201
|
He G, Wang M, Zou X, Chen P, Wang Z, Liu Y, Yao H, Wei LH, Tang R, Wang CC, Yeh HY. Peopling History of the Tibetan Plateau and Multiple Waves of Admixture of Tibetans Inferred From Both Ancient and Modern Genome-Wide Data. Front Genet 2021; 12:725243. [PMID: 34650596 PMCID: PMC8506211 DOI: 10.3389/fgene.2021.725243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Archeologically attested human occupation on the Tibetan Plateau (TP) can be traced back to 160 thousand years ago (kya) via the archaic Xiahe people and 30∼40 kya via the Nwya Devu anatomically modern human. However, the history of the Tibetan populations and their migration inferred from the ancient and modern DNA remains unclear. Here, we performed the first ancient and modern genomic meta-analysis among 3,017 Paleolithic to present-day Eastern Eurasian genomes (2,444 modern individuals from 183 populations and 573 ancient individuals). We identified a close genetic connection between the ancient-modern highland Tibetans and lowland island/coastal Neolithic Northern East Asians (NEA). This observed genetic affinity reflected the primary ancestry of high-altitude Tibeto-Burman speakers originated from the Neolithic farming populations in the Yellow River Basin. The identified pattern was consistent with the proposed common north-China origin hypothesis of the Sino-Tibetan languages and dispersal patterns of the northern millet farmers. We also observed the genetic differentiation between the highlanders and lowland NEAs. The former harbored more deeply diverged Hoabinhian/Onge-related ancestry and the latter possessed more Neolithic southern East Asian (SEA) or Siberian-related ancestry. Our reconstructed qpAdm and qpGraph models suggested the co-existence of Paleolithic and Neolithic ancestries in the Neolithic to modern East Asian highlanders. Additionally, we found that Tibetans from Ü-Tsang/Ando/Kham regions showed a strong population stratification consistent with their cultural background and geographic terrain. Ü-Tsang Tibetans possessed a stronger Chokhopani-affinity, Ando Tibetans had more Western Eurasian related ancestry and Kham Tibetans harbored greater Neolithic southern EA ancestry. Generally, ancient and modern genomes documented multiple waves of human migrations in the TP's past. The first layer of local hunter-gatherers mixed with incoming millet farmers and arose the Chokhopani-associated Proto-Tibetan-Burman highlanders, which further respectively mixed with additional genetic contributors from the western Eurasian Steppe, Yellow River and Yangtze River and finally gave rise to the modern Ando, Ü-Tsang and Kham Tibetans.
Collapse
Affiliation(s)
- Guanglin He
- School of Humanities, Nanyang Technological University, Singapore, Singapore
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
- Guangzhou Forensic Science Institute, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Pengyu Chen
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yan Liu
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Hongbin Yao
- Key Laboratory of Evidence Science of Gansu Province, Gansu Institute of Political Science and Law, Lanzhou, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
202
|
Sedig JW, Olade I, Patterson N, Harney É, Reich D. COMBINING ANCIENT DNA AND RADIOCARBON DATING DATA TO INCREASE CHRONOLOGICAL ACCURACY. JOURNAL OF ARCHAEOLOGICAL SCIENCE 2021; 133:105452. [PMID: 34483440 PMCID: PMC8415703 DOI: 10.1016/j.jas.2021.105452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper examines how ancient DNA data can enhance radiocarbon dating. Because there is a limit to the number of years that can separate the dates of death of related individuals, the ability to identify relatives through ancient DNA analysis can serve as a constraint on radiocarbon date range estimates. To determine the number of years that can separate related individuals, we modeled maximums derived from biological extremes of human reproduction and death ages and compiled data from historic and genealogical death records. We used these data to jointly study the date ranges of a global dataset of individuals that have been radiocarbon dated and for which ancient DNA analysis identified at least one relative. We found that many of these individuals could have their date uncertainties reduced by building in date of death separation constraints. We examined possible reasons for date discrepancies of related individuals, such as dating of different skeletal elements or wiggles in the radiocarbon curve. We also developed a program, refinedate, which researchers can download and use to help refine the radiocarbon date distributions of related individuals. Our research demonstrates that when combined, radiocarbon dating and ancient DNA analysis can provide a refined and richer view of the past.
Collapse
Affiliation(s)
- Jakob W Sedig
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Iñigo Olade
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Nick Patterson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Éadaoin Harney
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
203
|
Wu X, Ning C, Key FM, Andrades Valtueña A, Lankapalli AK, Gao S, Yang X, Zhang F, Liu L, Nie Z, Ma J, Krause J, Herbig A, Cui Y. A 3,000-year-old, basal S. enterica lineage from Bronze Age Xinjiang suggests spread along the Proto-Silk Road. PLoS Pathog 2021; 17:e1009886. [PMID: 34547027 PMCID: PMC8486138 DOI: 10.1371/journal.ppat.1009886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 10/01/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
Salmonella enterica (S. enterica) has infected humans for a long time, but its evolutionary history and geographic spread across Eurasia is still poorly understood. Here, we screened for pathogen DNA in 14 ancient individuals from the Bronze Age Quanergou cemetery (XBQ), Xinjiang, China. In 6 individuals we detected S. enterica. We reconstructed S. enterica genomes from those individuals, which form a previously undetected phylogenetic branch basal to Paratyphi C, Typhisuis and Choleraesuis-the so-called Para C lineage. Based on pseudogene frequency, our analysis suggests that the ancient S. enterica strains were not host adapted. One genome, however, harbors the Salmonella pathogenicity island 7 (SPI-7), which is thought to be involved in (para)typhoid disease in humans. This offers first evidence that SPI-7 was acquired prior to the emergence of human-adapted Paratyphi C around 1,000 years ago. Altogether, our results show that Salmonella enterica infected humans in Eastern Eurasia at least 3,000 years ago, and provide the first ancient DNA evidence for the spread of a pathogen along the Proto-Silk Road.
Collapse
Affiliation(s)
- Xiyan Wu
- School of Life Sciences, Jilin University, Changchun, China
- School of History and Culture, Henan University, Kaifeng, China
| | - Chao Ning
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Felix M. Key
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aida Andrades Valtueña
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Shizhu Gao
- College of Pharmacia Sciences, Jilin University, Changchun, China
| | - Xuan Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Fan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China
| | - Zhongzhi Nie
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
| | - Jian Ma
- School of Cultural Heritage, Northwest University, Xi’an, China
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, China
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
- Key Laboratory for Evolution of Past Life and Environment in Northeast Asia (Jilin University), Ministry of Education, Changchun, China
| |
Collapse
|
204
|
Feldman M, Gnecchi-Ruscone GA, Lamnidis TC, Posth C. Where Asia meets Europe - recent insights from ancient human genomics. Ann Hum Biol 2021; 48:191-202. [PMID: 34459345 DOI: 10.1080/03014460.2021.1949039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT The peopling of Europe by modern humans is a widely debated topic in the field of modern and ancient genomics. While several recent syntheses have focussed on this topic, little has been discussed about the genetic history of populations in the continent's surrounding regions. OBJECTIVE We explore genetic transformations in three key areas that played an essential role in the formation of the European genetic landscape through time, focussing on the periods spanning from the Epipalaeolithic/Mesolithic and up until the Iron Age. METHODS We review published ancient genomic studies and integrate the associated data to provide a quantification and visualisation of major trends in the population histories of the Near East, the western Eurasian Steppe and North East Europe. RESULTS We describe cross-regional as well as localised prehistoric demographic shifts and discuss potential research directions while highlighting geo-temporal gaps in the data. CONCLUSION In recent years, archaeogenetic studies have contributed to the understanding of human genetic diversity through time in regions located at the doorstep of Europe. Further studies focussing on these areas will allow for a better characterisation of genetic shifts and regionally-specific patterns of admixture across western Eurasia.
Collapse
Affiliation(s)
- Michal Feldman
- Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Guido A Gnecchi-Ruscone
- Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Thiseas C Lamnidis
- Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Cosimo Posth
- Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
205
|
Kumar L, Farias K, Prakash S, Mishra A, Mustak MS, Rai N, Thangaraj K. Dissecting the genetic history of the Roman Catholic populations of West Coast India. Hum Genet 2021; 140:1487-1498. [PMID: 34424406 DOI: 10.1007/s00439-021-02346-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Migration and admixture history of populations have always been curious and an interesting theme. The West Coast of India harbours a rich diversity, bestowing various ethno-linguistic groups, with many of them having well-documented history of migrations. The Roman Catholic is one such distinct group, whose origin was much debated. While some historians and anthropologists relating them to ancient group of Gaud Saraswat Brahmins, others relating them for being members of the Jews Lost Tribes in the first Century migration to India. Historical records suggests that this community was later forcibly converted to Christianity by the Portuguese in Goa during the Sixteenth Century. Till date, no genetic study was done on this group to infer their origin and genetic affinity. Hence, we analysed 110 Roman Catholics from three different locations of West Coast of India including Goa, Kumta and Mangalore using both uniparental and autosomal markers to understand their genetic history. We found that the Roman Catholics have close affinity with the Indo-European linguistic groups, particularly Brahmins. Additionally, we detected genetic signal of Jews in the linkage disequilibrium-based admixture analysis, which was absent in other Indo-European populations, who are inhabited in the same geographical regions. Haplotype-based analysis suggests that the Roman Catholics consist of South Asian-specific ancestry and showed high drift. Ancestry-specific historical population size estimation points to a possible bottleneck around the time of Goan inquisition (fifteenth century). Analysis of the Roman Catholics data along with ancient DNA data of Neolithic and bronze age revealed that the Roman Catholics fits well in a basic model of ancient ancestral composition, typical of most of the Indo-European caste groups of India. Mitochondrial DNA (mtDNA) analysis suggests that most of the Roman Catholics have aboriginal Indian maternal genetic ancestry; while the Y chromosomal DNA analysis indicates high frequency of R1a lineage, which is predominant in groups with higher ancestral North Indian (ANI) component. Therefore, we conclude that the Roman Catholics of Goa, Kumta and Mangalore regions are the remnants of very early lineages of Brahmin community of India, having Indo-Europeans genetic affinity along with cryptic Jewish admixture, which needs to be explored further.
Collapse
Affiliation(s)
- Lomous Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Kranti Farias
- Canadian Institute for Jewish Research, Montreal, Canada
| | - Satya Prakash
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 590 53, Ulrika, Sweden
| | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalore, 574199, India
| | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Uttar Pradesh, 53 University Road, Lucknow, 226007, India.
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, 500007, India.
- DBT-Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500007, India.
| |
Collapse
|
206
|
Aneli S, Caldon M, Saupe T, Montinaro F, Pagani L. Through 40,000 years of human presence in Southern Europe: the Italian case study. Hum Genet 2021; 140:1417-1431. [PMID: 34410492 PMCID: PMC8460580 DOI: 10.1007/s00439-021-02328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
The Italian Peninsula, a natural pier across the Mediterranean Sea, witnessed intricate population events since the very beginning of the human occupation in Europe. In the last few years, an increasing number of modern and ancient genomes from the area have been published by the international research community. This genomic perspective started unveiling the relevance of Italy to understand the post-Last Glacial Maximum (LGM) re-peopling of Europe, the earlier phase of the Neolithic westward migrations, and its linking role between Eastern and Western Mediterranean areas after the Iron Age. However, many open questions are still waiting for more data to be addressed in full. With this review, we summarize the current knowledge emerging from the available ancient Italian individuals and, by re-analysing them all at once, we try to shed light on the avenues future research in the area should cover. In particular, open questions concern (1) the fate of pre-Villabruna Europeans and to what extent their genomic components were absorbed by the post-LGM hunter-gatherers; (2) the role of Sicily and Sardinia before LGM; (3) to what degree the documented genetic structure within the Early Neolithic settlers can be described as two separate migrations; (4) what are the population events behind the marked presence of an Iranian Neolithic-like component in Bronze Age and Iron Age Italian and Southern European samples.
Collapse
Affiliation(s)
- Serena Aneli
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.
| | - Matteo Caldon
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.,Department of Biology-Genetics, University of Bari, Via Edoardo Orabona 4, 70125, Bari, Italy
| | - Luca Pagani
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.,Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| |
Collapse
|
207
|
Freilich S, Ringbauer H, Los D, Novak M, Pavičić DT, Schiffels S, Pinhasi R. Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Sci Rep 2021; 11:16729. [PMID: 34408163 PMCID: PMC8373892 DOI: 10.1038/s41598-021-94932-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Ancient DNA studies have revealed how human migrations from the Neolithic to the Bronze Age transformed the social and genetic structure of European societies. Present-day Croatia lies at the heart of ancient migration routes through Europe, yet our knowledge about social and genetic processes here remains sparse. To shed light on these questions, we report new whole-genome data for 28 individuals dated to between ~ 4700 BCE-400 CE from two sites in present-day eastern Croatia. In the Middle Neolithic we evidence first cousin mating practices and strong genetic continuity from the Early Neolithic. In the Middle Bronze Age community that we studied, we find multiple closely related males suggesting a patrilocal social organisation. We also find in that community an unexpected genetic ancestry profile distinct from individuals found at contemporaneous sites in the region, due to the addition of hunter-gatherer-related ancestry. These findings support archaeological evidence for contacts with communities further north in the Carpathian Basin. Finally, an individual dated to Roman times exhibits an ancestry profile that is broadly present in the region today, adding an important data point to the substantial shift in ancestry that occurred in the region between the Bronze Age and today.
Collapse
Affiliation(s)
- Suzanne Freilich
- Department of Evolutionary Anthropology, University of Vienna, 1090, Vienna, Austria.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000, Zagreb, Croatia
| | | | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
208
|
Almarri MA, Haber M, Lootah RA, Hallast P, Al Turki S, Martin HC, Xue Y, Tyler-Smith C. The genomic history of the Middle East. Cell 2021; 184:4612-4625.e14. [PMID: 34352227 PMCID: PMC8445022 DOI: 10.1016/j.cell.2021.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15–20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East. Middle Easterners do not have ancestry from an early out-of-Africa expansion Basal Eurasian and African ancestry in Arabians deplete their Neanderthal ancestry Populations experienced bottlenecks overlapping aridification events Identification of recent single and polygenic signals of selection in Arabia
Collapse
Affiliation(s)
- Mohamed A Almarri
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Reem A Lootah
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Pille Hallast
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Saeed Al Turki
- Translational Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; Department of Genetics & Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
209
|
Pham NS, Tran HL, Nguyen THT, Nguyen VH, Hoang H, Tung QN, Phi QT. The First Autosomal STR Population Data of Kinh Ethinic Group in Vietnam by Using Massively Parallel Sequencing. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
210
|
Papac L, Ernée M, Dobeš M, Langová M, Rohrlach AB, Aron F, Neumann GU, Spyrou MA, Rohland N, Velemínský P, Kuna M, Brzobohatá H, Culleton B, Daněček D, Danielisová A, Dobisíková M, Hložek J, Kennett DJ, Klementová J, Kostka M, Krištuf P, Kuchařík M, Hlavová JK, Limburský P, Malyková D, Mattiello L, Pecinovská M, Petriščáková K, Průchová E, Stránská P, Smejtek L, Špaček J, Šumberová R, Švejcar O, Trefný M, Vávra M, Kolář J, Heyd V, Krause J, Pinhasi R, Reich D, Schiffels S, Haak W. Dynamic changes in genomic and social structures in third millennium BCE central Europe. SCIENCE ADVANCES 2021; 7:7/35/eabi6941. [PMID: 34433570 PMCID: PMC8386934 DOI: 10.1126/sciadv.abi6941] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 05/25/2023]
Abstract
Europe's prehistory oversaw dynamic and complex interactions of diverse societies, hitherto unexplored at detailed regional scales. Studying 271 human genomes dated ~4900 to 1600 BCE from the European heartland, Bohemia, we reveal unprecedented genetic changes and social processes. Major migrations preceded the arrival of "steppe" ancestry, and at ~2800 BCE, three genetically and culturally differentiated groups coexisted. Corded Ware appeared by 2900 BCE, were initially genetically diverse, did not derive all steppe ancestry from known Yamnaya, and assimilated females of diverse backgrounds. Both Corded Ware and Bell Beaker groups underwent dynamic changes, involving sharp reductions and complete replacements of Y-chromosomal diversity at ~2600 and ~2400 BCE, respectively, the latter accompanied by increased Neolithic-like ancestry. The Bronze Age saw new social organization emerge amid a ≥40% population turnover.
