201
|
Huang X, Liu C, Li H, Dai T, Luo G, Zhang C, Li T, Lü M. Hypoxia-responsive lncRNA G077640 promotes ESCC tumorigenesis via the H2AX-HIF1α-glycolysis axis. Carcinogenesis 2023; 44:383-393. [PMID: 37248865 DOI: 10.1093/carcin/bgad036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/12/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) contribute to esophageal squamous cell carcinoma (ESCC) progression, but the underlying mechanisms remain elusive. In this study, we verified a hitherto uncharacterized hypoxia-responsive lncRNA, G077640, which is upregulated in human ESCC cells and tissues, supporting the proliferation and migration of ESCC cells. Mechanistically, G077640 prevented hypoxia-inducible factor-1α (HIF1α) from being degraded by directly interacting with histone H2AX and further modulated the interaction of HIF1α and H2AX. In addition, G077640 reprogrammed glycolytic metabolism by regulating the expression of glucose transporter 4 (GLUT4), hexokinase 2 (HK2) and pyruvate dehydrogenase kinase 1 (PDK1) for ESCC proliferation and migration. Clinically, G077640 was associated with poor prognosis in ESCC patients. Taken together, our findings identified a hypoxia-responsive lncRNA that contributes to ESCC cells proliferation and migration, and targeting G077640 and its pathway might be a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Xiaomei Huang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Chunxia Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Hao Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianyang Dai
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
202
|
Xu Y, Liu H, Xiong W, Peng Y, Li X, Long X, Jin J, Liang J, Weng R, Liu J, Zhang L, Liu Y. A novel mechanism regulating pyroptosis-induced fibrosis in endometriosis via lnc-MALAT1/miR-141-3p/NLRP3 pathway†. Biol Reprod 2023; 109:156-171. [PMID: 37233993 DOI: 10.1093/biolre/ioad057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 05/27/2023] Open
Abstract
Endometriosis is a chronic inflammatory disease distinguished by ectopic endometrium and fibrosis. NLRP3 inflammasome and pyroptosis are present in endometriosis. Aberrant increase of Long noncoding (Lnc)-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a vital role in endometriosis. However, the relationship between lnc-MALAT1, pyroptosis, and fibrosis is not completely known. In the present study, we found that the pyroptosis levels in ectopic endometrium of patients with endometriosis were significantly increased, consistent with fibrosis levels. Lipopolysaccharide (LPS) + ATP could induce pyroptosis of primary endometrial stromal cells (ESCs), thereby releasing interleukin (IL)-1β and stimulating transforming growth factor (TGF)-β1-mediated fibrosis. NLRP3 inhibitor MCC950 had the same effect as TGF-β1 inhibitor SB-431542 in suppressing the fibrosis-inducing effect of LPS + ATP in vivo and in vitro. The abnormal increase of lnc-MALAT1 in ectopic endometrium was connected with NLRP3-mediated pyroptosis and fibrosis. Leveraging bioinformatic prediction and luciferase assays combined with western blotting and quantitative reverse transcriptase-polymerase chain reaction, we validated that lnc-MALAT1 sponges miR-141-3p to promote NLRP3 expression. Silencing lnc-MALAT1 in HESCs ameliorated NLRP3-mediated pyroptosis and IL-1β release, thereby relieving TGF-β1-mediated fibrosis. Consequently, our findings suggest that lnc-MALAT1 is critical for NLRP3-induced pyroptosis and fibrosis in endometriosis through sponging miR-141-3p, which may indicate a new therapeutic target of endometriosis treatment.
Collapse
Affiliation(s)
- Ying Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Reproductive Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Long
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Jin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiwen Weng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
203
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
204
|
Zheng C, Wei Y, Zhang Q, Sun M, Wang Y, Hou J, Zhang P, Lv X, Su D, Jiang Y, Gumin J, Sahni N, Hu B, Wang W, Chen X, McGrail DJ, Zhang C, Huang S, Xu H, Chen J, Lang FF, Hu J, Chen Y. Multiomics analyses reveal DARS1-AS1/YBX1-controlled posttranscriptional circuits promoting glioblastoma tumorigenesis/radioresistance. SCIENCE ADVANCES 2023; 9:eadf3984. [PMID: 37540752 PMCID: PMC10403220 DOI: 10.1126/sciadv.adf3984] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The glioblastoma (GBM) stem cell-like cells (GSCs) are critical for tumorigenesis/therapeutic resistance of GBM. Mounting evidence supports tumor-promoting function of long noncoding RNAs (lncRNAs), but their role in GSCs remains poorly understood. By combining CRISPRi screen with orthogonal multiomics approaches, we identified a lncRNA DARS1-AS1-controlled posttranscriptional circuitry that promoted the malignant properties of GBM cells/GSCs. Depleting DARS1-AS1 inhibited the proliferation of GBM cells/GSCs and self-renewal of GSCs, prolonging survival in orthotopic GBM models. DARS1-AS1 depletion also impaired the homologous recombination (HR)-mediated double-strand break (DSB) repair and enhanced the radiosensitivity of GBM cells/GSCs. Mechanistically, DARS1-AS1 interacted with YBX1 to promote target mRNA binding and stabilization, forming a mixed transcriptional/posttranscriptional feed-forward loop to up-regulate expression of the key regulators of G1-S transition, including E2F1 and CCND1. DARS1-AS1/YBX1 also stabilized the mRNA of FOXM1, a master transcription factor regulating GSC self-renewal and DSB repair. Our findings suggest DARS1-AS1/YBX1 axis as a potential therapeutic target for sensitizing GBM to radiation/HR deficiency-targeted therapy.
