201
|
Matsui K, Tani R, Yamasaki S, Ito N, Hamada A, Shintani T, Otomo T, Tokumaru K, Yanamoto S, Okamoto T. Analysis of Oral and Gut Microbiome Composition and Its Impact in Patients with Oral Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:6077. [PMID: 38892262 PMCID: PMC11172797 DOI: 10.3390/ijms25116077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The impact of gut and oral microbiota on the clinical outcomes of patients with oral squamous cell carcinoma (OSCC) is unknown. We compared the bacterial composition of dental plaque and feces between patients with OSCC and healthy controls (HCs). Fecal and dental plaque samples were collected from 7 HCs and 18 patients with OSCC before treatment initiation. Terminal restriction fragment-length polymorphism analysis of 16S rRNA genes was performed. Differences in bacterial diversity between the HC and OSCC groups were examined. We compared the occupancy of each bacterial species in samples taken from patients with OSCC and HCs and analyzed the correlation between PD-L1 expression in the tumor specimens and the occupancy of each bacterial species. The gut and oral microbiota of patients with OSCC were more varied than those of HCs. Porphyromonas and Prevotella were significantly more abundant in patients with OSCC than in HCs. The abundance of Clostridium subcluster XIVa in the gut microbiota of the PD-L1-positive group was significantly greater than that in the PD-L1-negative group. The oral and gut microbiomes of patients with OSCC were in a state of dysbiosis. Our results suggest the possibility of new cancer therapies targeting these disease-specific microbiomes using probiotics and synbiotics.
Collapse
Affiliation(s)
- Kensaku Matsui
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima 734-8553, Japan; (K.M.); (T.O.)
| | - Ryouji Tani
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima 734-8553, Japan;
| | - Sachiko Yamasaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima 734-8553, Japan; (S.Y.); (A.H.); (S.Y.)
| | - Nanako Ito
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima 734-8553, Japan;
| | - Atsuko Hamada
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima 734-8553, Japan; (S.Y.); (A.H.); (S.Y.)
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8553, Japan;
| | - Takeshi Otomo
- NIHON KEFIA Co., Ltd., 13-16, Asahicho, Fujisawa-shi 251-0054, Japan; (T.O.); (K.T.)
| | - Koichiro Tokumaru
- NIHON KEFIA Co., Ltd., 13-16, Asahicho, Fujisawa-shi 251-0054, Japan; (T.O.); (K.T.)
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima 734-8553, Japan; (S.Y.); (A.H.); (S.Y.)
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima 734-8553, Japan; (K.M.); (T.O.)
- School of Medical Sciences, University of East Asia, Shimonoseki 751-8503, Japan
| |
Collapse
|
202
|
Nguyen NTA, Jiang Y, McQuade JL. Eating away cancer: the potential of diet and the microbiome for shaping immunotherapy outcome. Front Immunol 2024; 15:1409414. [PMID: 38873602 PMCID: PMC11169628 DOI: 10.3389/fimmu.2024.1409414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The gut microbiome (GMB) plays a substantial role in human health and disease. From affecting gut barrier integrity to promoting immune cell differentiation, the GMB is capable of shaping host immunity and thus oncogenesis and anti-cancer therapeutic response, particularly with immunotherapy. Dietary patterns and components are key determinants of GMB composition, supporting the investigation of the diet-microbiome-immunity axis as a potential avenue to enhance immunotherapy response in cancer patients. As such, this review will discuss the role of the GMB and diet on anti-cancer immunity. We demonstrate that diet affects anti-cancer immunity through both GMB-independent and GMB-mediated mechanisms, and that different diet patterns mold the GMB's functional and taxonomic composition in distinctive ways. Dietary modulation therefore shows promise as an intervention for improving cancer outcome; however, further and more extensive research in human cancer populations is needed.
Collapse
Affiliation(s)
| | | | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
203
|
Zhang W, Ling J, Xu B, Wang J, Chen Z, Li G. Gut microbiome-mediated monocytes promote liver metastasis. Int Immunopharmacol 2024; 133:111877. [PMID: 38608440 DOI: 10.1016/j.intimp.2024.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
The gut microbiome plays an important role in tumor growth by regulating immune cell function. However, the role of the gut microbiome-mediated monocytes in liver metastasis remains unclear. In this study, we found that fecal microbiome transplantation (FMT) from the stool of patients with liver metastasis (LM) significantly promoted liver metastasis compared with healthy donors (HD). Monocytes were upregulated in liver tissues by the CCL2/CCR2 axis in LM patients' stool transplanted mouse model. CCL2/CCR2 inhibition and monocyte depletion significantly suppress liver metastasis. FMT using LM patients' stool enhanced the plasma lipopolysaccharides (LPS) concentration. The LPS/TLR4 signaling pathway is crucial for gut microbiome-mediated liver metastasis. These results indicated that monocytes contribute to liver metastasis via the CCL2/CCR2 axis.
Collapse
Affiliation(s)
- Wenzhong Zhang
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Jie Ling
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Baiying Xu
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Jie Wang
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Zexu Chen
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Gang Li
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China.
| |
Collapse
|
204
|
Darwish IA, Alahmad W, Vinoth R. Novel ultrasensitive automated kinetic exclusion assay for measurement of plasma levels of soluble PD-L1, the predictive and prognostic biomarker in cancer patients treated with immune checkpoint inhibitors. Heliyon 2024; 10:e31317. [PMID: 38803937 PMCID: PMC11129001 DOI: 10.1016/j.heliyon.2024.e31317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Recently, the blood plasma or serum levels of soluble programmed death protein 1 (PD-L1), but not tissue PD-L1 expression level, have been proposed as an effective predictive and prognostic biomarker in patients treated with immune checkpoint inhibitors for different types of cancers. The quantification of soluble PD-L1 in blood will provide a quick evaluation of patients' immune status; however, the available assays have limitations in their sensitivity, reproducibility, and accuracy for use in clinical settings. To overcome these problems, this study was dedicated to developing an ultrasensitive automated flow-based kinetic exclusion assay (KinExA) for the accurate and precise measurement of soluble PD-L1 in plasma. The assay was developed with the assistance of KinExA™ 3200 biosensor. In this assay, PD-L1 in its calibrator or plasma sample solution was pre-equilibrated with anti-PD-L1 monoclonal antibody. The equilibrated mixture solution was then passed rapidly over PD-L1 protein that has been coated onto polymethylmethacrylate beads consolidated as a microcolumn in the observation cell of the KinExA™ biosensor. The free anti- PD-L1 antibody was bound to the immobilized PD-L1, however, the unbound molecules were removed from the beads microcolumn by flushing the system with phosphate-buffered saline. Fluorescein-labeled secondary antibody was passed rapidly over the beads, and the fluorescence signals were monitored during the flow of the labeled antibody through the beads. The calibration curve was generated by plotting the binding percentages as a function of PD-L1 concentrations in its sample solution. The working range of the assay with very a good correlation coefficient on a 4-parameter equation (r = 0.9992) was 0.5 - 100 pg mL─1. The assay limit of detection and quantitation were 0.15 and 0.5 pg mL─1, respectively. The recovery values of plasma-spiked PD-L1 were in the range of 96.4-104.3 % (±3.7-6.2 %). The precision of the assay was satisfactory; the values of the coefficient of variations did not exceed 6.2 % for both intra- and inter-day precision. The automated analysis by the proposed KinExA facilitates the processing of many specimens in clinical settings. The overall performance of the proposed KinExA is superior to the available assays for plasma levels of soluble PD-L1. The proposed assay is anticipated to have a great value in the measurement of PD-L1 where a more confident result is needed.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rajendran Vinoth
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
205
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Czarnecka W, Podkówka A, Ekstedt N, Zawodny P, Wierzbicka-Woś A, Marlicz W, Skupin B, Stachowska E, Łoniewski I, Skonieczna-Żydecka K. Insights into the Mechanisms of Action of Akkermansia muciniphila in the Treatment of Non-Communicable Diseases. Nutrients 2024; 16:1695. [PMID: 38892628 PMCID: PMC11174979 DOI: 10.3390/nu16111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.
Collapse
Affiliation(s)
- Honorata Mruk-Mazurkiewicz
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Natalia Ekstedt
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Piotr Zawodny
- Medical Center Zawodny Clinic, Ku Słońcu 58, 71-047 Szczecin, Poland;
| | | | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej, 71-252 Szczecin, Poland
| | - Błażej Skupin
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| |
Collapse
|
206
|
Cui C, Yang T, Wang S, Jia Z, Zhao L, Han X, Sun X, Zong J, Wang S, Chen D. Discussion on the relationship between gut microbiota and glioma through Mendelian randomization test based on the brain gut axis. PLoS One 2024; 19:e0304403. [PMID: 38809931 PMCID: PMC11135782 DOI: 10.1371/journal.pone.0304403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND In the realm of Gut-Brain axis research, existing evidence points to a complex bidirectional regulatory mechanism between gut microbiota and the brain. However, the question of whether a causal relationship exists between gut microbiota and specific types of brain tumors, such as gliomas, remains unresolved. To address this gap, we employed publicly available Genome-Wide Association Study (GWAS) and MIOBEN databases, conducting an in-depth analysis using Two-Sample Mendelian Randomization (MR). METHOD We carried out two sets of MR analyses. The preliminary analysis included fewer instrumental variables due to a high genome-wide statistical significance threshold (5×10-8). To enable a more comprehensive and detailed analysis, we adjusted the significance threshold to 1×10-5. We performed linkage disequilibrium analysis (R2 <0.001, clumping distance = 10,000kb) and detailed screening of palindromic SNPs, followed by MR analysis and validation through sensitivity analysis. RESULTS Our findings reveal a causal relationship between gut microbiota and gliomas. Further confirmation via Inverse Variance Weighting (IVW) identified eight specific microbial communities related to gliomas. Notably, the Peptostreptococcaceae and Olsenella communities appear to have a protective effect, reducing glioma risk. CONCLUSION This study not only confirms the causal link between gut microbiota and gliomas but also suggests a new avenue for future glioma treatment.
