201
|
Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion 2020; 53:178-193. [DOI: 10.1016/j.mito.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
202
|
Carraro M, Carrer A, Urbani A, Bernardi P. Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. J Mol Cell Cardiol 2020; 144:76-86. [DOI: 10.1016/j.yjmcc.2020.05.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
|
203
|
Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded F O structure. Crit Rev Biochem Mol Biol 2020; 55:309-321. [PMID: 32580582 DOI: 10.1080/10409238.2020.1784084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Of the two main sectors of the F-type ATP synthase, the membrane-intrinsic FO domain is the one which, during evolution, has undergone the highest structural variations and changes in subunit composition. The FO complexity in mitochondria is apparently related to additional enzyme functions that lack in bacterial and thylakoid complexes. Indeed, the F-type ATP synthase has the main bioenergetic role to synthesize ATP by exploiting the electrochemical gradient built by respiratory complexes. The FO membrane domain, essential in the enzyme machinery, also participates in the bioenergetic cost of synthesizing ATP and in the formation of the cristae, thus contributing to mitochondrial morphology. The recent enzyme involvement in a high-conductance channel, which forms in the inner mitochondrial membrane and promotes the mitochondrial permeability transition, highlights a new F-type ATP synthase role. Point mutations which cause amino acid substitutions in FO subunits produce mitochondrial dysfunctions and lead to severe pathologies. The FO variability in different species, pointed out by cryo-EM analysis, mirrors the multiple enzyme functions and opens a new scenario in mitochondrial biology.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
204
|
Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, Behr TS, Heim G, Hübner W, Ilgen P, Lange F, Pacheu-Grau D, Pape JK, Stoldt S, Huser T, Hell SW, Möbius W, Rehling P, Riedel D, Jakobs S. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J 2020; 39:e104105. [PMID: 32567732 PMCID: PMC7361284 DOI: 10.15252/embj.2019104105] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1 Fo -ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1 Fo -ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae.
Collapse
Affiliation(s)
- Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Brüser
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Francisco Balzarotti
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Mariam Barbot
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiana S Behr
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gudrun Heim
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Wolfgang Hübner
- Department of Physics, University Bielefeld, Bielefeld, Germany
| | - Peter Ilgen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jasmin K Pape
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Huser
- Department of Physics, University Bielefeld, Bielefeld, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| |
Collapse
|
205
|
Biner O, Fedor JG, Yin Z, Hirst J. Bottom-Up Construction of a Minimal System for Cellular Respiration and Energy Regeneration. ACS Synth Biol 2020; 9:1450-1459. [PMID: 32383867 PMCID: PMC7611821 DOI: 10.1021/acssynbio.0c00110] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine triphosphate (ATP), the cellular energy currency, is essential for life. The ability to provide a constant supply of ATP is therefore crucial for the construction of artificial cells in synthetic biology. Here, we describe the bottom-up assembly and characterization of a minimal respiratory system that uses NADH as a fuel to produce ATP from ADP and inorganic phosphate, and is thus capable of sustaining both upstream metabolic processes that rely on NAD+, and downstream energy-demanding processes that are powered by ATP hydrolysis. A detergent-mediated approach was used to co-reconstitute respiratory mitochondrial complex I and an F-type ATP synthase into nanosized liposomes. Addition of the alternative oxidase to the resulting proteoliposomes produced a minimal artificial "organelle" that reproduces the energy-converting catalytic reactions of the mitochondrial respiratory chain: NADH oxidation, ubiquinone cycling, oxygen reduction, proton pumping, and ATP synthesis. As a proof-of-principle, we demonstrate that our nanovesicles are capable of using an NAD+-linked substrate to drive cell-free protein expression. Our nanovesicles are both efficient and durable and may be applied to sustain artificial cells in future work.