Collapse
Affiliation(s)
- Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yunfei Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yujie Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Molecular and Cellular Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland, OH 44195, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, and Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Suyun Huang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Han Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
205
|
Taheri M, Askari A, Hussen BM, Eghbali A, Ghafouri-Fard S. A review on the role of MYC-induced long non-coding RNA in human disorders. Pathol Res Pract 2023; 248:154568. [PMID: 37285737 DOI: 10.1016/j.prp.2023.154568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
MINCR (MYC-Induced Long Non-Coding RNA) is classified as an lncRNA. It has a significant correlation with MYC gene. MINCR has important roles in the carcinogenesis. It has been approved that this lncRNA can act as molecular sponge for miR-28-5p, miR-708-5p, miR-876-5p and miR-146a-5p. Dysregulated levels of MINCR has been observed in different types of cancer, especially hepatocellular carcinoma. In addition to malignant conditions, schizophrenia and neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis are associated with dysregulation of expression patterns of MINCR. This review outlines MINCR molecular mechanisms of action in different disorders.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan, Erbil, Iraq
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
206
|
Qu J, Tao D, Huang W, Lu L, Fan J, Zhang S, Huang F. Assessment of prognostic role of a novel 7-lncRNA signature in HCC patients. Heliyon 2023; 9:e18493. [PMID: 37520979 PMCID: PMC10382640 DOI: 10.1016/j.heliyon.2023.e18493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is characterized by extensive risk factors, high morbidity and mortality. Clinical prognostic evaluation assay assumes a nonspecific quality. Better HCC prognostics are urgently needed. Long noncoding RNAs (lncRNAs) exerts a crucial role in tumorigenesis and development. Excavating specific lncRNAs signature to ameliorate the high-risk survival prediction in HCC patients is worthwhile. Methods Differentially expressed lncRNAs (DElncRNAs) profile was acquired from The Cancer Genome Atlas database (TCGA). Then, the lncRNAs high-risk survival prognostic model was established using the least absolute shrinkage and selection operator (LASSO)-Cox regression algorithm. The lncRNAs were evaluated in clinical specimen by PCR. The receiver operating characteristic curve (ROC) analysis was further conducted to assess the potential prognostic value of the model. Moreover, a visible nomogram containing clinicopathological features and prognostic model was developed for prediction of survival property. Potential molecular mechanism was assessed by GO, KEGG, GSEA enrichment analysis and CIBERSORT immune infiltration analysis. Results A novel 7-lncRNA risk model (AL161937.2, LINC01063, AC145207.5, POLH-AS1, LNCSRLR, MKLN1-AS, AC105345.1) was constructed and validated for HCC prognosis prediction. Kaplan-Meier analysis revealed that patients in the high-risk group suffered a poor prognosis (p = 1.813 × 10-8). These genes were detected by PCR, and the expression trend was in accordance with TCGA database. Interestingly, the risk score served as an independent risk factor for HCC patients (HR: 1.166, 95% CI:1.119-1.214, p < 0.001). The nomogram was established, and the predictive accuracy in the nomogram was prior to the TNM stage according to the ROC curve analysis. Cell proliferation related pathway, decreased CD4+ T cell, CD8+ T cell, NK cell and elevated Neutrophil, Macrophage M0 were observed in high-risk group. Besides, suppression of MKLN1-AS expression inhibited cell proliferation of HCC cells by CCK8 assay in vitro. Conclusion The 7-lncRNA signature may exert a particular prognostic prediction role in HCC and provide new insight in HCC carcinogenesis.
