that MPP(+) significantly induced upregulation of Bax/Bcl-2 ratio and activation of caspase-3. In contrast, erythropoietin reversed these phenotypes and had its maximum protective effect at 1 U/ml. The effect of erythropoietin was mediated by the phosphatidylinositol 3-kinase (PI3K) signaling pathway since erythropoietin failed to rescue cells from MPP(+) insult in the presence of the PI3K inhibitor, LY 294002. In addition, the downstream effector of PI3K, Akt, was activated by erythropoietin, and Akt activation was inhibited by LY 294002. Furthermore, the effect of erythropoietin on reactive oxygen species levels was also blocked by LY 294002. These results show that erythropoietin may provide a useful therapeutic strategy for the treatment of oxidative stress-induced neurodegenerative diseases such as Parkinson disease.
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | | | | | | |
Collapse
|
241
|
Suresh C, Dennis AO, Heinz J, Vemuri MC, Chetty CS. Melatonin protection against lead-induced changes in human neuroblastoma cell cultures. Int J Toxicol 2007; 25:459-64. [PMID: 17132604 DOI: 10.1080/10915810600959576] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The nervous system is the primary target for low-levels of lead (Pb) exposure and the developing brain appears to be especially vulnerable to Pb neurotoxicity. Chronic low-level Pb exposure causes growth retardation and intellectual impairment. In the present study the protective effect of melatonin during exposure to low-levels of Pb in human SH-SY5Y neuroblastoma cell cultures was assessed. The cells were exposed to Pb (0.01 to 10 microM) for 48 h. Pb inhibited the proliferation of neuroblastoma cells significantly in a concentration-dependent manner. A 50% inhibition (IC50) of cell proliferation was observed at about 5 microM Pb. Pb decreased (16% to 62%) the levels of total cellular glutathione (GSH) in a concentration (0.1 to 10 microM)-dependent manner. Exposure of cells to Pb (5 microM) for 48 h resulted in an eightfold increase in caspase-3 activity and prostaglandin E2 (PGE2) level. Pretreatment with melatonin (10 microM) blocked the effects of Pb on GSH content and caspase-3 activity, and showed significant improvement in reducing the level of PGE2. The results suggest that some of the neurotoxic effects of Pb may be partly mediated by apoptosis and pretreatment with melatonin can prevent these effects. The present study asserts the neuroprotective effect of melatonin in conditions of Pb-induced toxicity in neuroblastoma cell cultures.
Collapse
|
242
|
Sahin M, Saxena A, Joost P, Lewerenz J, Methner A. Induction of Bcl-2 by functional regulation of G-protein coupled receptors protects from oxidative glutamate toxicity by increasing glutathione. Free Radic Res 2007; 40:1113-23. [PMID: 17050165 DOI: 10.1080/10715760600838191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glutamate treatment depletes hippocampal HT22 cells of glutathione, which renders the cells incapable to reduce reactive oxygen species and ultimately cumulates in cell death by oxidative stress. HT22 cells resistant to glutamate displayed increased phosphorylation of cAMP-response-element binding (CREB) and decreased ERK1/2 suggestive of differences in signal transmission. We investigated the amount of candidate G-protein-coupled receptors involved in this resistance and found an increase in mRNA for receptors activated by the vasoactive intestinal peptide VIP (VPAC2, 12.6-fold) and glutamate like the metabotropic glutamate receptor mGlu1 (5.3-fold). Treating cells with VIP and glutamate led to the same changes in protein phosphorylation observed in resistant cells and induced the proto-oncogene Bcl-2. Bcl-2 overexpression protected by increasing the amount of intracellular glutathione and Bcl-2 knockdown by small interfering RNAs (siRNA) increased glutamate susceptibility of resistant cells. Other receptors upregulated in this paradigm might represent useful targets in the treatment of neurological diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Mert Sahin
- Department of Neurology, Heinrich Heine Universität Düsseldorf, Moorenstreet 5, 40225, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
243
|
Cui J, Shao L, Young LT, Wang JF. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 2007; 144:1447-53. [PMID: 17184924 DOI: 10.1016/j.neuroscience.2006.11.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 10/18/2006] [Accepted: 11/08/2006] [Indexed: 12/30/2022]
Abstract
Mood stabilizing drugs lithium and valproate are the most commonly used treatments for bipolar disorder. Previous studies in our laboratory indicate that chronic treatment with lithium and valproate inhibits oxidative damage in primary cultured rat cerebral cortical cells. Glutathione, as the major antioxidant in the brain, plays a key role in defending against oxidative damage. The purpose of this study was to determine the role of glutathione in the neuroprotective effects of lithium and valproate against oxidative damage. We found that chronic treatment with lithium and valproate inhibited reactive oxygen metabolite H(2)O(2)-induced cell death in primary cultured rat cerebral cortical cells, while buthionine sulfoximine, an inhibitor of glutathione rate-limiting synthesis enzyme glutamate-cysteine ligase, reduced the neuroprotective effect of lithium and valproate against H(2)O(2)-induced cell death. Further, we found that chronic treatment with lithium and valproate increased glutathione levels in primary cultured rat cerebral cortical cells and that the effects of lithium and valproate on glutathione levels were dose-dependent in human neuroblastoma SH-SY5Y cells. Chronic treatment with lithium and valproate also increased the expression of glutamate-cysteine ligase in both rat cerebral cortical cells and SH-SY5Y cells. In addition, chronic treatment with other mood stabilizing drugs lamotrigine and carbamazepine, but not antidepressants desipramine and fluoxetine, increased both glutathione levels and the expression of glutamate-cysteine ligase in SH-SY5Y cells. These results suggest that glutathione plays an important role in the neuroprotective effects of lithium and valproate, and that glutathione may be a common target for mood stabilizing drugs.