Collapse
Affiliation(s)
- Olivier Biner
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Justin G Fedor
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
206
|
Hearne A, Chen H, Monarchino A, Wiseman JS. Oligomycin-induced proton uncoupling. Toxicol In Vitro 2020; 67:104907. [PMID: 32502624 DOI: 10.1016/j.tiv.2020.104907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/23/2022]
Abstract
Oligomycin is a classical mitochondrial reagent that binds to the proton channel on the Fo component of ATP synthase. As a result, oligomycin blocks mitochondrial ATP synthesis, proton translocation, and O2 uptake. Here we show that oligomycin induces proton uncoupling subsequent to inhibition of ATP synthesis, as evidenced by recovery of O2 uptake to near baseline levels. Uncoupling is uniquely rapid and readily observed in HepG2 cells but is also observed at longer times in the unrelated H1299 cell line. Proton fluxes plateau at oligomycin concentrations in the region 0.25-5 μM. At the plateau, fluxes are lower than expected for the classical mitochondrial permeability transition pore, although in H1229 cells, fluxes increase to levels consistent with pore opening at higher oligomycin concentrations. Uncoupling is observed in cells metabolizing either pyruvate or lactate and reversed by addition of glucose to restore ATP synthesis. Uncoupling is not sensitive to cyclosporin A and is not reversed by the ANT inhibitor bongkrekic acid. However, bongkrekic acid inhibits uncoupling if added before oligomycin, which we interpret in terms of maintenance of mitochondrial ATP levels.
Collapse
Affiliation(s)
- Abby Hearne
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Haotong Chen
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Anna Monarchino
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Jeffrey S Wiseman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
207
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
208
|
Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA, Chen Z, Li Y, Tomchick DR, Starai VJ, Orth K. A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM. Nat Struct Mol Biol 2020; 27:589-597. [PMID: 32424347 DOI: 10.1038/s41594-020-0429-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
The Vibrio parahaemolyticus T3SS effector VopQ targets host-cell V-ATPase, resulting in blockage of autophagic flux and neutralization of acidic compartments. Here, we report the cryo-EM structure of VopQ bound to the Vo subcomplex of the V-ATPase. VopQ inserts into membranes and forms an unconventional pore while binding directly to subunit c of the V-ATPase membrane-embedded subcomplex Vo. We show that VopQ arrests yeast growth in vivo by targeting the immature Vo subcomplex in the endoplasmic reticulum (ER), thus providing insight into the observation that VopQ kills cells in the absence of a functional V-ATPase. VopQ is a bacterial effector that has been discovered to inhibit a host-membrane megadalton complex by coincidentally binding its target, inserting into a membrane and disrupting membrane potential. Collectively, our results reveal a mechanism by which bacterial effectors modulate host cell biology and provide an invaluable tool for future studies on V-ATPase-mediated membrane fusion and autophagy.
Collapse
Affiliation(s)
- Wei Peng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda K Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessie Fernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Kelly A Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
209
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
210
|
Sobti M, Walshe JL, Wu D, Ishmukhametov R, Zeng YC, Robinson CV, Berry RM, Stewart AG. Cryo-EM structures provide insight into how E. coli F 1F o ATP synthase accommodates symmetry mismatch. Nat Commun 2020; 11:2615. [PMID: 32457314 PMCID: PMC7251095 DOI: 10.1038/s41467-020-16387-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - James L Walshe
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | - Robert Ishmukhametov
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Yi C Zeng
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | - Richard M Berry
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia. .,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
211
|
Molecular dynamics simulation of proton-transfer coupled rotations in ATP synthase F O motor. Sci Rep 2020; 10:8225. [PMID: 32427921 PMCID: PMC7237500 DOI: 10.1038/s41598-020-65004-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/12/2020] [Indexed: 11/10/2022] Open
Abstract
The FO motor in FOF1 ATP synthase rotates its rotor driven by the proton motive force. While earlier studies elucidated basic mechanisms therein, recent advances in high-resolution cryo-electron microscopy enabled to investigate proton-transfer coupled FO rotary dynamics at structural details. Here, taking a hybrid Monte Carlo/molecular dynamics simulation method, we studied reversible dynamics of a yeast mitochondrial FO. We obtained the 36°-stepwise rotations of FO per one proton transfer in the ATP synthesis mode and the proton pumping in the ATP hydrolysis mode. In both modes, the most prominent path alternatively sampled states with two and three deprotonated glutamates in c-ring, by which the c-ring rotates one step. The free energy transduction efficiency in the model FO motor reached ~ 90% in optimal conditions. Moreover, mutations in key glutamate and a highly conserved arginine increased proton leakage and markedly decreased the coupling, in harmony with previous experiments. This study provides a simple framework of simulations for chemical-reaction coupled molecular dynamics calling for further studies in ATP synthase and others.
