201
|
Punch VG, Jones AE, Rudnicki MA. Transcriptional networks that regulate muscle stem cell function. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 1:128-140. [PMID: 20835986 DOI: 10.1002/wsbm.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Muscle stem cells comprise different populations of stem and progenitor cells found in embryonic and adult tissues. A number of signaling and transcriptional networks are responsible for specification and survival of these cell populations and regulation of their behavior during growth and regeneration. Muscle progenitor cells are mostly derived from the somites of developing embryos, while satellite cells are the progenitor cells responsible for the majority of postnatal growth and adult muscle regeneration. In resting muscle, these stem cells are quiescent, but reenter the cell cycle during their activation, whereby they undergo decisions to self-renew, proliferate, or differentiate and fuse into multinucleated myofibers to repair damaged muscle. Regulation of muscle stem cell activity is under the precise control of a number of extrinsic signaling pathways and active transcriptional networks that dictate their behavior, fate, and regenerative potential. Here, we review the networks responsible for these different aspects of muscle stem cell biology and discuss prevalent parallels between mechanisms regulating the activity of embryonic muscle progenitor cells and adult satellite cells.
Collapse
Affiliation(s)
- Vincent G Punch
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Andrew E Jones
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Michael A Rudnicki
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| |
Collapse
|
202
|
Tubaro C, Arcuri C, Giambanco I, Donato R. S100B in myoblasts regulates the transition from activation to quiescence and from quiescence to activation and reduces apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1092-104. [PMID: 21130124 DOI: 10.1016/j.bbamcr.2010.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 12/30/2022]
Abstract
S100B protein activates IKKβ/NF-κB within myoblasts, thereby inhibiting the expression of MyoD and the MyoD-downstream effectors, myogenin and p21(WAF1), and myoblast differentiation. Herein we show that myoblasts downregulate S100B expression once transferred from proliferation medium to differentiation medium via a p38 MAPK-driven transcriptional mechanism as well as a post-translational, proteasome-dependent mechanism, and that myoblasts that have not been committed to differentiation resume expressing S100B once transferred back to proliferation medium. Likewise, myoblasts downregulate S100B expression once transferred to quiescence medium, and interference with S100B downregulation as obtained by stable overexpression of the protein results in reduced acquisition of quiescence and a faster proliferation upon transfer of the cells from quiescence medium to proliferation medium, compared to controls. These latter effects are dependent on S100B-induced activation of JNK. Moreover, S100B reduces myoblast apoptosis in an MEK-ERK1/2, Akt, JNK, and NF-κB-dependent manner. However, myogenin(+) myoblasts (i.e., myocytes) and myotubes abundantly express S100B likely induced by myogenin. Our results suggest that (1) a timely repression of S100B expression is required for efficient myogenic differentiation; (2) S100B plays an important role in the expansion of the activated (i.e., proliferating) myoblast population; (3) under conditions associated with enhanced expression of S100B, the transition from proliferation to quiescence and from quiescence to proliferation might be altered; and (4) S100B exerts different regulatory effects in myoblasts and myocytes/myotubes/myofibers. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Claudia Tubaro
- Department of Experimental Medicine and Biochemical Sciences and Istituto Interuniversitario di Miologia, University of Perugia, Via del Glochetto, 06122 Perugia, Italy
| | | | | | | |
Collapse
|
203
|
Wu J, Kubota J, Hirayama J, Nagai Y, Nishina S, Yokoi T, Asaoka Y, Seo J, Shimizu N, Kajiho H, Watanabe T, Azuma N, Katada T, Nishina H. p38 Mitogen-Activated Protein Kinase Controls a Switch Between Cardiomyocyte and Neuronal Commitment of Murine Embryonic Stem Cells by Activating Myocyte Enhancer Factor 2C-Dependent Bone Morphogenetic Protein 2 Transcription. Stem Cells Dev 2010; 19:1723-34. [DOI: 10.1089/scd.2010.0066] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jinzhan Wu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Junko Kubota
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Jun Hirayama
- Medical Top Track Program, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nagai
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Sachiko Nishina
- Department of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Yokoi
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jungwon Seo
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Nao Shimizu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroaki Kajiho
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Watanabe
- Department of Laboratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Noriyuki Azuma
- Department of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
204
|
Oncostatin M inhibits myoblast differentiation and regulates muscle regeneration. Cell Res 2010; 21:350-64. [PMID: 20956996 DOI: 10.1038/cr.2010.144] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oncostatin M (OSM) is a cytokine of the interleukin-6 family and plays important roles during inflammation. However, its roles in myoblast differentiation and muscle regeneration remain unexplored. We show here that OSM potently inhibited myoblast differentiation mainly by activating the JAK1/STAT1/STAT3 pathway. OSM downregulated myocyte enhancer-binding factor 2A (MEF2A), upregulated the expression of Id1 and Id2, and inhibited the transcriptional activity of MyoD and MEF2. In addition, OSM also enhanced the expression of STAT3 and OSM receptor, which constituted a positive feedback loop to further amplify OSM-induced signaling. Moreover, we found that STAT1 physically associated with MEF2 and repressed its transcriptional activity, which could account for the OSM-mediated repression of MEF2. Although undetectable in normal muscles in vivo, OSM was rapidly induced on muscle injury and then promptly downregulated just before the majority of myoblasts differentiate. Prolonged expression of OSM in muscles compromised the regeneration process without affecting myoblast proliferation, suggesting that OSM functions to prevent proliferating myoblasts from premature differentiation during the early phase of muscle regeneration.
Collapse
|
205
|
Stella R, Massimino ML, Sandri M, Sorgato MC, Bertoli A. Cellular prion protein promotes regeneration of adult muscle tissue. Mol Cell Biol 2010; 30:4864-76. [PMID: 20679477 PMCID: PMC2950540 DOI: 10.1128/mcb.01040-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/02/2009] [Accepted: 07/22/2010] [Indexed: 12/12/2022] Open
Abstract
It is now well established that the conversion of the cellular prion protein, PrP(C), into its anomalous conformer, PrP(Sc), is central to the onset of prion disease. However, both the mechanism of prion-related neurodegeneration and the physiologic role of PrP(C) are still unknown. The use of animal and cell models has suggested a number of putative functions for the protein, including cell signaling, adhesion, proliferation, and differentiation. Given that skeletal muscles express significant amounts of PrP(C) and have been related to PrP(C) pathophysiology, in the present study, we used skeletal muscles to analyze whether the protein plays a role in adult morphogenesis. We employed an in vivo paradigm that allowed us to compare the regeneration of acutely damaged hind-limb tibialis anterior muscles of mice expressing, or not expressing, PrP(C). Using morphometric and biochemical parameters, we provide compelling evidence that the absence of PrP(C) significantly slows the regeneration process compared to wild-type muscles by attenuating the stress-activated p38 pathway, and the consequent exit from the cell cycle, of myogenic precursor cells. Demonstrating the specificity of this finding, restoring PrP(C) expression completely rescued the muscle phenotype evidenced in the absence of PrP(C).
Collapse
Affiliation(s)
- Roberto Stella
- Department of Biological Chemistry, CNR Institute of Neuroscience, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy, Dulbecco Telethon Institute-Venetian Institute of Molecular Medicine, Via G. Orus, 2, 35129 Padua, Italy
| | - Maria Lina Massimino
- Department of Biological Chemistry, CNR Institute of Neuroscience, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy, Dulbecco Telethon Institute-Venetian Institute of Molecular Medicine, Via G. Orus, 2, 35129 Padua, Italy
| | - Marco Sandri
- Department of Biological Chemistry, CNR Institute of Neuroscience, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy, Dulbecco Telethon Institute-Venetian Institute of Molecular Medicine, Via G. Orus, 2, 35129 Padua, Italy
| | - M. Catia Sorgato
- Department of Biological Chemistry, CNR Institute of Neuroscience, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy, Dulbecco Telethon Institute-Venetian Institute of Molecular Medicine, Via G. Orus, 2, 35129 Padua, Italy
| | - Alessandro Bertoli
- Department of Biological Chemistry, CNR Institute of Neuroscience, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy, Dulbecco Telethon Institute-Venetian Institute of Molecular Medicine, Via G. Orus, 2, 35129 Padua, Italy
| |
Collapse
|
206
|
Lovett FA, Cosgrove RA, Gonzalez I, Pell JM. Essential role for p38alpha MAPK but not p38gamma MAPK in Igf2 expression and myoblast differentiation. Endocrinology 2010; 151:4368-80. [PMID: 20610565 DOI: 10.1210/en.2010-0209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The muscle satellite cell is established as the major stem cell contributing to fiber growth and repair. p38 MAPK signaling is essential for myoblast differentiation and in particular for up-regulation of promyogenic Igf2 expression. p38 exists as four isoforms (alpha, beta, gamma, and delta), of which p38gamma is uniquely abundant in muscle. The aim of this study was to characterize p38 isoform expression and importance (using shRNA knockdown; demonstrated via both reduced protein and kinase activities) during myoblast differentiation. p38alpha and -gamma mRNA levels were most abundant in differentiating C2 cells with low/negligible contributions from p38beta and -delta, respectively. Increased phosphorylation of p38alpha and -gamma occurred during differentiation but via different mechanisms: p38alpha protein levels remained constant, whereas total p38gamma levels increased. Following shRNA knockdown of p38alpha, myoblast differentiation was dramatically inhibited [reduced myosin heavy chain (MHC), myogenin, pAkt protein levels]; significantly, Igf2 mRNA levels and promoter-reporter activities decreased. In contrast, knockdown of p38gamma induced a transient increase in both myogenin and MHC protein levels with no effect on Igf2 mRNA levels or promoter-reporter activity. Knockdown of p38alpha/beta markedly increased but that of p38gamma decreased caspase 3 activity, suggesting opposite actions on apoptosis. p38gamma was initially proposed to have a promyogenic function; however, p38gamma overexpression could not rescue reduced myoblast differentiation following p38alpha/beta inhibition. Therefore, p38alpha is essential for myoblast differentiation, and part of its action is to convert signals that indicate cell density into promyogenic gene expression in the form of the key peptide, IGF-II; p38gamma has a minor, yet opposing antimyogenic, function.