Collapse
Affiliation(s)
- Junchi Qu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Gastroenterology, The First People's Hospital of PingJiang, Yueyang 410400, China
| | - Di Tao
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Liting Lu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Junming Fan
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shineng Zhang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fengting Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
207
|
Reddy D, Wickman JR, Ajit SK. Epigenetic regulation in opioid induced hyperalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100146. [PMID: 38099284 PMCID: PMC10719581 DOI: 10.1016/j.ynpai.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
About 25 million American adults experience pain daily and one of the most commonly prescribed drugs to treat pain are opioids. Prolonged opioid usage and dose escalations can cause a paradoxical response where patients experience enhanced pain sensitivity. This opioid induced hyperalgesia (OIH) is a major hurdle when treating pain in the clinic because its underlying mechanisms are still not fully understood. OIH is also commonly overlooked and lacks guidelines to prevent its onset. Research on pain disorders and opioid usage have recognized potential epigenetic drivers of disease including DNA methylation, histone modifications, miRNA regulation, but their involvement in OIH has not been well studied. This article discusses epigenetic changes that may contribute to pathogenesis, with an emphasis on miRNA alterations in OIH. There is a crucial gap in knowledge including how multiple epigenetic modulators contribute to OIH. Elucidating the epigenetic changes underlying OIH and the crosstalk among these mechanisms could lead to the development of novel targets for the prevention and treatment of this painful phenomena.
Collapse
Affiliation(s)
- Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
208
|
Wu W, Zhu S, Wu Y, Dai L, Zhao J, Jiang Z. Long intergenic non-protein-coding RNA 1547 acts as a competing endogenous RNA and exerts cancer-promoting activity in non-small cell lung cancer by targeting the microRNA-195-5p/ homeobox C8 axis. Heliyon 2023; 9:e18015. [PMID: 37560663 PMCID: PMC10407678 DOI: 10.1016/j.heliyon.2023.e18015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Long intergenic non-protein coding RNA 1547 (LINC01547) presents a notable relationship with prognosis in patients with ovarian cancer. Herein, we examined the expression of LINC01547 in non-small cell lung cancer (NSCLC) to ascertain its clinical significance. We also explored the detailed functions of LINC01547 in regulating the aggressive phenotype of NSCLC and the molecular mechanism of action underlying its carcinogenic activities events in NSCLC. Furthermore, we applied the data acquired from the tissue specimens and the Cancer Genome Atlas (TCGA) database to analyze the level of LINC01547 in NSCLC and conducted functional assays to address the regulatory effect of LINC01547. Further, we examined the mechanistic interaction among LINC01547, microRNA-195-5p (miR-195-5p), and homeobox C8 (HOXC8) using bioinformatics prediction and luciferase reporter assay. LINC01547 was noticeably overexpressed, as affirmed by data from TCGA and our own cohort; moreover, poor prognosis was associated with increased LINC01547 levels in patients with NSCLC. LINC01547 regulates cell proliferation, colony-forming, migration, and invasion, and its absence produced tumor-repressing effects in NSCLC. Mechanistically, as a competitive endogenous RNA, LINC01547 decoyed miR-195-5p and consequently resulted in the overexpression of HOXC8 in NSCLC cells. Using rescue experiments, we found that the regulatory activities of LINC01547 deficient in repressing the malignant properties of NSCLC cells could be counteracted by hindering miR-195-5p or overexpressing HOXC8. Conclusively, LINC01547 serves as a crucial component to worsen the oncogenicity of NSCLC cells by controlling the miR-195-5p/HOXC8 axis. Thus, the newly identified competing endogenous RNA pathway may potentially be an attractive therapeutic for NSCLC management.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Siyu Zhu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
- Baiyun Lake Community Health Service Center of Baiyun District, Guangzhou 510450, China
| | - Yonghui Wu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Lu Dai
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Jian Zhao
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Zeyong Jiang
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| |
Collapse
|
209
|
Rocca R, Polerà N, Juli G, Grillone K, Maruca A, Di Martino MT, Artese A, Amato J, Pagano B, Randazzo A, Tagliaferri P, Tassone P, Alcaro S. Hit identification of novel small molecules interfering with MALAT1 triplex by a structure-based virtual screening. Arch Pharm (Weinheim) 2023; 356:e2300134. [PMID: 37309243 DOI: 10.1002/ardp.202300134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 06/14/2023]
Abstract
Nowadays, RNA is an attractive target for the design of new small molecules with different pharmacological activities. Among several RNA molecules, long noncoding RNAs (lncRNAs) are extensively reported to be involved in cancer pathogenesis. In particular, the overexpression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in the development of multiple myeloma (MM). Starting from the crystallographic structure of the triple-helical stability element at the 3'-end of MALAT1, we performed a structure-based virtual screening of a large commercial database, previously filtered according to the drug-like properties. After a thermodynamic analysis, we selected five compounds for the in vitro assays. Compound M5, characterized by a diazaindene scaffold, emerged as the most promising molecule enabling the destabilization of the MALAT1 triplex structure and antiproliferative activity on in vitro models of MM. M5 is proposed as a lead compound to be further optimized for improving its affinity toward MALAT1.