Collapse
|
212
|
Braun HP. The Oxidative Phosphorylation system of the mitochondria in plants. Mitochondrion 2020; 53:66-75. [PMID: 32334143 DOI: 10.1016/j.mito.2020.04.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Mitochondrial Oxidative Phosphorylation (OXPHOS) provides ATP for driving cellular functions. In plants, OXPHOS takes place in the context of photosynthesis. Indeed, metabolism of mitochondria and chloroplasts is tightly linked. OXPHOS has several extra functions in plants. This review takes a view on the OXPHOS system of plants, the electron transfer chain (ETC), the ATP synthase complex and the numerous supplementary enzymes involved. Electron transport pathways are especially branched in plants. Furthermore, the "classical" OXPHOS complexes include extra subunits, some of which introduce side activities into these complexes. Consequently, and to a remarkable degree, OXPHOS is a multi-functional system in plants that needs to be efficiently regulated with respect to all its physiological tasks in the mitochondria, the chloroplasts, and beyond. Regulatory mechanisms based on posttranslational protein modifications and formation of supramolecular protein assemblies are summarized and discussed.
Collapse
Affiliation(s)
- Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| |
Collapse
|
213
|
Milgrom YM, Duncan TM. F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit's C-terminal domain are mutually exclusive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148189. [PMID: 32194063 DOI: 10.1016/j.bbabio.2020.148189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
ATP synthases are important energy-coupling, rotary motor enzymes in all kingdoms of life. In all F-type ATP synthases, the central rotor of the catalytic F1 complex is composed of the γ subunit and the N-terminal domain (NTD) of the ε subunit. In the enzymes of diverse bacteria, the C-terminal domain of ε (εCTD) can undergo a dramatic conformational change to trap the enzyme in a transiently inactive state. This inhibitory mechanism is absent in the mitochondrial enzyme, so the εCTD could provide a means to selectively target ATP synthases of pathogenic bacteria for antibiotic development. For Escherichia coli and other bacterial model systems, it has been difficult to dissect the relationship between ε inhibition and a MgADP-inhibited state that is ubiquitous for FOF1 from bacteria and eukaryotes. A prior study with the isolated catalytic complex from E. coli, EcF1, showed that these two modes of inhibition are mutually exclusive, but it has long been known that interactions of F1 with the membrane-embedded FO complex modulate inhibition by the εCTD. Here, we study membranes containing EcFOF1 with wild-type ε, ε lacking the full εCTD, or ε with a small deletion at the C-terminus. By using compounds with distinct activating effects on F-ATP-ase activity, we confirm that εCTD inhibition and ubiquitous MgADP inhibition are mutually exclusive for membrane-bound E. coli F-ATP-ase. We determine that most of the enzyme complexes in wild-type membranes are in the ε-inhibited state (>50%) or in the MgADP-inhibited state (30%).