Collapse
Affiliation(s)
- Fiona A Lovett
- The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | | | | | |
Collapse
|
207
|
Liu H, Chen SE, Jin B, Carson JA, Niu A, Durham W, Lai JY, Li YP. TIMP3: a physiological regulator of adult myogenesis. J Cell Sci 2010; 123:2914-21. [PMID: 20682640 PMCID: PMC2923569 DOI: 10.1242/jcs.057620] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2010] [Indexed: 12/12/2022] Open
Abstract
Myogenic differentiation in adult muscle is normally suppressed and can be activated by myogenic cues in a subset of activated satellite cells. The switch mechanism that turns myogenesis on and off is not defined. In the present study, we demonstrate that tissue inhibitor of metalloproteinase 3 (TIMP3), the endogenous inhibitor of TNFalpha-converting enzyme (TACE), acts as an on-off switch for myogenic differentiation by regulating autocrine TNFalpha release. We observed that constitutively expressed TIMP3 is transiently downregulated in the satellite cells of regenerating mouse hindlimb muscles and differentiating C2C12 myoblasts. In C2C12 myoblasts, perturbing TIMP3 downregulation by overexpressing TIMP3 blocks TNFalpha release, p38 MAPK activation, myogenic gene expression and myotube formation. TNFalpha supplementation at a physiological concentration rescues myoblast differentiation. Similarly, in the regenerating soleus, overexpression of TIMP3 impairs release of TNFalpha and myogenic gene expression, and delays the formation of new fibers. In addition, downregulation of TIMP3 is mediated by the myogenesis-promoting microRNA miR-206. Thus, TIMP3 is a physiological regulator of myogenic differentiation.
Collapse
Affiliation(s)
- Huijie Liu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Shuen-Ei Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Bingwen Jin
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - James A. Carson
- Exercise Science Department, University of South Carolina, Columbia, SC 29208, USA
| | - Airu Niu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - William Durham
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jian-Yang Lai
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
208
|
Payne KA, Meszaros LB, Phillippi JA, Huard J. Effect of phosphatidyl inositol 3-kinase, extracellular signal-regulated kinases 1/2, and p38 mitogen-activated protein kinase inhibition on osteogenic differentiation of muscle-derived stem cells. Tissue Eng Part A 2010; 16:3647-55. [PMID: 20617875 DOI: 10.1089/ten.tea.2009.0738] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscle-derived stem cells (MDSCs) can undergo osteogenesis when treated with bone morphogenetic proteins (BMPs), making them a potential cell source for bone tissue engineering. The signaling pathways that regulate BMP4-induced osteogenesis in MDSCs are not well understood, although they may provide a means to better regulate differentiation during bone regeneration. The objective of this study was to characterize the signaling pathways involved in the BMP4-induced osteogenesis of MDSCs. Cells were treated with BMP4 and specific inhibitors to the extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and phosphatidyl inositol 3-kinase (PI3K) pathways (PD98059, SB203580, and Ly294002, respectively). Cellular proliferation, expression of osteoblast-related genes, alkaline phosphatase (ALP) activity, and tissue mineralization were measured to determine the role of each pathway in the osteogenic differentiation of MDSCs. Inhibition of the ERK1/2 pathway increased ALP activity and mineralization, whereas inhibition of the p38 MAPK pathway decreased osteogenesis, suggesting opposing roles of these pathways in the BMP4-induced osteogenesis of MDSCs. Inhibition of the PI3K pathway significantly increased mineralization by MDSCs. These findings highlight the involvement of the ERK1/2, p38 MAPK, and PI3K pathways in opposing capacities in MDSC differentiation and warrant further investigation, as it may identify novel therapeutic targets for the development of stem cell-based therapies for bone tissue engineering.
Collapse
Affiliation(s)
- Karin A Payne
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
209
|
Beffy P, Del Carratore R, Masini M, Furling D, Puymirat J, Masiello P, Simili M. Altered signal transduction pathways and induction of autophagy in human myotonic dystrophy type 1 myoblasts. Int J Biochem Cell Biol 2010; 42:1973-83. [PMID: 20797447 DOI: 10.1016/j.biocel.2010.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/28/2010] [Accepted: 08/12/2010] [Indexed: 11/18/2022]
Abstract
Congenital myotonic dystrophy type 1 (CDM1) affects patients from birth and is associated with mental retardation and impaired muscle development. CDM1 patients carry 1000-3000 CTG repeats in the DMPK gene and display defective skeletal muscles differentiation, resulting in reduced size of myotubes and decreased number of satellite cells. In this study, human myoblasts in culture deriving from control and DM1 embryos (3200 CTG repeats) were analyzed using both a biochemical and electron microscopic approach, in order to provide new insights into the molecular mechanisms underlying such alteration. Interestingly, electron microscopy analysis showed not only ultrastructural features of abnormal differentiation but also revealed the presence of autophagic vacuoles in DM1 myoblasts not undergoing differentiation. In accordance with the electron microscopic findings, the autophagic markers LC3 and ATG5, but not apoptotic markers, were significantly up regulated in DM1 myoblasts after differentiating medium addition. The induction of autophagic processes in DM1 myoblasts was concomitant to p53 over-expression and inhibition of the mTOR-S6K1 pathway, causatively involved in autophagy. Moreover biochemical alterations of the two main signal transduction pathways involved in differentiation were observed in DM1 myoblasts, in particular decreased activation of p38MAPK and persistent activation of the MEK-ERK pathway. This work, while demonstrating that major signaling pathways regulating myoblasts differentiation are profoundly deranged in DM1 myoblasts, for the first time provides evidence of autophagy induction, possibly mediated by p53 activation in response to metabolic stress which might contribute to the dystrophic alterations observed in the muscles of congenital DM1 patients.
Collapse
|
210
|
Lu M, Krauss RS. Abl promotes cadherin-dependent adhesion and signaling in myoblasts. Cell Cycle 2010; 9:2737-41. [PMID: 20647774 DOI: 10.4161/cc.9.14.12246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell-cell contact promotes myogenic differentiation but the mechanisms that regulate this phenomenon are not well understood. Cdo (also known as Cdon), an Ig superfamily member, functions as a component of cell surface complexes to promote myogenic differentiation through activation of p38alpha/beta MAP kinase. We recently showed that N-cadherin ligation activated p38alpha/beta in a Cdo-dependent manner, whereas N-cadherin ligation-dependent activation of ERK MAP kinase was not affected by loss of Cdo. The non-receptor tyrosine kinase Abl associates with Cdo during myoblast differentiation and is necessary for full activition of p38alpha/beta during this process. The Abl SH3 domain binds to a PxxP motif in the Cdo intracellular domain, and both these motifs are required for their promyogenic activity. Here we show that Abl is necessary for p38alpha/beta activation initiated by N-cadherin ligation, but in contrast to Cdo, Abl is also required for N-cadherin-dependent ERK activation. Moreover, Abl is required for efficient cadherin-mediated myoblast aggregation via modulation of RhoA-ROCK signaling. Therefore, Abl regulates N-cadherin-mediated p38alpha/beta activation by multiple mechanisms, more generally through regulation of cell-cell adhesion and specifically as a component of Cdo-containing complexes. The role of Cdo as a multifunctional coreceptor with roles in several pathways is also discussed.
Collapse
Affiliation(s)
- Min Lu
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
211
|
Mantha M, Jumarie C. Cadmium-induced hormetic effect in differentiated Caco-2 cells: ERK and p38 activation without cell proliferation stimulation. J Cell Physiol 2010; 224:250-61. [PMID: 20232314 DOI: 10.1002/jcp.22128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cadmium (Cd) is a toxic metal that enters the food chain. Following oral ingestion, the intestinal epithelium may in part protect against Cd toxicity but is also a target tissue. Using human enterocytic-like Caco-2 cells, we have previously shown differences in sensitivity to Cd according to the differentiation status. The present study focuses on Cd effects on differentiated cells. Concentration and time-dependent increases in MTT (3-[4,5-dimethyl-2-thiazol-2-yl]-2,5-diphenyltetrazolium bromide assay) activity were observed in post-confluent cultures exclusively, with a twofold maximal stimulation in 21-day-old cells exposed to 10 microM Cd for 24 h. No concomitant increase in [methyl-(3)H] thymidine incorporation was noted and Cd did not modify cell distribution in the cell-cycle phases. However, Cd-induced increase in MTT activity was inhibited by cycloheximine as well as by inhibitors of ERK1/2 and p38, but not by that of JNK. Consistently, Cd increased the levels of ERK1/2 and p38 phosphorylation. Inhibition of Ras-GTP or PI3K enhanced the stimulatory effect of Cd, whereas mTOR inhibition had no effect. Inhibition of G protein-phospholipase and PKC decreased MTT stimulation. These results show a hormesis-like stimulation of Cd on MTT activity in differentiated intestinal cells exclusively. This effect is not related to cell proliferation but more likely to increased protein synthesis which involves ERK1/2 and p38 cascades and possibly PLC-beta signaling pathways. Because growth-related differentiation of intestinal cells is linked to the selective and sequential activation of MAPKs, the impacts that these Cd-induced perturbations in signaling pathways may have on intestinal functions clearly deserve to be investigated.