Collapse
Affiliation(s)
- Luka Papac
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.
| | - Michal Ernée
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Miroslav Dobeš
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Michaela Langová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Petr Velemínský
- Department of Anthropology, The National Museum, Prague, Cirkusová 1740, Prague 9, Horní Počernice, CZ 193 00, Czech Republic
| | - Martin Kuna
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Hana Brzobohatá
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Brendan Culleton
- Institutes of Energy and the Environments, Pennsylvania State University, University Park, PA 16802, USA
| | - David Daněček
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
- Central Bohemian Museum in Roztoky u Prahy, Zámek 1, Roztoky, CZ 252 63, Czech Republic
| | - Alžběta Danielisová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Miluše Dobisíková
- Department of Anthropology, The National Museum, Prague, Cirkusová 1740, Prague 9, Horní Počernice, CZ 193 00, Czech Republic
| | - Josef Hložek
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
- Department of Archaeology, Faculty of Philosophy and Arts, University of West Bohemia in Pilsen, Sedláčkova 38, Pilsen, CZ 301 00, Czech Republic
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jana Klementová
- Central Bohemian Museum in Roztoky u Prahy, Zámek 1, Roztoky, CZ 252 63, Czech Republic
| | - Michal Kostka
- The City of Prague Museum, Kožná 1/475, Prague 1, CZ 110 00, Czech Republic
| | - Petr Krištuf
- Department of Archaeology, Faculty of Philosophy and Arts, University of West Bohemia in Pilsen, Sedláčkova 38, Pilsen, CZ 301 00, Czech Republic
| | - Milan Kuchařík
- Labrys o.p.s., Hloubětínská 16/11, Prague 9, CZ 198 00, Czech Republic
| | - Jana Kuljavceva Hlavová
- Institute of Preservation of Archaeological Heritage of Northwest Bohemia, Jana Žižky 835, Most, CZ 434 01, Czech Republic
| | - Petr Limburský
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Drahomíra Malyková
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Lucia Mattiello
- Central Bohemian Archaeological Heritage Institute, Nad Olšinami 3/448, Prague 10, CZ 100 00, Czech Republic
| | - Monika Pecinovská
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | | | - Erika Průchová
- Institute of Archaeology, Faculty of Arts, University of South Bohemia in České Budějovice, Branišovská 31a, CZ 370 05, České Budějovice, Czech Republic
| | - Petra Stránská
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Lubor Smejtek
- Central Bohemian Archaeological Heritage Institute, Nad Olšinami 3/448, Prague 10, CZ 100 00, Czech Republic
| | - Jaroslav Špaček
- The Municipal Museum in Čelákovice (formerly), Komenského 1646, Čelákovice, CZ 250 88, Czech Republic (private)
| | - Radka Šumberová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Ondřej Švejcar
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Martin Trefný
- Friedrich Alexander University Erlangen/Nürnberg, Kochstrasse 4/18, DE 91054 Erlangen, Germany
| | - Miloš Vávra
- Central Bohemian Archaeological Heritage Institute, Nad Olšinami 3/448, Prague 10, CZ 100 00, Czech Republic
| | - Jan Kolář
- Department of Vegetation Ecology, Institute of Botany of the Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
- Institute of Archaeology and Museology, Masaryk University, Arne Nováka 1, Brno 60200, Czech Republic
| | - Volker Heyd
- Department of Cultures/Archaeology, P.O. Box 59, Unioninkatu 38, 00014 University of Helsinki, Helsinki, Finland
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
211
|
Kumar V, Bennett EA, Zhao D, Liang Y, Tang Y, Ren M, Dai Q, Feng X, Cao P, Yang R, Liu F, Ping W, Zhang M, Ding M, Yang MA, Amridin B, Muttaliu H, Wang J, Fu Q. Genetic continuity of Bronze Age ancestry with increased Steppe-related ancestry in Late Iron Age Uzbekistan. Mol Biol Evol 2021; 38:4908-4917. [PMID: 34320653 PMCID: PMC8557446 DOI: 10.1093/molbev/msab216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although Uzbekistan and Central Asia are known for the well-studied Bronze Age civilization of the Bactria–Margiana Archaeological Complex (BMAC), the lesser-known Iron Age was also a dynamic period that resulted in increased interaction and admixture among different cultures from this region. To broaden our understanding of events that impacted the demography and population structure of this region, we generated 27 genome-wide single-nucleotide polymorphism capture data sets of Late Iron Age individuals around the Historical Kushan time period (∼2100–1500 BP) from three sites in South Uzbekistan. Overall, Bronze Age ancestry persists into the Iron Age in Uzbekistan, with no major replacements of populations with Steppe-related ancestry. However, these individuals suggest diverse ancestries related to Iranian farmers, Anatolian farmers, and Steppe herders, with a small amount of West European Hunter Gatherer, East Asian, and South Asian Hunter Gatherer ancestry as well. Genetic affinity toward the Late Bronze Age Steppe herders and a higher Steppe-related ancestry than that found in BMAC populations suggest an increased mobility and interaction of individuals from the Northern Steppe in a Southward direction. In addition, a decrease of Iranian and an increase of Anatolian farmer-like ancestry in Uzbekistan Iron Age individuals were observed compared with the BMAC populations from Uzbekistan. Thus, despite continuity from the Bronze Age, increased admixture played a major role in the shift from the Bronze to the Iron Age in southern Uzbekistan. This mixed ancestry is also observed in other parts of the Steppe and Central Asia, suggesting more widespread admixture among local populations.
Collapse
Affiliation(s)
- Vikas Kumar
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Dongyue Zhao
- School of Cultural Heritage, Northwest University, Xi'an, 710069, China
| | - Yun Liang
- School of Cultural Heritage, Northwest University, Xi'an, 710069, China
| | - Yunpeng Tang
- School of Cultural Heritage, Northwest University, Xi'an, 710069, China
| | - Meng Ren
- School of Cultural Heritage, Northwest University, Xi'an, 710069, China
| | - Qinyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manyu Ding
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Melinda A Yang
- Department of Biology, University of Richmond, Richmond, VA, 23173, USA
| | - Berdimurodov Amridin
- Institute of Archaeology, Academy of Sciences of Uzbekistan, Samarkand, Uzbekistan
| | - Hasanov Muttaliu
- Institute of Archaeology, Academy of Sciences of Uzbekistan, Samarkand, Uzbekistan
| | - Jianxin Wang
- School of Cultural Heritage, Northwest University, Xi'an, 710069, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
212
|
Naz S. Molecular genetic landscape of hereditary hearing loss in Pakistan. Hum Genet 2021; 141:633-648. [PMID: 34308486 DOI: 10.1007/s00439-021-02320-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023]
Abstract
Approximately 14.5 million Pakistani individuals have a hearing loss and half of these cases may be due to genetic causes. Though significant progress has been made in uncovering genetic variants for recessively inherited nonsyndromic deafness, Pendred syndrome, and Usher syndromes, the same is not true for dominantly inherited hearing loss, most syndromic cases and deafness with complex inheritance patterns. Variants of 57 genes have been reported to cause nonsyndromic recessive deafness in Pakistan, though most are rare. Variants of just five genes GJB2, HGF, MYO7A, SLC26A4, and TMC1 together explain 57% of profound deafness while those of GJB2, MYO15A, OTOF, SLC26A4, TMC1, and TMPRSS3 account for 47% of moderate to severe hearing loss. In contrast, although variants of at least 39 genes have been implicated in different deafness syndromes, their prevalence in the population and the spectrum of mutations have not been explored. Furthermore, research on genetics of deafness has mostly focused on individuals from the Punjab province and needs to be extended to other regions of Pakistan. Identifying the genes and their variants causing deafness in all ethnic groups is important as it will pinpoint rare as well as recurrent mutations. This information may ultimately help in offering genetic counseling and future treatments.
Collapse
Affiliation(s)
- Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
213
|
Rohrlach AB, Papac L, Childebayeva A, Rivollat M, Villalba-Mouco V, Neumann GU, Penske S, Skourtanioti E, van de Loosdrecht M, Akar M, Boyadzhiev K, Boyadzhiev Y, Deguilloux MF, Dobeš M, Erdal YS, Ernée M, Frangipane M, Furmanek M, Friederich S, Ghesquière E, Hałuszko A, Hansen S, Küßner M, Mannino M, Özbal R, Reinhold S, Rottier S, Salazar-García DC, Diaz JS, Stockhammer PW, de Togores Muñoz CR, Yener KA, Posth C, Krause J, Herbig A, Haak W. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci Rep 2021; 11:15005. [PMID: 34294811 PMCID: PMC8298398 DOI: 10.1038/s41598-021-94491-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture assays such as the 1240 k, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield. Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the "mappable" regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240 k capture, YMCA significantly improves the mean coverage and number of sites covered on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants. To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.
Collapse
Affiliation(s)
- Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany. .,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Luka Papac
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Maïté Rivollat
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Université de Bordeaux, CNRS, PACEA-UMR 5199, 33615, Pessac, France
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Marieke van de Loosdrecht
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Murat Akar
- Department of Archaeology, Mustafa Kemal University, 31060, Alahan-Antakya, Hatay, Turkey
| | - Kamen Boyadzhiev
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 1000, Sofia, Bulgaria
| | - Yavor Boyadzhiev
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 1000, Sofia, Bulgaria
| | | | - Miroslav Dobeš
- Department of Prehistory, Institute of Archaeology CAS, Prague, Czech Republic
| | - Yilmaz S Erdal
- Department of Anthropology, Hacettepe University, 06800, Ankara, Turkey
| | - Michal Ernée
- Department of Prehistory, Institute of Archaeology CAS, Prague, Czech Republic
| | | | | | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, Halle, Germany
| | - Emmanuel Ghesquière
- Inrap Grand Ouest, Bourguébus, France.,Université de Rennes 1, CNRS, CReAAH-UMR, 6566, Rennes, France
| | - Agata Hałuszko
- Institute of Archaeology, University of Wrocław, Wrocław, Poland.,Archeolodzy.org Foundation, Wrocław, Poland
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archeology, Weimar, Germany
| | - Marcello Mannino
- Department of Archaeology, School of Culture and Society, Aarhus University, 8270, Højbjerg, Denmark
| | - Rana Özbal
- Department of Archaeology and History of Art, Koç University, 34450, Istanbul, Turkey
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Stéphane Rottier
- Université de Bordeaux, CNRS, PACEA-UMR 5199, 33615, Pessac, France
| | - Domingo Carlos Salazar-García
- Grupo de Investigación en Prehistoria IT-1223-19 (UPV-EHU)/IKERBASQUE-Basque Foundation for Science, Vitoria, Spain.,Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, Valencia, Spain.,Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Ludwig Maximilian University Munich, 80799, Munich, Germany
| | | | - K Aslihan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY, 10028, USA
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Archaeo- and Palaeogenetics Group, Institute for Archaeological Sciences Eberhard Karls University Tübingen, 72070, Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany. .,School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
214
|
Yang XY, Rakha A, Chen W, Hou J, Qi XB, Shen QK, Dai SS, Sulaiman X, Abdulloevich NT, Afanasevna ME, Ibrohimovich KB, Chen X, Yang WK, Adnan A, Zhao RH, Yao YG, Su B, Peng MS, Zhang YP. Tracing the Genetic Legacy of the Tibetan Empire in the Balti. Mol Biol Evol 2021; 38:1529-1536. [PMID: 33283852 PMCID: PMC8042757 DOI: 10.1093/molbev/msaa313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rise and expansion of Tibetan Empire in the 7th to 9th centuries AD affected the course of history across East Eurasia, but the genetic impact of Tibetans on surrounding populations remains undefined. We sequenced 60 genomes for four populations from Pakistan and Tajikistan to explore their demographic history. We showed that the genomes of Balti people from Baltistan comprised 22.6–26% Tibetan ancestry. We inferred a single admixture event and dated it to about 39–21 generations ago, a period that postdated the conquest of Baltistan by the ancient Tibetan Empire. The analyses of mitochondrial DNA, Y, and X chromosome data indicated that both ancient Tibetan males and females were involved in the male-biased dispersal. Given the fact that the Balti people adopted Tibetan language and culture in history, our study suggested the impact of Tibetan Empire on Baltistan involved dominant cultural and minor demic diffusion.
Collapse
Affiliation(s)
- Xing-Yan Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Allah Rakha
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Juzhi Hou
- Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xue-Bin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xierzhatijiang Sulaiman
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Manilova Elena Afanasevna
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe, Tajikistan
| | | | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Kang Yang
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Atif Adnan
- Department of Human Anatomy, School of Basic Medicine, China Medical University, Shenyang, China
| | - Ruo-Han Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
215
|
Gelabert P, Sawyer S, Bergström A, Margaryan A, Collin TC, Meshveliani T, Belfer-Cohen A, Lordkipanidze D, Jakeli N, Matskevich Z, Bar-Oz G, Fernandes DM, Cheronet O, Özdoğan KT, Oberreiter V, Feeney RNM, Stahlschmidt MC, Skoglund P, Pinhasi R. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr Biol 2021; 31:3564-3574.e9. [PMID: 34256019 PMCID: PMC8409484 DOI: 10.1016/j.cub.2021.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
Cave sediments have been shown to preserve ancient DNA but so far have not yielded the genome-scale information of skeletal remains. We retrieved and analyzed human and mammalian nuclear and mitochondrial environmental "shotgun" genomes from a single 25,000-year-old Upper Paleolithic sediment sample from Satsurblia cave, western Georgia:first, a human environmental genome with substantial basal Eurasian ancestry, which was an ancestral component of the majority of post-Ice Age people in the Near East, North Africa, and parts of Europe; second, a wolf environmental genome that is basal to extant Eurasian wolves and dogs and represents a previously unknown, likely extinct, Caucasian lineage; and third, a European bison environmental genome that is basal to present-day populations, suggesting that population structure has been substantially reshaped since the Last Glacial Maximum. Our results provide new insights into the Late Pleistocene genetic histories of these three species and demonstrate that direct shotgun sequencing of sediment DNA, without target enrichment methods, can yield genome-wide data informative of ancestry and phylogenetic relationships.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ashot Margaryan
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Tengiz Meshveliani
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Anna Belfer-Cohen
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lordkipanidze
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Nino Jakeli
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | | | - Guy Bar-Oz
- Zinman Institute of Archaeology, University of Haifa, Haifa, Israel
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Mareike C Stahlschmidt
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| |
Collapse
|
216
|
Watkins WS, Feusier JE, Thomas J, Goubert C, Mallick S, Jorde LB. The Simons Genome Diversity Project: A Global Analysis of Mobile Element Diversity. Genome Biol Evol 2021; 12:779-794. [PMID: 32359137 PMCID: PMC7290288 DOI: 10.1093/gbe/evaa086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ongoing retrotransposition of Alu, LINE-1, and SINE–VNTR–Alu elements generates diversity and variation among human populations. Previous analyses investigating the population genetics of mobile element insertions (MEIs) have been limited by population ascertainment bias or by relatively small numbers of populations and low sequencing coverage. Here, we use 296 individuals representing 142 global populations from the Simons Genome Diversity Project (SGDP) to discover and characterize MEI diversity from deeply sequenced whole-genome data. We report 5,742 MEIs not originally reported by the 1000 Genomes Project and show that high sampling diversity leads to a 4- to 7-fold increase in MEI discovery rates over the original 1000 Genomes Project data. As a result of negative selection, nonreference polymorphic MEIs are underrepresented within genes, and MEIs within genes are often found in the transcriptional orientation opposite that of the gene. Globally, 80% of Alu subfamilies predate the expansion of modern humans from Africa. Polymorphic MEIs show heterozygosity gradients that decrease from Africa to Eurasia to the Americas, and the number of MEIs found uniquely in a single individual are also distributed in this general pattern. The maximum fraction of MEI diversity partitioned among the seven major SGDP population groups (FST) is 7.4%, similar to, but slightly lower than, previous estimates and likely attributable to the diverse sampling strategy of the SGDP. Finally, we utilize these MEIs to extrapolate the primary Native American shared ancestry component to back to Asia and provide new evidence from genome-wide identical-by-descent genetic markers that add additional support for a southeastern Siberian origin for most Native Americans.
Collapse
Affiliation(s)
| | | | - Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Clement Goubert
- Department of Molecular Biology and Genetics, Cornell University
| | - Swapon Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah
| |
Collapse
|
217
|
Arriaga-MacKenzie IS, Matesi G, Chen S, Ronco A, Marker KM, Hall JR, Scherenberg R, Khajeh-Sharafabadi M, Wu Y, Gignoux CR, Null M, Hendricks AE. Summix: A method for detecting and adjusting for population structure in genetic summary data. Am J Hum Genet 2021; 108:1270-1282. [PMID: 34157305 PMCID: PMC8322937 DOI: 10.1016/j.ajhg.2021.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Publicly available genetic summary data have high utility in research and the clinic, including prioritizing putative causal variants, polygenic scoring, and leveraging common controls. However, summarizing individual-level data can mask population structure, resulting in confounding, reduced power, and incorrect prioritization of putative causal variants. This limits the utility of publicly available data, especially for understudied or admixed populations where additional research and resources are most needed. Although several methods exist to estimate ancestry in individual-level data, methods to estimate ancestry proportions in summary data are lacking. Here, we present Summix, a method to efficiently deconvolute ancestry and provide ancestry-adjusted allele frequencies (AFs) from summary data. Using continental reference ancestry, African (AFR), non-Finnish European (EUR), East Asian (EAS), Indigenous American (IAM), South Asian (SAS), we obtain accurate and precise estimates (within 0.1%) for all simulation scenarios. We apply Summix to gnomAD v.2.1 exome and genome groups and subgroups, finding heterogeneous continental ancestry for several groups, including African/African American (∼84% AFR, ∼14% EUR) and American/Latinx (∼4% AFR, ∼5% EAS, ∼43% EUR, ∼46% IAM). Compared to the unadjusted gnomAD AFs, Summix's ancestry-adjusted AFs more closely match respective African and Latinx reference samples. Even on modern, dense panels of summary statistics, Summix yields results in seconds, allowing for estimation of confidence intervals via block bootstrap. Given an accompanying R package, Summix increases the utility and equity of public genetic resources, empowering novel research opportunities.