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|
214
|
Davis GA, Kramer DM. Optimization of ATP Synthase c-Rings for Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 10:1778. [PMID: 32082344 PMCID: PMC7003800 DOI: 10.3389/fpls.2019.01778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
The conversion of sunlight into useable cellular energy occurs via the proton-coupled electron transfer reactions of photosynthesis. Light is absorbed by photosynthetic pigments and transferred to photochemical reaction centers to initiate electron and proton transfer reactions to store energy in a redox gradient and an electrochemical proton gradient (proton motive force, pmf), composed of a concentration gradient (ΔpH) and an electric field (Δψ), which drives the synthesis of ATP through the thylakoid FoF1-ATP synthase. Although ATP synthase structure and function are conserved across biological kingdoms, the number of membrane-embedded ion-binding c subunits varies between organisms, ranging from 8 to 17, theoretically altering the H+/ATP ratio for different ATP synthase complexes, with profound implications for the bioenergetic processes of cellular metabolism. Of the known c-ring stoichiometries, photosynthetic c-rings are among the largest identified stoichiometries, and it has been proposed that decreasing the c-stoichiometry could increase the energy conversion efficiency of photosynthesis. Indeed, there is strong evidence that the high H+/ATP of the chloroplast ATP synthase results in a low ATP/nicotinamide adenine dinucleotide phosphate (NADPH) ratio produced by photosynthetic linear electron flow, requiring secondary processes such as cyclic electron flow to support downstream metabolism. We hypothesize that the larger c subunit stoichiometry observed in photosynthetic ATP synthases was selected for because it allows the thylakoid to maintain pmf in a range where ATP synthesis is supported, but avoids excess Δψ and ΔpH, both of which can lead to production of reactive oxygen species and subsequent photodamage. Numerical kinetic simulations of the energetics of chloroplast photosynthetic reactions with altered c-ring size predicts the energy storage of pmf and its effects on the photochemical reaction centers strongly support this hypothesis, suggesting that, despite the low efficiency and suboptimal ATP/NADPH ratio, a high H+/ATP is favored to avoid photodamage. This has important implications for the evolution and regulation of photosynthesis as well as for synthetic biology efforts to alter photosynthetic efficiency by engineering the ATP synthase.
Collapse
Affiliation(s)
- Geoffry A. Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - David M. Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
215
|
Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proc Natl Acad Sci U S A 2020; 117:2412-2421. [PMID: 31964824 DOI: 10.1073/pnas.1917968117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mitochondria have a characteristic ultrastructure with invaginations of the inner membrane called cristae that contain the protein complexes of the oxidative phosphorylation system. How this particular morphology of the respiratory membrane impacts energy conversion is currently unknown. One proposed role of cristae formation is to facilitate the establishment of local proton gradients to fuel ATP synthesis. Here, we determined the local pH values at defined sublocations within mitochondria of respiring yeast cells by fusing a pH-sensitive GFP to proteins residing in different mitochondrial subcompartments. Only a small proton gradient was detected over the inner membrane in wild type or cristae-lacking cells. Conversely, the obtained pH values did barely permit ATP synthesis in a reconstituted system containing purified yeast F1F0 ATP synthase, although, thermodynamically, a sufficiently high driving force was applied. At higher driving forces, where robust ATP synthesis was observed, a P-side pH value of 6 increased the ATP synthesis rate 3-fold compared to pH 7. In contrast, when ATP synthase was coreconstituted with an active proton-translocating cytochrome oxidase, ATP synthesis readily occurred at the measured, physiological pH values. Our study thus reveals that the morphology of the inner membrane does not influence the subcompartmental pH values and is not necessary for robust oxidative phosphorylation in mitochondria. Instead, it is likely that the dense packing of the oxidative phosphorylation complexes in the cristae membranes assists kinetic coupling between proton pumping and ATP synthesis.