Collapse
Affiliation(s)
- Marc Mantha
- Département des Sciences Biologiques, Centre TOXEN, Université du Québec à Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
212
|
Bae GU, Lee JR, Kim BG, Han JW, Leem YE, Lee HJ, Ho SM, Hahn MJ, Kang JS. Cdo interacts with APPL1 and activates Akt in myoblast differentiation. Mol Biol Cell 2010; 21:2399-411. [PMID: 20484574 PMCID: PMC2903669 DOI: 10.1091/mbc.e09-12-1011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cdo activates Akt via indirect interaction with APPL1 during myoblast differentiation, and this complex likely mediates some of the promyogenic effect of cell–cell interaction. The promyogenic function of Cdo involves a coordinated activation of p38MAPK and Akt via interaction with scaffold proteins, JLP and Bnip-2 for p38MAPK and APPL1 for Akt. Cell–cell interactions between muscle precursors are required for myogenic differentiation; however, underlying mechanisms are largely unknown. Promyogenic cell surface protein Cdo functions as a component of multiprotein complexes containing other cell adhesion molecules, Boc, Neogenin and N-cadherin, and mediates some of signals triggered by cell–cell interactions between muscle precursors. Cdo activates p38MAPK via interaction with two scaffold proteins JLP and Bnip-2 to promote myogenesis. p38MAPK and Akt signaling are required for myogenic differentiation and activation of both signaling pathways is crucial for efficient myogenic differentiation. We report here that APPL1, an interacting partner of Akt, forms complexes with Cdo and Boc in differentiating myoblasts. Both Cdo and APPL1 are required for efficient Akt activation during myoblast differentiation. The defective differentiation of Cdo-depleted cells is fully rescued by overexpression of a constitutively active form of Akt, whereas overexpression of APPL1 fails to do so. Taken together, Cdo activates Akt through association with APPL1 during myoblast differentiation, and this complex likely mediates some of the promyogenic effect of cell–cell interaction. The promyogenic function of Cdo involves a coordinated activation of p38MAPK and Akt via association with scaffold proteins, JLP and Bnip-2 for p38MAPK and APPL1 for Akt.
Collapse
Affiliation(s)
- Gyu-Un Bae
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Bakkar N, Guttridge DC. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis. Physiol Rev 2010; 90:495-511. [PMID: 20393192 DOI: 10.1152/physrev.00040.2009] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NF-kappaB is a ubiquitiously expressed transcription factor that plays vital roles in innate immunity and other processes involving cellular survival, proliferation, and differentiation. Activation of NF-kappaB is controlled by an IkappaB kinase (IKK) complex that can direct either canonical (classical) NF-kappaB signaling by degrading the IkappaB inhibitor and releasing p65/p50 dimers to the nucleus, or causes p100 processing and nuclear translocation of RelB/p52 via a noncanonical (alternative) pathway. Under physiological conditions, NF-kappaB activity is transiently regulated, whereas constitutive activation of this transcription factor typically in the classical pathway is associated with a multitude of disease conditions, including those related to skeletal muscle. How NF-kappaB functions in muscle diseases is currently under intense investigation. Insight into this role of NF-kappaB may be gained by understanding at a more basic level how this transcription factor contributes to skeletal muscle cell differentiation. Recent data from knockout mice support that the classical NF-kappaB pathway functions as an inhibitor of skeletal myogenesis and muscle regeneration acting through multiple mechanisms. In contrast, alternative NF-kappaB signaling does not appear to be required for myofiber conversion, but instead functions in myotube homeostasis by regulating mitochondrial biogenesis. Additional knowledge of these signaling pathways in skeletal myogenesis should aid in the development of specific inhibitors that may be useful in treatments of muscle disorders.
Collapse
Affiliation(s)
- Nadine Bakkar
- Department of Molecular Virology, Immunology, and Medical Genetics, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
214
|
Hypoxia converts the myogenic action of insulin-like growth factors into mitogenic action by differentially regulating multiple signaling pathways. Proc Natl Acad Sci U S A 2010; 107:5857-62. [PMID: 20231451 DOI: 10.1073/pnas.0909570107] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factors (IGFs) stimulate myoblast proliferation and differentiation. It remains elusive how these mutually exclusive cellular responses are elicited by the same growth factor. Here we report that whereas IGF promotes myoblast differentiation under normoxia, it stimulates proliferation under hypoxia. Hypoxia activates the HIF-1 transcriptional program and knockdown of HIF-1alpha changes the mitogenic action of IGF into myogenic action under hypoxia. Conversely, overexpression of HIF-1alpha abolishes the myogenic effect of IGF under normoxia. Under normoxia, IGF activates the Akt-mTOR, p38, and Erk1/2 MAPK pathways. Hypoxia suppresses basal and IGF-induced Akt-mTOR and p38 activity, whereas it enhances and prolongs IGF-induced Erk1/2 activation in a HIF-1-dependent fashion. Activation of Akt-mTOR and p38 promotes myogenesis, and p38 also inhibits proliferation. Activation of Erk stimulates myoblast proliferation but inhibits differentiation. These results suggest that hypoxia converts the myogenic action of IGFs into mitogenic action by differentially regulating multiple signaling pathways via HIF-1-dependent mechanisms. Our findings provide a mechanistic explanation for the paradoxical actions of IGFs during myogenesis and reveal a novel mechanism by which cells sense and integrate growth factor signals and oxygen availability in their microenvironments.
Collapse
|
215
|
Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1173-87. [PMID: 20219869 DOI: 10.1152/ajpregu.00735.2009] [Citation(s) in RCA: 811] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent discoveries reveal complex interactions between skeletal muscle and the immune system that regulate muscle regeneration. In this review, we evaluate evidence that indicates that the response of myeloid cells to muscle injury promotes muscle regeneration and growth. Acute perturbations of muscle activate a sequence of interactions between muscle and inflammatory cells. The initial inflammatory response is a characteristic Th1 inflammatory response, first dominated by neutrophils and subsequently by CD68(+) M1 macrophages. M1 macrophages can propagate the Th1 response by releasing proinflammatory cytokines and cause further tissue damage through the release of nitric oxide. Myeloid cells in the early Th1 response stimulate the proliferative phase of myogenesis through mechanisms mediated by TNF-alpha and IL-6; experimental prolongation of their presence is associated with delayed transition to the early differentiation stage of myogenesis. Subsequent invasion by CD163(+)/CD206(+) M2 macrophages attenuates M1 populations through the release of anti-inflammatory cytokines, including IL-10. M2 macrophages play a major role in promoting growth and regeneration; their absence greatly slows muscle growth following injury or modified use and inhibits muscle differentiation and regeneration. Chronic muscle injury leads to profiles of macrophage invasion and function that differ from acute injuries. For example, mdx muscular dystrophy yields invasion of muscle by M1 macrophages, but their early invasion is accompanied by a subpopulation of M2a macrophages. M2a macrophages are IL-4 receptor(+)/CD206(+) cells that reduce cytotoxicity of M1 macrophages. Subsequent invasion of dystrophic muscle by M2c macrophages is associated with progression of the regenerative phase in pathophysiology. Together, these findings show that transitions in macrophage phenotype are an essential component of muscle regeneration in vivo following acute or chronic muscle damage.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular and Integrative Physiology Program, Department of Integrative Biology and Physiology, University of California-Los Angeles, CA 90095-1606, USA.
| | | |
Collapse
|
216
|
Melchionna R, Di Carlo A, De Mori R, Cappuzzello C, Barberi L, Musarò A, Cencioni C, Fujii N, Tamamura H, Crescenzi M, Capogrossi MC, Napolitano M, Germani A. Induction of myogenic differentiation by SDF-1 via CXCR4 and CXCR7 receptors. Muscle Nerve 2010; 41:828-35. [DOI: 10.1002/mus.21611] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
217
|
Singh BN, Rao KS, Rao CM. Ubiquitin–proteasome-mediated degradation and synthesis of MyoD is modulated by αB-crystallin, a small heat shock protein, during muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:288-99. [DOI: 10.1016/j.bbamcr.2009.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/11/2009] [Accepted: 11/24/2009] [Indexed: 11/15/2022]
|
218
|
Sasai N, Agata N, Inoue-Miyazu M, Kawakami K, Kobayashi K, Sokabe M, Hayakawa K. Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubes. Muscle Nerve 2010; 41:100-6. [DOI: 10.1002/mus.21473] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
219
|
Corradetti A, Saccucci F, Emanuelli M, Vagnoni G, Cecati M, Sartini D, Giannubilo SR, Tranquilli AL. The role of p38alpha mitogen-activated protein kinase gene in the HELLP syndrome. Cell Stress Chaperones 2010; 15:95-100. [PMID: 19565356 PMCID: PMC2866978 DOI: 10.1007/s12192-009-0125-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/28/2009] [Accepted: 06/02/2009] [Indexed: 12/31/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) p38alpha was shown to be implicated in the organogenesis of the placenta, and such placental alteration is crucial for the development of hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome. We aimed to analyze for the first time human placental expression of MAPK p38alpha in pregnancies complicated by HELLP. The placental expression of MAPK p38alpha was investigated by semiquantitative polymerase chain reaction using cDNA extracted from placental tissue of 15 pregnancies with HELLP syndrome and 15 gestational age-matched controls. Seven patients with HELLP also had intrauterine fetal growth restriction (IUGR). In placenta from pregnancy complicated by HELLP, the expression of MAPK p38alpha is significantly decreased compared to the group with normal pregnancy (p < 0.001), while no difference was found between the HELLP and HELLP with IUGR subpopulations. Our study shows for the first time that MAPK p38alpha is expressed in the human placenta. Pregnancies with placental dysfunction and hypertensive complications are characterized by a significantly decreased expression of MAPK p38alpha. Our observations suggest that p38 MAPK signaling may be essential in placental angiogenesis and functioning.