Collapse
Affiliation(s)
| | - Gregory Matesi
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Samuel Chen
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Alexandria Ronco
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Katie M Marker
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jordan R Hall
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Ryan Scherenberg
- Business School, University of Colorado Denver, Denver, CO 80204, USA
| | | | - Yinfei Wu
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Christopher R Gignoux
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Megan Null
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA; Mathematics and Physical Sciences, The College of Idaho, Caldwell, ID 83605, USA
| | - Audrey E Hendricks
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA; Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA.
| |
Collapse
|
218
|
Pinhasi R, Douka K. Before and after farming: The genetic structure of South China and Southeast Asia. Cell 2021; 184:3597-3598. [PMID: 34242562 DOI: 10.1016/j.cell.2021.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this issue of Cell, Wang et al. harness ancient DNA methods to produce and analyze new genomic data from 31 individuals from South China, dated between 500 and 10,000-12,000 years ago. The study reveals a complex interplay between groups of three different genetic ancestries and provides a new perspective on interactions and agricultural dispersals in South China and Southeast Asia.
Collapse
Affiliation(s)
- Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Althansgrasse 14, 1090, Vienna, Austria.
| | - Katerina Douka
- Department of Evolutionary Anthropology, University of Vienna, Althansgrasse 14, 1090, Vienna, Austria; Department of Archaeology, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| |
Collapse
|
219
|
Ingman T, Eisenmann S, Skourtanioti E, Akar M, Ilgner J, Gnecchi Ruscone GA, le Roux P, Shafiq R, Neumann GU, Keller M, Freund C, Marzo S, Lucas M, Krause J, Roberts P, Yener KA, Stockhammer PW. Human mobility at Tell Atchana (Alalakh), Hatay, Turkey during the 2nd millennium BC: Integration of isotopic and genomic evidence. PLoS One 2021; 16:e0241883. [PMID: 34191795 PMCID: PMC8244877 DOI: 10.1371/journal.pone.0241883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
The Middle and Late Bronze Age, a period roughly spanning the 2nd millennium BC (ca. 2000-1200 BC) in the Near East, is frequently referred to as the first 'international age', characterized by intense and far-reaching contacts between different entities from the eastern Mediterranean to the Near East and beyond. In a large-scale tandem study of stable isotopes and ancient DNA of individuals excavated at Tell Atchana (Alalakh, located in Hatay, Turkey), we explored the role of mobility at the capital of a regional kingdom, named Mukish during the Late Bronze Age, which spanned the Amuq Valley and some areas beyond. We generated strontium and oxygen isotope data from dental enamel for 53 individuals and 77 individuals, respectively, and added ancient DNA data of 10 newly sequenced individuals to a dataset of 27 individuals published in 2020. Additionally, we improved the DNA coverage of one individual from this 2020 dataset. The DNA data revealed a very homogeneous gene pool. This picture of an overwhelmingly local ancestry was consistent with the evidence of local upbringing in most of the individuals indicated by the isotopic data, where only five were found to be non-local. High levels of contact, trade, and exchange of ideas and goods in the Middle and Late Bronze Ages, therefore, seem not to have translated into high levels of individual mobility detectable at Tell Atchana.
Collapse
Affiliation(s)
- Tara Ingman
- Koç University Research Center for Anatolian Civilizations (ANAMED), Koc University, Istanbul, Turkey
| | - Stefanie Eisenmann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Murat Akar
- Department of Archaeology, Mustafa Kemal University, Alahan-Antakya, Hatay, Turkey
| | - Jana Ilgner
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | | | - Petrus le Roux
- Department of Geological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Rula Shafiq
- Anthropology Department, Yeditepe University, Istanbul, Turkey
| | - Gunnar U. Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Marcel Keller
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cäcilia Freund
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Sara Marzo
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Mary Lucas
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - K. Aslıhan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY, United States of America
| | - Philipp W. Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
220
|
Wang T, Wang W, Xie G, Li Z, Fan X, Yang Q, Wu X, Cao P, Liu Y, Yang R, Liu F, Dai Q, Feng X, Wu X, Qin L, Li F, Ping W, Zhang L, Zhang M, Liu Y, Chen X, Zhang D, Zhou Z, Wu Y, Shafiey H, Gao X, Curnoe D, Mao X, Bennett EA, Ji X, Yang MA, Fu Q. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago. Cell 2021; 184:3829-3841.e21. [PMID: 34171307 DOI: 10.1016/j.cell.2021.05.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
Past human genetic diversity and migration between southern China and Southeast Asia have not been well characterized, in part due to poor preservation of ancient DNA in hot and humid regions. We sequenced 31 ancient genomes from southern China (Guangxi and Fujian), including two ∼12,000- to 10,000-year-old individuals representing the oldest humans sequenced from southern China. We discovered a deeply diverged East Asian ancestry in the Guangxi region that persisted until at least 6,000 years ago. We found that ∼9,000- to 6,000-year-old Guangxi populations were a mixture of local ancestry, southern ancestry previously sampled in Fujian, and deep Asian ancestry related to Southeast Asian Hòabìnhian hunter-gatherers, showing broad admixture in the region predating the appearance of farming. Historical Guangxi populations dating to ∼1,500 to 500 years ago are closely related to Tai-Kadai and Hmong-Mien speakers. Our results show heavy interactions among three distinct ancestries at the crossroads of East and Southeast Asia.
Collapse
Affiliation(s)
- Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Northwest University, Xi'an 710069, China; Shanghai Qi Zhi Institute, Shanghai 200232, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Institute of Cultural Heritage, Shandong University, Qingdao 266237, China
| | - Guangmao Xie
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China; College of History, Culture and Tourism, Guangxi Normal University, Guilin 541001, China
| | - Zhen Li
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China
| | - Xuechun Fan
- International Research Center for Austronesian Archaeology, Pingtan 350000, China; Fujian Museum, Fuzhou 350001, China
| | - Qingping Yang
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China
| | - Xichao Wu
- Fujian Longyan Museum, Longyan 364000, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Ling Qin
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Fajun Li
- Department of Anthropology, School of Sociology and Anthropology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yalin Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongju Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhenyu Zhou
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China
| | - Yun Wu
- Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; Archaeological Institute for Yangtze Civilization, Wuhan University, Wuhan 430072, China
| | - Hassan Shafiey
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Darren Curnoe
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xueping Ji
- Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, China.
| | - Melinda A Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
221
|
Liu Y, Yang J, Li Y, Tang R, Yuan D, Wang Y, Wang P, Deng S, Zeng S, Li H, Chen G, Zou X, Wang M, He G. Significant East Asian Affinity of the Sichuan Hui Genomic Structure Suggests the Predominance of the Cultural Diffusion Model in the Genetic Formation Process. Front Genet 2021; 12:626710. [PMID: 34194465 PMCID: PMC8237860 DOI: 10.3389/fgene.2021.626710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
The ancestral origin and genomic history of Chinese Hui people remain to be explored due to the paucity of genome-wide data. Some evidence argues that an eastward migration of Central Asians gave rise to modern Hui people, which is referred to as the demic diffusion hypothesis; other evidence favors the cultural diffusion hypothesis, which posits that East Asians adopted Muslim culture to form the modern culturally distinct populations. However, the extent to which the observed genetic structure of the Huis was mediated by the movement of people or the assimilation of Muslim culture also remains highly contentious. Analyses of over 700 K SNPs in 109 western Chinese individuals (49 Sichuan Huis and 60 geographically close Nanchong Hans) together with the available ancient and modern Eurasian sequences allowed us to fully explore the genomic makeup and origin of Hui and neighboring Han populations. The results from PCA, ADMIXTURE, and allele-sharing-based f-statistics revealed a strong genomic affinity between Sichuan Huis and Neolithic-to-modern Northern East Asians, which suggested a massive gene influx from East Asians into the Sichuan Hui people. Three-way admixture models in the qpWave/qpAdm analyses further revealed a small stream of gene influx from western Eurasians into the Sichuan Hui people, which was further directly confirmed via the admixture event from the temporally distinct Western sources to Sichuan Hui people in the qpGraph-based phylogenetic model, suggesting the key role of the cultural diffusion model in the genetic formation of the Sichuan Huis. ALDER-based admixture date estimation showed that this observed western Eurasian admixture signal was introduced into the Sichuan Huis during the historic periods, which was concordant with the extensive western-eastern communication along the Silk Road and historically documented Huis' migration history. In summary, although significant cultural differentiation exists between Hui people and their neighbors, our genomic analysis showed their strong genetic affinity with modern and ancient Northern East Asians. Our results support the hypothesis that the Sichuan Huis arose from a mixture of minor western Eurasian ancestry and predominant East Asian ancestry.
Collapse
Affiliation(s)
- Yan Liu
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Junbao Yang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | | | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Didi Yuan
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yicheng Wang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Peixin Wang
- College of Medical Information, Chongqing Medical University, Chongqing, China
| | - Shudan Deng
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Simei Zeng
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Hongliang Li
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Gang Chen
- Hunan Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xing Zou
- Department of Forensic Genetics, Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Mengge Wang
- Department of Forensic Genetics, Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Guanglin He
- Department of Forensic Genetics, Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
222
|
Sun C, Kovacs P, Guiu-Jurado E. Genetics of Body Fat Distribution: Comparative Analyses in Populations with European, Asian and African Ancestries. Genes (Basel) 2021; 12:genes12060841. [PMID: 34072523 PMCID: PMC8228180 DOI: 10.3390/genes12060841] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Preferential fat accumulation in visceral vs. subcutaneous depots makes obese individuals more prone to metabolic complications. Body fat distribution (FD) is regulated by genetics. FD patterns vary across ethnic groups independent of obesity. Asians have more and Africans have less visceral fat compared with Europeans. Consequently, Asians tend to be more susceptible to type 2 diabetes even with lower BMIs when compared with Europeans. To date, genome-wide association studies (GWAS) have identified more than 460 loci related to FD traits. However, the majority of these data were generated in European populations. In this review, we aimed to summarize recent advances in FD genetics with a focus on comparisons between European and non-European populations (Asians and Africans). We therefore not only compared FD-related susceptibility loci identified in three ethnicities but also discussed whether known genetic variants might explain the FD pattern heterogeneity across different ancestries. Moreover, we describe several novel candidate genes potentially regulating FD, including NID2, HECTD4 and GNAS, identified in studies with Asian populations. It is of note that in agreement with current knowledge, most of the proposed FD candidate genes found in Asians belong to the group of developmental genes.
Collapse
Affiliation(s)
- Chang Sun
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Esther Guiu-Jurado
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung, 85764 Neuherberg, Germany
| |
Collapse
|
223
|
The deep population history of northern East Asia from the Late Pleistocene to the Holocene. Cell 2021; 184:3256-3266.e13. [PMID: 34048699 DOI: 10.1016/j.cell.2021.04.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/20/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Northern East Asia was inhabited by modern humans as early as 40 thousand years ago (ka), as demonstrated by the Tianyuan individual. Using genome-wide data obtained from 25 individuals dated to 33.6-3.4 ka from the Amur region, we show that Tianyuan-related ancestry was widespread in northern East Asia before the Last Glacial Maximum (LGM). At the close of the LGM stadial, the earliest northern East Asian appeared in the Amur region, and this population is basal to ancient northern East Asians. Human populations in the Amur region have maintained genetic continuity from 14 ka, and these early inhabitants represent the closest East Asian source known for Ancient Paleo-Siberians. We also observed that EDAR V370A was likely to have been elevated to high frequency after the LGM, suggesting the possible timing for its selection. This study provides a deep look into the population dynamics of northern East Asia.
Collapse
|
224
|
Yu X, Li H. Origin of ethnic groups, linguistic families, and civilizations in China viewed from the Y chromosome. Mol Genet Genomics 2021; 296:783-797. [PMID: 34037863 DOI: 10.1007/s00438-021-01794-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
East Asia, geographically extending to the Pamir Plateau in the west, to the Himalayan Mountains in the southwest, to Lake Baikal in the north and to the South China Sea in the south, harbors a variety of people, cultures, and languages. To reconstruct the natural history of East Asians is a mission of multiple disciplines, including genetics, archaeology, linguistics, and ethnology. Geneticists confirm the recent African origin of modern East Asians. Anatomically modern humans arose in Africa and immigrated into East Asia via a southern route approximately 50,000 years ago. Following the end of the Last Glacial Maximum approximately 12,000 years ago, rice and millet were domesticated in the south and north of East Asia, respectively, which allowed human populations to expand and linguistic families and ethnic groups to develop. These Neolithic populations produced a strong relation between the present genetic structures and linguistic families. The expansion of the Hongshan people from northeastern China relocated most of the ethnic populations on a large scale approximately 5300 years ago. Most of the ethnic groups migrated to remote regions, producing genetic structure differences between the edge and center of East Asia. In central China, pronounced population admixture occurred and accelerated over time, which subsequently formed the Han Chinese population and eventually the Chinese civilization. Population migration between the north and the south throughout history has left a smooth gradient in north-south changes in genetic structure. Observation of the process of shaping the genetic structure of East Asians may help in understanding the global natural history of modern humans.
Collapse
Affiliation(s)
- Xueer Yu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China.
| |
Collapse
|
225
|
Bose A, Platt DE, Parida L, Drineas P, Paschou P. Integrating Linguistics, Social Structure, and Geography to Model Genetic Diversity within India. Mol Biol Evol 2021; 38:1809-1819. [PMID: 33481022 PMCID: PMC8097304 DOI: 10.1093/molbev/msaa321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
India represents an intricate tapestry of population substructure shaped by geography, language, culture, and social stratification. Although geography closely correlates with genetic structure in other parts of the world, the strict endogamy imposed by the Indian caste system and the large number of spoken languages add further levels of complexity to understand Indian population structure. To date, no study has attempted to model and evaluate how these factors have interacted to shape the patterns of genetic diversity within India. We merged all publicly available data from the Indian subcontinent into a data set of 891 individuals from 90 well-defined groups. Bringing together geography, genetics, and demographic factors, we developed Correlation Optimization of Genetics and Geodemographics to build a model that explains the observed population genetic substructure. We show that shared language along with social structure have been the most powerful forces in creating paths of gene flow in the subcontinent. Furthermore, we discover the ethnic groups that best capture the diverse genetic substructure using a ridge leverage score statistic. Integrating data from India with a data set of additional 1,323 individuals from 50 Eurasian populations, we find that Indo-European and Dravidian speakers of India show shared genetic drift with Europeans, whereas the Tibeto-Burman speaking tribal groups have maximum shared genetic drift with East Asians.
Collapse
Affiliation(s)
- Aritra Bose
- Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Daniel E Platt
- Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Laxmi Parida
- Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Petros Drineas
- Computer Science Department, Purdue University, West Lafayette, IN, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
226
|
Lawrence J, Stojanowski CM, Paul KS, Seidel AC, Guatelli-Steinberg D. Heterogeneous frailty and the expression of linear enamel hypoplasia in a genealogical population. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:638-651. [PMID: 33852741 DOI: 10.1002/ajpa.24288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Linear enamel hypoplasia (LEH) is a common skeletal marker of physiological stress (e.g., malnutrition or illness) that is studied within and across populations, without reference to familial risk. We examine LEH prevalence in a population with known genealogical relationships to determine the potential influence of genetic heritability and shared environment. METHODS LEH data of 239 individuals from a single population were recorded from the Ohio State University Menegaz-Bock collection dental casts. All individuals were of known age, sex, and genealogy. Narrow-sense heritability estimates were obtained for LEH presence and count data from all unworn, fully erupted teeth (excluding third molars) using SOLAR (v.8.1.1). Age, sex, and age-sex interaction were included as covariates. Models were re-run with a household effect variable. RESULTS LEH persists across generations in this study population with moderate, significant heritability estimates for presence in four teeth, and count in four teeth (three teeth were significant for both). When a household effect variable was added, no residual heritability remained for LEH count on any tooth. There was no significant household effect for three of the four teeth that had significant heritability estimates for LEH presence. Age was a significant covariate. Further analyses with birth year data revealed a secular trend toward less LEH. CONCLUSIONS This study provides evidence for familial risk of LEH (genetic and environmental) that has consequences for the broad use of this skeletal marker of stress. These results have repercussions for archaeological assemblages, or population health studies, where genetic relatives and household groups might be heavily represented.