Collapse
|
216
|
Duan Z, Li K, Zhang L, Che L, Lu L, Rochaix JD, Lu C, Peng L. F-Type ATP Synthase Assembly Factors Atp11 and Atp12 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:522753. [PMID: 33193469 PMCID: PMC7607909 DOI: 10.3389/fpls.2020.522753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/28/2020] [Indexed: 05/03/2023]
Abstract
Atp11p and Atp12p are members of two chaperone families essential for assembly of the mitochondrial ATP synthase in Saccharomyces cerevisiae and Homo sapiens. However, the role of their homologs in higher plants is unclear with regard to the assembly of both chloroplast ATP synthase (cpATPase) and mitochondrial ATP synthase (mtATPase). Here, we show that loss of either Atp11 or Atp12 is lethal in Arabidopsis. While Atp12 is only localized in mitochondria, Atp11 is present both in chloroplasts and mitochondria. Yeast two-hybrid analyses showed that, as their homologs in yeast, Atp11 specifically interacts with the β subunit of the mtATPase and cpATPase, and Atp12 interacts with the α subunit of the mtATPase, implying that Atp11 and Atp12 fulfill a conserved task during assembly of ATP synthase. However, the binding sites for Atp11 in the β subunit of mtATPase and cpATPase are slightly different, suggesting that the mechanisms of action may have evolved in different ways. Although Atp11 interacts with cpATPase β subunit as the two assembly factors BFA3 and BFA1, they bind to different sites of the β subunit. These results indicate that Atp11 is involved in the assembly of both cpATPase and mtATPase but Atp12 is specifically required for the assembly of mtATPase in higher plants.
Collapse
Affiliation(s)
- Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Kaiwen Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lin Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liping Che
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lizhen Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lianwei Peng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- *Correspondence: Lianwei Peng,
| |
Collapse
|
217
|
Algieri C, Trombetti F, Pagliarani A, Ventrella V, Bernardini C, Fabbri M, Forni M, Nesci S. Mitochondrial Ca 2+ -activated F 1 F O -ATPase hydrolyzes ATP and promotes the permeability transition pore. Ann N Y Acad Sci 2019; 1457:142-157. [PMID: 31441951 DOI: 10.1111/nyas.14218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 01/14/2023]
Abstract
The properties of the mitochondrial F1 FO -ATPase catalytic site, which can bind Mg2+ , Mn2+ , or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+ -activated F1 FO -ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1 FO -ATPase in competition with Mn2+ , Ca2+ is a noncompetitive inhibitor in the presence of Mg2+ . Selective F1 inhibitors (Is-F1 ), namely NBD-Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+ - or Mg2+ -activated F1 FO -ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+ . In a partially purified F1 domain preparation, Ca2+ -activated F1 -ATPase maintained Is-F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+ -activated F1 FO -ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
218
|
Mühleip A, McComas SE, Amunts A. Structure of a mitochondrial ATP synthase with bound native cardiolipin. eLife 2019; 8:51179. [PMID: 31738165 PMCID: PMC6930080 DOI: 10.7554/elife.51179] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/16/2019] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial ATP synthase fuels eukaryotic cells with chemical energy. Here we report the cryo-EM structure of a divergent ATP synthase dimer from mitochondria of Euglena gracilis, a member of the phylum Euglenozoa that also includes human parasites. It features 29 different subunits, 8 of which are newly identified. The membrane region was determined to 2.8 Å resolution, enabling the identification of 37 associated lipids, including 25 cardiolipins, which provides insight into protein-lipid interactions and their functional roles. The rotor-stator interface comprises four membrane-embedded horizontal helices, including a distinct subunit a. The dimer interface is formed entirely by phylum-specific components, and a peripherally associated subcomplex contributes to the membrane curvature. The central and peripheral stalks directly interact with each other. Last, the ATPase inhibitory factor 1 (IF1) binds in a mode that is different from human, but conserved in Trypanosomatids. Every living thing uses the energy-rich molecule called adenosine triphosphate, or ATP, as fuel. It is the universal molecular currency for transferring energy. Cells