Collapse
Affiliation(s)
- Chenzhi Cui
- Graduate school, Dalian Medical University, Dalian, Dalian, China
- Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, China
| | - Tianke Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - ShengYu Wang
- Medical Laboratory Technology, College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Zhuqiang Jia
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Naqu People’s Hospital, Tibet, China
| | - Lin Zhao
- Department of Quality Management, Dalian Municipal Central Hospital, Dalian, China
| | - Xin Han
- Naqu People’s Hospital, Tibet, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohong Sun
- Department of Nursing, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Chen
- Graduate school, Dalian Medical University, Dalian, Dalian, China
- Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
207
|
Fu J, Hao Z. The causality between gut microbiota and non-Hodgkin lymphoma: a two-sample bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1403825. [PMID: 38860220 PMCID: PMC11163074 DOI: 10.3389/fmicb.2024.1403825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
Background Studies have indicated an association between gut microbiota (GM) and non-Hodgkin lymphoma (NHL). However, the causality between GM and NHL remains unclear. This study aims to investigate the causality between GM and NHL using Mendelian randomization (MR). Methods Data on GM is sourced from the MiBioGen consortium, while data on NHL and its subtypes is sourced from the FinnGen consortium R10 version. Inverse variance weighted (IVW) was employed for the primary MR analysis method, with methods such as Bayesian weighted Mendelian randomisation (BWMR) as an adjunct. Sensitivity analyses were conducted using Cochran's Q test, MR-Egger regression, MR-PRESSO, and the "Leave-one-out" method. Results The MR results showed that there is a causality between 27 GMs and NHL. Among them, 20 were negatively associated (OR < 1), and 7 were positively associated (OR > 1) with the corresponding diseases. All 27 MR results passed sensitivity tests, and there was no reverse causal association. Conclusion By demonstrating a causal link between GM and NHL, this research offers novel ideas to prevent, monitor, and cure NHL later.
Collapse
Affiliation(s)
- Jinjie Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Hao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- Guo Aichun Institute of Medical History and Literature, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
208
|
Beckabir W, Zhou M, Lee JS, Vensko SP, Woodcock MG, Wang HH, Wobker SE, Atassi G, Wilkinson AD, Fowler K, Flick LM, Damrauer JS, Harrison MR, McKinnon KP, Rose TL, Milowsky MI, Serody JS, Kim WY, Vincent BG. Immune features are associated with response to neoadjuvant chemo-immunotherapy for muscle-invasive bladder cancer. Nat Commun 2024; 15:4448. [PMID: 38789460 PMCID: PMC11126571 DOI: 10.1038/s41467-024-48480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Neoadjuvant cisplatin-based chemotherapy is standard of care for muscle-invasive bladder cancer (MIBC). Immune checkpoint inhibition (ICI) alone, and ICI in combination with chemotherapy, have demonstrated promising pathologic response (
Collapse
Affiliation(s)
- Wolfgang Beckabir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Seok Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Steven P Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hsing-Hui Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Sara E Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alec D Wilkinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Fowler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah M Flick
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael R Harrison
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Karen P McKinnon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Tracy L Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA.
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
209
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
210
|
Kadono T, Yamamoto S, Kato K. Development of perioperative immune checkpoint inhibitor therapy for locally advanced esophageal squamous cell carcinoma. Future Oncol 2024; 20:2097-2107. [PMID: 38861290 PMCID: PMC11497952 DOI: 10.1080/14796694.2024.2345043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/16/2024] [Indexed: 06/12/2024] Open
Abstract
The standard preoperative treatment for resectable locally advanced esophageal squamous cell carcinoma (ESCC) is chemoradiotherapy in western countries (based on the CROSS trial) and triplet chemotherapy in Japan (based on the JCOG1109 trial). Postoperative nivolumab has recently been shown to improve disease-free survival in resectable locally advanced esophageal cancer after preoperative chemoradiotherapy in patients who had residual pathological disease, based on the CheckMate 577 trial. Furthermore, preoperative immune checkpoint inhibitor-containing treatments have also been developed. The JCOG1804E trial is presently evaluating the safety and efficacy of preoperative nivolumab-containing chemotherapy for resectable locally advanced ESCC. This review discusses the treatment of resectable locally advanced ESCC and future perspectives on perioperative immune checkpoint inhibitor-containing treatments.
Collapse
Affiliation(s)
- Toru Kadono
- Department of Head & Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
- Cancer Chemotherapy Center, Osaka Medical & Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Shun Yamamoto
- Department of Head & Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Ken Kato
- Department of Head & Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| |
Collapse
|
211
|
Wang Y, Han Y, Yang C, Bai T, Zhang C, Wang Z, Sun Y, Hu Y, Besenbacher F, Chen C, Yu M. Long-term relapse-free survival enabled by integrating targeted antibacteria in antitumor treatment. Nat Commun 2024; 15:4194. [PMID: 38760364 PMCID: PMC11101653 DOI: 10.1038/s41467-024-48662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
The role of tumor-resident intracellular microbiota (TRIM) in carcinogenesis has sparked enormous interest. Nevertheless, the impact of TRIM-targeted antibacteria on tumor inhibition and immune regulation in the tumor microenvironment (TME) remains unexplored. Herein, we report long-term relapse-free survival by coordinating antibacteria with antitumor treatment, addressing the aggravated immunosuppression and tumor overgrowth induced by TRIM using breast and prostate cancer models. Combining Ag+ release with a Fenton-like reaction and photothermal conversion, simultaneous bacteria killing and multimodal antitumor therapy are enabled by a single agent. Free of immune-stimulating drugs, the agent restores antitumor immune surveillance and activates immunological responses. Secondary inoculation and distal tumor analysis confirm lasting immunological memory and systemic immune responses. A relapse-free survival of >700 days is achieved. This work unravels the crucial role of TRIM-targeted antibacteria in tumor inhibition and unlocks an unconventional route for immune regulation in TME and a complete cure for cancer.
Collapse
Affiliation(s)
- Yuanlin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yaqian Han
- School of Instrumentation Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Chenhui Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Tiancheng Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chenggang Zhang
- School of Instrumentation Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhaotong Wang
- School of Instrumentation Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ye Sun
- School of Instrumentation Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Chunying Chen
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
212
|
Di Luccia B, Molgora M, Khantakova D, Jaeger N, Chang HW, Czepielewski RS, Helmink BA, Onufer EJ, Fachi JL, Bhattarai B, Trsan T, Rodrigues PF, Hou J, Bando JK, da Silva CS, Cella M, Gilfillan S, Schreiber RD, Gordon JI, Colonna M. TREM2 deficiency reprograms intestinal macrophages and microbiota to enhance anti-PD-1 tumor immunotherapy. Sci Immunol 2024; 9:eadi5374. [PMID: 38758808 PMCID: PMC11299520 DOI: 10.1126/sciimmunol.adi5374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.
Collapse
Affiliation(s)
- Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Darya Khantakova
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Natalia Jaeger
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Hao-Wei Chang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rafael S. Czepielewski
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Beth A. Helmink
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily J. Onufer
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Bishan Bhattarai
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Patrick F. Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - JinChao Hou
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Jennifer K. Bando
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Cristiane Sécca da Silva
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Jeffrey I. Gordon
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| |
Collapse
|
213
|
Green GBH, Cox-Holmes AN, Backan O, Valbak O, Potier ACE, Chen D, Morrow CD, Willey CD, McFarland BC. Exploring Gut Microbiota Alterations with Trimethoprim-Sulfamethoxazole and Dexamethasone in a Humanized Microbiome Mouse Model. Microorganisms 2024; 12:1015. [PMID: 38792844 PMCID: PMC11124107 DOI: 10.3390/microorganisms12051015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Along with the standard therapies for glioblastoma, patients are commonly prescribed trimethoprim-sulfamethoxazole (TMP-SMX) and dexamethasone for preventing infections and reducing cerebral edema, respectively. Because the gut microbiota impacts the efficacy of cancer therapies, it is important to understand how these medications impact the gut microbiota of patients. Using mice that have been colonized with human microbiota, this study sought to examine how TMP-SMX and dexamethasone affect the gut microbiome. Two lines of humanized microbiota (HuM) Rag1-/- mice, HuM1Rag and HuM2Rag, were treated with either TMP-SMX or dexamethasone via oral gavage once a day for a week. Fecal samples were collected pre-treatment (pre-txt), one week after treatment initiation (1 wk post txt), and three weeks post-treatment (3 wk post txt), and bacterial DNA was analyzed using 16S rRNA-sequencing. The HuM1Rag mice treated with TMP-SMX had significant shifts in alpha diversity, beta diversity, and functional pathways at all time points, whereas in the HuM2Rag mice, it resulted in minimal changes in the microbiome. Likewise, dexamethasone treatment resulted in significant changes in the microbiome of the HuM1Rag mice, whereas the microbiome of the HuM2Rag mice was mostly unaffected. The results of our study show that routine medications used during glioblastoma treatment can perturb gut microbiota, with some microbiome compositions being more sensitive than others, and these treatments could potentially affect the overall efficacy of standard-of-care therapy.
Collapse
Affiliation(s)
- George B. H. Green
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Alexis N. Cox-Holmes
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Olivia Backan
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Olivia Valbak
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Anna Claire E. Potier
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | | | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Christopher D. Willey
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| |
Collapse
|
214
|
Zhang L, Yu L. The role of the microscopic world: Exploring the role and potential of intratumoral microbiota in cancer immunotherapy. Medicine (Baltimore) 2024; 103:e38078. [PMID: 38758914 PMCID: PMC11098217 DOI: 10.1097/md.0000000000038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Abstract
Microorganisms, including bacteria, viruses, and fungi, coexist in the human body, forming a symbiotic microbiota that plays a vital role in human health and disease. Intratumoral microbial components have been discovered in various tumor tissues and are closely linked to the occurrence, progression, and treatment results of cancer. The intratumoral microbiota can enhance antitumor immunity through mechanisms such as activating the stimulator of interferon genes signaling pathway, stimulating T and NK cells, promoting the formation of TLS, and facilitating antigen presentation. Conversely, the intratumoral microbiota might suppress antitumor immune responses by increasing reactive oxygen species levels, creating an anti-inflammatory environment, inducing T cell inactivation, and enhancing immune suppression, thereby promoting cancer progression. The impact of intratumoral microbiota on antitumor immunity varies based on microbial composition, interactions with cancer cells, and the cancer's current state. A deep understanding of the complex interactions between intratumoral microbiota and antitumor immunity holds the potential to bring new therapeutic strategies and targets to cancer immunotherapy.