Collapse
Affiliation(s)
- Roberta Rocca
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
- Net4science srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Annalisa Maruca
- Net4science srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Anna Artese
- Net4science srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Pietrosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Stefano Alcaro
- Net4science srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| |
Collapse
|
210
|
Tang P, Sun D, Xu W, Li H, Chen L. Long non‑coding RNAs as potential therapeutic targets in non‑small cell lung cancer (Review). Int J Mol Med 2023; 52:68. [PMID: 37350412 PMCID: PMC10413047 DOI: 10.3892/ijmm.2023.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most common malignancies with a high morbidity and mortality rate. Long non‑coding RNAs (lncRNAs) have been reported to be closely associated with the occurrence and progression of NSCLC. In addition, lncRNAs have been documented to participate in the development of drug resistance and radiation sensitivity in patients with NSCLC. Due to their extensive functional characterization, high tissue specificity and sex specificity, lncRNAs have been proposed to be novel biomarkers and therapeutic targets for NSCLC. Therefore, in the current review, the functional classification of lncRNAs were presented, whilst the potential roles of lncRNAs in NSCLC were also summarized. Various physiological aspects, including proliferation, invasion and drug resistance, were all discussed. It is anticipated that the present review will provide a perspective on lncRNAs as potential diagnostic molecular biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Peiyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Wei Xu
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| |
Collapse
|
211
|
Peng Q, Duan N, Wang X, Wang W. The potential roles of cigarette smoke-induced extracellular vesicles in oral leukoplakia. Eur J Med Res 2023; 28:250. [PMID: 37481562 PMCID: PMC10362576 DOI: 10.1186/s40001-023-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The onset of oral leukoplakia (OLK), the most common oral lesion with a high risk of malignant transformation, is closely associated with the exposure of cigarette smoke. Cigarette smoke is a complicated mixture of more than 4500 different chemicals including various oxidants and free radical, which contributes to the onset of immune and inflammatory response or even carcinogenesis. Recent studies have proved that the exposure of cigarette smoke leads to the onset and aggravation of many diseases via significantly changed the production and components of extracellular vesicles. The extracellular vesicles are membrane-enclosed nanosized particles secreted by diverse cells and involved in cell-cell communication because of their ability to deliver a number of bioactive molecules including proteins, lipids, DNAs and RNAs. Getting insight into the mechanisms of extracellular vesicles in regulating OLK upon cigarette smoke stimulation contributes to unravel the pathophysiology of OLK in-depth. However, evidence done on the role of extracellular vesicles in cigarette smoke-induced OLK is still in its infancy. MATERIALS AND METHODS Relevant literatures on cigarette smoke, oral leukoplakia and extracellular vesicles were searched in PubMed database. CONCLUSIONS In this review, we summarize the recent findings about the function of extracellular vesicles in the pathogenesis of cigarette smoke-induced diseases, and to infer their potential utilizations as diagnostic biomarkers, prognostic evaluation, and therapeutic targets of OLK in the future.
Collapse
Affiliation(s)
- Qiao Peng
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
212
|
Shamloo S, Kloetgen A, Petroulia S, Hockemeyer K, Sievers S, Tsirigos A, Aifantis I, Imig J. Integrative CRISPR Activation and Small Molecule Inhibitor Screening for lncRNA Mediating BRAF Inhibitor Resistance in Melanoma. Biomedicines 2023; 11:2054. [PMID: 37509693 PMCID: PMC10377043 DOI: 10.3390/biomedicines11072054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of melanoma, being one of the most commonly occurring cancers, has been rising since the past decade. Patients at advanced stages of the disease have very poor prognoses, as opposed to at the earlier stages. The conventional targeted therapy is well defined and effective for advanced-stage melanomas for patients not responding to the standard-of-care immunotherapy. However, targeted therapies do not prove to be as effective as patients inevitably develop V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF)-inhibitor resistance to the respective drugs. Factors which are driving melanoma drug resistance mainly involve mutations in the mitogen-activated protein kinase (MAPK) pathway, e.g., BRAF splice variants, neuroblastoma RAS viral oncogene homolog (NRAS) amplification or parallel survival pathways. However, those mechanisms do not explain all cases of occurring resistances. Therefore, other factors accounting for BRAFi resistance must be better understood. Among them there are long non-coding RNAs (lncRNAs), but these remain functionally poorly understood. Here, we conduct a comprehensive, unbiased, and integrative study of lncRNA expression, coupled with a Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-mediated activation (CRISPRa) and small molecule inhibitor screening for BRAF inhibitor resistance to expand the knowledge of potentially druggable lncRNAs, their function, and pave the way for eventual combinatorial treatment approaches targeting diverse pathways in melanoma.
Collapse
Affiliation(s)
- Sama Shamloo
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany; (S.S.); (S.P.)
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
| | - Andreas Kloetgen
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA (K.H.); (A.T.); (I.A.)
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Stavroula Petroulia
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany; (S.S.); (S.P.)
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
| | - Kathryn Hockemeyer
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA (K.H.); (A.T.); (I.A.)
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
- Compound Management and Screening Center, 44227 Dortmund, Germany
| | - Aristotelis Tsirigos
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA (K.H.); (A.T.); (I.A.)