Collapse
Affiliation(s)
- Alessandra Corradetti
- Department of Clinical Sciences, Obstetrics and Gynecology, Polytechnic University of Marche, Salesi Hospital, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
220
|
p38 mitogen-activated protein kinase up-regulates NF-κB transcriptional activation through RelA phosphorylation during stretch-induced myogenesis. Biochem Biophys Res Commun 2010; 391:547-51. [DOI: 10.1016/j.bbrc.2009.11.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/16/2009] [Indexed: 01/12/2023]
|
221
|
Bhatnagar S, Kumar A, Makonchuk DY, Li H, Kumar A. Transforming growth factor-beta-activated kinase 1 is an essential regulator of myogenic differentiation. J Biol Chem 2009; 285:6401-11. [PMID: 20037161 DOI: 10.1074/jbc.m109.064063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Satellite cells/myoblasts account for the majority of muscle regenerative potential in response to injury and muscular adaptation to exercise. Although the ability to influence this process would provide valuable benefits for treating a variety of patients suffering from muscle loss, the regulatory mechanisms of myogenesis are not completely understood. We have tested the hypothesis that transforming growth factor-beta-activated kinase 1 (TAK1) is an important regulator of skeletal muscle formation. TAK1 is expressed in proliferating C2C12 myoblasts, and its levels are reduced upon differentiation of myoblasts into myotubes. In vivo, TAK1 is predominantly expressed in developing skeletal muscle of young mice. However, the expression of TAK1 was significantly up-regulated in regenerating skeletal muscle of adult mice. Overexpression of a dominant negative mutant of TAK1 or knockdown of TAK1 inhibited the proliferation and differentiation of C2C12 myoblasts. TAK1 was required for the expression of myogenic regulatory factors in differentiating myoblasts. Genetic ablation of TAK1 also inhibited the MyoD-driven transformation of mouse embryonic fibroblasts into myotubes. Inhibition of TAK1 suppressed the differentiation-associated activation of p38 mitogen-activated protein kinase (MAPK) and Akt kinase. Overexpression of a constitutively active mutant of MAPK kinase 6 (MKK6, an upstream activator of p38 MAPK) but not constitutive active Akt restored the myogenic differentiation in TAK1-deficient mouse embryonic fibroblasts. Insulin growth factor 1-induced myogenic differentiation was also found to involve TAK1. Collectively, our results suggest that TAK1 is an important upstream regulator of skeletal muscle cell differentiation.
Collapse
Affiliation(s)
- Shephali Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
222
|
Gillespie MA, Le Grand F, Scimè A, Kuang S, von Maltzahn J, Seale V, Cuenda A, Ranish JA, Rudnicki MA. p38-{gamma}-dependent gene silencing restricts entry into the myogenic differentiation program. ACTA ACUST UNITED AC 2009; 187:991-1005. [PMID: 20026657 PMCID: PMC2806273 DOI: 10.1083/jcb.200907037] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The regenerative capacity of muscle is regulated by p38-γ, which phosphorylates MyoD and leads to formation of a complex that represses myogenin transcription. The mitogen-activated protein kinase p38-γ is highly expressed in skeletal muscle and is associated with the dystrophin glycoprotein complex; however, its function remains unclear. After induced damage, muscle in mice lacking p38-γ generated significantly fewer myofibers than wild-type muscle. Notably, p38-γ-deficient muscle contained 50% fewer satellite cells that exhibited premature Myogenin expression and markedly reduced proliferation. We determined that p38-γ directly phosphorylated MyoD on Ser199 and Ser200, which results in enhanced occupancy of MyoD on the promoter of myogenin together with markedly decreased transcriptional activity. This repression is associated with extensive methylation of histone H3K9 together with recruitment of the KMT1A methyltransferase to the myogenin promoter. Notably, a MyoD S199A/S200A mutant exhibits markedly reduced binding to KMT1A. Therefore, p38-γ signaling directly induces the assembly of a repressive MyoD transcriptional complex. Together, these results establish a hitherto unappreciated and essential role for p38-γ signaling in positively regulating the expansion of transient amplifying myogenic precursor cells during muscle growth and regeneration.
Collapse
Affiliation(s)
- Mark A Gillespie
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Dumka D, Puri P, Carayol N, Lumby C, Balachandran H, Schuster K, Verma AK, Terada LS, Platanias LC, Parmar S. Activation of the p38 Map kinase pathway is essential for the antileukemic effects of dasatinib. Leuk Lymphoma 2009; 50:2017-29. [PMID: 19672773 PMCID: PMC2888505 DOI: 10.3109/10428190903147637] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dasatinib, a dual Src/Abl tyrosine kinase inhibitor, has significant antileukemic effects against various imatinib mesylate-resistant BCR/ABL mutants. Despite well-documented inhibitory effects of dasatinib on BCR/ABL kinase, the exact downstream cellular events leading to generation of its potent antileukemic effects remain to be defined. We provide evidence that p38 Map kinase (MAPK) pathway is activated leading to increased upregulation of mixed lineage kinase 3, MKK3/6, MSK1, and Mapkapk2, upon treatment of BCR/ABL expressing cells with dasatinib, including cells expressing various imatinib-resistant mutants, except for T315I. Our data demonstrate that such dasatinib-dependent activation of p38 MAPK and its effectors plays a critical role in the generation of antileukemic responses, since pharmacological inhibition of p38 or siRNA-mediated knockdown of its expression reverse dasatinib-mediated apoptosis, cell cycle arrest, and anti-proliferative effects. p38 MAPK inhibition also reversed dasatinib-induced suppression of CML patient-derived leukemic colony-forming units progenitor growth in vitro, as well as BCR/ABL expressing KT-1 cell-derived leukemic progenitor growth. Altogether, our findings suggest a critical role for p38 MAPK pathway in the generation of antileukemic effects of dasatinib, and raise the possibility that development of novel means to enhance p38 MAPK activation in BCR/ABL expressing cells may be an approach to promote antileukemic responses and, possibly, reverse T315I mutation-mediated resistance.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Cycle/drug effects
- Cell Line
- Cell Proliferation/drug effects
- Dasatinib
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Activation/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Immunoblotting
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MAP Kinase Kinase 3/genetics
- MAP Kinase Kinase 3/metabolism
- MAP Kinase Kinase 6/genetics
- MAP Kinase Kinase 6/metabolism
- Mutation
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pyrimidines/pharmacology
- RNA Interference
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/drug effects
- Thiazoles/pharmacology
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Disha Dumka
- Dallas VA Medical Center and UT Southwestern Medical Center, Dallas, TX
| | - Poonam Puri
- Dallas VA Medical Center and UT Southwestern Medical Center, Dallas, TX
| | - Nathalie Carayol
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Crystal Lumby
- Dallas VA Medical Center and UT Southwestern Medical Center, Dallas, TX
| | | | - Katja Schuster
- Dallas VA Medical Center and UT Southwestern Medical Center, Dallas, TX
| | | | - Lance S Terada
- Dallas VA Medical Center and UT Southwestern Medical Center, Dallas, TX
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Simrit Parmar
- Dallas VA Medical Center and UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
224
|
MEK1 plays contrary stage-specific roles in skeletal myogenic differentiation. Cell Signal 2009; 21:1910-7. [DOI: 10.1016/j.cellsig.2009.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 08/14/2009] [Accepted: 08/21/2009] [Indexed: 12/11/2022]
|
225
|
Ikeda T, Kanazawa T, Otsuka S, Ichii O, Hashimoto Y, Kon Y. Expression of caspase family and muscle- and apoptosis-specific genes during skeletal myogenesis in mouse embryo. J Vet Med Sci 2009; 71:1161-8. [PMID: 19801895 DOI: 10.1292/jvms.71.1161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caspases (Casps) are a family of cysteine proteases that are known to regulate apoptotic signaling. Apoptosis by activation of Casp is strongly associated with embryonal development and regeneration in many organs, therefore indicating that disorders caused by homozygous mutation in Casp genes can result in embryonic lethality. In the present study, the authors investigated the causative relationship between skeletal myogenesis and the activation of Casps by analyzing their dynamics during mouse embryogenesis. Individual myogenetic tissues were obtained from C57BL/6 mouse embryos aged 12.5-17.5 days post-conception (dpc), and the expression of Casps was analyzed by histochemical and molecular biological methods. Immunoreactions for Casp-3, -9 and -12 were detected first in myoblasts, increasing according to embryonal development, as a result of which myoblasts differentiated into myotube cells. On the other hand, the immunoreaction for ssDNA, which is well-known as an apoptosis marker, was little detected during the skeletal myogenesis. Quantification analysis for Casp mRNA expression by RT-PCR as well as by in situ hybridization showed a peak at 15.5 dpc but a decrease at 17.5 dpc. Similar dynamics were detected for Myod1 mRNA, one of the muscle regulatory factors, but not for Fasl, Bax and Rock1, apoptosis-associated factors during skeletal myogenesis. These results suggest that the activation of Casps in skeletal myogenesis is deeply associated with myoblast differentiation, but not directly related to apoptosis.