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang City, Shandong Province, China
| | - Liang Yu
- Department of Cardiac Surgery, Weifang Hospital of Traditional Chinese Medicine, Weifang City, Shandong Province, China
| |
Collapse
|
215
|
Murayama M, Hosonuma M, Kuramasu A, Kobayashi S, Sasaki A, Baba Y, Narikawa Y, Toyoda H, Isobe J, Funayama E, Tajima K, Sasaki A, Maruyama Y, Yamazaki Y, Shida M, Hamada K, Hirasawa Y, Tsurui T, Ariizumi H, Ishiguro T, Suzuki R, Ohkuma R, Kubota Y, Horiike A, Sambe T, Tsuji M, Wada S, Kobayashi S, Shimane T, Tsunoda T, Kobayashi H, Kiuchi Y, Yoshimura K. Isobutyric acid enhances the anti-tumour effect of anti-PD-1 antibody. Sci Rep 2024; 14:11325. [PMID: 38760458 PMCID: PMC11101641 DOI: 10.1038/s41598-024-59677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/13/2024] [Indexed: 05/19/2024] Open
Abstract
The low response rate of immune checkpoint inhibitors (ICIs) is a challenge. The efficacy of ICIs is influenced by the tumour microenvironment, which is controlled by the gut microbiota. In particular, intestinal bacteria and their metabolites, such as short chain fatty acids (SCFAs), are important regulators of cancer immunity; however, our knowledge on the effects of individual SCFAs remains limited. Here, we show that isobutyric acid has the strongest effect among SCFAs on both immune activity and tumour growth. In vitro, cancer cell numbers were suppressed by approximately 75% in humans and mice compared with those in controls. Oral administration of isobutyric acid to carcinoma-bearing mice enhanced the effect of anti-PD-1 immunotherapy, reducing tumour volume by approximately 80% and 60% compared with those in the control group and anti-PD-1 antibody alone group, respectively. Taken together, these findings may support the development of novel cancer therapies that can improve the response rate to ICIs.
Collapse
Affiliation(s)
- Masakazu Murayama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Masahiro Hosonuma
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Atsuo Kuramasu
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Sei Kobayashi
- Department of Otorhinolaryngology, Fujigaoka Hospital, Yokohama, Japan
| | - Akiko Sasaki
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Yuta Baba
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Yoichiro Narikawa
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Hitoshi Toyoda
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Orthopaedic Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Junya Isobe
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan
| | - Eiji Funayama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, Tokyo, Japan
| | - Kohei Tajima
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Aya Sasaki
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Yuki Maruyama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Yoshitaka Yamazaki
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Midori Shida
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Kazuyuki Hamada
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuya Hirasawa
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Toshiaki Tsurui
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyuki Ishiguro
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Risako Suzuki
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ryotaro Ohkuma
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Atsushi Horiike
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takehiko Sambe
- Division of Clinical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | | | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hitome Kobayashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11, Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan.
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| |
Collapse
|
216
|
Chapman NM, Chi H. Metabolic rewiring and communication in cancer immunity. Cell Chem Biol 2024; 31:862-883. [PMID: 38428418 PMCID: PMC11177544 DOI: 10.1016/j.chembiol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The immune system shapes tumor development and progression. Although immunotherapy has transformed cancer treatment, its overall efficacy remains limited, underscoring the need to uncover mechanisms to improve therapeutic effects. Metabolism-associated processes, including intracellular metabolic reprogramming and intercellular metabolic crosstalk, are emerging as instructive signals for anti-tumor immunity. Here, we first summarize the roles of intracellular metabolic pathways in controlling immune cell function in the tumor microenvironment. How intercellular metabolic communication regulates anti-tumor immunity, and the impact of metabolites or nutrients on signaling events, are also discussed. We then describe how targeting metabolic pathways in tumor cells or intratumoral immune cells or via nutrient-based interventions may boost cancer immunotherapies. Finally, we conclude with discussions on profiling and functional perturbation methods of metabolic activity in intratumoral immune cells, and perspectives on future directions. Uncovering the mechanisms for metabolic rewiring and communication in the tumor microenvironment may enable development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
217
|
Xu H, Deng Y, Zhu Q, Li F, Liu N, Cheng J, Qiu M. Efficacy of intestinal microorganisms on immunotherapy of non-small cell lung cancer. Heliyon 2024; 10:e29899. [PMID: 38699020 PMCID: PMC11064131 DOI: 10.1016/j.heliyon.2024.e29899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
While the 5-year survival rate of patients with advanced non-small cell lung cancer (NSCLC) has seen some improvement, the majority of NSCLC patients fail to respond to immunotherapy with immune checkpoint inhibitors (ICIs). It is critical to identify effective biomarkers that can enhance the efficacy of immunotherapy. The clinical data in the current study were collected from NSCLC patients treated with ICIs, and two groups were classified according to treatment effect: good group with consistent efficacy, poor group with only progressiveness. Differences in intestinal microbiota between the two groups were analyzed using 16s rRNA sequencing. Beta diversity analysis indicated differences between the two groups that were available for differentiation. Comparison of the number of common or unique operational taxonomic units (OTUs) among different groups suggested that there were 53 unique OTUs in the good group and 51 unique OTUs in the poor group. At the phylum level, there was a difference between the two groups for several bacterial groups with the highest abundance values, among which Firmicutes, Actinobacteria and Fusobacteria were more abundant in the good group. Members of the genera Bifidobacterium and Lactobacillus were abundant in the good group, while the abundance of Bacteroides was low. Biomarkers in the poor group included Bacteroides, Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae and Veillonellaceae. The intestinal microbiota composition affected the immunotherapy process for NSCLC, which might offer more rational instructions for the clinical application of ICIs in NSCLC patients.
Collapse
Affiliation(s)
- Hua Xu
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Yongchun Deng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital & Chongqing Cancer Hospital, 400030, Chongqing, China
| | - Qing Zhu
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Feng Li
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Na Liu
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Jun Cheng
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Min Qiu
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| |
Collapse
|
218
|
Then CK, Paillas S, Moomin A, Misheva MD, Moir RA, Hay SM, Bremner D, Roberts Nee Nellany KS, Smith EE, Heidari Z, Sescu D, Wang X, Suárez-Bonnet A, Hay N, Murdoch SL, Saito R, Collie-Duguid ESR, Richardson S, Priestnall SL, Wilson JM, Gurumurthy M, Royle JS, Samuel LM, Ramsay G, Vallis KA, Foster KR, McCullagh JSO, Kiltie AE. Dietary fibre supplementation enhances radiotherapy tumour control and alleviates intestinal radiation toxicity. MICROBIOME 2024; 12:89. [PMID: 38745230 PMCID: PMC11092108 DOI: 10.1186/s40168-024-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Non-toxic approaches to enhance radiotherapy outcomes are beneficial, particularly in ageing populations. Based on preclinical findings showing that high-fibre diets sensitised bladder tumours to irradiation by modifying the gut microbiota, along with clinical evidence of prebiotics enhancing anti-cancer immunity, we hypothesised that dietary fibre and its gut microbiota modification can radiosensitise tumours via secretion of metabolites and/or immunomodulation. We investigated the efficacy of high-fibre diets combined with irradiation in immunoproficient C57BL/6 mice bearing bladder cancer flank allografts. RESULT Psyllium plus inulin significantly decreased tumour size and delayed tumour growth following irradiation compared to 0.2% cellulose and raised intratumoural CD8+ cells. Post-irradiation, tumour control positively correlated with Lachnospiraceae family abundance. Psyllium plus resistant starch radiosensitised the tumours, positively correlating with Bacteroides genus abundance and increased caecal isoferulic acid levels, associated with a favourable response in terms of tumour control. Psyllium plus inulin mitigated the acute radiation injury caused by 14 Gy. Psyllium plus inulin increased caecal acetate, butyrate and propionate levels, and psyllium alone and psyllium plus resistant starch increased acetate levels. Human gut microbiota profiles at the phylum level were generally more like mouse 0.2% cellulose profiles than high fibre profiles. CONCLUSION These supplements may be useful in combination with radiotherapy in patients with pelvic malignancy. Video Abstract.
Collapse
Affiliation(s)
- Chee Kin Then
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Radiation Oncology, Shunag Ho Hospital, Taipei Medical University, New Taipai City, Taiwan
| | - Salome Paillas
- Department of Oncology, University of Oxford, Oxford, UK
| | - Aliu Moomin
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - Mariya D Misheva
- Chemistry Research Laboratory, Department of Chemistry, Mansfield Road, University of Oxford, Oxford, UK
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rachel A Moir
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Susan M Hay
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - David Bremner
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | - Ellen E Smith
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Zeynab Heidari
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Daniel Sescu
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Xuedan Wang
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Nadine Hay
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Sarah L Murdoch
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Ryoichi Saito
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, USA
- The Department of Urology, Kyoto University, Kyoto, Japan
| | - Elaina S R Collie-Duguid
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Joan M Wilson
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Justine S Royle
- Department of Urology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Leslie M Samuel
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - George Ramsay
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | | | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, Mansfield Road, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, University of Oxford, Oxford, UK.
- The Rowett Institute, University of Aberdeen, Aberdeen, UK.
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK.
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
219
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
220
|
Song L, Yang Y, Tian X. Current knowledge about immunotherapy resistance for melanoma and potential predictive and prognostic biomarkers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:17. [PMID: 38835341 PMCID: PMC11149101 DOI: 10.20517/cdr.2023.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Melanoma still reaches thousands of new diagnoses per year, and its aggressiveness makes recovery challenging, especially for those with stage III/IV unresectable melanoma. Immunotherapy, emerging as a beacon of hope, stands at the forefront of treatments for advanced melanoma. This review delves into the various immunotherapeutic strategies, prominently featuring cytokine immunotherapy, adoptive cell therapy, immune checkpoint inhibitors, and vaccinations. Among these, immune checkpoint inhibitors, notably anti-programmed cell death-1 (PD-1) and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) antibodies, emerge as the leading strategy. However, a significant subset of melanoma patients remains unresponsive to these inhibitors, underscoring the need for potent biomarkers. Efficient biomarkers have the potential to revolutionize the therapeutic landscape by facilitating the design of personalized treatments for patients with melanoma. This comprehensive review highlights the latest advancements in melanoma immunotherapy and potential biomarkers at the epicenter of recent research endeavors.