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY 10016, USA
| | - Ioannis Aifantis
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA (K.H.); (A.T.); (I.A.)
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Jochen Imig
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany; (S.S.); (S.P.)
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA (K.H.); (A.T.); (I.A.)
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
213
|
Dave J, Jagana V, Janostiak R, Bisserier M. Unraveling the epigenetic landscape of pulmonary arterial hypertension: implications for personalized medicine development. J Transl Med 2023; 21:477. [PMID: 37461108 DOI: 10.1186/s12967-023-04339-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial disease associated with the remodeling of pulmonary blood vessels. If left unaddressed, PAH can lead to right heart failure and even death. Multiple biological processes, such as smooth muscle proliferation, endothelial dysfunction, inflammation, and resistance to apoptosis, are associated with PAH. Increasing evidence suggests that epigenetic factors play an important role in PAH by regulating the chromatin structure and altering the expression of critical genes. For example, aberrant DNA methylation and histone modifications such as histone acetylation and methylation have been observed in patients with PAH and are linked to vascular remodeling and pulmonary vascular dysfunction. In this review article, we provide a comprehensive overview of the role of key epigenetic targets in PAH pathogenesis, including DNA methyltransferase (DNMT), ten-eleven translocation enzymes (TET), switch-independent 3A (SIN3A), enhancer of zeste homolog 2 (EZH2), histone deacetylase (HDAC), and bromodomain-containing protein 4 (BRD4). Finally, we discuss the potential of multi-omics integration to better understand the molecular signature and profile of PAH patients and how this approach can help identify personalized treatment approaches.
Collapse
Affiliation(s)
- Jaydev Dave
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
- Department of Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
| | - Vineeta Jagana
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
- Department of Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
| | - Radoslav Janostiak
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Malik Bisserier
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA.
- Department of Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA.
| |
Collapse
|
214
|
Chu F, Wu P, Mu M, Hu S, Niu C. MGCG regulates glioblastoma tumorigenicity via hnRNPK/ATG2A and promotes autophagy. Cell Death Dis 2023; 14:443. [PMID: 37460467 DOI: 10.1038/s41419-023-05959-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer in adults and has constantly been a focus of research. Long noncoding RNAs (lncRNAs) play important roles in the development of cancers. To illustrate the role of lncRNAs in the development of glioblastoma, high-throughput RNA sequencing was performed to obtain the transcripts using three freshly isolated tumor tissue samples from GBM patients and three normal brain tissue samples from the traumatic brain of patients. Then, a lncRNA, MGCG (MGC70870 is expressed at a high level in glioblastoma), which has not been reported previously in GBM, was found to be associated with the prognosis of patients. The results of bioinformatic analysis showed that MGCG was correlated with autophagy and positively correlated with the expression of the autophagy-related gene ATG2A. The data of mass spectrometry demonstrated that the hnRNPK protein was a direct target interacting with MGCG, and MGCG/hnRNPK promoted the development of GBM by enhancing the translation of ATG2A and autophagy. In conclusion, the present study showed that MGCG has the potential to promote the development of GBM and may become a candidate for molecular diagnostics and treatment of tumors.
Collapse
Affiliation(s)
- Fang Chu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Maolin Mu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Shanshan Hu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, P.R. China.
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, P.R. China.
| |
Collapse
|
215
|
Chandra O, Sharma M, Pandey N, Jha IP, Mishra S, Kong SL, Kumar V. Patterns of transcription factor binding and epigenome at promoters allow interpretable predictability of multiple functions of non-coding and coding genes. Comput Struct Biotechnol J 2023; 21:3590-3603. [PMID: 37520281 PMCID: PMC10371796 DOI: 10.1016/j.csbj.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Understanding the biological roles of all genes only through experimental methods is challenging. A computational approach with reliable interpretability is needed to infer the function of genes, particularly for non-coding RNAs. We have analyzed genomic features that are present across both coding and non-coding genes like transcription factor (TF) and cofactor ChIP-seq (823), histone modifications ChIP-seq (n = 621), cap analysis gene expression (CAGE) tags (n = 255), and DNase hypersensitivity profiles (n = 255) to predict ontology-based functions of genes. Our approach for gene function prediction was reliable (>90% balanced accuracy) for 486 gene-sets. PubMed abstract mining and CRISPR screens supported the inferred association of genes with biological functions, for which our method had high accuracy. Further analysis revealed that TF-binding patterns at promoters have high predictive strength for multiple functions. TF-binding patterns at the promoter add an unexplored dimension of explainable regulatory aspects of genes and their functions. Therefore, we performed a comprehensive analysis for the functional-specificity of TF-binding patterns at promoters and used them for clustering functions to reveal many latent groups of gene-sets involved in common major cellular processes. We also showed how our approach could be used to infer the functions of non-coding genes using the CRISPR screens of coding genes, which were validated using a long non-coding RNA CRISPR screen. Thus our results demonstrated the generality of our approach by using gene-sets from CRISPR screens. Overall, our approach opens an avenue for predicting the involvement of non-coding genes in various functions.