trade it, mitochondria make it, and the energy extracted from it is used to drive chemical reactions, transport molecules across cell membranes, energize nerve impulses and contract muscles. ATP synthase is the enzyme that makes ATP molecules. It is a multi-part complex that straddles the inner membrane of mitochondria, the energy factories in cells. The enzyme complex interacts with fatty molecules in the mitochondrial inner membrane, creating a curvature that is required to produce ATP more efficiently. The mitochondrial ATP synthase has been studied in many different organisms, including yeast, algae, plants, pigs, cows and humans. These studies show that most of these ATP synthases are similar to each other, but obtaining a high resolution structure has been a challenge. Some single-cell organisms have unusual ATP synthases, which provide clues about how the enzyme evolved in pursuit of the most energy efficient arrangement. One such organism is the photosynthetic Euglena gracilis, which is closely related to the human parasites that cause sleeping sickness and Chagas disease. Now, Mü̈hleip et al. have extracted ATP synthase from E. gracilis and reconstructed its structure using electron cryo-microscopy. The high resolution of this reconstruction allowed for the first time to examine the fatty molecules associated with ATP synthase, called cardiolipins. This is important, because cardiolipins are thought to modulate the rotating motor of the enzyme and affect how the complex sits in the membrane. The analysis revealed that the ATP synthase in E. gracilis has 29 different protein subunits, 13 of which are only found in organisms of the same family. Some of the newly discovered subunits are glued together by fatty molecules and extend into the surrounding mitochondrial membrane. This distinctive structure suggests an adaptation which likely evolved independently in E. gracilis for efficiency. These results represent an important advance in the field, and provide direct evidence for the functional roles of cardiolipin. This information will be used to reconstruct the evolution of this mighty molecule and to further study the roles of cardiolipin in energy conversion. Moreover, the analysis identified similarities between the ATP synthase in E. gracilis and human parasites, which could provide new therapeutic targets in disease-causing parasites.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah E McComas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
219
|
Artika IM. Current understanding of structure, function and biogenesis of yeast mitochondrial ATP synthase. J Bioenerg Biomembr 2019; 51:315-328. [DOI: 10.1007/s10863-019-09809-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
|
220
|
Nesci S, Pagliarani A. Emerging Roles for the Mitochondrial ATP Synthase Supercomplexes. Trends Biochem Sci 2019; 44:821-823. [PMID: 31402189 DOI: 10.1016/j.tibs.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
As pointed out by Gu et al. (Science 2019) in mammalian mitochondria, the H-shaped tetrameric structure of the ATP synthase, the cell powerhouse, consists of two V-shaped dimers linked by two IF1 in antiparallel arrangement. This supramolecular structure reveals new functional/structural roles of the enzyme complex in mitochondria.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano Emilia, Bologna, Italy.
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
221
|
Murphy BJ, Klusch N, Langer J, Mills DJ, Yildiz Ö, Kühlbrandt W. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Focoupling. Science 2019; 364:364/6446/eaaw9128. [DOI: 10.1126/science.aaw9128] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022]
Abstract
F1Fo–adenosine triphosphate (ATP) synthases make the energy of the proton-motive force available for energy-consuming processes in the cell. We determined the single-particle cryo–electron microscopy structure of active dimeric ATP synthase from mitochondria ofPolytomellasp. at a resolution of 2.7 to 2.8 angstroms. Separation of 13 well-defined rotary substates by three-dimensional classification provides a detailed picture of the molecular motions that accompanyc-ring rotation and result in ATP synthesis. Crucially, the F1head rotates along with the central stalk andc-ring rotor for the first ~30° of each 120° primary rotary step to facilitate flexible coupling of the stoichiometrically mismatched F1and Fosubcomplexes. Flexibility is mediated primarily by the interdomain hinge of the conserved OSCP subunit. A conserved metal ion in the proton access channel may synchronizec-ring protonation with rotation.