Collapse
Affiliation(s)
- J Cui
- The Vivian Rakoff Mood Disorders Laboratory, Centre for Addiction and Mental Health, 250 College Street, 11th floor, Toronto, Ontario, Canada M5T 1R8
| | | | | | | |
Collapse
|
244
|
Musenga A, Mandrioli R, Bonifazi P, Kenndler E, Pompei A, Raggi MA. Sensitive and selective determination of glutathione in probiotic bacteria by capillary electrophoresis–laser induced fluorescence. Anal Bioanal Chem 2007; 387:917-24. [PMID: 17203251 DOI: 10.1007/s00216-006-0980-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
Glutathione (GSH) is a thiol with an important function in protecting tissue against the oxidative stress which has been related to carcinogenesis in the colon. For this reason the development of probiotic species producing glutathione could be of great interest. To determine the glutathione content of some probiotic bacteria of the Bifidobacterium and Lactococcus genera, a very sensitive and selective analytical method based on capillary electrophoresis coupled to laser-induced fluorescence detection has been developed. Pretreatment of cell-lysate samples is very simple--precipitation of protein with acetonitrile in 1:2 volume ratio. The fluorophore 5-iodoacetamidofluorescein (5-IAF) was chosen for glutathione derivatisation; it reacts with thiols at pH 12.5, forming a fluorescent adduct which is excited by a laser at 488 nm for detection. The reaction conditions optimised were temperature, time, and 5-IAF/GSH molar ratio. Electrophoresis was performed with a carbonate buffer (25 mmol L(-1), pH 9.8) as background electrolyte and a voltage of 30 kV; an electrophoretic run was complete in less than 7 min. There was a good linear relationship between concentration and response in the range 2.5-500 ng mL(-1) and the LOD was 0.5 ng mL(-1). The glutathione content of probiotic cells was determined by using the standard additions method to reduce matrix effects. The method was fully validated and shown to be of suitable sensitivity and selectivity for determination of GSH in probiotic cell lysates.
Collapse
Affiliation(s)
- Alessandro Musenga
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
245
|
Shoji H, Oguchi S, Shinohara K, Shimizu T, Yamashiro Y. Effects of iron-unsaturated human lactoferrin on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells. Pediatr Res 2007; 61:89-92. [PMID: 17211147 DOI: 10.1203/01.pdr.0000250198.22735.20] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human milk (HM) contains various bioactive antioxidants. Lactoferrin (Lf) has been assumed to be one of the major antioxidants in HM. We examined the antioxidative properties of iron-unsaturated human Lf (apo-hLf, the major form of Lf in HM) in two intestinal epithelial cell lines: (1) An intestinal epithelial cell line (IEC-6) were preincubated for 24 h with either 50 microg/mL of apo-hLf, iron-saturated human Lf (holo-hLf), iron-unsaturated bovine transferrin (apo-bTf), or 800 ng/mL of the iron-chelating compound deferoxamine (DFX), followed by hydrogen peroxide (H2O2) challenge to induce oxidative stress. Survival rates were significantly higher in the cells preincubated with apo-hLf and DFX than those preincubated with holo-hLf. (2) Caco-2 cells were preincubated with or without apo-hLf for 24 h, followed by an H2O2 challenge. Intracellular oxidative stress was assessed by a fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA). Fluorescent intensity of cell images and cell homogenates was significantly lower in the cells preincubated with apo-hLF than those preincubated without apo-hLF. Our study indicates that apo-hLf alleviates H2O2-induced oxidative damage in intestinal cells due to the iron-chelating capacity. Therefore, Lf in HM may act as an antioxidant in the gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Hiromichi Shoji
- Department of Pediatrics and Adolescent Medicine, Juntendo University School of Medicine, 113-0033 Tokyo, Japan.