Collapse
Affiliation(s)
- Omkar Chandra
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Madhu Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Neetesh Pandey
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Indra Prakash Jha
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Shreya Mishra
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Say Li Kong
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Vibhor Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| |
Collapse
|
216
|
Li H, Hao J, Yu W. LncRNA CASC15 inhibition relieves renal fibrosis in diabetic nephropathy through down-regulating SP-A by sponging to miR-424. Open Med (Wars) 2023; 18:20230710. [PMID: 37465354 PMCID: PMC10350895 DOI: 10.1515/med-2023-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 07/20/2023] Open
Abstract
Study has demonstrated the abnormal expression and role of lncRNA CASC15 in diabetes patients with chronic renal failure. However, its role in diabetes nephropathy (DN) is still unclear. This study aimed to investigate the potential mechanism and role of lncRNA CASC15 in DN. The relationship between miR-424 and CASC15/SP-A was predicted by Starbase software and verified by luciferase reporter assay. HK-2 cells were treated with 25 mM glucose (HG) for 24 h to establish DN cell model. MTT and flow cytometry analysis were carried out to test cell proliferation and apoptosis. Epithelial-to-mesenchymal transition (EMT) markers were analyzed by RT-qPCR and western blot assay. We proved that CASC15 could interact with miR-424, and SP-A was a target of miR-424. HG-treatment significantly enhanced lncRNA CASC15 level and decreased miR-424 level in HK-2 cells. LncRNA CASC15-siRNA significantly improved cell viability, repressed apoptosis, promoted E-cadherin expression, and inhibited N-cadherin expression in HG-treated HK-2 cells, and these effects were reversed by miR-424 inhibitor. SP-A was highly expressed in HG-treated HK-2 cells. The biological effects of miR-424 mimic on HG-treated HK-2 cells were reversed by SP-A-plasmid. In conclusion, lncRNA CASC15 inhibition relieved HG-induced HK-2 cell injury and EMT through miR-424/SP-A axis.
Collapse
Affiliation(s)
- Hui Li
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jian Hao
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 Longcheng Street, Xiaodian District,, Taiyuan, 030032, China
| | - Weimin Yu
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| |
Collapse
|
217
|
Yu F, Duan Y, Liu C, Huang H, Xiao X, He Z. Extracellular vesicles in atherosclerosis and vascular calcification: the versatile non-coding RNAs from endothelial cells and vascular smooth muscle cells. Front Med (Lausanne) 2023; 10:1193660. [PMID: 37469665 PMCID: PMC10352799 DOI: 10.3389/fmed.2023.1193660] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. Vascular calcification (VC), the deposition of calcium and phosphate within the arterial wall, is an important characteristic of AS natural history. However, medial arterial calcification (MAC) differs from intimal calcification and cannot simply be explained as the consequence of AS. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are directly involved in AS and VC processes. Understanding the communication between ECs and VSMCs is critical in revealing mechanisms underlying AS and VC. Extracellular vesicles (EVs) are found as intercellular messengers in kinds of physiological processes and pathological progression. Non-coding RNAs (ncRNAs) encapsulated in EVs are involved in AS and VC, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The effects of ncRNAs have not been comprehensively understood, especially encapsulated in EVs. Some ncRNAs have demonstrated significant roles in AS and VC, but it remains unclear the functions of the majority ncRNAs detected in EVs. In this review, we summarize ncRNAs encapsulated in EC-EVs and VSMC-EVs, and the signaling pathways that are involved in AS and VC.