Collapse
Affiliation(s)
- Lanni Song
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
| | - Yixin Yang
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ 07083, USA
| | - Xuechen Tian
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
| |
Collapse
|
221
|
Wang R, Chen Y, Xie Y, Ma X, Liu Y. Deciphering and overcoming Anti-PD-1 resistance in Melanoma: A comprehensive review of Mechanisms, biomarker Developments, and therapeutic strategies. Int Immunopharmacol 2024; 132:111989. [PMID: 38583243 DOI: 10.1016/j.intimp.2024.111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Worldwide, tens of thousands of people die from melanoma each year, making it the most frequently fatal form of cutaneous cancer. Immunotherapeutic advancements, particularly with anti-PD-1 medications, have significantly enhanced treatment outcomes over recent decades. With the broad application of anti-PD-1 therapies, insights into the mechanisms of resistance have evolved. Despite the development of combination treatments and early predictive biomarkers, a comprehensive synthesis of these advancements is absent in the current literature. This review underscores the prevailing knowledge of anti-PD-1 resistance mechanisms and underscores the critical role of robust predictive biomarkers in stratifying patients for targeted combinations of anti-PD-1 and other conventional or innovative therapeutic approaches. Additionally, we offer insights that may shape future melanoma treatment strategies.
Collapse
Affiliation(s)
- Ruoqi Wang
- Shanghai Skin Disease Hospital, Shanghai Clinical College of Dermatology, Fifth Clinical Medical College, Anhui Medical University, Shanghai 200443, China
| | - Yanbin Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Shanghai Clinical College of Dermatology, Fifth Clinical Medical College, Anhui Medical University, Shanghai 200443, China; Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
222
|
Li L, He S, Liao B, Wang M, Lin H, Hu B, Lan X, Shu Z, Zhang C, Yu M, Zou Z. Orally Administrated Hydrogel Harnessing Intratumoral Microbiome and Microbiota-Related Immune Responses for Potentiated Colorectal Cancer Treatment. RESEARCH (WASHINGTON, D.C.) 2024; 7:0364. [PMID: 38721274 PMCID: PMC11077293 DOI: 10.34133/research.0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 10/08/2024]
Abstract
The intestinal and intratumoral microbiota are closely associated with tumor progression and response to antitumor treatments. The antibacterial or tumor microenvironment (TME)-modulating approaches have been shown to markedly improve antitumor efficacy, strategies focused on normalizing the microbial environment are rarely reported. Here, we reported the development of an orally administered inulin-based hydrogel with colon-targeting and retention effects, containing hollow MnO2 nanocarrier loaded with the chemotherapeutic drug Oxa (Oxa@HMI). On the one hand, beneficial bacteria in the colon specifically metabolized Oxa@HMI, resulting in the degradation of inulin and the generation of short-chain fatty acids (SCFAs). These SCFAs play a crucial role in modulating microbiota and stimulating immune responses. On the other hand, the hydrogel matrix underwent colon microbiota-specific degradation, enabling the targeted release of Oxa and production of reactive oxygen species in the acidic TME. In this study, we have established, for the first time, a microbiota-targeted drug delivery system Oxa@HMI that exhibited high efficiency in colorectal cancer targeting and colon retention. Oxa@HMI promoted chemotherapy efficiency and activated antitumor immune responses by intervening in the microbial environment within the tumor tissue, providing a crucial clinical approach for the treatment of colorectal cancer that susceptible to microbial invasion.
Collapse
Affiliation(s)
- Lei Li
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Shouhua He
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Boyi Liao
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Manchun Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Huimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Ben Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Xinyue Lan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Zhilin Shu
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Chao Zhang
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Meng Yu
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
223
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
224
|
Profir M, Roşu OA, Creţoiu SM, Gaspar BS. Friend or Foe: Exploring the Relationship between the Gut Microbiota and the Pathogenesis and Treatment of Digestive Cancers. Microorganisms 2024; 12:955. [PMID: 38792785 PMCID: PMC11124004 DOI: 10.3390/microorganisms12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Digestive cancers are among the leading causes of cancer death in the world. However, the mechanisms of cancer development and progression are not fully understood. Accumulating evidence in recent years pointing to the bidirectional interactions between gut dysbiosis and the development of a specific type of gastrointestinal cancer is shedding light on the importance of this "unseen organ"-the microbiota. This review focuses on the local role of the gut microbiota imbalance in different digestive tract organs and annexes related to the carcinogenic mechanisms. Microbiota modulation, either by probiotic administration or by dietary changes, plays an important role in the future therapies of various digestive cancers.
Collapse
Affiliation(s)
- Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
225
|
Deng Y, Hou X, Wang H, Du H, Liu Y. Influence of Gut Microbiota-Mediated Immune Regulation on Response to Chemotherapy. Pharmaceuticals (Basel) 2024; 17:604. [PMID: 38794174 PMCID: PMC11123941 DOI: 10.3390/ph17050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The involvement of the gut microbiota in anti-cancer treatment has gained increasing attention. Alterations to the structure and function of the gut bacteria are important factors in the development of cancer as well as the efficacy of chemotherapy. Recent studies have confirmed that the gut microbiota and related metabolites influence the pharmacological activity of chemotherapeutic agents through interactions with the immune system. This review aims to summarize the current knowledge of how malignant tumor and chemotherapy affect the gut microbiota, how the gut microbiota regulates host immune response, and how interactions between the gut microbiota and host immune response influence the efficacy of chemotherapy. Recent advances in strategies for increasing the efficiency of chemotherapy based on the gut microbiota are also described. Deciphering the complex homeostasis maintained by the gut microbiota and host immunity provides a solid scientific basis for bacterial intervention in chemotherapy.
Collapse
Affiliation(s)
- Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Hongzhi Du
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| |
Collapse
|
226
|
Yeo K, Connell J, Bouras G, Smith E, Murphy W, Hodge JC, Krishnan S, Wormald PJ, Valentine R, Psaltis AJ, Vreugde S, Fenix KA. A comparison between full-length 16S rRNA Oxford nanopore sequencing and Illumina V3-V4 16S rRNA sequencing in head and neck cancer tissues. Arch Microbiol 2024; 206:248. [PMID: 38713383 PMCID: PMC11076400 DOI: 10.1007/s00203-024-03985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Describing the microbial community within the tumour has been a key aspect in understanding the pathophysiology of the tumour microenvironment. In head and neck cancer (HNC), most studies on tissue samples have only performed 16S rRNA short-read sequencing (SRS) on V3-V5 region. SRS is mostly limited to genus level identification. In this study, we compared full-length 16S rRNA long-read sequencing (FL-ONT) from Oxford Nanopore Technology (ONT) to V3-V4 Illumina SRS (V3V4-Illumina) in 26 HNC tumour tissues. Further validation was also performed using culture-based methods in 16 bacterial isolates obtained from 4 patients using MALDI-TOF MS. We observed similar alpha diversity indexes between FL-ONT and V3V4-Illumina. However, beta-diversity was significantly different between techniques (PERMANOVA - R2 = 0.131, p < 0.0001). At higher taxonomic levels (Phylum to Family), all metrics were more similar among sequencing techniques, while lower taxonomy displayed more discrepancies. At higher taxonomic levels, correlation in relative abundance from FL-ONT and V3V4-Illumina were higher, while this correlation decreased at lower levels. Finally, FL-ONT was able to identify more isolates at the species level that were identified using MALDI-TOF MS (75% vs. 18.8%). FL-ONT was able to identify lower taxonomic levels at a better resolution as compared to V3V4-Illumina 16S rRNA sequencing.
Collapse
Affiliation(s)
- Kenny Yeo
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia.
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia.
| | - James Connell
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia
| | - George Bouras
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia
| | - Eric Smith
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Haematology and Oncology, Basil Hetzel Institute for Translational Health Research and The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia
| | - William Murphy
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia
| | - John-Charles Hodge
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Otolaryngology, Head and Neck Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Suren Krishnan
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Otolaryngology, Head and Neck Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Rowan Valentine
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia
| | - Alkis James Psaltis
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia
| | - Sarah Vreugde
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia
| | - Kevin Aaron Fenix
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia.
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia.
| |
Collapse
|
227
|
Ma Y, Wang T, Zhang X, Wang P, Long F. The role of circular RNAs in regulating resistance to cancer immunotherapy: mechanisms and implications. Cell Death Dis 2024; 15:312. [PMID: 38697964 PMCID: PMC11066075 DOI: 10.1038/s41419-024-06698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Cancer immunotherapy has rapidly transformed cancer treatment, yet resistance remains a significant hurdle, limiting its efficacy in many patients. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as pivotal regulators of gene expression and cellular processes. Increasing evidence indicates their involvement in modulating resistance to cancer immunotherapy. Notably, certain circRNAs function as miRNA sponges or interact with proteins, influencing the expression of immune-related genes, including crucial immune checkpoint molecules. This, in turn, shapes the tumor microenvironment and significantly impacts the response to immunotherapy. In this comprehensive review, we explore the evolving role of circRNAs in orchestrating resistance to cancer immunotherapy, with a specific focus on their mechanisms in influencing immune checkpoint gene expression. Additionally, we underscore the potential of circRNAs as promising therapeutic targets to augment the effectiveness of cancer immunotherapy. Understanding the role of circRNAs in cancer immunotherapy resistance could contribute to the development of new therapeutic strategies to overcome resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| |
Collapse
|
228
|
Tanaka T, Sugiyama R, Sato Y, Kawaguchi M, Honda K, Iwaki H, Okano K. Precise microbiome engineering using natural and synthetic bacteriophages targeting an artificial bacterial consortium. Front Microbiol 2024; 15:1403903. [PMID: 38756723 PMCID: PMC11096457 DOI: 10.3389/fmicb.2024.1403903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
In natural microbiomes, microorganisms interact with each other and exhibit diverse functions. Microbiome engineering, which enables bacterial knockdown, is a promising method to elucidate the functions of targeted bacteria in microbiomes. However, few methods to selectively kill target microorganisms in the microbiome without affecting the growth of nontarget microorganisms are available. In this study, we focused on the host-specific lytic ability of virulent phages and validated their potency for precise microbiome engineering. In an artificial microbiome consisting of Escherichia coli, Pseudomonas putida, Bacillus subtilis, and Lactiplantibacillus plantarum, the addition of bacteriophages infecting their respective host strains specifically reduced the number of these bacteria more than 102 orders. Remarkably, the reduction in target bacteria did not affect the growth of nontarget bacteria, indicating that bacteriophages were effective tools for precise microbiome engineering. Moreover, a virulent derivative of the λ phage was synthesized from prophage DNA in the genome of λ lysogen by in vivo DNA assembly and phage-rebooting techniques, and E. coli-targeted microbiome engineering was achieved. These results propose a novel approach for precise microbiome engineering using bacteriophages, in which virulent phages are synthesized from prophage DNA in lysogenic strains without isolating phages from environmental samples.