Collapse
Affiliation(s)
- Julie Lawrence
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Christopher M Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Kathleen S Paul
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
| | - Andrew C Seidel
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | | |
Collapse
|
227
|
Sahakyan H, Margaryan A, Saag L, Karmin M, Flores R, Haber M, Kushniarevich A, Khachatryan Z, Bahmanimehr A, Parik J, Karafet T, Yunusbayev B, Reisberg T, Solnik A, Metspalu E, Hovhannisyan A, Khusnutdinova EK, Behar DM, Metspalu M, Yepiskoposyan L, Rootsi S, Villems R. Origin and diffusion of human Y chromosome haplogroup J1-M267. Sci Rep 2021; 11:6659. [PMID: 33758277 PMCID: PMC7987999 DOI: 10.1038/s41598-021-85883-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
Human Y chromosome haplogroup J1-M267 is a common male lineage in West Asia. One high-frequency region-encompassing the Arabian Peninsula, southern Mesopotamia, and the southern Levant-resides ~ 2000 km away from the other one found in the Caucasus. The region between them, although has a lower frequency, nevertheless demonstrates high genetic diversity. Studies associate this haplogroup with the spread of farming from the Fertile Crescent to Europe, the spread of mobile pastoralism in the desert regions of the Arabian Peninsula, the history of the Jews, and the spread of Islam. Here, we study past human male demography in West Asia with 172 high-coverage whole Y chromosome sequences and 889 genotyped samples of haplogroup J1-M267. We show that this haplogroup evolved ~ 20,000 years ago somewhere in northwestern Iran, the Caucasus, the Armenian Highland, and northern Mesopotamia. The major branch-J1a1a1-P58-evolved during the early Holocene ~ 9500 years ago somewhere in the Arabian Peninsula, the Levant, and southern Mesopotamia. Haplogroup J1-M267 expanded during the Chalcolithic, the Bronze Age, and the Iron Age. Most probably, the spread of Afro-Asiatic languages, the spread of mobile pastoralism in the arid zones, or both of these events together explain the distribution of haplogroup J1-M267 we see today in the southern regions of West Asia.
Collapse
Affiliation(s)
- Hovhannes Sahakyan
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia.
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia.
| | - Ashot Margaryan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
- Lundbeck Foundation, Department of Biology, GeoGenetics Centre, University of Copenhagen, 1350, Copenhagen, Denmark
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Monika Karmin
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, Manawatu, 4442, New Zealand
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Zaruhi Khachatryan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
| | - Ardeshir Bahmanimehr
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
- Thalassemia and Haemophilia Genetic PND Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, 71456-83769, Shiraz, Iran
| | - Jüri Parik
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, 51010, Tartu, Estonia
| | - Tatiana Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bayazit Yunusbayev
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia, 450076
| | - Tuuli Reisberg
- Core Facility, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Core Facility, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Anahit Hovhannisyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
| | - Elza K Khusnutdinova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia, 450076
- Institute of Biochemistry and Genetics of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, 51010, Tartu, Estonia
| |
Collapse
|
228
|
Heterogeneous Hunter-Gatherer and Steppe-Related Ancestries in Late Neolithic and Bell Beaker Genomes from Present-Day France. Curr Biol 2021; 31:1072-1083.e10. [PMID: 33434506 DOI: 10.1016/j.cub.2020.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
The transition from the Late Neolithic to the Bronze Age has witnessed important population and societal changes in western Europe.1 These include massive genomic contributions of pastoralist herders originating from the Pontic-Caspian steppes2,3 into local populations, resulting from complex interactions between collapsing hunter-gatherers and expanding farmers of Anatolian ancestry.4-8 This transition is documented through extensive ancient genomic data from present-day Britain,9,10 Ireland,11,12 Iberia,13 Mediterranean islands,14,15 and Germany.8 It remains, however, largely overlooked in France, where most focus has been on the Middle Neolithic (n = 63),8,9,16 with the exception of one Late Neolithic genome sequenced at 0.05× coverage.16 This leaves the key transitional period covering ∼3,400-2,700 cal. years (calibrated years) BCE genetically unsampled and thus the exact time frame of hunter-gatherer persistence and arrival of steppe migrations unknown. To remediate this, we sequenced 24 ancient human genomes from France spanning ∼3,400-1,600 cal. years BCE. This reveals Late Neolithic populations that are genetically diverse and include individuals with dark skin, hair, and eyes. We detect heterogeneous hunter-gatherer ancestries within Late Neolithic communities, reaching up to ∼63.3% in some individuals, and variable genetic contributions of steppe herders in Bell Beaker populations. We provide an estimate as late as ∼3,800 years BCE for the admixture between Neolithic and Mesolithic populations and as early as ∼2,650 years BCE for the arrival of steppe-related ancestry. The genomic heterogeneity characterized underlines the complex history of human interactions even at the local scale.
Collapse
|
229
|
Kerner G, Laval G, Patin E, Boisson-Dupuis S, Abel L, Casanova JL, Quintana-Murci L. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. Am J Hum Genet 2021; 108:517-524. [PMID: 33667394 PMCID: PMC8008489 DOI: 10.1016/j.ajhg.2021.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB), usually caused by Mycobacterium tuberculosis bacteria, is the first cause of death from an infectious disease at the worldwide scale, yet the mode and tempo of TB pressure on humans remain unknown. The recent discovery that homozygotes for the P1104A polymorphism of TYK2 are at higher risk to develop clinical forms of TB provided the first evidence of a common, monogenic predisposition to TB, offering a unique opportunity to inform on human co-evolution with a deadly pathogen. Here, we investigate the history of human exposure to TB by determining the evolutionary trajectory of the TYK2 P1104A variant in Europe, where TB is considered to be the deadliest documented infectious disease. Leveraging a large dataset of 1,013 ancient human genomes and using an approximate Bayesian computation approach, we find that the P1104A variant originated in the common ancestors of West Eurasians ∼30,000 years ago. Furthermore, we show that, following large-scale population movements of Anatolian Neolithic farmers and Eurasian steppe herders into Europe, P1104A has markedly fluctuated in frequency over the last 10,000 years of European history, with a dramatic decrease in frequency after the Bronze Age. Our analyses indicate that such a frequency drop is attributable to strong negative selection starting ∼2,000 years ago, with a relative fitness reduction on homozygotes of 20%, among the highest in the human genome. Together, our results provide genetic evidence that TB has imposed a heavy burden on European health over the last two millennia.
Collapse
|
230
|
Merrett DC, Cheung C, Meiklejohn C, Richards MP. Stable isotope analysis of human bone from Ganj Dareh, Iran, ca. 10,100 calBP. PLoS One 2021; 16:e0247569. [PMID: 33651827 PMCID: PMC7924805 DOI: 10.1371/journal.pone.0247569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
We report here on stable carbon, nitrogen, and sulfur isotope values from bone collagen of human (n = 20) and faunal (n = 11) remains from the Early Neolithic site of Ganj Dareh, Iran, dating to ca. 10,100 cal. BP. Our focus explores how isotope values of human bone vary by age and sex, and evaluates dietary practices at this site. It also provides a baseline for future studies of subsistence in the early Holocene Central Zagros Mountains, from the site with the first evidence for human ovicaprid management in the Near East. Human remains include individuals of all age groups for dietary reconstruction, as well two Ottoman intrusive burials for temporal and cultural comparison. All analyzed individuals exhibited δ13C and δ15N values consistent with a diet based heavily on C3 terrestrial sources. There is no statistically significant difference between the isotopic compositions of the two sexes, though males appear to show larger variations compared to females. Interesting patterns in the isotopic compositions of the subadults suggested weaning children may be fed with supplements with distinctive δ13C values. Significant difference in sulfur isotope values between humans and fauna could be the earliest evidence of transhumance and could identify one older adult male as a possible transhumant shepherd. Both Ottoman individuals had distinctively different δ13C, δ15N, and δ34S values compared to the Neolithic individuals. This is the first large scale analysis of human stable isotopes from the eastern end of the early Holocene Fertile Crescent. It provides a baseline for future intersite exploration of stable isotopes and insight into the lifeways, health, and processes of neolithisation associated with the origins of goat domestication at Ganj Dareh and the surrounding Central Zagros.
Collapse
Affiliation(s)
| | - Christina Cheung
- EA–Eco-anthropologie (UMR 7206), Muséum National d’Histoire Naturelle, CNRS, Université Paris Diderot, Paris, France
- UMR 7269, LAMPEA, Aix-Marseille Université, CNRS, Minist Culture, Aix-en-Provence, France
| | | | | |
Collapse
|
231
|
Wang W, Ding M, Gardner JD, Wang Y, Miao B, Guo W, Wu X, Ruan Q, Yu J, Hu X, Wang B, Wu X, Tang Z, Niyazi A, Zhang J, Chang X, Tang Y, Ren M, Cao P, Liu F, Dai Q, Feng X, Yang R, Zhang M, Wang T, Ping W, Hou W, Li W, Ma J, Kumar V, Fu Q. Ancient Xinjiang mitogenomes reveal intense admixture with high genetic diversity. SCIENCE ADVANCES 2021; 7:7/14/eabd6690. [PMID: 33789892 PMCID: PMC8011967 DOI: 10.1126/sciadv.abd6690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Xinjiang is a key region in northwestern China, connecting East and West Eurasian populations and cultures for thousands of years. To understand the genetic history of Xinjiang, we sequenced 237 complete ancient human mitochondrial genomes from the Bronze Age through Historical Era (41 archaeological sites). Overall, the Bronze Age Xinjiang populations show high diversity and regional genetic affinities with Steppe and northeastern Asian populations along with a deep ancient Siberian connection for the Tarim Basin Xiaohe individuals. In the Iron Age, in general, Steppe-related and northeastern Asian admixture intensified, with North and East Xinjiang populations showing more affinity with northeastern Asians and South Xinjiang populations showing more affinity with Central Asians. The genetic structure observed in the Historical Era of Xinjiang is similar to that in the Iron Age, demonstrating genetic continuity since the Iron Age with some additional genetic admixture with populations surrounding the Xinjiang region.
Collapse
Affiliation(s)
- Wenjun Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Manyu Ding
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob D Gardner
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Wang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Bo Miao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wu Guo
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China
| | - Xinhua Wu
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China
| | - Qiurong Ruan
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jianjun Yu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xingjun Hu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Bo Wang
- Xinjiang Uygur Autonomous Region Museum, Urumqi 830002, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Zihua Tang
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Alipujiang Niyazi
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jie Zhang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xien Chang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Yunpeng Tang
- School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Meng Ren
- School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Weihong Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wenying Li
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jian Ma
- School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Vikas Kumar
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
232
|
Wang CC, Yeh HY, Popov AN, Zhang HQ, Matsumura H, Sirak K, Cheronet O, Kovalev A, Rohland N, Kim AM, Mallick S, Bernardos R, Tumen D, Zhao J, Liu YC, Liu JY, Mah M, Wang K, Zhang Z, Adamski N, Broomandkhoshbacht N, Callan K, Candilio F, Carlson KSD, Culleton BJ, Eccles L, Freilich S, Keating D, Lawson AM, Mandl K, Michel M, Oppenheimer J, Özdoğan KT, Stewardson K, Wen S, Yan S, Zalzala F, Chuang R, Huang CJ, Looh H, Shiung CC, Nikitin YG, Tabarev AV, Tishkin AA, Lin S, Sun ZY, Wu XM, Yang TL, Hu X, Chen L, Du H, Bayarsaikhan J, Mijiddorj E, Erdenebaatar D, Iderkhangai TO, Myagmar E, Kanzawa-Kiriyama H, Nishino M, Shinoda KI, Shubina OA, Guo J, Cai W, Deng Q, Kang L, Li D, Li D, Lin R, Nini, Shrestha R, Wang LX, Wei L, Xie G, Yao H, Zhang M, He G, Yang X, Hu R, Robbeets M, Schiffels S, Kennett DJ, Jin L, Li H, Krause J, Pinhasi R, Reich D. Genomic insights into the formation of human populations in East Asia. Nature 2021; 591:413-419. [PMID: 33618348 PMCID: PMC7993749 DOI: 10.1038/s41586-021-03336-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.
Collapse
Affiliation(s)
- Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Nanyang, Singapore
| | - Alexander N Popov
- Scientific Museum, Far Eastern Federal University, Vladivostok, Russia
| | - Hu-Qin Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | - Kendra Sirak
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Alexey Kovalev
- Institute of Archaeology, Russian Academy of Sciences, Moscow, Russia
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander M Kim
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Anthropology, Harvard University, Cambridge, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Dashtseveg Tumen
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Jing Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Chang Liu
- Institute of Archaeology, National Cheng Kung University, Tainan, Taiwan
| | - Jiun-Yu Liu
- Department of Anthropology, University of Washington, Seattle, WA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ke Wang
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Zhao Zhang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca Candilio
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Brendan J Culleton
- Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA, USA
| | - Laurie Eccles
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Suzanne Freilich
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Denise Keating
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Megan Michel
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Shi Yan
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Richard Chuang
- Institute of Archaeology, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Jung Huang
- Institute of Archaeology, National Cheng Kung University, Tainan, Taiwan
| | - Hana Looh
- Institute of History and Philology, Institute of History and Philology, Academia Sinica, Taipei, Taiwan
| | - Chung-Ching Shiung
- Institute of Archaeology, National Cheng Kung University, Tainan, Taiwan
| | - Yuri G Nikitin
- Museum of Archaeology and Ethnology, Institute of History, Archaeology and Ethnology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Andrei V Tabarev
- Institute of Archaeology and Ethnography, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey A Tishkin
- Department of Archeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Song Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhou-Yong Sun
- Shaanxi Provincial Institute of Archaeology, Xi'an, China
| | - Xiao-Ming Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xi Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Chen
- School of Cultural Heritage, Northwest University, Xi'an, China
| | - Hua Du
- Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | | | - Enkhbayar Mijiddorj
- Department of Archaeology, Ulaanbaatar State University, Ulaanbaatar, Mongolia
| | | | | | - Erdene Myagmar
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | | | - Ken-Ichi Shinoda
- Department of Anthropology, National Museum of Nature and Science, Tsukuba, Japan
| | - Olga A Shubina
- Department of Archeology, Sakhalin Regional Museum, Yuzhno-Sakhalinsk, Russia
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wangwei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Qiongying Deng
- Department of Human Anatomy and Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Ministry of Education, School of Medicine, Xizang Minzu University (Tibet University for Nationalities), Xianyang, China
| | - Dawei Li
- Institute for History and Culture of Science & Technology, Guangxi University for Nationalities, Nanning, China
| | - Dongna Li
- Department of Biology, Hainan Medical University, Haikou, China
| | - Rong Lin
- Department of Biology, Hainan Medical University, Haikou, China
| | - Nini
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Ministry of Education, School of Medicine, Xizang Minzu University (Tibet University for Nationalities), Xianyang, China
| | - Rukesh Shrestha
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling-Xiang Wang
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lanhai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guangmao Xie
- College of History, Culture and Tourism, Guangxi Normal University, Guilin, China
- Guangxi Institute of Cultural Relics Protection and Archaeology, Nanning, China
| | - Hongbing Yao
- Belt and Road Research Center for Forensic Molecular Anthropology, Key Laboratory of Evidence Science of Gansu Province, Gansu Institute of Political Science and Law, Lanzhou, China
| | - Manfei Zhang
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Guanglin He
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rong Hu
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Martine Robbeets
- Eurasia3angle Research group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Douglas J Kennett
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
233
|
Gnecchi-Ruscone GA, Khussainova E, Kahbatkyzy N, Musralina L, Spyrou MA, Bianco RA, Radzeviciute R, Martins NFG, Freund C, Iksan O, Garshin A, Zhaniyazov Z, Bekmanov B, Kitov E, Samashev Z, Beisenov A, Berezina N, Berezin Y, Bíró AZ, Évinger S, Bissembaev A, Akhatov G, Mamedov A, Onggaruly A, Voyakin D, Chotbayev A, Kariyev Y, Buzhilova A, Djansugurova L, Jeong C, Krause J. Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians. SCIENCE ADVANCES 2021; 7:7/13/eabe4414. [PMID: 33771866 PMCID: PMC7997506 DOI: 10.1126/sciadv.abe4414] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The Scythians were a multitude of horse-warrior nomad cultures dwelling in the Eurasian steppe during the first millennium BCE. Because of the lack of first-hand written records, little is known about the origins and relations among the different cultures. To address these questions, we produced genome-wide data for 111 ancient individuals retrieved from 39 archaeological sites from the first millennia BCE and CE across the Central Asian Steppe. We uncovered major admixture events in the Late Bronze Age forming the genetic substratum for two main Iron Age gene-pools emerging around the Altai and the Urals respectively. Their demise was mirrored by new genetic turnovers, linked to the spread of the eastern nomad empires in the first centuries CE. Compared to the high genetic heterogeneity of the past, the homogenization of the present-day Kazakhs gene pool is notable, likely a result of 400 years of strict exogamous social rules.