Collapse
Affiliation(s)
- Fengyi Yu
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yingjie Duan
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chongmei Liu
- Department of Pathology, Yueyang People's Hospital, Yueyang, Hunan, China
| | - Hong Huang
- Hengyang Medical School, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
218
|
Mohammadi M, Asgarian-Omran H, Najafi A, Valadan R, Karami H, Naderisoraki M, Zaboli E, Eslami M, Tehrani M. Evaluation of mRNA Expression of CD244 and Its Adapter Molecules in CD8+ T Cells in Acute Leukemia. IRANIAN BIOMEDICAL JOURNAL 2023; 27:214-8. [PMID: 37634081 PMCID: PMC10507292 DOI: 10.61186/ibj.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/25/2023] [Indexed: 12/17/2023]
Abstract
Background This study investigated the role of the immune-checkpoint receptor (ICR), CD244, and its adapter molecules, in CD8+ T cells in acute leukemia. Methods Blood samples were obtained from 21 acute lymphoblastic leukemia (ALL) and 6 acute myeloid leukemia (AML) patients and 20 control subjects. Relative gene expression of CD244, immune receptor tyrosine-based switch motif-associated protein (SA), EWS/FLI1-activated transcript 2 (EAT-2), and LncRNA-GSTT1-AS1 were evaluated using quantitative reverse transcription polymerase chain reaction. Results Expression of CD244, SAP, and EAT-2 were significantly lower in CD8+ T cells from ALL patients than those from control subjects. Interestingly, the expression of SAP was much lower than that of CD244, indicating a lower ratio of SAP to CD244. Also, SAP expression was significantly lower in AML patients compared to the control group. Expression of LncRNA-GSTT1-AS1 showed no significant difference in ALL and AML patients compared to control subjects. Conclusion The low SAP/CD244 expression ratio in CD8+ T cells in ALL suggests an inhibitory role for CD244 in ALL.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Najafi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Molecular and Cell-Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Karami
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran Iran
| | - Mohammad Naderisoraki
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran Iran
| | - Ehsan Zaboli
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Hematology and Oncology, Imam Khomeini hospital, Mazandaran university of Medical Sciences, Sari, Iran
| | - Mohammad Eslami
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Hematology and Oncology, Imam Khomeini hospital, Mazandaran university of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
219
|
Mohammadi M, Asgarian-Omran H, Najafi A, Valadan R, Karami H, Naderisoraki M, Zaboli E, Eslami M, Tehrani M. Evaluation of mRNA Expression of CD244 and Its Adapter Molecules in CD8+ T Cells in Acute Leukemia. IRANIAN BIOMEDICAL JOURNAL 2023; 27:214-8. [PMID: 37634081 PMCID: PMC10507292 DOI: 10.52547/ibj.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/25/2023] [Indexed: 08/28/2023]
Abstract
Background This study investigated the role of the immune-checkpoint receptor (ICR), CD244, and its adapter molecules, in CD8+ T cells in acute leukemia. Methods Blood samples were obtained from 21 acute lymphoblastic leukemia (ALL) and 6 acute myeloid leukemia (AML) patients and 20 control subjects. Relative gene expression of CD244, immune receptor tyrosine-based switch motif-associated protein (SA), EWS/FLI1-activated transcript 2 (EAT-2), and LncRNA-GSTT1-AS1 were evaluated using quantitative reverse transcription polymerase chain reaction. Results Expression of CD244, SAP, and EAT-2 were significantly lower in CD8+ T cells from ALL patients than those from control subjects. Interestingly, the expression of SAP was much lower than that of CD244, indicating a lower ratio of SAP to CD244. Also, SAP expression was significantly lower in AML patients compared to the control group. Expression of LncRNA-GSTT1-AS1 showed no significant difference in ALL and AML patients compared to control subjects. Conclusion The low SAP/CD244 expression ratio in CD8+ T cells in ALL suggests an inhibitory role for CD244 in ALL.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Najafi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Molecular and Cell-Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Karami
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran Iran
| | - Mohammad Naderisoraki
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran Iran
| | - Ehsan Zaboli
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Hematology and Oncology, Imam Khomeini hospital, Mazandaran university of Medical Sciences, Sari, Iran
| | - Mohammad Eslami
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Hematology and Oncology, Imam Khomeini hospital, Mazandaran university of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
220
|
Taniue K, Oda T, Hayashi T, Kamoshida Y, Takeda Y, Sugawara A, Shimoura Y, Negishi L, Nagashima T, Okada-Hatakeyama M, Kawamura Y, Goshima N, Akimitsu N, Akiyama T. LncRNA ZNNT1 induces p53 degradation by interfering with the interaction between p53 and the SART3-USP15 complex. PNAS NEXUS 2023; 2:pgad220. [PMID: 37448957 PMCID: PMC10337854 DOI: 10.1093/pnasnexus/pgad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Mammalian genomes encode large number of long noncoding RNAs (lncRNAs) that play key roles in various biological processes, including proliferation, differentiation, and stem cell pluripotency. Recent studies have addressed that some lncRNAs are dysregulated in human cancers and may play crucial roles in tumor development and progression. Here, we show that the lncRNA ZNNT1 is required for the proliferation and tumorigenicity of colon cancer cells with wild-type p53. ZNNT1 knockdown leads to decreased ubiquitination and stabilization of p53 protein. Moreover, we demonstrate that ZNNT1 needs to interact with SART3 to destabilize p53 and to promote the proliferation and tumorigenicity of colon cancer cells. We further show that SART3 is associated with the ubiquitin-specific peptidase USP15 and that ZNNT1 may induce p53 destabilization by inhibiting this interaction. These results suggest that ZNNT1 interferes with the SART3-USP15 complex-mediated stabilization of p53 protein and thereby plays important roles in the proliferation and tumorigenicity of colon cancer cells. Our findings suggest that ZNNT1 may be a promising molecular target for the therapy of colon cancer.