Collapse
|
222
|
Guo L, Carraro M, Carrer A, Minervini G, Urbani A, Masgras I, Tosatto SCE, Szabò I, Bernardi P, Lippe G. Arg-8 of yeast subunit e contributes to the stability of F-ATP synthase dimers and to the generation of the full-conductance mitochondrial megachannel. J Biol Chem 2019; 294:10987-10997. [PMID: 31160339 DOI: 10.1074/jbc.ra119.008775] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
The mitochondrial F-ATP synthase is a complex molecular motor arranged in V-shaped dimers that is responsible for most cellular ATP synthesis in aerobic conditions. In the yeast F-ATP synthase, subunits e and g of the FO sector constitute a lateral domain, which is required for dimer stability and cristae formation. Here, by using site-directed mutagenesis, we identified Arg-8 of subunit e as a critical residue in mediating interactions between subunits e and g, most likely through an interaction with Glu-83 of subunit g. Consistent with this hypothesis, (i) the substitution of Arg-8 in subunit e (eArg-8) with Ala or Glu or of Glu-83 in subunit g (gGlu-83) with Ala or Lys destabilized the digitonin-extracted F-ATP synthase, resulting in decreased dimer formation as revealed by blue-native electrophoresis; and (ii) simultaneous substitution of eArg-8 with Glu and of gGlu-83 with Lys rescued digitonin-stable F-ATP synthase dimers. When tested in lipid bilayers for generation of Ca2+-dependent channels, WT dimers displayed the high-conductance channel activity expected for the mitochondrial megachannel/permeability transition pore, whereas dimers obtained at low digitonin concentrations from the Arg-8 variants displayed currents of strikingly small conductance. Remarkably, double replacement of eArg-8 with Glu and of gGlu-83 with Lys restored high-conductance channels indistinguishable from those seen in WT enzymes. These findings suggest that the interaction of subunit e with subunit g is important for generation of the full-conductance megachannel from F-ATP synthase.
Collapse
Affiliation(s)
- Lishu Guo
- Departments of Biomedical Sciences and
| | | | | | | | | | | | - Silvio C E Tosatto
- Departments of Biomedical Sciences and; Consiglio Nazionale delle Ricerche Institute of Neuroscience, 35131 Padova, Italy, and
| | - Ildikò Szabò
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, 35131 Padova, Italy, and; Biology, University of Padova, 35131 Padova, Italy
| | - Paolo Bernardi
- Departments of Biomedical Sciences and; Consiglio Nazionale delle Ricerche Institute of Neuroscience, 35131 Padova, Italy, and.
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy.
| |
Collapse
|
223
|
Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proc Natl Acad Sci U S A 2019; 116:4250-4255. [PMID: 30760595 PMCID: PMC6410833 DOI: 10.1073/pnas.1816556116] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATP synthase in the inner membrane of mitochondria generates most of the ATP that enables higher organisms to live. The inner membrane forms deep invaginations called cristae. Mitochondrial ATP synthases are dimeric complexes of two identical monomers. It is known that the ATP synthase dimers form rows along the tightly curved cristae ridges. Computer simulations suggest that the dimer rows bend the membrane locally, but this has not been shown experimentally. In this study, we use electron cryotomography to provide experimental proof that ATP synthase dimers assemble spontaneously into rows upon membrane reconstitution, and that these rows bend the membrane. The assembly of ATP synthase dimers into rows is most likely the first step in the formation of mitochondrial cristae. Mitochondrial ATP synthases form dimers, which assemble into long ribbons at the rims of the inner membrane cristae. We reconstituted detergent-purified mitochondrial ATP synthase dimers from the green algae Polytomella sp. and the yeast Yarrowia lipolytica into liposomes and examined them by electron cryotomography. Tomographic volumes revealed that ATP synthase dimers from both species self-assemble into rows and bend the lipid bilayer locally. The dimer rows and the induced degree of membrane curvature closely resemble those in the inner membrane cristae. Monomers of mitochondrial ATP synthase reconstituted into liposomes do not bend membrane visibly and do not form rows. No specific lipids or proteins other than ATP synthase dimers are required for row formation and membrane remodelling. Long rows of ATP synthase dimers are a conserved feature of mitochondrial inner membranes. They are required for cristae formation and a main factor in mitochondrial morphogenesis.
Collapse
|