Collapse
Affiliation(s)
- Teppei Ikeda
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
226
|
Galluzzo P, Rastelli C, Bulzomi P, Acconcia F, Pallottini V, Marino M. 17β-Estradiol regulates the first steps of skeletal muscle cell differentiation via ER-α-mediated signals. Am J Physiol Cell Physiol 2009; 297:C1249-62. [DOI: 10.1152/ajpcell.00188.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (E2) mediates a wide variety of complex biological processes determining the growth and development of reproductive tract as well as nonreproductive tissues of male and female individuals. While E2 effects on the reproductive system, bone, and cardiovascular system are quite well established, less is known about how it affects the physiology of other tissues. Skeletal muscle is a tissue that is expected to be E2 responsive since both isoforms of estrogen receptor (ER-α and ER-β) are expressed. Significant sex-related differences have been described in skeletal muscle, although the role played by E2 and the mechanisms underlying it remain to be determined. Here, we demonstrate that E2 increases the glucose transporter type 4 translocation at membranes as well as the expression of well-known differentiation markers of myogenesis (i.e., myogenin and myosin heavy chain) in rat myoblast cells (L6). These E2-induced effects require rapid extranuclear signals and the presence of ER-α, whereas no contribution of IGF-I receptor has been observed. In particular, ER-α-dependent Akt activation participates in regulating the first step of myogenic differentiation. Moreover, both receptors mediate the E2-induced activation of p38, which, in turn, affects the expression of myogenin and myosin heavy chain. All together, these data indicate that E2 should be included in the list of skeletal muscle trophic factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Marino
- Department of Biology, University Roma Tre, Rome, Italy
| |
Collapse
|
227
|
Abstract
PURPOSE OF REVIEW Vitamin D is best known for its role in regulating calcium homeostasis and in strengthening bone. However, it has become increasingly clear that it also has important beneficial effects beyond the skeleton, including muscle. This review summarizes current knowledge about the role of vitamin D in skeletal muscle tissue and physical performance. RECENT FINDINGS Molecular mechanisms of vitamin D action in muscle tissue include genomic and nongenomic effects via a receptor present in muscle cells. Knockout mouse models of the vitamin D receptor provide insight into understanding the direct effects of vitamin D on muscle tissue. Vitamin D status is positively associated with physical performance and inversely associated with risk of falling. Vitamin D supplementation has been shown to improve tests of muscle performance, reduce falls, and possibly impact on muscle fiber composition and morphology in vitamin D deficient older adults. SUMMARY Further studies are needed to fully characterize the underlying mechanisms of vitamin D action in human muscle tissue, to understand how these actions translate into changes in muscle cell morphology and improvements in physical performance, and to define the 25-hydroxyvitamin D level at which to achieve these beneficial effects in muscle.
Collapse
Affiliation(s)
- Lisa Ceglia
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
228
|
Bae GU, Yang YJ, Jiang G, Hong M, Lee HJ, Tessier-Lavigne M, Kang JS, Krauss RS. Neogenin regulates skeletal myofiber size and focal adhesion kinase and extracellular signal-regulated kinase activities in vivo and in vitro. Mol Biol Cell 2009; 20:4920-31. [PMID: 19812254 DOI: 10.1091/mbc.e09-06-0491] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of signaling pathways participate in the development of skeletal muscle, but the extracellular cues that regulate such pathways in myofiber formation are not well understood. Neogenin is a receptor for ligands of the netrin and repulsive guidance molecule (RGM) families involved in axon guidance. We reported previously that neogenin promoted myotube formation by C2C12 myoblasts in vitro and that the related protein Cdo (also Cdon) was a potential neogenin coreceptor in myoblasts. We report here that mice homozygous for a gene-trap mutation in the Neo1 locus (encoding neogenin) develop myotomes normally but have small myofibers at embryonic day 18.5 and at 3 wk of age. Similarly, cultured myoblasts derived from such animals form smaller myotubes with fewer nuclei than myoblasts from control animals. These in vivo and in vitro defects are associated with low levels of the activated forms of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), both known to be involved in myotube formation, and inefficient expression of certain muscle-specific proteins. Recombinant netrin-2 activates FAK and ERK in cultured myoblasts in a neogenin- and Cdo-dependent manner, whereas recombinant RGMc displays lesser ability to activate these kinases. Together, netrin-neogenin signaling is an important extracellular cue in regulation of myogenic differentiation and myofiber size.
Collapse
Affiliation(s)
- Gyu-Un Bae
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Scholz ME, Meissner JD, Scheibe RJ, Umeda PK, Chang KC, Gros G, Kubis HP. Different roles of H-ras for regulation of myosin heavy chain promoters in satellite cell-derived muscle cell culture during proliferation and differentiation. Am J Physiol Cell Physiol 2009; 297:C1012-8. [PMID: 19625607 DOI: 10.1152/ajpcell.00567.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of constitutively activated proto-oncogene H-ras (H-rasQ61L) on the regulation of myosin heavy chain (MHC) promoter activities was investigated in rabbit satellite cell-derived muscle cell culture during the proliferation stage and early and later stages of differentiation, respectively. During proliferation, overexpression of H-rasQ61L did not affect basal level of activity of the slow MHCI/beta or the fast MHCIId/x promoter luciferase reporter gene construct in transient transfection assays. By contrast, H-rasQ61L affected both MHC promoter activities during differentiation, and this effect changes from inactivation after 2 days to activation after 4 days of differentiation. The activating effect of H-rasQ61L on both MHC promoters after 4 days of differentiation was significantly reduced by LY-294002, a specific inhibitor of the phosphoinositol-3-kinase (PI3K), a downstream target of Ras. Furthermore, the protein kinase Akt (protein kinase B), a downstream target of PI3k, was activated 4 days after initiation of differentiation in myotubes overexpressing H-rasQ61L. By contrast, inhibition of another Ras downstream pathway, mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated protein kinase 1/2 (MKK1/2-ERK1/2-MAPK), increased activities of both MHC promoters, indicating a suppressive role of this pathway. Moreover, the Ras-PI3K-Akt signaling pathway is involved in the activation of MHCI/beta and IId/x promoters in a later stage of differentiation of muscle cells, presumably by a known inhibiting effect of activated Akt on the MKK1/2-ERK1/2-MAPK pathway. The experiments demonstrate that during differentiation of muscle cells activated H-ras is an important regulator of MHC isoform promoter function with opposite effects during early and later stages.
Collapse
Affiliation(s)
- Michael E Scholz
- Department of Physiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
230
|
Carter EJ, Cosgrove RA, Gonzalez I, Eisemann JH, Lovett FA, Cobb LJ, Pell JM. MEK5 and ERK5 are mediators of the pro-myogenic actions of IGF-2. J Cell Sci 2009; 122:3104-12. [PMID: 19654213 DOI: 10.1242/jcs.045757] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the differentiation of muscle satellite cells, committed myoblasts respond to specific signalling cues by exiting the cell cycle, migrating, aligning, expressing muscle-specific genes and finally fusing to form multinucleated myotubes. The predominant foetal growth factor, IGF-2, initiates important signals in myogenesis. The aim of this study was to investigate whether ERK5 and its upstream MKK activator, MEK5, were important in the pro-myogenic actions of IGF-2. ERK5 protein levels, specific phosphorylation and kinase activity increased in differentiating C2 myoblasts. ERK5-GFP translocated from the cytoplasm to the nucleus after activation by upstream MEK5, whereas phospho-acceptor site mutated (dominant-negative) ERK5AEF-GFP remained cytoplasmic. Exogenous IGF-2 increased MHC levels, myogenic E box promoter-reporter activity, ERK5 phosphorylation and kinase activity, and rapidly induced nuclear localisation of ERK5. Transfection with antisense Igf2 decreased markers of myogenesis, and reduced ERK5 phosphorylation, kinase and transactivation activity. These negative effects of antisense Igf2 were rescued by constitutively active MEK5, whereas transfection of myoblasts with dominant-negative MEK5 blocked the pro-myogenic action of IGF-2. Our findings suggest that the MEK5-ERK5 pathway is a novel key mediator of IGF-2 action in myoblast differentiation.
Collapse
Affiliation(s)
- Emma J Carter
- Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
231
|
Liu J, Liu J, Mao J, Yuan X, Lin Z, Li Y. Caspase-3-mediated cyclic stretch-induced myoblast apoptosis via a Fas/FasL-independent signaling pathway during myogenesis. J Cell Biochem 2009; 107:834-44. [DOI: 10.1002/jcb.22182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
232
|
Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi R, Rosenfeld MG. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009; 459:1010-4. [PMID: 19458619 PMCID: PMC2768332 DOI: 10.1038/nature08025] [Citation(s) in RCA: 529] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/25/2009] [Indexed: 12/15/2022]
Abstract
Consistent with the role of microRNAs (miRNAs) in down-regulating gene expression by reducing the translation and/or stability of target messenger RNAs, the levels of specific miRNAs are important for correct embryonic development and have been linked to several forms of cancer. However, the regulatory mechanisms by which primary miRNAs (pri-miRNAs) are processed first to precursor miRNAs (pre-miRNAs) and then to mature miRNAs by the multiprotein Drosha and Dicer complexes, respectively, remain largely unknown. The KH-type splicing regulatory protein (KSRP, also known as KHSRP) interacts with single-strand AU-rich-element-containing mRNAs and is a key mediator of mRNA decay. Here we show in mammalian cells that KSRP also serves as a component of both Drosha and Dicer complexes and regulates the biogenesis of a subset of miRNAs. KSRP binds with high affinity to the terminal loop of the target miRNA precursors and promotes their maturation. This mechanism is required for specific changes in target mRNA expression that affect specific biological programs, including proliferation, apoptosis and differentiation. These findings reveal an unexpected mechanism that links KSRP to the machinery regulating maturation of a cohort of miRNAs that, in addition to its role in promoting mRNA decay, independently serves to integrate specific regulatory programs of protein expression.