Collapse
Affiliation(s)
- Tomoki Tanaka
- Department of Chemistry, Materials and Bioengineering, Graduate School of Science and Engineering, Kansai University, Osaka, Japan
| | - Ryoga Sugiyama
- Department of Chemistry, Materials and Bioengineering, Graduate School of Science and Engineering, Kansai University, Osaka, Japan
| | - Yu Sato
- Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Manami Kawaguchi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Kenji Okano
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| |
Collapse
|
229
|
Xiao T, Lee J, Gauntner TD, Velegraki M, Lathia JD, Li Z. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat Rev Cancer 2024; 24:338-355. [PMID: 38589557 DOI: 10.1038/s41568-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are present across multiple non-reproductive organ cancers, with male individuals generally experiencing higher incidence of cancer with poorer outcomes. Although some mechanisms underlying these differences are emerging, the immunological basis is not well understood. Observations from clinical trials also suggest a sex bias in conventional immunotherapies with male individuals experiencing a more favourable response and female individuals experiencing more severe adverse events to immune checkpoint blockade. In this Perspective article, we summarize the major biological hallmarks underlying sex bias in immuno-oncology. We focus on signalling from sex hormones and chromosome-encoded gene products, along with sex hormone-independent and chromosome-independent epigenetic mechanisms in tumour and immune cells such as myeloid cells and T cells. Finally, we highlight opportunities for future studies on sex differences that integrate sex hormones and chromosomes and other emerging cancer hallmarks such as ageing and the microbiome to provide a more comprehensive view of how sex differences underlie the response in cancer that can be leveraged for more effective immuno-oncology approaches.
Collapse
Affiliation(s)
- Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy D Gauntner
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Rose Ella Burkhardt Brain Tumour Center, Cleveland Clinic, Cleveland, OH, USA.
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA.
| |
Collapse
|
230
|
Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N, Maleki-Kakelar H. The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci 2024; 344:122529. [PMID: 38490297 DOI: 10.1016/j.lfs.2024.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
The gut microbiome plays a significant role in developing colorectal cancer (CRC). The gut microbiome usually acts as a protective barrier against harmful pathogens and infections in the intestine, while also regulating inflammation by affecting the human immune system. The gut microbiota and probiotics play a role not only in intestinal inflammation associated with tumor formation but also in regulating anti-cancer immune response. As a result, they associated with tumor progression and the effectiveness of anti-cancer therapies. Research indicates that gut microbiota and probiotics can be used as biomarkers to predict the impact of immunotherapy and enhance its efficacy in treating CRC by regulating it. This review examines the importance of gut microbiota and probiotics in the development and progression of CRC, as well as their synergistic impact on anti-cancer treatments.
Collapse
Affiliation(s)
- Forough Masheghati
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Masoudi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of General Surgery, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
231
|
Morita A, Ichihara E, Inoue K, Fujiwara K, Yokoyama T, Harada D, Ando C, Kano H, Oda N, Tamura T, Ochi N, Kawai H, Inoue M, Hara N, Fujimoto N, Ichikawa H, Oze I, Hotta K, Maeda Y, Kiura K. Impacts of probiotics on the efficacies of immune checkpoint inhibitors with or without chemotherapy for patients with advanced non-small-cell lung cancer. Int J Cancer 2024; 154:1607-1615. [PMID: 38196128 DOI: 10.1002/ijc.34842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
The relationships between the therapeutic effects of immune checkpoint inhibitors (ICIs) and the intestinal flora have attracted increasing attention. However, the effects of oral probiotics on the efficacies of ICIs used to treat non-small-cell lung cancer (NSCLC) remain unclear. We investigated the effects of probiotics on the efficacies of ICIs in patients treated with and without chemotherapy. We investigated patients with advanced NSCLC on ICI monotherapy or combination ICI and chemotherapy using the Okayama Lung Cancer Study Group Immunotherapy Database (OLCSG-ID) and the Okayama Lung Cancer Study Group Immunochemotherapy Database (OLCSG-ICD). In total, 927 patients (482 on ICI monotherapy, 445 on an ICI + chemotherapy) were enrolled. Most were male, of good performance status, smokers, and without epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK) mutations. Probiotics were administered to 19% of patients on ICI monotherapies and 17% of those on ICIs + chemotherapy. Of the former patients, progression-free survival (PFS) and overall survival (OS) were significantly better in the probiotics group (PFS 7.9 vs. 2.9 months, hazard ratio [HR] 0.54, p < .001; OS not attained vs. 13.1 months, HR 0.45, p < .001). Among patients receiving ICI and chemotherapy, there were no significant differences in PFS between those on probiotics and not but OS was significantly better in the probiotics group (PFS 8.8 vs. 8.6 months, HR 0.89, p = .43; OS not attained vs. 22.6 months, HR 0.61, p = .03). Patients on probiotics experienced better outcomes following ICI treatment.
Collapse
Affiliation(s)
- Ayako Morita
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiki Ichihara
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Koji Inoue
- Department of Respiratory Medicine, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Keiichi Fujiwara
- Department of Respiratory Medicine, NHO Okayama Medical Center, Okayama, Japan
| | - Toshihide Yokoyama
- Department of Respiratory Medicine, Ohara Healthcare Foundation, Kurashiki Central Hospital, Kurashiki, Japan
| | - Daijiro Harada
- Department of Thoracic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Chihiro Ando
- Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital, Okayama, Japan
| | - Hirohisa Kano
- Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital, Okayama, Japan
| | - Naohiro Oda
- Department of Respiratory Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Tomoki Tamura
- Department of Respiratory Medicine, NHO Iwakuni Clinical Center, Iwakuni, Japan
| | - Nobuaki Ochi
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Haruyuki Kawai
- Department of Internal Medicine, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Masaaki Inoue
- Department of Chest Surgery, Shimonoseki City Hospital, Shimonoseki, Japan
| | - Naofumi Hara
- Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama, Japan
| | - Nobukazu Fujimoto
- Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama, Japan
| | - Hirohisa Ichikawa
- Department of Respiratory Medicine, KKR Takamatsu Hospital, Takamatsu, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
232
|
Goswami M, Bose PD. Gut microbial dysbiosis in the pathogenesis of leukemia: an immune-based perspective. Exp Hematol 2024; 133:104211. [PMID: 38527589 DOI: 10.1016/j.exphem.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Leukemias are a set of clonal hematopoietic malignant diseases that develop in the bone marrow. Several factors influence leukemia development and progression. Among these, the gut microbiota is a major factor influencing a wide array of its processes. The gut microbial composition is linked to the risk of tumor development and the host's ability to respond to treatment, mostly due to the immune-modulatory effects of their metabolites. Despite such strong evidence, its role in the development of hematologic malignancies still requires attention of investigators worldwide. In this review, we make an effort to discuss the role of host gut microbiota-immune crosstalk in leukemia development and progression. Additionally, we highlight certain recently developed strategies to modify the gut microbial composition that may help to overcome dysbiosis in leukemia patients in the near future.
Collapse
Affiliation(s)
- Mayuri Goswami
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India.
| |
Collapse
|
233
|
Wang W, Fan J, Zhang C, Huang Y, Chen Y, Fu S, Wu J. Targeted modulation of gut and intra-tumor microbiota to improve the quality of immune checkpoint inhibitor responses. Microbiol Res 2024; 282:127668. [PMID: 38430889 DOI: 10.1016/j.micres.2024.127668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapies, such as those blocking the interaction of PD-1 with its ligands, can restore the immune-killing function of T cells. However, ICI therapy is clinically beneficial in only a small number of patients, and it is difficult to predict post-treatment outcomes, thereby limiting its widespread clinical use. Research suggests that gut microbiota can regulate the host immune system and affect cancer progression and treatment. Moreover, the effectiveness of immunotherapy is related to the composition of the patient's gut microbiota; different gut microbial strains can either activate or inhibit the immune response. However, the importance of the microbial composition within the tumor has not been explored until recently. This study describes recent advances in the crosstalk between microbes in tumors and gut microbiota, which can modulate the tumor microbiome by directly translocating into the tumor and altering the tumor microenvironment. This study focused on the potential manipulation of the tumor and gut microbiota using fecal microbiota transplantation (FMT), probiotics, antimicrobials, prebiotics, and postbiotics to enrich immune-boosting bacteria while decreasing unfavorable bacteria to proactively improve the efficacy of ICI treatments. In addition, the use of genetic technologies and nanomaterials to modify microorganisms can largely optimize tumor immunotherapy and advance personalized and precise cancer treatment.