Collapse
Affiliation(s)
- Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Elmira Khussainova
- Laboratory of Population Genetics, Institute of General Genetics and Cytology, 050060, al-Farabi Ave., 93 Almaty, Kazakhstan
| | - Nurzhibek Kahbatkyzy
- Laboratory of Population Genetics, Institute of General Genetics and Cytology, 050060, al-Farabi Ave., 93 Almaty, Kazakhstan
- Kazakh National University by al-Farabi, 050040, al-Farabi Ave., 71 Almaty, Kazakhstan
| | - Lyazzat Musralina
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- Laboratory of Population Genetics, Institute of General Genetics and Cytology, 050060, al-Farabi Ave., 93 Almaty, Kazakhstan
- Kazakh National University by al-Farabi, 050040, al-Farabi Ave., 71 Almaty, Kazakhstan
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Raffaela A Bianco
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Rita Radzeviciute
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Nuno Filipe Gomes Martins
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Caecilia Freund
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Olzhas Iksan
- Laboratory of Population Genetics, Institute of General Genetics and Cytology, 050060, al-Farabi Ave., 93 Almaty, Kazakhstan
- Kazakh National University by al-Farabi, 050040, al-Farabi Ave., 71 Almaty, Kazakhstan
| | - Alexander Garshin
- Laboratory of Population Genetics, Institute of General Genetics and Cytology, 050060, al-Farabi Ave., 93 Almaty, Kazakhstan
| | - Zhassulan Zhaniyazov
- Laboratory of Population Genetics, Institute of General Genetics and Cytology, 050060, al-Farabi Ave., 93 Almaty, Kazakhstan
| | - Bakhytzhan Bekmanov
- Laboratory of Population Genetics, Institute of General Genetics and Cytology, 050060, al-Farabi Ave., 93 Almaty, Kazakhstan
- Kazakh National University by al-Farabi, 050040, al-Farabi Ave., 71 Almaty, Kazakhstan
| | - Egor Kitov
- Kazakh National University by al-Farabi, 050040, al-Farabi Ave., 71 Almaty, Kazakhstan
- Center of Human Ecology, Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow 119991, Russian Federation
- Institute of Arсhaeology by A.Kh. Margulan, 050010, Dostyk Ave., 44 Almaty, Kazakhstan
| | - Zainolla Samashev
- State Historical and Cultural Museum-Reserve "Berel," village Zhambyl, Katon-Karagay district, East Kazakhstan region, 070906, Kazakhstan
- Branch of Institute of Archaeology by A.Kh. Margulan, 010011, Republic Ave., 24, of. 511, Nur-Sultan, Kazakhstan
| | - Arman Beisenov
- Institute of Arсhaeology by A.Kh. Margulan, 050010, Dostyk Ave., 44 Almaty, Kazakhstan
| | - Natalia Berezina
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Mokhovaya Str. 11, Moscow 125009, Russian Federation
| | - Yakov Berezin
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Mokhovaya Str. 11, Moscow 125009, Russian Federation
| | - András Zsolt Bíró
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, Budapest H-1083, Hungary
| | - Sándor Évinger
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, Budapest H-1083, Hungary
| | - Arman Bissembaev
- Branch of Institute of Archaeology by A.Kh. Margulan, 010011, Republic Ave., 24, of. 511, Nur-Sultan, Kazakhstan
- Regional Center of History, Ethnography and Archeology of Aktobe region, Turgenev Str. 86, Aktobe 030020, Kazakhstan
| | - Gaziz Akhatov
- Institute of Arсhaeology by A.Kh. Margulan, 050010, Dostyk Ave., 44 Almaty, Kazakhstan
| | - Aslan Mamedov
- Aktobe Regional Historical Museum, Oraza Tateuly Ave. 3, Batys-2 microdistrict, Astana district, Aktobe 030000, Kazakhstan
| | - Akhan Onggaruly
- Scientific-Research Institute "Halyq qazynasy," National Museum of the Republic of Kazakhstan, Tauelsizdik Ave. 54, Nur-Sultan 010000, Kazakhstan
| | - Dmitriy Voyakin
- Institute of Arсhaeology by A.Kh. Margulan, 050010, Dostyk Ave., 44 Almaty, Kazakhstan
- International Institute for Central Asian Studies, University Boulevard Street 9, Samarkand 140129, Uzbekistan
| | - Aidos Chotbayev
- Institute of Arсhaeology by A.Kh. Margulan, 050010, Dostyk Ave., 44 Almaty, Kazakhstan
| | - Yeldos Kariyev
- Scientific Center "Altaytanu" of East-Kazakhstan State University by S.A. Amanzholov, Kazakhstan Str. 55, Ust-Kamenogorsk 070004, Kazakhstan
| | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Mokhovaya Str. 11, Moscow 125009, Russian Federation
| | - Leyla Djansugurova
- Laboratory of Population Genetics, Institute of General Genetics and Cytology, 050060, al-Farabi Ave., 93 Almaty, Kazakhstan.
| | - Choongwon Jeong
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.
- School of Biological Sciences, Seoul National University, 08826 Seoul, Republic of Korea
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
234
|
Yao H, Wang M, Zou X, Li Y, Yang X, Li A, Yeh HY, Wang P, Wang Z, Bai J, Guo J, Chen J, Ding X, Zhang Y, Lin B, Wang CC, He G. New insights into the fine-scale history of western-eastern admixture of the northwestern Chinese population in the Hexi Corridor via genome-wide genetic legacy. Mol Genet Genomics 2021; 296:631-651. [PMID: 33650010 DOI: 10.1007/s00438-021-01767-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Trans-Eurasian cultural and genetic exchanges have significantly influenced the demographic dynamics of Eurasian populations. The Hexi Corridor, located along the southeastern edge of the Eurasian steppe, served as an important passage of the ancient Silk Road in Northwest China and intensified the transcontinental exchange and interaction between populations on the Central Plain and in Western Eurasia. Historical and archeological records indicate that the Western Eurasian cultural elements were largely brought into North China via this geographical corridor, but there is debate on the extent to which the spread of barley/wheat agriculture into North China and subsequent Bronze Age cultural and technological mixture/shifts were achieved by the movement of people or dissemination of ideas. Here, we presented higher-resolution genome-wide autosomal and uniparental Y/mtDNA SNP or STR data for 599 northwestern Han Chinese individuals and conducted 2 different comprehensive genetic studies among Neolithic-to-present-day Eurasians. Genetic studies based on lower-resolution STR markers via PCA, STRUCTURE, and phylogenetic trees showed that northwestern Han Chinese individuals had increased genetic homogeneity relative to northern Mongolic/Turkic/Tungusic speakers and Tibeto-Burman groups. The genomic signature constructed based on modern/ancient DNA further illustrated that the primary ancestry of the northwestern Han was derived from northern millet farmer ancestors, which was consistent with the hypothesis of Han origin in North China and more recent northwestward population expansion. This was subsequently confirmed via excess shared derived alleles in f3/f4 statistical analyses and by more northern East Asian-related ancestry in the qpAdm/qpGraph models. Interestingly, we identified one western Eurasian admixture signature that was present in northwestern Han but absent from southern Han, with an admixture time dated to approximately 1000 CE (Tang and Song dynasties). Generally, we provided supporting evidence that historic Trans-Eurasian communication was primarily maintained through population movement, not simply cultural diffusion. The observed population dynamics in northwestern Han Chinese not only support the North China origin hypothesis but also reflect the multiple sources of the genetic diversity observed in this population.
Collapse
Affiliation(s)
- Hongbin Yao
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou, 730000, China.
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Yingxiang Li
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, China.,AnLan AI, Shenzhen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Ailin Li
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou, 730000, China
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Nanyang, Singapore, 639798, Singapore
| | - Peixin Wang
- College of Medical Information, Chongqing Medical University, Chongqing, 400331, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Jingya Bai
- Department of Medicine, Northwest Minzu University, Lanzhou, 730000, Gansu, China.,Key Laboratory for Physique and Health of the Minorities, Northwest Minzu University, Lanzhou, 730000, Gansu, China
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jinwen Chen
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiao Ding
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou, 730000, China
| | - Yan Zhang
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou, 730000, China
| | - Baoquan Lin
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou, 730000, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Guanglin He
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou, 730000, China. .,Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
235
|
Complete mitogenomes document substantial genetic contribution from the Eurasian Steppe into northern Pakistani Indo-Iranian speakers. Eur J Hum Genet 2021; 29:1008-1018. [PMID: 33637889 DOI: 10.1038/s41431-021-00829-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
To elucidate whether Bronze Age population dispersals from the Eurasian Steppe to South Asia contributed to the gene pool of Indo-Iranian-speaking groups, we analyzed 19,568 mitochondrial DNA (mtDNA) sequences from northern Pakistani and surrounding populations, including 213 newly generated mitochondrial genomes (mitogenomes) from Iranian and Dardic groups, both speakers from the ancient Indo-Iranian branch in northern Pakistan. Our results showed that 23% of mtDNA lineages with west Eurasian origin arose in situ in northern Pakistan since ~5000 years ago (kya), a time depth very close to the documented Indo-European dispersals into South Asia during the Bronze Age. Together with ancient mitogenomes from western Eurasia since the Neolithic, we identified five haplogroups (~8.4% of maternal gene pool) with roots in the Steppe region and subbranches arising (age ~5-2 kya old) in northern Pakistan as genetic legacies of Indo-Iranian speakers. Some of these haplogroups, such as W3a1b that have been found in the ancient samples from the late Bronze Age to the Iron Age period individuals of Swat Valley northern Pakistan, even have sub-lineages (age ~4 kya old) in the southern subcontinent, consistent with the southward spread of Indo-Iranian languages. By showing that substantial genetic components of Indo-Iranian speakers in northern Pakistan can be traced to Bronze Age in the Steppe region, our study suggests a demographic link with the spread of Indo-Iranian languages, and further highlights the corridor role of northern Pakistan in the southward dispersal of Indo-Iranian-speaking groups.
Collapse
|
236
|
Yelmen B, Marnetto D, Molinaro L, Flores R, Mondal M, Pagani L. Improving Selection Detection with Population Branch Statistic on Admixed Populations. Genome Biol Evol 2021; 13:6151747. [PMID: 33638983 PMCID: PMC8046333 DOI: 10.1093/gbe/evab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Detecting natural selection signals in admixed populations can be problematic since the source of the signal typically dates back prior to the admixture event. On one hand, it is now possible to study various source populations before a particular admixture thanks to the developments in ancient DNA (aDNA) in the last decade. However, aDNA availability is limited to certain geographical regions and the sample sizes and quality of the data might not be sufficient for selection analysis in many cases. In this study, we explore possible ways to improve detection of pre-admixture signals in admixed populations using a local ancestry inference approach. We used masked haplotypes for population branch statistic (PBS) and full haplotypes constructed following our approach from Yelmen et al. (2019) for cross-population extended haplotype homozygosity (XP-EHH), utilizing forward simulations to test the power of our analysis. The PBS results on simulated data showed that using masked haplotypes obtained from ancestry deconvolution instead of the admixed population might improve detection quality. On the other hand, XP-EHH results using the admixed population were better compared with the local ancestry method. We additionally report correlation for XP-EHH scores between source and admixed populations, suggesting that haplotype-based approaches must be used cautiously for recently admixed populations. Additionally, we performed PBS on real South Asian populations masked with local ancestry deconvolution and report here the first possible selection signals on the autochthonous South Asian component of contemporary South Asian populations.
Collapse
Affiliation(s)
- Burak Yelmen
- Institute of Genomics, University of Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | - Ludovica Molinaro
- Institute of Genomics, University of Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | | | - Luca Pagani
- Institute of Genomics, University of Tartu, Estonia.,Department of Biology, University of Padova, Italy
| |
Collapse
|
237
|
Liu Y, Wang M, Chen P, Wang Z, Liu J, Yao L, Wang F, Tang R, Zou X, He G. Combined Low-/High-Density Modern and Ancient Genome-Wide Data Document Genomic Admixture History of High-Altitude East Asians. Front Genet 2021; 12:582357. [PMID: 33643377 PMCID: PMC7905318 DOI: 10.3389/fgene.2021.582357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/05/2021] [Indexed: 01/26/2023] Open
Abstract
The Tibetan Plateau (TP) is considered to be one of the last terrestrial environments conquered by the anatomically modern human. Understanding of the genetic background of highland Tibetans plays a pivotal role in archeology, anthropology, genetics, and forensic investigations. Here, we genotyped 22 forensic genetic markers in 1,089 Tibetans residing in Nagqu Prefecture and collected 1,233,013 single nucleotide polymorphisms (SNPs) in the highland East Asians (Sherpa and Tibetan) from the Simons Genome Diversity Project and ancient Tibetans from Nepal and Neolithic farmers from northeastern Qinghai-Tibetan Plateau from public databases. We subsequently merged our two datasets with other worldwide reference populations or eastern ancient Eurasians to gain new insights into the genetic diversity, population movements, and admixtures of high-altitude East Asians via comprehensive population genetic statistical tools [principal component analysis (PCA), multidimensional scaling plot (MDS), STRUCTURE/ADMIXTURE, f3 , f4 , qpWave/qpAdm, and qpGraph]. Besides, we also explored their forensic characteristics and extended the Chinese National Database based on STR data. We identified 231 alleles with the corresponding allele frequencies spanning from 0.0005 to 0.5624 in the forensic low-density dataset, in which the combined powers of discrimination and the probability of exclusion were 1-1.22E-24 and 0.999999998, respectively. Additionally, comprehensive population comparisons in our low-density data among 57 worldwide populations via the Nei's genetic distance, PCA, MDS, NJ tree, and STRUCTURE analysis indicated that the highland Tibeto-Burman speakers kept the close genetic relationship with ethnically close populations. Findings from the 1240K high-density dataset not only confirmed the close genetic connection between modern Highlanders, Nepal ancients (Samdzong, Mebrak, and Chokhopani), and the upper Yellow River Qijia people, suggesting the northeastern edge of the TP served as a geographical corridor for ancient population migrations and interactions between highland and lowland regions, but also evidenced that late Neolithic farmers permanently colonized into the TP by adopting cold-tolerant barley agriculture that was mediated via the acculturation of idea via the millet farmer and not via the movement of barley agriculturalist as no obvious western Eurasian admixture signals were identified in our analyzed modern and ancient populations. Besides, results from the qpAdm-based admixture proportion estimation and qpGraph-based phylogenetic relationship reconstruction consistently demonstrated that all ancient and modern highland East Asians harbored and shared the deeply diverged Onge/Hoabinhian-related eastern Eurasian lineage, suggesting a common Paleolithic genetic legacy existed in high-altitude East Asians as the first layer of their gene pool.
Collapse
Affiliation(s)
- Yan Liu
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Pengyu Chen
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lilan Yao
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fei Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
238
|
Sun J, Ma PC, Cheng HZ, Wang CZ, Li YL, Cui YQ, Yao HB, Wen SQ, Wei LH. Post-last glacial maximum expansion of Y-chromosome haplogroup C2a-L1373 in northern Asia and its implications for the origin of Native Americans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:363-374. [PMID: 33241578 DOI: 10.1002/ajpa.24173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Subbranches of Y-chromosome haplogroup C2a-L1373 are founding paternal lineages in northern Asia and Native American populations. Our objective was to investigate C2a-L1373 differentiation in northern Asia and its implications for Native American origins. MATERIALS AND METHODS Sequences of rare subbranches (n = 43) and ancient individuals (n = 37) of C2a-L1373 (including P39 and MPB373), were used to construct phylogenetic trees with age estimation by BEAST software. RESULTS C2a-L1373 expanded rapidly approximately 17.7,000-14.3,000 years ago (kya) after the last glacial maximum (LGM), generating numerous sublineages which became founding paternal lineages of modern northern Asian and Native American populations (C2a-P39 and C2a-MPB373). The divergence pattern supports possible initiation of differentiation in low latitude regions of northern Asia and northward diffusion after the LGM. There is a substantial gap between the divergence times of C2a-MPB373 (approximately 22.4 or 17.7 kya) and C2a-P39 (approximately 14.3 kya), indicating two possible migration waves. DISCUSSION We discussed the decreasing time interval of "Beringian standstill" (2.5 ky or smaller) and its reduced significance. We also discussed the multiple possibilities for the peopling of the Americas: the "Long-term Beringian standstill model," the "Short-term Beringian standstill model," and the "Multiple waves of migration model." Our results support the argument from ancient DNA analyses that the direct ancestor group of Native Americans is an admixture of "Ancient Northern Siberians" and Paleolithic communities from the Amur region, which appeared during the post-LGM era, rather than ancient populations in greater Beringia, or an adjacent region, before the LGM.