Collapse
Affiliation(s)
- Michele Trabucchi
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, California 92093-0648, USA
| | - Paola Briata
- Istituto Nazionale per la Ricerca sul Cancro (IST), Largo R. Benzi, 10; 16132 Genova, Italy
| | - MariaFlor Garcia-Mayoral
- Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | - Astrid D. Haase
- Friedrich Miescher Institute for Biomedical Research, P.O. Box 2543, 4002 Basel, Switzerland
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, P.O. Box 2543, 4002 Basel, Switzerland
| | - Andres Ramos
- Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | | | | |
Collapse
|
233
|
Jiang Y, Cheng DW, Levi E, Singh LP. IGF-1 increases laminin, cyclin D1, and p21Cip1 expression in glomerular mesangial cells: an investigation of the intracellular signaling pathway and cell-cycle progression. J Cell Biochem 2009; 98:208-20. [PMID: 16408277 DOI: 10.1002/jcb.20771] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Insulin-like growth factor (IGF)-1 is accumulated in the diabetic kidney and is considered to be involved in the development of glomerular sclerosis. Here, we investigate IGF-1 regulation of laminin, an extracellular matrix (ECM) component, and cyclin D1 and p21Cip1, cell-cycle progression factor, expressions in glomerular mesangial cells. We show that IGF-1 increases the level of laminin gamma1 and beta1 subunits approximately 1.5- and 2.5-fold, respectively, in a time-dependent manner. IGF-1 also stimulates protein kinase Akt/PKB phosphorylation at Thr 308, which correlates with its activity, up to 24 h. The Akt activation is coupled with Ser 9 phosphorylation of its downstream target, glycogen synthase kinase-3beta (GSK-3beta), which inhibits its kinase activity. Laminin beta1 is reduced significantly (P < 0.03) by inhibitors of Akt and p38MAPK whereas laminin gamma1 is not affected. Surprisingly, IGF-1 activates the expression of both cyclin D1 and cell-cycle arrest factor, p21Cip1 parallely. Pharmacological inhibition of calcineurin by cyclosporin A blocks IGF-1-induced cyclin D1 and p21Cip1expression significantly (P < 0.05). IGF-1 enhances cellular metabolic activity and viability of rat mesangial cells; however, they are arrested at the G1 phase of cell cycle as revealed by the FACS analysis. These results indicate that IGF-1 mediates mesangial cell-cycle progression, hypertrophy, and ECM protein synthesis. The Akt/GSK-3beta, p38MAPK, and calcineurin pathways may play an important role in IGF-1 signaling, cell-cycle regulation, and matrix gene expression in mesangial cells leading to the development of diabetic glomerulopathy.
Collapse
Affiliation(s)
- Yan Jiang
- Departments of Internal Medicine, Nephrology and Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
234
|
Cdo binds Abl to promote p38alpha/beta mitogen-activated protein kinase activity and myogenic differentiation. Mol Cell Biol 2009; 29:4130-43. [PMID: 19470755 DOI: 10.1128/mcb.00199-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway is required for differentiation of skeletal myoblasts, but how the pathway is activated during this process is not well understood. One mechanism involves the cell surface receptor Cdo (also known as Cdon), which binds to Bnip-2 and JLP, scaffold proteins for Cdc42 and p38, respectively; formation of these complexes results in Bnip-2/Cdc42-dependent activation of p38. It has been reported that the tyrosine kinase Abl promotes myogenic differentiation in a manner dependent on its cytoplasmic localization, but the cytoplasmic signaling proteins with which it interacts to achieve this effect are unidentified. We report that Abl associates with both Cdo and JLP during myoblast differentiation. Abl binds a proline-rich motif in Cdo via its SH3 domain, and these regions of Abl and Cdo are required for their promyogenic effects. Cdo is important for full Abl kinase activity, and Abl is necessary for full activation of p38 MAPK, during myogenic differentiation. As seen with myoblasts depleted of Cdo, the diminished differentiation displayed by Abl-depleted cells is rescued by the expression of an activated form of the immediate upstream p38-activating kinase MAPK kinase 6. Abl's promyogenic effect is therefore linked to a multiprotein cell surface complex that regulates differentiation-dependent p38 activation.
Collapse
|
235
|
Fiaschi T, Cirelli D, Comito G, Gelmini S, Ramponi G, Serio M, Chiarugi P. Globular adiponectin induces differentiation and fusion of skeletal muscle cells. Cell Res 2009; 19:584-97. [DOI: 10.1038/cr.2009.39] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
236
|
Bistable switches control memory and plasticity in cellular differentiation. Proc Natl Acad Sci U S A 2009; 106:6638-43. [PMID: 19366677 DOI: 10.1073/pnas.0806137106] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of stem and progenitor cells into specialized tissues in multicellular organisms involves a series of cell fate decisions. Cellular differentiation in higher organisms is generally considered irreversible, and the idea of developmental plasticity in postnatal tissues is controversial. Here, we show that inhibition of mitogen-activated protein kinase (MAPK) in a human bone marrow stromal cell-derived myogenic subclone suppresses their myogenic ability and converts them into satellite cell-like precursors that respond to osteogenic stimulation. Clonal analysis of the induced osteogenic response reveals ultrasensitivity and an "all-or-none" behavior, hallmarks of a bistable switch mechanism with stochastic noise. The response demonstrates cellular memory, which is contingent on the accumulation of an intracellular factor and can be erased by factor dilution through cell divisions or inhibition of protein synthesis. The effect of MAPK inhibition also exhibits memory and appears to be controlled by another bistable switch further upstream that determines cell fate. Once the memory associated with osteogenic differentiation is erased, the cells regain their myogenic ability. These results support a model of cell fate decision in which a network of bistable switches controls inducible production of lineage-specific differentiation factors. A competitive balance between these factors determines cell fate. Our work underscores the dynamic nature of cellular differentiation and explains mechanistically the dual properties of stability and plasticity associated with the process.
Collapse
|
237
|
Mozzetta C, Minetti G, Puri PL. Regenerative pharmacology in the treatment of genetic diseases: the paradigm of muscular dystrophy. Int J Biochem Cell Biol 2009; 41:701-10. [PMID: 18804548 PMCID: PMC2643324 DOI: 10.1016/j.biocel.2008.08.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 08/18/2008] [Accepted: 08/28/2008] [Indexed: 01/21/2023]
Abstract
Current evidence supports the therapeutic potential of pharmacological interventions that counter the progression of genetic disorders by promoting regeneration of the affected organs or tissues. The rationale behind this concept lies on the evidence that targeting key events downstream of the genetic defect can compensate, at least partially, the pathological consequence of the related disease. In this regard, the beneficial effect exerted on animal models of muscular dystrophy by pharmacological strategies that enhance muscle regeneration provides an interesting paradigm. In this review, we describe and discuss the potential targets of pharmacological strategies that promote regeneration of dystrophic muscles and alleviate the consequence of the primary genetic defect. Regenerative pharmacology provides an immediate and suitable therapeutic opportunity to slow down the decline of muscles in the present generation of dystrophic patients, with the perspective to hold them in conditions such that they could benefit of future, more definitive, therapies.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Dulbecco Telethon Institute (DTI) at Fondazione Santa Lucia/EBRI, Via di Fosso Fiorano, 64−00143 Roma, Italy
| | - Giulia Minetti
- Dulbecco Telethon Institute (DTI) at Fondazione Santa Lucia/EBRI, Via di Fosso Fiorano, 64−00143 Roma, Italy
| | - Pier Lorenzo Puri
- Dulbecco Telethon Institute (DTI) at Fondazione Santa Lucia/EBRI, Via di Fosso Fiorano, 64−00143 Roma, Italy
- The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA, United States
| |
Collapse
|
238
|
Tripathi G, Salih DAM, Drozd AC, Cosgrove RA, Cobb LJ, Pell JM. IGF-independent effects of insulin-like growth factor binding protein-5 (Igfbp5) in vivo. FASEB J 2009; 23:2616-26. [PMID: 19332648 DOI: 10.1096/fj.08-114124] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IGF activity is regulated tightly by a family of IGF binding proteins (IGFBPs). IGFBP-5 is the most conserved of these and is up-regulated significantly during differentiation of several key lineages and in some cancers. The function of IGFBP-5 in these physiological and pathological situations is unclear, however, several IGFBP-5 sequence motifs and studies in vitro suggest IGF-independent actions. Therefore, we aimed to compare the phenotypes of mice overexpressing wild-type Igfbp5 or an N-terminal mutant Igfbp5 with negligible IGF binding affinity. Both significantly inhibited growth, even at low expression levels. Even though wild-type IGFBP-5 severely disrupted the IGF axis, we found no evidence for interaction of mutant IGFBP-5 with the IGF system. Further, overexpression of wild-type IGFBP-5 rescued the lethal phenotype induced by "excess" IGF-II in type 2 receptor-null mice; mutant IGFBP-5 overexpression could not. Therefore, wild-type IGFBP-5 provides a very effective mechanism for the inhibition of IGF activity and a powerful in vivo mechanism to inhibit IGF activity in pathologies such as cancer. This study is also the first to suggest significant IGF-independent actions for IGFBP-5 during development.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | | | | |
Collapse
|
239
|
Chopra P, Kanoje V, Semwal A, Ray A. Therapeutic potential of inhaled p38 mitogen-activated protein kinase inhibitors for inflammatory pulmonary diseases. Expert Opin Investig Drugs 2008; 17:1411-25. [PMID: 18808304 DOI: 10.1517/13543784.17.10.1411] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Over the past two decades, p38 MAPK (mitogen-activated protein kinase) has been the subject of intense multidisciplinary research. p38 MAPK inhibitors have been shown to be efficacious in several disease models, including rheumatoid arthritis, psoriasis, Crohn's disease, and stroke. Recent studies support a role for p38 MAPK in the development, maintenance, and/or exacerbation of a number of pulmonary diseases, such as asthma, cystic fibrosis, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). OBJECTIVE Many previous attempts to develop p38 MAPK inhibitors have failed as a result of unacceptable safety profiles. These toxicities have been varied and are believed to derive from different off-target effects. METHOD The above concerns can be overcome by delivering the compound locally to minimize whole-body burden, resulting in low exposure to the gastrointestinal, liver, and CNS. This review discusses the role of p38 MAPK in various inflammatory diseases, followed by the toxicity concerns associated with p38 MAPK inhibition. It also highlights the possible beneficial effect of delivering drugs via the inhalation route. CONCLUSION We present proof-of-principle confirming the therapeutic potential of inhaled p38 inhibitors for asthma and other inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Puneet Chopra
- Ranbaxy Research Laboratories, Department of Pharmacology, New Drug Discovery Research, Plot No-20, Sector-18, Gurgaon-122001-Haryana, India.