Collapse
Affiliation(s)
- WeiZhou Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - JunYing Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chi Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
234
|
Felchle H, Gissibl J, Lansink Rotgerink L, Nefzger SM, Walther CN, Timnik VR, Combs SE, Fischer JC. Influence of intestinal microbial metabolites on the abscopal effect after radiation therapy combined with immune checkpoint inhibitors. Clin Transl Radiat Oncol 2024; 46:100758. [PMID: 38500667 PMCID: PMC10945164 DOI: 10.1016/j.ctro.2024.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Background Most clinical studies failed to elicit a strong antitumor immune response and subsequent systemic tumor regression after radiation therapy (RT), even in combination with the immune checkpoint inhibitors (ICI) anti-CTLA4 or anti-PD1. Mechanistically, type I interferon (IFN-I) activation is essential for the development of such abscopal effects (AE); however, mechanisms driving or limiting IFN-I activation are ill defined. Groundbreaking discoveries have shown that antibiotics (ABx) can affect oncological outcomes and that microbiota-derived metabolites can modulate systemic antitumor immunity. Recent studies have demonstrated that the bacterial metabolites desaminotyrosine (DAT) and indole-3-carboxaldehyde (ICA) can enhance IFN-I activation in models of inflammatory diseases. Materials and Methods The subcutaneous bilateral MC38 tumor model is a widely used experimental tool to study the AE in mice. We applied it to explore the influence of broad-spectrum ABx, DAT and ICA on the AE after radioimmunotherapy (RIT). We performed 1x8 Gy of the primary tumor ± anti-CTLA4 or anti-PD1, and ± daily oral application of ABx or metabolites. Result Combinatory ABx had neither a significant effect on tumor growth of the irradiated tumor nor on tumor progression of the abscopal tumor after RIT with anti-CTLA4. Furthermore, DAT and ICA did not significantly impact on the AE after RIT with anti-CTLA4 or anti-PD1. Surprisingly, ICA even appears to reduce outcomes after RIT with anti-CTLA4. Conclusion We did not find a significant impact of combinatory ABx on the AE. Experimental application of the IFN-I-inducing metabolites DAT or ICA did not boost the AE after combined RIT. Additional studies are important to further investigate whether the intestinal microbiota or specific microbiota-derived metabolites modulate the AE.
Collapse
Affiliation(s)
- Hannah Felchle
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Gissibl
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Laura Lansink Rotgerink
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sophie M. Nefzger
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Caroline N. Walther
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vincent R. Timnik
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Zentrum München, Institute of Radiation Medicine, 85764 Neuherberg, Germany
| | - Julius C. Fischer
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
235
|
Febriyanto T, Muhammad F, Wijaya W, Oey O, Simadibrata DM. Antibiotic use reduces the efficacy of immune checkpoint inhibitors in patients with urothelial carcinoma: A systematic review and meta-analysis. Urol Oncol 2024; 42:160.e11-160.e23. [PMID: 38101990 DOI: 10.1016/j.urolonc.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
CONTEXT Antibiotics have been suggested to diminish the efficacy of immune checkpoint inhibitors (ICIs) by alterations of the gut microbiota. OBJECTIVE To perform a meta-analysis summarizing the effect of antibiotics on the overall survival (OS) and progression-free survival (PFS) of urothelial cancer (UC) patients receiving ICI. EVIDENCE ACQUISITION PubMed, EMBASE (Ovid), and the Cochrane Library were searched to identify studies published up to July 14, 2023. Studies reporting the associations between antibiotics use and OS and PFS in UC patients treated with ICI were included in this systematic review and meta-analysis. The random-effect model was used to pool the Hazard Ratios (HRs) for OS and PFS with 95% confidence interval (95%CI). The ROBINS-I was used to assess the risk of bias in the included studies, while the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) framework was used to inform the quality of evidence. EVIDENCE SYNTHESIS Thirteen nonrandomized studies involving a total of 5,095 ICI-treated UC patients were included in this review, of which 1434 (28%) received antibiotics. Overall, compared to patients who did not receive antibiotics, the pooled HRs for OS and PFS in those who received antibiotics were 1.45 [95% CI 1.25-1.68] and 1.40 [95% CI 1.05-1.87], respectively. Subgroup analysis revealed that the types of ICI and timing of antibiotic initiation did not influence the effect of antibiotics on OS and PFS in UC patients (P > 0.05). CONCLUSIONS Antibiotic use significantly reduced OS and PFS in UC patients receiving ICI. While antibiotics remain crucial for the treatment of infections in UC patients, antibiotics should be prescribed cautiously in UC patients receiving ICI. PATIENT SUMMARY Antibiotic use is associated with worsened survival in UC patients receiving immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Toni Febriyanto
- Department of Primary Health Care and Family Medicine, Mediway Clinic, Tanjung Balai Karimun, Indonesia
| | - Fajar Muhammad
- Department of Emergency, Kuala Kurun Regional Hospital, Central Kalimantan, Indonesia
| | - Wynne Wijaya
- Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Oliver Oey
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, Australia; Faculty of Medicine, University of Western Australia, Perth, Australia
| | - Daniel Martin Simadibrata
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN; Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
236
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
237
|
Zakharevich NV, Morozov MD, Kanaeva VA, Filippov MS, Zyubko TI, Ivanov AB, Ulyantsev VI, Klimina KM, Olekhnovich EI. Systemic metabolic depletion of gut microbiome undermines responsiveness to melanoma immunotherapy. Life Sci Alliance 2024; 7:e202302480. [PMID: 38448159 PMCID: PMC10917649 DOI: 10.26508/lsa.202302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Immunotherapy has proven to be a boon for patients battling metastatic melanoma, significantly improving their clinical condition and overall quality of life. A compelling link between the composition of the gut microbiome and the efficacy of immunotherapy has been established in both animal models and human patients. However, the precise biological mechanisms by which gut microbes influence treatment outcomes remain poorly understood. Using a robust dataset of 680 fecal metagenomes from melanoma patients, a detailed catalog of metagenome-assembled genomes (MAGs) was constructed to explore the compositional and functional properties of the gut microbiome. Our study uncovered significant findings that deepen the understanding of the intricate relationship between gut microbes and the efficacy of melanoma immunotherapy. In particular, we discovered the specific metagenomic profile of patients with favorable treatment outcomes, characterized by a prevalence of MAGs with increased overall metabolic potential and proficiency in polysaccharide utilization, along with those responsible for cobalamin and amino acid production. Furthermore, our investigation of the biosynthetic pathways of short-chain fatty acids, known for their immunomodulatory role, revealed a differential abundance of these pathways among the specific MAGs. Among others, the cobalamin-dependent Wood-Ljungdahl pathway of acetate synthesis was directly associated with responsiveness to melanoma immunotherapy.
Collapse
Affiliation(s)
- Natalia V Zakharevich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Maxim D Morozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Vera A Kanaeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- Moscow Institute of Physics and Technology, Moscow, Russian
| | - Mikhail S Filippov
- https://ror.org/04btxg914 Bioinformatics Institute, Saint Petersburg, Russian
| | - Tatyana I Zyubko
- https://ror.org/04btxg914 Bioinformatics Institute, Saint Petersburg, Russian
| | - Artem B Ivanov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- ITMO University, Saint Petersburg, Russian
| | | | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Evgenii I Olekhnovich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| |
Collapse
|
238
|
Ma S, Wu Q, Wu W, Tian Y, Zhang J, Chen C, Sheng X, Zhao F, Ding L, Wang T, Zhao L, Xie Y, Wang Y, Yue X, Wu Z, Wei J, Zhang K, Liang X, Gao L, Wang H, Wang G, Li C, Ma C. Urolithin A Hijacks ERK1/2-ULK1 Cascade to Improve CD8 + T Cell Fitness for Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310065. [PMID: 38447147 PMCID: PMC11095213 DOI: 10.1002/advs.202310065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Indexed: 03/08/2024]
Abstract
According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.
Collapse
Affiliation(s)
- Shuaiya Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Qi Wu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Wenxian Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral DiseaseDepartment of NeurologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524001P. R. China
- Shenzhen Research Institute of Shandong UniversityShenzhen518057P. R. China
| | - Ye Tian
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Jie Zhang
- Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chaojia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Xue Sheng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Fangcheng Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Lu Ding
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Taixia Wang
- Central LaboratoryTongji University School of MedicineTongji UniversityShanghai200072P. R. China
| | - Laixi Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yuying Xie
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral DiseaseDepartment of NeurologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524001P. R. China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral DiseaseDepartment of NeurologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524001P. R. China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Jian Wei
- Department of PhysiologySchool of Basic Medical SciencesShandong UniversityJinan250012P. R. China
| | - Kun Zhang
- Central LaboratoryTongji University School of MedicineTongji UniversityShanghai200072P. R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Hongyan Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031P. R. China
| | - Guihua Wang
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and EmbryologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
239
|
He S, Tian J, Zang J, Long L, Liu P, Zhang Y, Xiao J. Implications of intestinal microecology and immune function alterations for immunotherapy outcomes in advanced unresectable lung adenocarcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13762. [PMID: 38685799 PMCID: PMC11058370 DOI: 10.1111/crj.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE This investigation aims to explore alterations in intestinal microecology and immune function among patients with advanced, unresectable lung adenocarcinoma undergoing different outcomes from immunotherapy. METHODS A cohort of 30 patients diagnosed with advanced unresectable lung adenocarcinoma received sintilimab immunotherapy as a monotherapy. Post four treatment cycles, efficacy was assessed, leading to the segregation of patients into two distinct cohorts: those responsive to treatment and those nonresponsive. Analysis involved observing variations in the abundance, distribution, and composition of fecal intestinal microorganisms pretreatment and posttreatment via 16S rRNA gene sequencing. RESULTS In this study involving 30 advanced lung adenocarcinoma patients, significant observations were made regarding the impact of immunotherapy on immune function and the gut microbiome composition. Patients were divided into treatment and control groups, revealing that immunotherapy led to a significant increase in CD4+ T cells and a decrease in CD8+ T cells among the treatment-responsive individuals, indicating an enhanced immune response. Furthermore, an in-depth analysis of the gut microbiome showed an increase in diversity and abundance of beneficial bacteria such as Faecalibacterium and Subdoligranulum in the treatment group. These findings highlight the dual effect of immunotherapy on modulating immune function and altering gut microbiome diversity, suggesting its potential therapeutic benefits in improving the health status of patients with advanced lung adenocarcinoma. CONCLUSION The structuring of gut flora plays a pivotal role in augmenting the efficacy of anti-tumor immunotherapy, underscoring the interplay between intestinal microecology and immune response in cancer treatment outcomes.