Collapse
Affiliation(s)
- Jin Sun
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
- Xingyi Normal University for Nationalities, Xingyi, China
| | - Peng-Cheng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Hui-Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Chi-Zao Wang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong-Lan Li
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Yin-Qiu Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Hong-Bin Yao
- Key Laboratory of Evidence Science of Gansu Province, Gansu University of Political Science and Law, Lanzhou, China
| | - Shao-Qing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| |
Collapse
|
239
|
Fernandes DM, Sirak KA, Ringbauer H, Sedig J, Rohland N, Cheronet O, Mah M, Mallick S, Olalde I, Culleton BJ, Adamski N, Bernardos R, Bravo G, Broomandkhoshbacht N, Callan K, Candilio F, Demetz L, Carlson KSD, Eccles L, Freilich S, George RJ, Lawson AM, Mandl K, Marzaioli F, McCool WC, Oppenheimer J, Özdogan KT, Schattke C, Schmidt R, Stewardson K, Terrasi F, Zalzala F, Antúnez CA, Canosa EV, Colten R, Cucina A, Genchi F, Kraan C, La Pastina F, Lucci M, Maggiolo MV, Marcheco-Teruel B, Maria CT, Martínez C, París I, Pateman M, Simms TM, Sivoli CG, Vilar M, Kennett DJ, Keegan WF, Coppa A, Lipson M, Pinhasi R, Reich D. A genetic history of the pre-contact Caribbean. Nature 2021; 590:103-110. [PMID: 33361817 PMCID: PMC7864882 DOI: 10.1038/s41586-020-03053-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1-3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.
Collapse
Affiliation(s)
- Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Kendra A Sirak
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Harald Ringbauer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Jakob Sedig
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Brendan J Culleton
- Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Guillermo Bravo
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, Granada, Spain
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Anthropology, University of California, Santa Cruz, CA, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca Candilio
- Superintendency of Archaeology, Fine Arts and Landscape for the city of Cagliari and the provinces of Oristano and South Sardinia, Cagliari, Italy
| | - Lea Demetz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Laurie Eccles
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
| | - Suzanne Freilich
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Richard J George
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Fabio Marzaioli
- Department of Mathematics and Physics, Campania University 'Luigi Vanvitelli', Caserta, Italy
| | - Weston C McCool
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Kadir T Özdogan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Constanze Schattke
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Ryan Schmidt
- CIBIO-InBIO, University of Porto, Vairão, Portugal
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Filippo Terrasi
- Department of Mathematics and Physics, Campania University 'Luigi Vanvitelli', Caserta, Italy
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Roger Colten
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Andrea Cucina
- Facultad de Ciencias Antropológicas, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Francesco Genchi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Claudia Kraan
- National Archaeological-Anthropological Memory Management (NAAM), Willemstad, Curaçao
| | | | - Michaela Lucci
- DANTE Laboratory of Diet and Ancient Technology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Ingeborg París
- Instituto de Investigaciones Bioantropológicas y Arqueológicas, Universidad de Los Andes, Mérida, Venezuela
| | - Michael Pateman
- Turks and Caicos National Museum Foundation, Cockburn Town, Turks and Caicos Islands
- AEX Bahamas Maritime Museum, Freeport, Bahamas
| | - Tanya M Simms
- Department of Biology, University of The Bahamas, Nassau, Bahamas
| | - Carlos Garcia Sivoli
- Instituto de Investigaciones Bioantropológicas y Arqueológicas, Universidad de Los Andes, Mérida, Venezuela
| | - Miguel Vilar
- National Geographic Society, Washington, DC, USA
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - William F Keegan
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
240
|
Immel A, Pierini F, Rinne C, Meadows J, Barquera R, Szolek A, Susat J, Böhme L, Dose J, Bonczarowska J, Drummer C, Fuchs K, Ellinghaus D, Kässens JC, Furholt M, Kohlbacher O, Schade-Lindig S, Franke A, Schreiber S, Krause J, Müller J, Lenz TL, Nebel A, Krause-Kyora B. Genome-wide study of a Neolithic Wartberg grave community reveals distinct HLA variation and hunter-gatherer ancestry. Commun Biol 2021; 4:113. [PMID: 33495542 PMCID: PMC7835224 DOI: 10.1038/s42003-020-01627-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023] Open
Abstract
The Wartberg culture (WBC, 3500-2800 BCE) dates to the Late Neolithic period, a time of important demographic and cultural transformations in western Europe. We performed genome-wide analyses of 42 individuals who were interred in a WBC collective burial in Niedertiefenbach, Germany (3300-3200 cal. BCE). The results showed that the farming population of Niedertiefenbach carried a surprisingly large hunter-gatherer ancestry component (34–58%). This component was most likely introduced during the cultural transformation that led to the WBC. In addition, the Niedertiefenbach individuals exhibited a distinct human leukocyte antigen gene pool, possibly reflecting an immune response that was geared towards detecting viral infections. Alexander Immel et al. performed genome-wide analyses of 42 individuals from a collective burial in Niedertiefenbach, Germany from the Wartberg Culture. The authors find that this population had a large hunter-gatherer ancestry component and a distinct HLA pool, which indicates immune defenses against viral pathogens.
Collapse
Affiliation(s)
- Alexander Immel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Federica Pierini
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306, Plön, Germany
| | - Christoph Rinne
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Johanna-Mestorf-Strasse 2-6, 24118, Kiel, Germany
| | - John Meadows
- Leibniz Laboratory for AMS Dating and Isotope Research, Kiel University, Max-Eyth-Strasse 11-13, 24118, Kiel, Germany.,Centre for Baltic and Scandinavian Archaeology (ZBSA), Schloss Gottorf, 24837, Schleswig, Germany
| | - Rodrigo Barquera
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, 07745, Jena, Germany
| | - András Szolek
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Lisa Böhme
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Joanna Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Clara Drummer
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Johanna-Mestorf-Strasse 2-6, 24118, Kiel, Germany
| | - Katharina Fuchs
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Jan Christian Kässens
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Martin Furholt
- Department of Archaeology, Conservation and History, University of Oslo, Blindernveien 11, 0371, Oslo, Norway
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Strasse 9, 72076, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Sabine Schade-Lindig
- Landesamt für Denkmalpflege Hessen, hessenARCHÄOLOGIE, Schloss Biebrich, 65203, Wiesbaden, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany.,Department of General Internal Medicine, University Hospital Schleswig-Holstein, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, 07745, Jena, Germany
| | - Johannes Müller
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Johanna-Mestorf-Strasse 2-6, 24118, Kiel, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306, Plön, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany.
| |
Collapse
|
241
|
Harney É, Patterson N, Reich D, Wakeley J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 2021; 217:6070149. [PMID: 33772284 PMCID: PMC8049561 DOI: 10.1093/genetics/iyaa045] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/11/2020] [Indexed: 01/18/2023] Open
Abstract
qpAdm is a statistical tool for studying the ancestry of populations with histories that involve admixture between two or more source populations. Using qpAdm, it is possible to identify plausible models of admixture that fit the population history of a group of interest and to calculate the relative proportion of ancestry that can be ascribed to each source population in the model. Although qpAdm is widely used in studies of population history of human (and nonhuman) groups, relatively little has been done to assess its performance. We performed a simulation study to assess the behavior of qpAdm under various scenarios in order to identify areas of potential weakness and establish recommended best practices for use. We find that qpAdm is a robust tool that yields accurate results in many cases, including when data coverage is low, there are high rates of missing data or ancient DNA damage, or when diploid calls cannot be made. However, we caution against co-analyzing ancient and present-day data, the inclusion of an extremely large number of reference populations in a single model, and analyzing population histories involving extended periods of gene flow. We provide a user guide suggesting best practices for the use of qpAdm.
Collapse
Affiliation(s)
- Éadaoin Harney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,The Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, MA 02138, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - John Wakeley
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
242
|
Carlhoff S, Duli A, Nägele K, Nur M, Skov L, Sumantri I, Oktaviana AA, Hakim B, Burhan B, Syahdar FA, McGahan DP, Bulbeck D, Perston YL, Newman K, Saiful AM, Ririmasse M, Chia S, Hasanuddin, Pulubuhu DAT, Suryatman, Supriadi, Jeong C, Peter BM, Prüfer K, Powell A, Krause J, Posth C, Brumm A. Genome of a middle Holocene hunter-gatherer from Wallacea. Nature 2021; 596:543-547. [PMID: 34433944 PMCID: PMC8387238 DOI: 10.1038/s41586-021-03823-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Much remains unknown about the population history of early modern humans in southeast Asia, where the archaeological record is sparse and the tropical climate is inimical to the preservation of ancient human DNA1. So far, only two low-coverage pre-Neolithic human genomes have been sequenced from this region. Both are from mainland Hòabìnhian hunter-gatherer sites: Pha Faen in Laos, dated to 7939-7751 calibrated years before present (yr cal BP; present taken as AD 1950), and Gua Cha in Malaysia (4.4-4.2 kyr cal BP)1. Here we report, to our knowledge, the first ancient human genome from Wallacea, the oceanic island zone between the Sunda Shelf (comprising mainland southeast Asia and the continental islands of western Indonesia) and Pleistocene Sahul (Australia-New Guinea). We extracted DNA from the petrous bone of a young female hunter-gatherer buried 7.3-7.2 kyr cal BP at the limestone cave of Leang Panninge2 in South Sulawesi, Indonesia. Genetic analyses show that this pre-Neolithic forager, who is associated with the 'Toalean' technocomplex3,4, shares most genetic drift and morphological similarities with present-day Papuan and Indigenous Australian groups, yet represents a previously unknown divergent human lineage that branched off around the time of the split between these populations approximately 37,000 years ago5. We also describe Denisovan and deep Asian-related ancestries in the Leang Panninge genome, and infer their large-scale displacement from the region today.
Collapse
Affiliation(s)
- Selina Carlhoff
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Akin Duli
- grid.412001.60000 0000 8544 230XDepartemen Arkeologi, Fakultas Ilmu Budaya, Universitas Hasanuddin, Makassar, Indonesia
| | - Kathrin Nägele
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Muhammad Nur
- grid.412001.60000 0000 8544 230XDepartemen Arkeologi, Fakultas Ilmu Budaya, Universitas Hasanuddin, Makassar, Indonesia
| | - Laurits Skov
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Iwan Sumantri
- grid.412001.60000 0000 8544 230XDepartemen Arkeologi, Fakultas Ilmu Budaya, Universitas Hasanuddin, Makassar, Indonesia
| | - Adhi Agus Oktaviana
- grid.512005.30000 0001 2178 7840Pusat Penelitian Arkeologi Nasional (ARKENAS), Jakarta, Indonesia ,grid.1022.10000 0004 0437 5432Place, Evolution and Rock Art Heritage Unit, Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast, Queensland Australia
| | - Budianto Hakim
- grid.511616.4Balai Arkeologi Sulawesi Selatan, Makassar, Indonesia
| | - Basran Burhan
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| | | | - David P. McGahan
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| | - David Bulbeck
- grid.1001.00000 0001 2180 7477Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, Australian Capital Territory Australia
| | - Yinika L. Perston
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| | - Kim Newman
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| | | | - Marlon Ririmasse
- grid.512005.30000 0001 2178 7840Pusat Penelitian Arkeologi Nasional (ARKENAS), Jakarta, Indonesia
| | - Stephen Chia
- grid.11875.3a0000 0001 2294 3534Centre for Global Archaeological Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Hasanuddin
- grid.511616.4Balai Arkeologi Sulawesi Selatan, Makassar, Indonesia
| | - Dwia Aries Tina Pulubuhu
- grid.412001.60000 0000 8544 230XDepartemen Sosiologi, Fakultas Ilmu Sosial, Universitas Hasanuddin, Makassar, Indonesia
| | - Suryatman
- grid.511616.4Balai Arkeologi Sulawesi Selatan, Makassar, Indonesia
| | - Supriadi
- grid.412001.60000 0000 8544 230XDepartemen Arkeologi, Fakultas Ilmu Budaya, Universitas Hasanuddin, Makassar, Indonesia
| | - Choongwon Jeong
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Benjamin M. Peter
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam Powell
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.10392.390000 0001 2190 1447Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Adam Brumm
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| |
Collapse
|
243
|
KOGANEBUCHI KAE, OOTA HIROKI. Paleogenomics of human remains in East Asia and Yaponesia focusing on current advances and future directions. ANTHROPOL SCI 2021. [DOI: 10.1537/ase.2011302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- KAE KOGANEBUCHI
- Laboratory of Genome Anthropology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nishihara
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara
| | - HIROKI OOTA
- Laboratory of Genome Anthropology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| |
Collapse
|
244
|
Saag L, Vasilyev SV, Varul L, Kosorukova NV, Gerasimov DV, Oshibkina SV, Griffith SJ, Solnik A, Saag L, D'Atanasio E, Metspalu E, Reidla M, Rootsi S, Kivisild T, Scheib CL, Tambets K, Kriiska A, Metspalu M. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. SCIENCE ADVANCES 2021; 7:7/4/eabd6535. [PMID: 33523926 PMCID: PMC7817100 DOI: 10.1126/sciadv.abd6535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/01/2020] [Indexed: 05/11/2023]
Abstract
The transition from Stone to Bronze Age in Central and Western Europe was a period of major population movements originating from the Ponto-Caspian Steppe. Here, we report new genome-wide sequence data from 30 individuals north of this area, from the understudied western part of present-day Russia, including 3 Stone Age hunter-gatherers (10,800 to 4250 cal BCE) and 26 Bronze Age farmers from the Corded Ware complex Fatyanovo Culture (2900 to 2050 cal BCE). We show that Eastern hunter-gatherer ancestry was present in northwestern Russia already from around 10,000 BCE. Furthermore, we see a change in ancestry with the arrival of farming-Fatyanovo Culture individuals were genetically similar to other Corded Ware cultures, carrying a mixture of Steppe and European early farmer ancestry. Thus, they likely originate from a fast migration toward the northeast from somewhere near modern-day Ukraine-the closest area where these ancestries coexisted from around 3000 BCE.
Collapse
Affiliation(s)
- Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.
| | - Sergey V Vasilyev
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Liivi Varul
- Archaeological Research Collection, School of Humanities, Tallinn University, Tallinn 10130, Estonia
| | - Natalia V Kosorukova
- Cherepovets State University and Cherepovets Museum Association, Cherepovets 162600, Russia
| | - Dmitri V Gerasimov
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg 199034, Russia
| | | | - Samuel J Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Maere Reidla
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- St. John's College, University of Cambridge, Cambridge CB2 1TP, UK
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Aivar Kriiska
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia.
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.
| |
Collapse
|
245
|
Abstract
During the Early Bronze Age, populations of the western Eurasian steppe expanded across an immense area of northern Eurasia. Combined archaeological and genetic evidence supports widespread Early Bronze Age population movements out of the Pontic-Caspian steppe that resulted in gene flow across vast distances, linking populations of Yamnaya pastoralists in Scandinavia with pastoral populations (known as the Afanasievo) far to the east in the Altai Mountains1,2 and Mongolia3. Although some models hold that this expansion was the outcome of a newly mobile pastoral economy characterized by horse traction, bulk wagon transport4-6 and regular dietary dependence on meat and milk5, hard evidence for these economic features has not been found. Here we draw on proteomic analysis of dental calculus from individuals from the western Eurasian steppe to demonstrate a major transition in dairying at the start of the Bronze Age. The rapid onset of ubiquitous dairying at a point in time when steppe populations are known to have begun dispersing offers critical insight into a key catalyst of steppe mobility. The identification of horse milk proteins also indicates horse domestication by the Early Bronze Age, which provides support for its role in steppe dispersals. Our results point to a potential epicentre for horse domestication in the Pontic-Caspian steppe by the third millennium BC, and offer strong support for the notion that the novel exploitation of secondary animal products was a key driver of the expansions of Eurasian steppe pastoralists by the Early Bronze Age.