| | | | | | | |
Collapse
|
240
|
Hematopoietic protein tyrosine phosphatase mediates beta2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol Cell Biol 2008; 29:675-86. [PMID: 19047375 DOI: 10.1128/mcb.01466-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of the beta(2)-adrenergic receptor (beta(2)AR) on a CD40L/interleukin-4-activated B lymphocyte increases the level of immunoglobulin E (IgE) in a protein kinase A (PKA)- and p38 mitogen-activated protein kinase (MAPK)-dependent manner. However, the mechanism by which beta(2)AR stimulation mediates the increase in the level of p38 MAPK activation has remained unclear. Here we show that the beta(2)AR-induced increase in p38 MAPK activation occurred via a hematopoietic protein tyrosine phosphatase (HePTP)-mediated cross talk between PKA and p38 MAPK. beta(2)AR agonists, cAMP-elevating agents, and PKA inhibitors were used to show that beta(2)AR stimulation resulted in a PKA-dependent increase in p38 MAPK phosphorylation. Pharmacological agents and gene-deficient mice revealed that p38 MAPK phosphorylation was regulated by the G-stimulatory (Gs)/cAMP/PKA pathway independently of the G-inhibitory or beta-arrestin-2 pathways. Coimmunoprecipitation and Western blot analysis showed that HePTP was phosphorylated in a PKA-dependent manner, which inactivated HePTP and allowed for increased free p38 MAPK to be phosphorylated by the MAPK cascade that was activated by CD40L. HePTP short hairpin RNA confirmed that HePTP played a role in regulating the level of p38 MAPK phosphorylation in a B cell. Thus, beta(2)AR stimulation on a B cell phosphorylates and inactivates HePTP in a Gs/cAMP/PKA-dependent manner to release bound p38 MAPK, making more available for phosphorylation and subsequent IgE regulation.
Collapse
|
241
|
Does satellite cell dysfunction contribute to disease progression in Emery–Dreifuss muscular dystrophy? Biochem Soc Trans 2008; 36:1344-9. [DOI: 10.1042/bst0361344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Muscular dystrophies comprise at least 34 conditions, characterized by progressive skeletal muscle weakness and degeneration. The loci affected include mutations in both muscle-specific genes and genes that are more widely expressed such as LMNA and EMD, responsible for EDMD (Emery–Dreifuss muscular dystrophy). LMNA encodes A-type lamins, whereas EMD encodes emerin, both located in the nuclear envelope. Mutation or loss of A-type lamins or emerin in the terminally differentiated myonuclei of muscle fibres results in muscle damage. Importantly, since LMNA and EMD are also expressed by the resident skeletal muscle stem cells, the satellite cells, the mutations that cause muscle damage may also directly compromise the regenerative response. Thus EDMD is different from dystrophic conditions such as Duchenne muscular dystrophy, where the mutated gene is only expressed in the muscle fibres. In this brief review, we examine the evidence that myoblasts carrying EDMD-causing mutations are compromised, and discuss the possibility that such dysfunction results in reduced efficiency of muscle regeneration, so actively contributes to disease progression.
Collapse
|
242
|
Wang K, Wang C, Xiao F, Wang H, Wu Z. JAK2/STAT2/STAT3 are required for myogenic differentiation. J Biol Chem 2008; 283:34029-36. [PMID: 18835816 DOI: 10.1074/jbc.m803012200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Skeletal muscle satellite cell-derived myoblasts are mainly responsible for postnatal muscle growth and injury-induced regeneration. However, the cellular signaling pathways that control proliferation and differentiation of myoblasts remain poorly defined. Recently, we found that JAK1/STAT1/STAT3 not only participate in myoblast proliferation but also actively prevent them from premature differentiation. Unexpectedly, we found that a related pathway consisting of JAK2, STAT2, and STAT3 is required for early myogenic differentiation. Interference of this pathway by either a small molecule inhibitor or small interfering RNA inhibits myogenic differentiation. Consistently, all three molecules are activated upon differentiation. The pro-differentiation effect of JAK2/STAT2/STAT3 is partially mediated by MyoD and MEF2. Interestingly, the expression of the IGF2 gene and the HGF gene is also regulated by JAK2/STAT2/STAT3, suggesting that this pathway could also promote differentiation by regulating signaling molecules known to be involved in myogenic differentiation. In summary, our current study reveals a novel role for the JAK2/STAT2/STAT3 pathway in myogenic differentiation.
Collapse
Affiliation(s)
- Kepeng Wang
- Department of Biochemistry, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
243
|
Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Aspects Med 2008; 29:407-14. [PMID: 18727936 DOI: 10.1016/j.mam.2008.07.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/31/2008] [Indexed: 12/22/2022]
Abstract
This review aims to summarize current knowledge on the role of vitamin D in skeletal muscle tissue and function. Vitamin D deficiency can cause a myopathy of varying severity. Clinical studies have indicated that vitamin D status is positively associated with muscle strength and physical performance and inversely associated with risk of falling. Vitamin D supplementation has shown to improve tests of muscle function, reduce falls, and possibly impact on muscle fiber composition and morphology in vitamin D deficient older adults. Molecular mechanisms of vitamin D action on muscle tissue include genomic and non-genomic effects via a receptor present in muscle cells. Genomic effects are initiated by binding of 1,25-dihydroxyvitamin D [1,25(OH)(2)D] to its nuclear receptor, which results in changes in gene transcription of mRNA and subsequent protein synthesis. Non-genomic effects of vitamin D are rapid and mediated through a cell surface receptor. Knockout mouse models of the vitamin D receptor provide insight into understanding the direct effects of vitamin D on muscle tissue. Recently, VDR polymorphisms have been described to affect muscle function. Parathyroid hormone which is strongly linked with vitamin D status also may play a role in muscle function; however, distinguishing its role from that of vitamin D has yet to be fully clarified. Despite the enormous advances in recent decades, further research is needed to fully characterize the exact underlying mechanisms of vitamin D action on muscle tissue and to understand how these cellular changes translate into clinical improvements in physical performance.
Collapse
Affiliation(s)
- Lisa Ceglia
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Bone Metabolism Laboratory, 711 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
244
|
Kang JS, Bae GU, Yi MJ, Yang YJ, Oh JE, Takaesu G, Zhou YT, Low BC, Krauss RS. A Cdo-Bnip-2-Cdc42 signaling pathway regulates p38alpha/beta MAPK activity and myogenic differentiation. ACTA ACUST UNITED AC 2008; 182:497-507. [PMID: 18678706 PMCID: PMC2500135 DOI: 10.1083/jcb.200801119] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The p38α/β mitogen-activated protein kinase (MAPK) pathway promotes skeletal myogenesis, but the mechanisms by which it is activated during this process are unclear. During myoblast differentiation, the promyogenic cell surface receptor Cdo binds to the p38α/β pathway scaffold protein JLP and, via JLP, p38α/β itself. We report that Cdo also interacts with Bnip-2, a protein that binds the small guanosine triphosphatase (GTPase) Cdc42 and a negative regulator of Cdc42, Cdc42 GTPase-activating protein (GAP). Moreover, Bnip-2 and JLP are brought together through mutual interaction with Cdo. Gain- and loss-of-function experiments with myoblasts indicate that the Cdo–Bnip-2 interaction stimulates Cdc42 activity, which in turn promotes p38α/β activity and cell differentiation. These results reveal a previously unknown linkage between a cell surface receptor and downstream modulation of Cdc42 activity. Furthermore, interaction with multiple scaffold-type proteins is a distinctive mode of cell surface receptor signaling and provides one mechanism for specificity of p38α/β activation during cell differentiation.