Collapse
Affiliation(s)
- Shuang He
- The First Clinical College of Shandong University of Traditional Chinese MedicineJinanChina
| | - Jin Tian
- Oncology Center I DepartmentQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| | - Jianhua Zang
- Oncology Center I DepartmentQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| | - Lin Long
- Oncology Center I DepartmentQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| | - Peng Liu
- Department of Radiotherapy for OncologyQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| | - Yexi Zhang
- Rehabilitation Centre of Acupuncture and MassageQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| | - Jun Xiao
- Oncology Center I DepartmentQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| |
Collapse
|
240
|
Pederzoli F, Riba M, Venegoni C, Marandino L, Bandini M, Alchera E, Locatelli I, Raggi D, Giannatempo P, Provero P, Lazarevic D, Moschini M, Lucianò R, Gallina A, Briganti A, Montorsi F, Salonia A, Necchi A, Alfano M. Stool Microbiome Signature Associated with Response to Neoadjuvant Pembrolizumab in Patients with Muscle-invasive Bladder Cancer. Eur Urol 2024; 85:417-421. [PMID: 38184414 DOI: 10.1016/j.eururo.2023.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/18/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Neoadjuvant pembrolizumab has been shown to be a valid treatment for patients affected by muscle-invasive bladder cancer (MIBC), as demonstrated in the PURE-01 clinical trial (NCT02736266). Among the tumor-extrinsic factors influencing immunotherapy efficacy, extensive data highlighted that the microbiome is a central player in immune-mediated anticancer activity. This report aimed to investigate the composition and role of stool microbiome in patients enrolled in the PURE-01 clinical trial. An orthotopic animal model of bladder cancer (MB49-Luc) was used to support some of the findings from human data. An analysis of stool microbiome before pembrolizumab was conducted for 42 patients, of whom 23 showed a pathologic response. The information in the preclinical model of orthotopic bladder cancer treated with anti-PD-1 antibody or control isotype was validated. Linear discriminant analysis effect size and linear models were used to identify the bacterial taxa enriched in either responders or nonresponders. The identified taxa were also tested for their association with event-free survival (EFS). Survival at 31 d after tumor instillation was used as the study endpoint in the preclinical model. Responders and nonresponders emerged to differ in terms of enrichment for 16 bacterial taxa. Of these, the genus Sutterella was enriched in responders, while the species Ruminococcus bromii was enriched in nonresponders. The negative impact of R. bromii on anti-PD-1 antibody activity was also observed in the preclinical model. EFS and survival of the preclinical model showed a negative role of R. bromii. We found different stool bacterial taxa associated with the response or lack of response to neoadjuvant pembrolizumab. Moreover, we provided experimental data about the negative role of R. bromii on immunotherapy response. Further studies are needed to externally validate our findings and provide mechanistic insights about the host-pathogen interactions in MIBC. PATIENT SUMMARY: Using prepembrolizumab stool samples collected from patients enrolled in the PURE-01 clinical trials, we identified some bacterial taxa that were enriched in patients who either responded or did not respond to immunotherapy. Using an animal model of bladder cancer, we gathered further evidence of the negative impact of the Ruminococcus bromii on immunotherapy efficacy. Further studies are needed to confirm the current findings and test the utility of these bacteria as predictive markers of immunotherapy response.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS San Raffaele Hospital, Milano, Italy
| | - Chiara Venegoni
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Laura Marandino
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Bandini
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Elisa Alchera
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Irene Locatelli
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Daniele Raggi
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Paolo Provero
- Center for Omics Sciences, IRCCS San Raffaele Hospital, Milano, Italy; Department of Neurosciences 'Rita Levi Montalcini', University of Turin, Turin, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Hospital, Milano, Italy
| | - Marco Moschini
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberta Lucianò
- Department of Anatomic Pathology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Andrea Gallina
- Istituto Oncologico della Svizzera Italiana (IOSI), Bellinzona, Switzerland
| | - Alberto Briganti
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Necchi
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Massimo Alfano
- Unit of Urology, Division of Experimental Oncology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
241
|
Lin X, Zheng W, Zhao X, Zeng M, Li S, Peng S, Song T, Sun Y. Microbiome in gynecologic malignancies: a bibliometric analysis from 2012 to 2022. Transl Cancer Res 2024; 13:1980-1996. [PMID: 38737701 PMCID: PMC11082697 DOI: 10.21037/tcr-23-1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/29/2024] [Indexed: 05/14/2024]
Abstract
Microbiome and microbial dysbiosis have been proven to be involved in the carcinogenesis and treatment of gynecologic malignancies. However, there is a noticeable gap in the literature, as no comprehensive papers have covered general information, research status, and research frontiers in this field. This study addressed this gap by exploring the relationship between the gut and female reproductive tract (FRT) microbiome and gynecological cancers from a bibliometric perspective. Using VOSviewer 1.6.18, CiteSpace 6.1.R6, and HistCite Pro 2.1 software, we analyzed data retrieved from the Web of Science (WOS) Core Collection (WoSCC) database. Our dataset, consisting of 204 articles published from 2012 to 2022, revealed a consistent and upward publication trend. The United States and the United Kingdom were the primary driving forces, attributed to their prolificacy, high-quality output, and extensive cooperation. The University of Arizona Cancer Center, which is affiliated with the United States, ranked first among the top ten most prolific institutions. Frontiers in Cellular and Infection Microbiology emerged as the leading publisher. Herbst-Kralovetz MM led as the most productive author. Mitra A was the most influential author. Cervical cancer is notably associated with the microbiome, while endometrial and ovarian cancers are receiving increased attention in the last year. Intersections between the gut microbiome and estrogen are of growing importance. Current research focuses on identifying specific microbial species for etiological diagnosis, while frontiers mainly focus on the anticancer potential of microorganisms, such as regulating the effects of immune checkpoint inhibitors. In conclusion, this study sheds light on a novel and burgeoning direction of research, providing a one-stop overview of the microbiome in gynecologic malignancies. Its findings aim to help young researchers to identify research directions and future trends for ongoing investigations.
Collapse
Affiliation(s)
- Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengyao Zeng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sizheng Peng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
242
|
Sang Y, Zheng K, Zhao Y, Liu Y, Zhu S, Xie X, Shang L, Liu J, Li L. Efficacy and regulatory strategies of gut microbiota in immunotherapy: a narrative review. Transl Cancer Res 2024; 13:2043-2063. [PMID: 38737692 PMCID: PMC11082673 DOI: 10.21037/tcr-24-316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
Background and Objective With advances in gut microbiome research, it has been recognized that the gut microbiome has an important and far-reaching impact on many human diseases, including cancer. Therefore, more and more researchers are focusing on the treatment of gut flora in tumors. In this article, we present a review of the mechanisms of gut microbes in tumor immunotherapy and related studies to provide reference for further research and insights into the clinical application of gut microbes. Methods Between April 25, 2023, and November 25, 2023, we searched for articles published only in English between 1984 and 2023 using the databases PubMed, American Medical Association and Elsevier ScienceDirect using the keywords "gut microbiology" and "tumor" or "immunotherapy". Key Content and Findings The gastrointestinal tract contains the largest number of microorganisms in the human body. Microorganisms are involved in regulating many physiological activities of the body. Studies have shown that gut microbes and their derivatives are involved in the occurrence and development of a variety of inflammations and tumors, and changes in their abundance and proportion affect the degree of cancer progression and sensitivity to immunotherapy. Gut microbiota-based drug research is ongoing, and some anti-tumor studies have entered the clinical trial stage. Conclusions The abundance and proportion of intestinal microorganisms influence the susceptibility of tumors to tumor immunotherapy. This article reviewed the effects and mechanisms of gut microbes on tumor immunotherapy to further explore the medical value of gut microbes in tumor immunotherapy.
Collapse
Affiliation(s)
- Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kexin Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulong Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Siqiang Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
243
|
Wang X, Xu T, Wu S, Li L, Cai X, Chen F, Yan Z. Candida albicans-myeloid cells-T lymphocytes axis in the tumor microenvironment of oral tumor-bearing mice. Cancer Lett 2024; 588:216814. [PMID: 38499264 DOI: 10.1016/j.canlet.2024.216814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Candida albicans (C. albicans) is associated with the development of oral cancer. Here, we report the altered tumor microenvironment in oral tumor-bearing mice caused by C. albicans infection. Single-cell RNA sequencing showed that C. albicans infection influenced the tumor microenvironment significantly. Specifically, C. albicans infection reduced the CD8+ T cells but increased the IL-17A+ CD4+ T cells and IL-17A+ γδ T cells in oral tumor. The neutralization of IL-17A or TCR γ/δ alleviated the tumor progression caused by C. albicans infection. Additionally, C. albicans infection promoted the infiltration of myeloid-derived suppressor cells (MDSCs) into tumor, especially polymorphonuclear (PMN)-MDSCs, which infiltration was reduced after the neutralization of CCL2. Thus, our findings reveal the myeloid cells-T lymphocytes axis in oral tumor microenvironment with C. albicans infection, which helps to understand the mechanisms for C. albicans promoting oral cancer from the perspective of immune microenvironment.
Collapse
Affiliation(s)
- Xu Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Tiansong Xu
- Central Laboratory, Peking University School and Hospital of Stomatology, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Shuangshuang Wu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Linman Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xinjia Cai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Zhimin Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
244
|
Raoul P, De Gaetano V, Sciaraffia G, Ormea G, Cintoni M, Pozzo C, Strippoli A, Gasbarrini A, Mele MC, Rinninella E. Gastric Cancer, Immunotherapy, and Nutrition: The Role of Microbiota. Pathogens 2024; 13:357. [PMID: 38787209 PMCID: PMC11124250 DOI: 10.3390/pathogens13050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized the treatment of gastric cancer (GC), which still represents the third leading cause of cancer-related death in Western countries. However, ICI treatment outcomes vary between individuals and need to be optimized. Recent studies have shown that gut microbiota could represent a key influencer of immunotherapy responses. At the same time, the nutritional status and diet of GC patients are also predictive of immunotherapy treatment response and survival outcomes. The objective of this narrative review is to gather recent findings about the complex relationships between the oral, gastric, and gut bacterial communities, dietary factors/nutritional parameters, and immunotherapy responses. Perigastric/gut microbiota compositions/functions and their metabolites could be predictive of response to immunotherapy in GC patients and even overall survival. At the same time, the strong influence of diet on the composition of the microbiota could have consequences on immunotherapy responses through the impact of muscle mass in GC patients during immunotherapy. Future studies are needed to define more precisely the dietary factors, such as adequate daily intake of prebiotics, that could counteract the dysbiosis of the GC microbiota and the impaired nutritional status, improving the clinical outcomes of GC patients during immunotherapy.