Collapse
|
246
|
Librado P, Khan N, Fages A, Kusliy MA, Suchan T, Tonasso-Calvière L, Schiavinato S, Alioglu D, Fromentier A, Perdereau A, Aury JM, Gaunitz C, Chauvey L, Seguin-Orlando A, Der Sarkissian C, Southon J, Shapiro B, Tishkin AA, Kovalev AA, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Seregély T, Klassen L, Iversen R, Bignon-Lau O, Bodu P, Olive M, Castel JC, Boudadi-Maligne M, Alvarez N, Germonpré M, Moskal-del Hoyo M, Wilczyński J, Pospuła S, Lasota-Kuś A, Tunia K, Nowak M, Rannamäe E, Saarma U, Boeskorov G, Lōugas L, Kyselý R, Peške L, Bălășescu A, Dumitrașcu V, Dobrescu R, Gerber D, Kiss V, Szécsényi-Nagy A, Mende BG, Gallina Z, Somogyi K, Kulcsár G, Gál E, Bendrey R, Allentoft ME, Sirbu G, Dergachev V, Shephard H, Tomadini N, Grouard S, Kasparov A, Basilyan AE, Anisimov MA, Nikolskiy PA, Pavlova EY, Pitulko V, Brem G, Wallner B, Schwall C, Keller M, Kitagawa K, Bessudnov AN, Bessudnov A, Taylor W, Magail J, Gantulga JO, Bayarsaikhan J, Erdenebaatar D, Tabaldiev K, Mijiddorj E, Boldgiv B, Tsagaan T, Pruvost M, Olsen S, Makarewicz CA, Valenzuela Lamas S, Albizuri Canadell S, Nieto Espinet A, Iborra MP, Lira Garrido J, Rodríguez González E, Celestino S, Olària C, Arsuaga JL, Kotova N, Pryor A, Crabtree P, Zhumatayev R, et alLibrado P, Khan N, Fages A, Kusliy MA, Suchan T, Tonasso-Calvière L, Schiavinato S, Alioglu D, Fromentier A, Perdereau A, Aury JM, Gaunitz C, Chauvey L, Seguin-Orlando A, Der Sarkissian C, Southon J, Shapiro B, Tishkin AA, Kovalev AA, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Seregély T, Klassen L, Iversen R, Bignon-Lau O, Bodu P, Olive M, Castel JC, Boudadi-Maligne M, Alvarez N, Germonpré M, Moskal-del Hoyo M, Wilczyński J, Pospuła S, Lasota-Kuś A, Tunia K, Nowak M, Rannamäe E, Saarma U, Boeskorov G, Lōugas L, Kyselý R, Peške L, Bălășescu A, Dumitrașcu V, Dobrescu R, Gerber D, Kiss V, Szécsényi-Nagy A, Mende BG, Gallina Z, Somogyi K, Kulcsár G, Gál E, Bendrey R, Allentoft ME, Sirbu G, Dergachev V, Shephard H, Tomadini N, Grouard S, Kasparov A, Basilyan AE, Anisimov MA, Nikolskiy PA, Pavlova EY, Pitulko V, Brem G, Wallner B, Schwall C, Keller M, Kitagawa K, Bessudnov AN, Bessudnov A, Taylor W, Magail J, Gantulga JO, Bayarsaikhan J, Erdenebaatar D, Tabaldiev K, Mijiddorj E, Boldgiv B, Tsagaan T, Pruvost M, Olsen S, Makarewicz CA, Valenzuela Lamas S, Albizuri Canadell S, Nieto Espinet A, Iborra MP, Lira Garrido J, Rodríguez González E, Celestino S, Olària C, Arsuaga JL, Kotova N, Pryor A, Crabtree P, Zhumatayev R, Toleubaev A, Morgunova NL, Kuznetsova T, Lordkipanize D, Marzullo M, Prato O, Bagnasco Gianni G, Tecchiati U, Clavel B, Lepetz S, Davoudi H, Mashkour M, Berezina NY, Stockhammer PW, Krause J, Haak W, Morales-Muñiz A, Benecke N, Hofreiter M, Ludwig A, Graphodatsky AS, Peters J, Kiryushin KY, Iderkhangai TO, Bokovenko NA, Vasiliev SK, Seregin NN, Chugunov KV, Plasteeva NA, Baryshnikov GF, Petrova E, Sablin M, Ananyevskaya E, Logvin A, Shevnina I, Logvin V, Kalieva S, Loman V, Kukushkin I, Merz I, Merz V, Sakenov S, Varfolomeyev V, Usmanova E, Zaibert V, Arbuckle B, Belinskiy AB, Kalmykov A, Reinhold S, Hansen S, Yudin AI, Vybornov AA, Epimakhov A, Berezina NS, Roslyakova N, Kosintsev PA, Kuznetsov PF, Anthony D, Kroonen GJ, Kristiansen K, Wincker P, Outram A, Orlando L. The origins and spread of domestic horses from the Western Eurasian steppes. Nature 2021; 598:634-640. [PMID: 34671162 PMCID: PMC8550961 DOI: 10.1038/s41586-021-04018-9] [Show More Authors] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/10/2021] [Indexed: 01/13/2023]
Abstract
Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12.
Collapse
Affiliation(s)
- Pablo Librado
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Naveed Khan
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France ,grid.440522.50000 0004 0478 6450Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Antoine Fages
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Mariya A. Kusliy
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France ,grid.415877.80000 0001 2254 1834Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Tomasz Suchan
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France ,grid.413454.30000 0001 1958 0162W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Laure Tonasso-Calvière
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Stéphanie Schiavinato
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Duha Alioglu
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Aurore Fromentier
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Aude Perdereau
- grid.460789.40000 0004 4910 6535Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- grid.8390.20000 0001 2180 5818Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Evry, Université Paris-Saclay, Evry, France
| | - Charleen Gaunitz
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Lorelei Chauvey
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Andaine Seguin-Orlando
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Clio Der Sarkissian
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - John Southon
- grid.266093.80000 0001 0668 7243Earth System Science Department, University of California, Irvine, Irvine, CA USA
| | - Beth Shapiro
- grid.205975.c0000 0001 0740 6917Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA USA
| | - Alexey A. Tishkin
- grid.77225.350000000112611077Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Alexey A. Kovalev
- grid.465449.e0000 0001 1214 1108Department of Archaeological Heritage Preservation, Institute of Archaeology of the Russian Academy of Sciences, Moscow, Russia
| | - Saleh Alquraishi
- grid.56302.320000 0004 1773 5396Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed H. Alfarhan
- grid.56302.320000 0004 1773 5396Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khaled A. S. Al-Rasheid
- grid.56302.320000 0004 1773 5396Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Timo Seregély
- grid.7359.80000 0001 2325 4853Institute for Archaeology, Heritage Conservation Studies and Art History, University of Bamberg, Bamberg, Germany
| | | | - Rune Iversen
- grid.5254.60000 0001 0674 042XSaxo Institute, section of Archaeology, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Bignon-Lau
- grid.4444.00000 0001 2112 9282ArScAn-UMR 7041, Equipe Ethnologie préhistorique, CNRS, MSH-Mondes, Nanterre Cedex, France
| | - Pierre Bodu
- grid.4444.00000 0001 2112 9282ArScAn-UMR 7041, Equipe Ethnologie préhistorique, CNRS, MSH-Mondes, Nanterre Cedex, France
| | - Monique Olive
- grid.4444.00000 0001 2112 9282ArScAn-UMR 7041, Equipe Ethnologie préhistorique, CNRS, MSH-Mondes, Nanterre Cedex, France
| | | | - Myriam Boudadi-Maligne
- grid.412041.20000 0001 2106 639XUMR 5199 De la Préhistoire à l’Actuel : Culture, Environnement et Anthropologie (PACEA), CNRS, Université de Bordeaux, Pessac Cedex, France
| | - Nadir Alvarez
- grid.466902.f0000 0001 2248 6951Geneva Natural History Museum, Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Mietje Germonpré
- grid.20478.390000 0001 2171 9581OD Earth & History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Magdalena Moskal-del Hoyo
- grid.413454.30000 0001 1958 0162W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Jarosław Wilczyński
- grid.413454.30000 0001 1958 0162Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Sylwia Pospuła
- grid.413454.30000 0001 1958 0162Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Anna Lasota-Kuś
- grid.413454.30000 0001 1958 0162Institute of Archaeology and Ethnology Polish Academy of Sciences, Kraków, Poland
| | - Krzysztof Tunia
- grid.413454.30000 0001 1958 0162Institute of Archaeology and Ethnology Polish Academy of Sciences, Kraków, Poland
| | - Marek Nowak
- grid.5522.00000 0001 2162 9631Institute of Archaeology, Jagiellonian University, Kraków, Poland
| | - Eve Rannamäe
- Department of Archaeology, Institute of History and Archaeology, Tartu, Estonia
| | - Urmas Saarma
- grid.10939.320000 0001 0943 7661Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Gennady Boeskorov
- Diamond and Precious Metals Geology Institute, SB RAS, Yakutsk, Russia
| | - Lembi Lōugas
- grid.8207.d0000 0000 9774 6466Archaeological Research Collection, Tallinn University, Tallinn, Estonia
| | - René Kyselý
- grid.447879.10000 0001 0792 540XDepartment of Natural Sciences and Archaeometry, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czechia
| | | | - Adrian Bălășescu
- grid.418333.e0000 0004 1937 1389Vasile Pârvan Institute of Archaeology, Department of Bioarchaeology, Romanian Academy, Bucharest, Romania
| | - Valentin Dumitrașcu
- grid.418333.e0000 0004 1937 1389Vasile Pârvan Institute of Archaeology, Department of Bioarchaeology, Romanian Academy, Bucharest, Romania
| | - Roxana Dobrescu
- grid.418333.e0000 0004 1937 1389Vasile Pârvan Institute of Archaeology, Department of Bioarchaeology, Romanian Academy, Bucharest, Romania
| | - Daniel Gerber
- grid.481823.4Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest, Hungary ,grid.5591.80000 0001 2294 6276Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Viktória Kiss
- grid.481830.60000 0001 2238 5843Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest, Hungary
| | - Anna Szécsényi-Nagy
- grid.481823.4Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest, Hungary
| | - Balázs G. Mende
- grid.481823.4Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest, Hungary
| | | | | | - Gabriella Kulcsár
- grid.481830.60000 0001 2238 5843Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest, Hungary
| | - Erika Gál
- grid.481830.60000 0001 2238 5843Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest, Hungary
| | - Robin Bendrey
- grid.4305.20000 0004 1936 7988School of History, Classics and Archaeology, University of Edinburgh, Old Medical School, Edinburgh, UK
| | - Morten E. Allentoft
- grid.1032.00000 0004 0375 4078Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia Australia ,grid.5254.60000 0001 0674 042XLundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ghenadie Sirbu
- grid.435140.7Department of Academic Management, Academy of Science of Moldova, Chișinău, Republic of Moldova
| | - Valentin Dergachev
- grid.435140.7Center of Archaeology, Institute of Cultural Heritage, Academy of Science of Moldova, Chișinău, Republic of Moldova
| | - Henry Shephard
- grid.446391.d0000 0001 2190 3450Archaeological Institute of America, Boston, MA USA
| | - Noémie Tomadini
- Centre National de Recherche Scientifique, Muséum national d’Histoire naturelle, Archéozoologie, Archéobotanique (AASPE), CP 56, Paris, France
| | - Sandrine Grouard
- Centre National de Recherche Scientifique, Muséum national d’Histoire naturelle, Archéozoologie, Archéobotanique (AASPE), CP 56, Paris, France
| | - Aleksei Kasparov
- grid.473277.20000 0001 2291 1890Institute for the History of Material Culture, Russian Academy of Sciences (IHMC RAS), St Petersburg, Russia
| | | | - Mikhail A. Anisimov
- grid.424187.c0000 0001 1942 9788Arctic and Antarctic Research Institute, St Petersburg, Russia
| | - Pavel A. Nikolskiy
- grid.465388.4Geological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Elena Y. Pavlova
- grid.424187.c0000 0001 1942 9788Arctic and Antarctic Research Institute, St Petersburg, Russia
| | - Vladimir Pitulko
- grid.473277.20000 0001 2291 1890Institute for the History of Material Culture, Russian Academy of Sciences (IHMC RAS), St Petersburg, Russia
| | - Gottfried Brem
- grid.6583.80000 0000 9686 6466Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Wallner
- grid.6583.80000 0000 9686 6466Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christoph Schwall
- grid.466489.10000 0001 2151 4674Department of Prehistory and Western Asian/Northeast African Archaeology, Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Marcel Keller
- grid.10939.320000 0001 0943 7661Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia ,grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Keiko Kitagawa
- grid.10392.390000 0001 2190 1447SFB 1070 Resource Cultures, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany ,grid.4444.00000 0001 2112 9282UMR 7194 Muséum National d’Histoire Naturelle, CNRS, UPVD, Paris, France
| | - Alexander N. Bessudnov
- grid.459698.f0000 0000 8989 8101Semenov-Tyan-Shanskii Lipetsk State Pedagogical University, Lipetsk, Russia
| | - Alexander Bessudnov
- grid.473277.20000 0001 2291 1890Institute for the History of Material Culture, Russian Academy of Sciences (IHMC RAS), St Petersburg, Russia
| | - William Taylor
- grid.266190.a0000000096214564Museum of Natural History, University of Colorado-Boulder, Boulder, CO USA
| | - Jérome Magail
- Musée d’Anthropologie préhistorique de Monaco, Monaco, Monaco
| | - Jamiyan-Ombo Gantulga
- grid.425564.40000 0004 0587 3863Institute of Archaeology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Jamsranjav Bayarsaikhan
- grid.469873.70000 0004 4914 1197Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany ,Chinggis Khaan Museum, Ulaanbaatar, Mongolia
| | | | - Kubatbeek Tabaldiev
- grid.444269.90000 0004 0387 4627Department of History, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Enkhbayar Mijiddorj
- Department of Archaeology, Ulaanbaatar State University, Ulaanbaatar, Mongolia
| | - Bazartseren Boldgiv
- grid.260731.10000 0001 2324 0259Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Turbat Tsagaan
- grid.425564.40000 0004 0587 3863Institute of Archaeology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Mélanie Pruvost
- grid.412041.20000 0001 2106 639XUMR 5199 De la Préhistoire à l’Actuel : Culture, Environnement et Anthropologie (PACEA), CNRS, Université de Bordeaux, Pessac Cedex, France
| | - Sandra Olsen
- grid.266515.30000 0001 2106 0692Division of Archaeology, Biodiversity Institute, University of Kansas, Lawrence, KS USA
| | - Cheryl A. Makarewicz
- grid.9764.c0000 0001 2153 9986Institute for Prehistoric and Protohistoric Archaeology, Kiel University, Kiel, Germany ,grid.9764.c0000 0001 2153 9986ROOTS Excellence Cluster, Kiel University, Kiel, Germany
| | - Silvia Valenzuela Lamas
- grid.4711.30000 0001 2183 4846Archaeology of Social Dynamics, Institució Milà i Fontanals d’Humanitats, Consejo Superior de Investigaciones Científicas (IMF-CSIC), Barcelona, Spain
| | - Silvia Albizuri Canadell
- grid.5841.80000 0004 1937 0247Departament d’Història i Arqueologia–SERP, Universitat de Barcelona, Barcelona, Spain
| | - Ariadna Nieto Espinet
- grid.15043.330000 0001 2163 1432Grup d’Investigació Prehistòrica, Universitat de Lleida, PID2019-110022GB-I00, Lleida, Spain
| | | | - Jaime Lira Garrido
- grid.8393.10000000119412521Departamento de Medicina Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain ,Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | | | - Sebastián Celestino
- grid.454770.50000 0001 1945 3489Instituto de Arqueología (CSIC–Junta de Extremadura), Mérida, Spain
| | - Carmen Olària
- grid.9612.c0000 0001 1957 9153Laboratori d’Arqueologia Prehistòrica, Universitat Jaume I, Castelló de la Plana, Spain
| | - Juan Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain ,grid.4795.f0000 0001 2157 7667Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Nadiia Kotova
- grid.418751.e0000 0004 0385 8977Department of Eneolithic and Bronze Age, Institute of Archaeology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alexander Pryor
- grid.8391.30000 0004 1936 8024Department of Archaeology, University of Exeter, Exeter, UK
| | - Pam Crabtree
- grid.137628.90000 0004 1936 8753Center for the Study of Human Origins, Anthropology Department, New York University, New York, NY USA
| | - Rinat Zhumatayev
- grid.77184.3d0000 0000 8887 5266Department of Archaeology, Ethnology and Museology, Al Farabi Kazakh National University, Almaty, Kazakhstan
| | - Abdesh Toleubaev
- grid.77184.3d0000 0000 8887 5266Department of Archaeology, Ethnology and Museology, Al Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nina L. Morgunova
- grid.445474.20000 0001 1092 7131Scientific Research Department, Orenburg State Pedagogical University, Orenburg, Russia
| | - Tatiana Kuznetsova
- grid.14476.300000 0001 2342 9668Department of paleontology, Faculty of Geology, Moscow State University, Moscow, Russia ,grid.77268.3c0000 0004 0543 9688Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
| | - David Lordkipanize
- grid.452450.20000 0001 0739 408XGeorgian National Museum, Tbilisi, Georgia ,grid.26193.3f0000 0001 2034 6082Tbilisi State University, Tbilisi, Georgia
| | - Matilde Marzullo
- grid.4708.b0000 0004 1757 2822Università degli Studi di Milano, Dipartimento di Beni Culturali e Ambientali, Milan, Italy
| | - Ornella Prato
- grid.4708.b0000 0004 1757 2822Università degli Studi di Milano, Dipartimento di Beni Culturali e Ambientali, Milan, Italy
| | - Giovanna Bagnasco Gianni
- grid.4708.b0000 0004 1757 2822Università degli Studi di Milano, Dipartimento di Beni Culturali e Ambientali, Milan, Italy
| | - Umberto Tecchiati
- grid.4708.b0000 0004 1757 2822Università degli Studi di Milano, Dipartimento di Beni Culturali e Ambientali, Milan, Italy
| | - Benoit Clavel
- Centre National de Recherche Scientifique, Muséum national d’Histoire naturelle, Archéozoologie, Archéobotanique (AASPE), CP 56, Paris, France
| | - Sébastien Lepetz
- Centre National de Recherche Scientifique, Muséum national d’Histoire naturelle, Archéozoologie, Archéobotanique (AASPE), CP 56, Paris, France
| | - Hossein Davoudi
- grid.46072.370000 0004 0612 7950University of Tehran, Central Laboratory, Bioarchaeology Laboratory, Archaeozoology Section, Tehran, Iran