Collapse
Affiliation(s)
- Jong-Sun Kang
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Tagawa M, Ueyama T, Ogata T, Takehara N, Nakajima N, Isodono K, Asada S, Takahashi T, Matsubara H, Oh H. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. Am J Physiol Cell Physiol 2008; 295:C490-8. [DOI: 10.1152/ajpcell.00188.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Skeletal myogenesis is a multistep process by which multinucleated mature muscle fibers are formed from undifferentiated, mononucleated myoblasts. However, the molecular mechanisms of skeletal myogenesis have not been fully elucidated. Here, we identified muscle-restricted coiled-coil (MURC) protein as a positive regulator of myogenesis. In skeletal muscle, MURC was localized to the cytoplasm with accumulation in the Z-disc of the sarcomere. In C2C12 myoblasts, MURC expression occurred coincidentally with myogenin expression and preceded sarcomeric myosin expression during differentiation into myotubes. RNA interference (RNAi)-mediated knockdown of MURC impaired differentiation in C2C12 myoblasts, which was accompanied by impaired myogenin expression and ERK activation. Overexpression of MURC in C2C12 myoblasts resulted in the promotion of differentiation with enhanced myogenin expression and ERK activation during differentiation. During injury-induced muscle regeneration, MURC expression increased, and a higher abundance of MURC was observed in immature myofibers compared with mature myofibers. In addition, ERK was activated in regenerating tissue, and ERK activation was detected in MURC-expressing immature myofibers. These findings suggest that MURC is involved in the skeletal myogenesis that results from modulation of myogenin expression and ERK activation. MURC may play pivotal roles in the molecular mechanisms of skeletal myogenic differentiation.
Collapse
|
246
|
Yahiaoui L, Gvozdic D, Danialou G, Mack M, Petrof BJ. CC family chemokines directly regulate myoblast responses to skeletal muscle injury. J Physiol 2008; 586:3991-4004. [PMID: 18566004 DOI: 10.1113/jphysiol.2008.152090] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chemokines have been implicated in the promotion of leucocyte trafficking to diseased muscle. The purpose of this study was to determine whether a subset of inflammatory chemokines are able to directly drive myoblast proliferation, an essential early component of muscle regeneration, in a manner which is entirely independent of leucocytes. Cultured myoblasts (C2C12) were exposed to monocyte chemoattractant protein-1 (MCP-1; CCL2), macrophage inflammatory protein-1alpha (MIP-1alpha; CCL3) or MIP-1beta (CCL4). All chemokines induced phosphorylation of extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) and greatly increased myoblast proliferative responses. Chemokine-induced myoblast proliferation was abolished by pertussis toxin and the MEK1/2 inhibitor U0126, implicating both Galphai-coupled receptors and ERK1/2-dependent signalling. Myoblasts expressed receptors for all of the chemokines tested, and mitogenic responses were specifically inhibited by antibodies directed against CC family chemokine receptors 2 and 5 (CCR2 and CCR5). Within an in vitro myogenic wound healing assay devoid of leucocytes, all chemokines significantly accelerated the time course of myoblast wound closure after mechanical injury. Injections of MCP-1 into cardiotoxin-injured skeletal muscles in vivo also suppressed expression of the differentiation marker myogenin, consistent with a mitogenic effect. Taken together, our results indicate that CC chemokines have potent and direct effects on myoblast behaviour, thus indicating a novel role in muscle repair beyond leucocyte chemoattraction. Therefore, interventions aimed at modulating the balance between myoblast and leucocyte effects of CC chemokines in injured muscle could represent a novel strategy for the treatment of destructive muscle pathologies.
Collapse
Affiliation(s)
- Linda Yahiaoui
- Meakins-Christie Laboratories, McGill University, 3626 St Urbain Street, Montreal, Quebec, Canada H2X 2P2
| | | | | | | | | |
Collapse
|
247
|
Alter J, Rozentzweig D, Bengal E. Inhibition of myoblast differentiation by tumor necrosis factor alpha is mediated by c-Jun N-terminal kinase 1 and leukemia inhibitory factor. J Biol Chem 2008; 283:23224-34. [PMID: 18552402 DOI: 10.1074/jbc.m801379200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proinflammatory cytokine, TNFalpha plays a major role in muscle wasting occurring in chronic diseases and muscular dystrophies. Among its other functions, TNFalpha perturbs muscle regeneration by preventing satellite cell differentiation. In the present study, the role of c-Jun N-terminal kinase (JNK), a mediator of TNFalpha, was investigated in differentiating myoblast cell lines. Addition of TNFalpha to C2 myoblasts induced immediate and delayed phases of JNK activity. The delayed phase is associated with myoblast proliferation. Inhibition of JNK activity prevented proliferation and restored differentiation to TNFalpha-treated myoblasts. Studies with cell lines expressing MyoD:ER chimera and lacking JNK1 or JNK2 genes indicate that JNK1 activity mediates the effects of TNFalpha on myoblast proliferation and differentiation. TNFalpha does not induce proliferation or inhibit differentiation of JNK1-null myoblasts. However, differentiation of JNK1-null myoblasts is inhibited when they are grown in conditioned medium derived from cell lines affected by TNFalpha. We investigated the induced synthesis of several candidate growth factors and cytokines following treatment with TNFalpha. Expression of IL-6 and leukemia inhibitory factor (LIF) was induced by TNFalpha in wild-type and JNK2-null myoblasts. However, LIF expression was not induced by TNFalpha in JNK1-null myoblasts. Addition of LIF to the growth medium of JNK1-null myoblasts prevented their differentiation. Moreover, LIF-neutralizing antibodies added to the medium of C2 myoblasts prevented inhibition of differentiation mediated by TNFalpha. Hence, TNFalpha promotes myoblast proliferation through JNK1 and prevents myoblast differentiation through JNK1-mediated secretion of LIF.
Collapse
Affiliation(s)
- Joel Alter
- Department of Biochemistry, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
248
|
Loesch M, Chen G. The p38 MAPK stress pathway as a tumor suppressor or more? FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:3581-93. [PMID: 18508457 PMCID: PMC4758212 DOI: 10.2741/2951] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p38 mitogen-activated protein kinases (p38 MAPKs) are a group of serine/threonine protein kinases that together with ERK (extracellular signal-regulated kinases) and JNK (c-Jun N-terminal kinases) MAPKs act to convert different extracellular signals into specific cellular responses through interacting with and phosphorylating downstream targets. In contrast to the mitogenic ERK pathway, mammalian p38 MAPK family proteins (alpha, beta, gamma, and delta), with and without JNK participation, predominantly regulate inflammatory and stress response. Recent emerging evidence suggests that the p38 stress MAPK pathway may function as a tumor suppressor through regulating Ras-dependent and -independent proliferation, transformation, invasion and cell death by isoform-specific mechanisms. A selective activation of a stress pathway to block tumorigenesis may be a novel strategy to control human malignancies.
Collapse
Affiliation(s)
- Mathew Loesch
- Department of Pharmacology and Toxicology, Zablocki Department of Veterans Affairs Medical Center, Medical College of Wisconsin, WI 53226, USA
| | | |
Collapse
|
249
|
Osmotic stress induces terminal differentiation in cultured normal human epidermal keratinocytes. In Vitro Cell Dev Biol Anim 2008; 44:135-9. [DOI: 10.1007/s11626-008-9087-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/01/2008] [Indexed: 11/26/2022]
|
250
|
Involvement of NF-kappaB and AP-1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells. Eur J Pharmacol 2008; 586:59-66. [PMID: 18423597 DOI: 10.1016/j.ejphar.2008.02.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 02/12/2008] [Accepted: 02/20/2008] [Indexed: 12/29/2022]
Abstract
Icariin has been reported to facilitate the differentiation of mouse embryonic stem (ES) cells into cardiomyocytes; however, the mechanism on cardiomyogenic cell lineage differentiation has not been fully elucidated yet. In the present studies, an underlying signaling network including p38, extracellular signal-regulated kinase 1, 2 (ERK1, 2), nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) transcription factors c-jun and c-fos was assumed in icariin induced cardiomyogenesis. Icariin rapidly activated p38 and ERK1, 2 in embryoid bodies, treatment with p38 antagonist 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580) or ERK1, 2 inhibitor 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) significantly abolished icariin induced cardiac commitment, MEF2C gene expression and nuclear translocation, as well as cardiac-specific protein alpha-actinin expression, indicating that p38 and ERK1, 2 are specifically involved in icariin stimulated cardiomyogenic cell lineage differentiation of ES cells. Further, IkappaBalpha phosphorylation and NF-kappaB p65 translocation to the nucleus appeared rapidly when embryoid bodies exposed to icariin, and the expression of IkappaBalpha or NF-kappaB p65 in cytoplasm was decreased concomitantly. Moreover, icariin increased c-jun and c-fos mRNA and protein expression. Either SB203580 or U0126 displayed inhibitory effect on icariin induced NF-kappaB and AP-1 activation. It could be concluded that p38 and ERK1, 2 are activated in a coordinated manner, which in turn contribute to NF-kappaB and AP-1 activation in icariin induced cardiomyogenic cell lineage differentiation of mouse ES cells.
Collapse
|