Collapse
Affiliation(s)
- Pauline Raoul
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
| | - Valeria De Gaetano
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Gianmario Sciaraffia
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Ginevra Ormea
- Degree Course in Pharmacy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Carmelo Pozzo
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonia Strippoli
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonio Gasbarrini
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Digestive Disease Center (CEMAD), Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
245
|
Franco F, McCoy KD. Microbes and vitamin D aid immunotherapy. Science 2024; 384:384-385. [PMID: 38662852 DOI: 10.1126/science.adp1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Vitamin D modulates intestinal epithelial cell function to enhance antitumor microbes.
Collapse
Affiliation(s)
- Fabien Franco
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
246
|
Giampazolias E, da Costa MP, Lam KC, Lim KHJ, Cardoso A, Piot C, Chakravarty P, Blasche S, Patel S, Biram A, Castro-Dopico T, Buck MD, Rodrigues RR, Poulsen GJ, Palma-Duran SA, Rogers NC, Koufaki MA, Minutti CM, Wang P, Vdovin A, Frederico B, Childs E, Lee S, Simpson B, Iseppon A, Omenetti S, Kelly G, Goldstone R, Nye E, Suárez-Bonnet A, Priestnall SL, MacRae JI, Zelenay S, Patil KR, Litchfield K, Lee JC, Jess T, Goldszmid RS, Sousa CRE. Vitamin D regulates microbiome-dependent cancer immunity. Science 2024; 384:428-437. [PMID: 38662827 PMCID: PMC7615937 DOI: 10.1126/science.adh7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/04/2024] [Indexed: 05/03/2024]
Abstract
A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.
Collapse
Affiliation(s)
- Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | - Khiem C. Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, Bethesda, MD 20892-0001, USA
| | - Kok Haw Jonathan Lim
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College, London, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cécile Piot
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonja Blasche
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Swara Patel
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Adi Biram
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tomas Castro-Dopico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D. Buck
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard R. Rodrigues
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Microbiome and Genetics Core, LICI, CCR, NCI, 37 Convent Drive, Bethesda, MD 20892-0001, USA
| | - Gry Juul Poulsen
- National Center of Excellence for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Faculty of Medicine, Aalborg University, Department of Gastroenterology and Hepatology, Aalborg University Hospital, A.C. Meyers Vænge 15, A DK-2450 Copenhagen, Denmark
| | | | - Neil C. Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria A. Koufaki
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Carlos M. Minutti
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pengbo Wang
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Alexander Vdovin
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eleanor Childs
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonia Lee
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ben Simpson
- Tumor ImmunoGenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, 72 Huntley St, London WC1E 6DD, UK
| | - Andrea Iseppon
- AhRimmunity Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sara Omenetti
- AhRimmunity Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robert Goldstone
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alejandro Suárez-Bonnet
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Simon L. Priestnall
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - James I. MacRae
- Metabolomics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Santiago Zelenay
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Kiran Raosaheb Patil
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kevin Litchfield
- Tumor ImmunoGenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, 72 Huntley St, London WC1E 6DD, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Division of Medicine, Royal Free Hospital, University College London, London, NW3 2QG, UK
| | - Tine Jess
- National Center of Excellence for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Faculty of Medicine, Aalborg University, Department of Gastroenterology and Hepatology, Aalborg University Hospital, A.C. Meyers Vænge 15, A DK-2450 Copenhagen, Denmark
| | - Romina S. Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, Bethesda, MD 20892-0001, USA
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
247
|
Battaglia TW, Mimpen IL, Traets JJH, van Hoeck A, Zeverijn LJ, Geurts BS, de Wit GF, Noë M, Hofland I, Vos JL, Cornelissen S, Alkemade M, Broeks A, Zuur CL, Cuppen E, Wessels L, van de Haar J, Voest E. A pan-cancer analysis of the microbiome in metastatic cancer. Cell 2024; 187:2324-2335.e19. [PMID: 38599211 DOI: 10.1016/j.cell.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Microbial communities are resident to multiple niches of the human body and are important modulators of the host immune system and responses to anticancer therapies. Recent studies have shown that complex microbial communities are present within primary tumors. To investigate the presence and relevance of the microbiome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptomics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes, enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies.
Collapse
Affiliation(s)
- Thomas W Battaglia
- Division of Molecular Oncology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Iris L Mimpen
- Division of Molecular Oncology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Joleen J H Traets
- Division of Tumor Biology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Arne van Hoeck
- Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Head and Neck Surgery and Oncology, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Birgit S Geurts
- Division of Molecular Oncology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Gijs F de Wit
- Division of Molecular Oncology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Michaël Noë
- Department of Pathology, Antoni van Leeuwenhoek/the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Joris L Vos
- Division of Tumor Biology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Head and Neck Service and Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sten Cornelissen
- Core Facility Molecular Pathology & Biobanking, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Maartje Alkemade
- Core Facility Molecular Pathology & Biobanking, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Charlotte L Zuur
- Division of Tumor Biology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Head and Neck Surgery and Oncology, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Department of Otorhinolaryngology Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht 3584CX, the Netherlands; Hartwig Medical Foundation, Science Park, Amsterdam 1098XH, the Netherlands
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Faculty of EEMCS, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Joris van de Haar
- Division of Molecular Oncology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Emile Voest
- Division of Molecular Oncology & Immunology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.
| |
Collapse
|
248
|
Constantin M, Chifiriuc MC, Mihaescu G, Corcionivoschi N, Burlibasa L, Bleotu C, Tudorache S, Mitache MM, Filip R, Munteanu SG, Gradisteanu Pircalabioru G. Microbiome and cancer: from mechanistic implications in disease progression and treatment to development of novel antitumoral strategies. Front Immunol 2024; 15:1373504. [PMID: 38715617 PMCID: PMC11074409 DOI: 10.3389/fimmu.2024.1373504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
Cancer is a very aggressive disease and one of mankind's most important health problems, causing numerous deaths each year. Its etiology is complex, including genetic, gender-related, infectious diseases, dysbiosis, immunological imbalances, lifestyle, including dietary factors, pollution etc. Cancer patients also become immunosuppressed, frequently as side effects of chemotherapy and radiotherapy, and prone to infections, which further promote the proliferation of tumor cells. In recent decades, the role and importance of the microbiota in cancer has become a hot spot in human biology research, bringing together oncology and human microbiology. In addition to their roles in the etiology of different cancers, microorganisms interact with tumor cells and may be involved in modulating their response to treatment and in the toxicity of anti-tumor therapies. In this review, we present an update on the roles of microbiota in cancer with a focus on interference with anticancer treatments and anticancer potential.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology, Bucharest of Romanian Academy, Bucharest, Romania
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
- Romanian Academy of Scientists, Bucharest, Romania
| | | | - Coralia Bleotu
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Sorin Tudorache
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Suceava Emergency County Hospital, Suceava, Romania
| | | | - Gratiela Gradisteanu Pircalabioru
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy of Scientists, Bucharest, Romania
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| |
Collapse
|
249
|
Lachance G, Robitaille K, Laaraj J, Gevariya N, Varin TV, Feldiorean A, Gaignier F, Julien IB, Xu HW, Hallal T, Pelletier JF, Bouslama S, Boufaied N, Derome N, Bergeron A, Ellis L, Piccirillo CA, Raymond F, Fradet Y, Labbé DP, Marette A, Fradet V. The gut microbiome-prostate cancer crosstalk is modulated by dietary polyunsaturated long-chain fatty acids. Nat Commun 2024; 15:3431. [PMID: 38654015 DOI: 10.1038/s41467-024-45332-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/17/2024] [Indexed: 04/25/2024] Open
Abstract
The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.
Collapse
Affiliation(s)
- Gabriel Lachance
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Centre de recherche de l'IUCPQ, Québec, QC, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Jalal Laaraj
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | | | - Andrei Feldiorean
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Fanny Gaignier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Isabelle Bourdeau Julien
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Hui Wen Xu
- Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Pelletier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ciriaco A Piccirillo
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Frédéric Raymond
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | | | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada.
| |
Collapse
|
250
|
Karaman I, Pathak A, Bayik D, Watson DC. Harnessing Bacterial Extracellular Vesicle Immune Effects for Cancer Therapy. Pathog Immun 2024; 9:56-90. [PMID: 38690563 PMCID: PMC11060327 DOI: 10.20411/pai.v9i1.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
There are a growing number of studies linking the composition of the human microbiome to disease states and treatment responses, especially in the context of cancer. This has raised significant interest in developing microbes and microbial products as cancer immunotherapeutics that mimic or recapitulate the beneficial effects of host-microbe interactions. Bacterial extracellular vesicles (bEVs) are nano-sized, membrane-bound particles secreted by essentially all bacteria species and contain a diverse bioactive cargo of the producing cell. They have a fundamental role in facilitating interactions among cells of the same species, different microbial species, and even with multicellular host organisms in the context of colonization (microbiome) and infection. The interaction of bEVs with the immune system has been studied extensively in the context of infection and suggests that bEV effects depend largely on the producing species. They thus provide functional diversity, while also being nonreplicative, having inherent cell-targeting qualities, and potentially overcoming natural barriers. These characteristics make them highly appealing for development as cancer immunotherapeutics. Both natively secreted and engineered bEVs are now being investigated for their application as immunotherapeutics, vaccines, drug delivery vehicles, and combinations of the above, with promising early results. This suggests that both the intrinsic immunomodulatory properties of bEVs and their ability to be modified could be harnessed for the development of next-generation microbe-inspired therapies. Nonetheless, there remain major outstanding questions regarding how the observed preclinical effectiveness will translate from murine models to primates, and humans in particular. Moreover, research into the pharmacology, toxicology, and mass manufacturing of this potential novel therapeutic platform is still at early stages. In this review, we highlight the breadth of bEV interactions with host cells, focusing on immunologic effects as the main mechanism of action of bEVs currently in preclinical development. We review the literature on ongoing efforts to develop natively secreted and engineered bEVs from a variety of bacterial species for cancer therapy and finally discuss efforts to overcome outstanding challenges that remain for clinical translation.
Collapse
Affiliation(s)
- Irem Karaman
- Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Asmita Pathak
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Dionysios C. Watson
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| |
Collapse
|