| | - Marjan Mashkour
- Centre National de Recherche Scientifique, Muséum national d’Histoire naturelle, Archéozoologie, Archéobotanique (AASPE), CP 56, Paris, France ,grid.46072.370000 0004 0612 7950University of Tehran, Central Laboratory, Bioarchaeology Laboratory, Archaeozoology Section, Tehran, Iran
| | - Natalia Ya. Berezina
- grid.14476.300000 0001 2342 9668Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | - Philipp W. Stockhammer
- grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.5252.00000 0004 1936 973XInstitute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Munich, Munich, Germany
| | - Johannes Krause
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Haak
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.1010.00000 0004 1936 7304School of Biological Sciences, The University of Adelaide, Adelaide, South Australia Australia
| | - Arturo Morales-Muñiz
- grid.5515.40000000119578126Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Norbert Benecke
- grid.424195.f0000 0001 2106 6832Eurasia Department of the German Archaeological Institute, Berlin, Germany
| | - Michael Hofreiter
- grid.11348.3f0000 0001 0942 1117Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Mathematics and Science, University of Potsdam, Potsdam, Germany
| | - Arne Ludwig
- grid.418779.40000 0001 0708 0355Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt University Berlin, Berlin, Germany
| | - Alexander S. Graphodatsky
- grid.415877.80000 0001 2254 1834Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Joris Peters
- grid.5252.00000 0004 1936 973XArchaeoBioCenter and Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, Munich, Germany ,grid.452781.d0000 0001 2203 6205SNSB, State Collection of Anthropology and Palaeoanatomy, Munich, Germany
| | - Kirill Yu. Kiryushin
- grid.77225.350000000112611077Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | | | - Nikolay A. Bokovenko
- grid.473277.20000 0001 2291 1890Institute for the History of Material Culture, Russian Academy of Sciences (IHMC RAS), St Petersburg, Russia
| | - Sergey K. Vasiliev
- grid.415877.80000 0001 2254 1834ArchaeoZOOlogy in Siberia and Central Asia—ZooSCAn International Research Laboratory, Institute of Archeology and Ethnography of the Siberian Branch of the RAS, Novosibirsk, Russia
| | - Nikolai N. Seregin
- grid.77225.350000000112611077Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Konstantin V. Chugunov
- grid.426493.e0000 0004 1800 742XDepartment of Eastern European and Siberian Archaeology, State Hermitage Museum, St Petersburg, Russia
| | - Natalya A. Plasteeva
- grid.482778.60000 0001 2197 0186Paleoecology Laboratory, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Gennady F. Baryshnikov
- grid.439287.30000 0001 2314 7601Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Ekaterina Petrova
- grid.6441.70000 0001 2243 2806Department of Archaeology, History Faculty, Vilnius University, Vilnius, Lithuania
| | - Mikhail Sablin
- grid.439287.30000 0001 2314 7601Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Elina Ananyevskaya
- grid.6441.70000 0001 2243 2806Department of Archaeology, History Faculty, Vilnius University, Vilnius, Lithuania
| | - Andrey Logvin
- grid.443586.8Laboratory for Archaeological Research, Faculty of History and Law, Kostanay State University, Kostanay, Kazakhstan
| | - Irina Shevnina
- grid.443586.8Laboratory for Archaeological Research, Faculty of History and Law, Kostanay State University, Kostanay, Kazakhstan
| | - Victor Logvin
- Department of History and Archaeology, Surgut Governmental University, Surgut, Russia
| | - Saule Kalieva
- Department of History and Archaeology, Surgut Governmental University, Surgut, Russia
| | - Valeriy Loman
- Saryarka Archaeological Institute, Buketov Karaganda University, Karaganda, Kazakhstan
| | - Igor Kukushkin
- Saryarka Archaeological Institute, Buketov Karaganda University, Karaganda, Kazakhstan
| | - Ilya Merz
- Toraighyrov University, Joint Research Center for Archeological Studies, Pavlodar, Kazakhstan
| | - Victor Merz
- Toraighyrov University, Joint Research Center for Archeological Studies, Pavlodar, Kazakhstan
| | - Sergazy Sakenov
- grid.55380.3b0000 0004 0398 5415Faculty of History, L. N. Gumilev Eurasian National University, Nur-Sultan, Kazakhstan
| | - Victor Varfolomeyev
- Saryarka Archaeological Institute, Buketov Karaganda University, Karaganda, Kazakhstan
| | - Emma Usmanova
- Saryarka Archaeological Institute, Buketov Karaganda University, Karaganda, Kazakhstan
| | - Viktor Zaibert
- grid.77184.3d0000 0000 8887 5266Institute of Archaeology and Steppe Civilizations, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Benjamin Arbuckle
- grid.10698.360000000122483208Department of Anthropology, Alumni Building, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | | | | | - Sabine Reinhold
- grid.424195.f0000 0001 2106 6832Eurasia Department of the German Archaeological Institute, Berlin, Germany
| | - Svend Hansen
- grid.424195.f0000 0001 2106 6832Eurasia Department of the German Archaeological Institute, Berlin, Germany
| | - Aleksandr I. Yudin
- Research Center for the Preservation of Cultural Heritage, Saratov, Russia
| | - Alekandr A. Vybornov
- grid.445790.b0000 0001 2218 2982Department of Russian History and Archaeology, Samara State University of Social Sciences and Education, Samara, Russia
| | - Andrey Epimakhov
- grid.440724.10000 0000 9958 5862Russian and Foreign History Department, South Ural State University, Chelyabinsk, Russia ,grid.465317.20000 0001 2224 8785South Ural Department, Institute of History and Archaeology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Natalia S. Berezina
- Archaeological School, Chuvash State Institute of Humanities, Cheboksary, Russia
| | - Natalia Roslyakova
- grid.445790.b0000 0001 2218 2982Department of Russian History and Archaeology, Samara State University of Social Sciences and Education, Samara, Russia
| | - Pavel A. Kosintsev
- grid.482778.60000 0001 2197 0186Paleoecology Laboratory, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia ,grid.412761.70000 0004 0645 736XDepartment of History of the Institute of Humanities, Ural Federal University, Ekaterinburg, Russia
| | - Pavel F. Kuznetsov
- grid.445790.b0000 0001 2218 2982Department of Russian History and Archaeology, Samara State University of Social Sciences and Education, Samara, Russia
| | - David Anthony
- grid.38142.3c000000041936754XDepartment of Human Evolutionary Biology, Harvard University, Cambridge, MA USA ,grid.418410.80000 0001 0115 6427Anthropology Faculty, Hartwick College, Oneonta NY, USA
| | - Guus J. Kroonen
- grid.5254.60000 0001 0674 042XDepartment of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark ,grid.5132.50000 0001 2312 1970Leiden University Center for Linguistics, Leiden University, Leiden, The Netherlands
| | - Kristian Kristiansen
- grid.8761.80000 0000 9919 9582Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden ,grid.452548.a0000 0000 9817 5300Present Address: Lundbeck Foundation GeoGenetics Centre, Copenhagen, Denmark
| | - Patrick Wincker
- grid.8390.20000 0001 2180 5818Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Evry, Université Paris-Saclay, Evry, France
| | - Alan Outram
- grid.8391.30000 0004 1936 8024Department of Archaeology, University of Exeter, Exeter, UK
| | - Ludovic Orlando
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
247
|
Lipson M, Spriggs M, Valentin F, Bedford S, Shing R, Zinger W, Buckley H, Petchey F, Matanik R, Cheronet O, Rohland N, Pinhasi R, Reich D. Three Phases of Ancient Migration Shaped the Ancestry of Human Populations in Vanuatu. Curr Biol 2020; 30:4846-4856.e6. [PMID: 33065004 PMCID: PMC7755836 DOI: 10.1016/j.cub.2020.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
The archipelago of Vanuatu has been at the crossroads of human population movements in the Pacific for the past three millennia. To help address several open questions regarding the history of these movements, we generated genome-wide data for 11 ancient individuals from the island of Efate dating from its earliest settlement to the recent past, including five associated with the Chief Roi Mata's Domain World Heritage Area, and analyzed them in conjunction with 34 published ancient individuals from Vanuatu and elsewhere in Oceania, as well as present-day populations. Our results outline three distinct periods of population transformations. First, the four earliest individuals, from the Lapita-period site of Teouma, are concordant with eight previously described Lapita-associated individuals from Vanuatu and Tonga in having almost all of their ancestry from a "First Remote Oceanian" source related to East and Southeast Asians. Second, both the Papuan ancestry predominating in Vanuatu for the past 2,500 years and the smaller component of Papuan ancestry found in Polynesians can be modeled as deriving from a single source most likely originating in New Britain, suggesting that the movement of people carrying this ancestry to Remote Oceania closely followed that of the First Remote Oceanians in time and space. Third, the Chief Roi Mata's Domain individuals descend from a mixture of Vanuatu- and Polynesian-derived ancestry and are related to Polynesian-influenced communities today in central, but not southern, Vanuatu, demonstrating Polynesian genetic input in multiple groups with independent histories.
Collapse
Affiliation(s)
- Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Matthew Spriggs
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, ACT 2601, Australia; Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu.
| | | | - Stuart Bedford
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu; Department of Archaeology and Natural History, College of Asia-Pacific, The Australian National University, Canberra, ACT 2601, Australia; Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Richard Shing
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu
| | - Wanda Zinger
- Muséum national d'Histoire naturelle, UMR 7194 (HNHP), MNHN/CNRS/UPVD, Sorbonne Université, Musée de l'Homme, 75016 Paris, France
| | - Hallie Buckley
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Fiona Petchey
- Radiocarbon Dating Laboratory, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton 3240, New Zealand; ARC Centre of Excellence for Australian Biodiversity and Heritage, College of Arts, Society and Education, James Cook University, Cairns, QLD 4878, Australia
| | - Richard Matanik
- Lelema World Heritage Committee and Vanuatu Cultural Centre, Port Vila, Vanuatu
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
248
|
Skourtanioti E, Erdal YS, Frangipane M, Balossi Restelli F, Yener KA, Pinnock F, Matthiae P, Özbal R, Schoop UD, Guliyev F, Akhundov T, Lyonnet B, Hammer EL, Nugent SE, Burri M, Neumann GU, Penske S, Ingman T, Akar M, Shafiq R, Palumbi G, Eisenmann S, D'Andrea M, Rohrlach AB, Warinner C, Jeong C, Stockhammer PW, Haak W, Krause J. Genomic History of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 2020; 181:1158-1175.e28. [PMID: 32470401 DOI: 10.1016/j.cell.2020.04.044] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Here, we report genome-wide data analyses from 110 ancient Near Eastern individuals spanning the Late Neolithic to Late Bronze Age, a period characterized by intense interregional interactions for the Near East. We find that 6th millennium BCE populations of North/Central Anatolia and the Southern Caucasus shared mixed ancestry on a genetic cline that formed during the Neolithic between Western Anatolia and regions in today's Southern Caucasus/Zagros. During the Late Chalcolithic and/or the Early Bronze Age, more than half of the Northern Levantine gene pool was replaced, while in the rest of Anatolia and the Southern Caucasus, we document genetic continuity with only transient gene flow. Additionally, we reveal a genetically distinct individual within the Late Bronze Age Northern Levant. Overall, our study uncovers multiple scales of population dynamics through time, from extensive admixture during the Neolithic period to long-distance mobility within the globalized societies of the Late Bronze Age. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Yilmaz S Erdal
- Department of Anthropology, Hacettepe University, Ankara 06800, Turkey
| | | | | | - K Aslıhan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY 10028, USA
| | - Frances Pinnock
- Department of Classics, Sapienza University of Rome, Rome 00185, Italy
| | - Paolo Matthiae
- Department of Classics, Sapienza University of Rome, Rome 00185, Italy
| | - Rana Özbal
- Department of Archaeology and History of Art, Koç University, Istanbul 34450, Turkey
| | - Ulf-Dietrich Schoop
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Farhad Guliyev
- Institute of Archaeology and Ethnography, Azerbaijan National Academy of Sciences, Baku AZ1073, Azerbaijan
| | - Tufan Akhundov
- Institute of Archaeology and Ethnography, Azerbaijan National Academy of Sciences, Baku AZ1073, Azerbaijan
| | - Bertille Lyonnet
- PROCLAC/UMR Laboratory, French National Centre for Scientific Research, UMR 7192, Paris 75005, France
| | - Emily L Hammer
- Near Eastern Languages and Civilizations, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Selin E Nugent
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford OX2 6PE, UK
| | - Marta Burri
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Tara Ingman
- Department of Archaeology and History of Art, Koç University, Istanbul 34450, Turkey
| | - Murat Akar
- Department of Archaeology, Mustafa Kemal University, Alahan-Antakya, Hatay 31060, Turkey
| | - Rula Shafiq
- History Department, Ibn Haldun University, Istanbul 34494, Turkey
| | - Giulio Palumbi
- Université Nice Sophia Antipolis, CEPAM (Cultures et Environnements. Préhistoire, Antiquité, Moyen Âge), CNRS-UMR 7264, Nice 06357, France
| | - Stefanie Eisenmann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Marta D'Andrea
- Department of Classics, Sapienza University of Rome, Rome 00185, Italy
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany; ARC Centre of Excellence for the Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany; Department of Anthropology, Harvard University, Cambridge, MA 02138, USA.
| | - Choongwon Jeong
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany; Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Munich 80539, Germany.
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany.
| |
Collapse
|
249
|
Etter AJ. Creating Suitable Evidence of the Past? Archaeology, Politics, and Hindu Nationalism in India from the End of the Twentieth Century to the Present. SOUTH ASIA MULTIDISCIPLINARY ACADEMIC JOURNAL 2020. [DOI: 10.4000/samaj.6926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
250
|
Santos P, Gonzàlez-Fortes G, Trucchi E, Ceolin A, Cordoni G, Guardiano C, Longobardi G, Barbujani G. More Rule than Exception: Parallel Evidence of Ancient Migrations in Grammars and Genomes of Finno-Ugric Speakers. Genes (Basel) 2020; 11:E1491. [PMID: 33322364 PMCID: PMC7763979 DOI: 10.3390/genes11121491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022] Open
Abstract
To reconstruct aspects of human demographic history, linguistics and genetics complement each other, reciprocally suggesting testable hypotheses on population relationships and interactions. Relying on a linguistic comparative method based on syntactic data, here we focus on the non-straightforward relation of genes and languages among Finno-Ugric (FU) speakers, in comparison to their Indo-European (IE) and Altaic (AL) neighbors. Syntactic analysis, in agreement with the indications of more traditional linguistic levels, supports at least three distinct clusters, corresponding to these three Eurasian families; yet, the outliers of the FU group show linguistic convergence with their geographical neighbors. By analyzing genome-wide data in both ancient and contemporary populations, we uncovered remarkably matching patterns, with north-western FU speakers linguistically and genetically closer in parallel degrees to their IE-speaking neighbors, and eastern FU speakers to AL speakers. Therefore, our analysis indicates that plausible cross-family linguistic interference effects were accompanied, and possibly caused, by recognizable demographic processes. In particular, based on the comparison of modern and ancient genomes, our study identified the Pontic-Caspian steppes as the possible origin of the demographic processes that led to the expansion of FU languages into Europe.
Collapse
Affiliation(s)
- Patrícia Santos
- CNRS, UMR 5199—PACEA, Université de Bordeaux, Bâtiment B8, Allée Geoffroy Saint Hilaire, 33615 Pessac, France;
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy;
| | - Gloria Gonzàlez-Fortes
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy;
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy;
| | - Andrea Ceolin
- Dipartimento di Comunicazione ed Economia, Università di Modena e Reggio Emilia, 42121 Reggio Emilia, Italy; (A.C.); (C.G.)
| | - Guido Cordoni
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK;
| | - Cristina Guardiano
- Dipartimento di Comunicazione ed Economia, Università di Modena e Reggio Emilia, 42121 Reggio Emilia, Italy; (A.C.); (C.G.)
| | - Giuseppe Longobardi
- Department of Language and Linguistic Science, University of York, York YO10 5DD, UK;
| | - Guido Barbujani
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|