| | | | | | | | | |
Collapse
|
246
|
Greco R, Amantea D, Blandini F, Nappi G, Bagetta G, Corasaniti MT, Tassorelli C. Neuroprotective effect of nitroglycerin in a rodent model of ischemic stroke: evaluation of Bcl-2 expression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:423-35. [PMID: 17678976 DOI: 10.1016/s0074-7742(07)82024-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transient focal ischemia caused by middle cerebral artery occlusion (MCAo) produces apoptotic cell death in the penumbra area. Bcl-2 is a protooncogene that plays a major antiapoptotic role, at the cellular level, by counteracting the activation of apoptosis effectors, that is, caspases. It has been suggested that nitroglycerin (NTG), a nitric oxide donor, reduces ischemia/reperfusion-induced brain damage via the inhibition of caspase activity and NMDA receptor. In this chapter, we evaluated the protective effects of NTG against cerebral damage caused by transient (2h) MCAo (tMCAo) focusing our interest on the potential effects on Bcl-2 expression. Male Wistar rats were administered intraperitoneally (i.p.) with NTG (10mg/kg) or vehicle (PEG, 1ml/kg) 20min before the induction of MCAo by intraluminal silicon-coated filament (0.37-mm diameter). Cerebral infarct volume was measured 22h after reperfusion, while cortical Bcl-2 expression was evaluated at the end of 2-h MCAo (without reperfusion) and at 5h of reperfusion. The results show significant reduction of the infarct volume in rats preinjected with NTG, as compared to the vehicle group. After 2h of occlusion, no significant difference was seen in Bcl-2 expression in the ipsilateral and contralateral cortex of either experimental groups (NTG and vehicle). However, 5h after reperfusion, a significant increase of Bcl-2 expression was detected in the damaged cortex of control rats, probably reflecting a compensatory response aiming at counteracting the cell death process; this increase was absent in the NTG-treated rats. These data, while confirming the neuroprotective effect of NTG in an in vivo ischemia/reperfusion model, seem to suggest that the drug may act by downsizing the complex chain of events underlying apoptosis activation and consequent activation of antiapoptotic responses.
Collapse
Affiliation(s)
- Rosaria Greco
- IRCCS C. Mondino Institute of Neurology Foundation, 27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
247
|
Burke RE. Programmed cell death in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:591-605. [DOI: 10.1016/s0072-9752(07)83029-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
248
|
Guleria RS, Pan J, Dipette D, Singh US. Hyperglycemia inhibits retinoic acid-induced activation of Rac1, prevents differentiation of cortical neurons, and causes oxidative stress in a rat model of diabetic pregnancy. Diabetes 2006; 55:3326-34. [PMID: 17130476 DOI: 10.2337/db06-0169] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes is a risk factor for neuronal dysfunction. Impairment in signaling mechanisms that regulate differentiation of neurons is hypothesized to be one of the main causes of neuronal dysfunction. Retinoic acid, a physiologically active retinoid synthesized from vitamin A, regulates neuronal differentiation during embryonic development and is required for maintenance of plasticity in differentiated neurons. To date, little is known about the molecular events underlying hyperglycemia-induced complications in the central nervous system (CNS). Here, we provide evidence, in a diabetes rat model, of hyperglycemia-induced oxidative stress along with apoptotic stress in developing cortical neurons isolated from 16-day-old rat embryos. We also demonstrate impaired retinoic acid signaling that is involved in neuronal differentiation. Retinoic acid-induced neurite outgrowth and expression of neuronal markers were reduced in this model. The activation of small-molecular weight G-protein, Rac1, that mediates these effects was also reduced. Retinoic acid applied at a physiological concentration significantly decreased hyperglycemia-induced oxidative stress and thus supported the antioxidant defense system. These results suggest that diabetes-induced neuronal complications during pregnancy might be due to impaired retinoic acid signaling, and exogenously administered retinoic acid may be useful against CNS complications associated with diabetes.
Collapse
Affiliation(s)
- Rakeshwar S Guleria
- Division of Molecular Cardiology, Cardiovascular Research Institute, Building 205, 1901 South 1st St., Temple, TX 76504, USA
| | | | | | | |
Collapse
|
249
|
|
250
|
Ebisch IMW, Thomas CMG, Peters WHM, Braat DDM, Steegers-Theunissen RPM. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update 2006; 13:163-74. [PMID: 17099205 DOI: 10.1093/humupd/dml054] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current treatments of subfertile couples are usually empiric, as the true cause of subfertility often remains unknown. Therefore, we outline the role of nutritional and biochemical factors in reproduction and subfertility. A literature search was performed using MEDLINE, Science Direct and bibliographies of published work with both positive and negative results. The studies showed that folate has a role in spermatogenesis. In female reproduction, folate is also important for oocyte quality and maturation, implantation, placentation, fetal growth and organ development. Zinc has also been implicated in testicular development, sperm maturation and testosterone synthesis. In females, zinc plays a role in sexual development, ovulation and the menstrual cycle. Both folate and zinc have antioxidant properties that counteract reactive oxygen species (ROS). Thiols, such as glutathione, balance the levels of ROS produced by spermatozoa and influence DNA compaction and the stability and motility of spermatozoa. Oocyte maturation, ovulation, luteolysis and follicle atresia are also affected by ROS. After fertilization, glutathione is important for sperm nucleus decondensation and pronucleus formation. Folate, zinc, ROS and thiols affect apoptosis, which is important for sperm release, regulation of follicle atresia, degeneration of the corpus luteum and endometrial shedding. Therefore, the concentrations of these nutrients may have substantial effects on reproduction. In conclusion, nutritional and biochemical factors affect biological processes in male and female reproduction. Further research should identify pathways that may lead to improvements in care and treatment of subfertility.
Collapse
Affiliation(s)
- I M W Ebisch
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|