Collapse
Affiliation(s)
- Kenzui Taniue
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takeaki Oda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tomoatsu Hayashi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuki Kamoshida
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yasuko Takeda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Anzu Sugawara
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Lumi Negishi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takeshi Nagashima
- Cellular Systems Biology Team, RIKEN Genome Sciences Center (GSC), Kanagawa 230-0045, Japan
- Present address: SCC Project Department, SRL Inc., Shizuoka 4111-8777, Japan
| | - Mariko Okada-Hatakeyama
- Cellular Systems Biology Team, RIKEN Genome Sciences Center (GSC), Kanagawa 230-0045, Japan
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshifumi Kawamura
- Research and Development Department, Fukushima Translational Research Foundation, Tokyo 103-0023, Japan
| | - Naoki Goshima
- Department of Human Science, Musashino University, Tokyo 135-8181, Japan
| | | | | |
Collapse
|
221
|
Liu D, Lu X, Huang W, Zhuang W. Long non-coding RNAs in non-small cell lung cancer: implications for EGFR-TKI resistance. Front Genet 2023; 14:1222059. [PMID: 37456663 PMCID: PMC10349551 DOI: 10.3389/fgene.2023.1222059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of malignant tumors as well as the leading cause of cancer-related deaths in the world. The application of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has dramatically improved the prognosis of NSCLC patients who harbor EGFR mutations. However, despite an excellent initial response, NSCLC inevitably becomes resistant to EGFR-TKIs, leading to irreversible disease progression. Hence, it is of great significance to shed light on the molecular mechanisms underlying the EGFR-TKI resistance in NSCLC. Long non-coding RNAs (lncRNAs) are critical gene modulators that are able to act as oncogenes or tumor suppressors that modulate tumorigenesis, invasion, and metastasis. Recently, extensive evidence demonstrates that lncRNAs also have a significant function in modulating EGFR-TKI resistance in NSCLC. In this review, we present a comprehensive summary of the lncRNAs involved in EGFR-TKI resistance in NSCLC and focus on their detailed mechanisms of action, including activation of alternative bypass signaling pathways, phenotypic transformation, intercellular communication in the tumor microenvironment, competing endogenous RNAs (ceRNAs) networks, and epigenetic modifications. In addition, we briefly discuss the limitations and the clinical implications of current lncRNAs research in this field.
Collapse
Affiliation(s)
- Detian Liu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaolin Lu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wentao Huang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
222
|
Rahaman MM, Khan NS, Zhang S. RNAMotifComp: a comprehensive method to analyze and identify structurally similar RNA motif families. Bioinformatics 2023; 39:i337-i346. [PMID: 37387191 DOI: 10.1093/bioinformatics/btad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION The 3D structures of RNA play a critical role in understanding their functionalities. There exist several computational methods to study RNA 3D structures by identifying structural motifs and categorizing them into several motif families based on their structures. Although the number of such motif families is not limited, a few of them are well-studied. Out of these structural motif families, there exist several families that are visually similar or very close in structure, even with different base interactions. Alternatively, some motif families share a set of base interactions but maintain variation in their 3D formations. These similarities among different motif families, if known, can provide a better insight into the RNA 3D structural motifs as well as their characteristic functions in cell biology. RESULTS In this work, we proposed a method, RNAMotifComp, that analyzes the instances of well-known structural motif families and establishes a relational graph among them. We also have designed a method to visualize the relational graph where the families are shown as nodes and their similarity information is represented as edges. We validated our discovered correlations of the motif families using RNAMotifContrast. Additionally, we used a basic Naïve Bayes classifier to show the importance of RNAMotifComp. The relational analysis explains the functional analogies of divergent motif families and illustrates the situations where the motifs of disparate families are predicted to be of the same family. AVAILABILITY AND IMPLEMENTATION Source code publicly available at https://github.com/ucfcbb/RNAMotifFamilySimilarity.
Collapse
Affiliation(s)
- Md Mahfuzur Rahaman
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States
| | - Nabila Shahnaz Khan
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States
| |
Collapse
|
223
|
Akhavanfar R, Shafagh SG, Mohammadpour B, Farahmand Y, Lotfalizadeh MH, Kookli K, Adili A, Siri G, Eshagh Hosseini SM. A comprehensive insight into the correlation between ncRNAs and the Wnt/β-catenin signalling pathway in gastric cancer pathogenesis. Cell Commun Signal 2023; 21:166. [PMID: 37386429 PMCID: PMC10308667 DOI: 10.1186/s12964-023-01092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/26/2023] [Indexed: 07/01/2023] Open
Abstract
During the past decades, gastric cancer (GC) has emerged as one of the most frequent malignancies with a growing rate of prevalence around the world. Despite considerable advances in therapeutic methods, the prognosis and management of patients with gastric cancer (GC) continue to be poor. As one of the candidate molecular targets in the treatment of many types of cancer, the Wnt/β-catenin pathway includes a family of proteins that have important functions in adult tissue homeostasis and embryonic development. The aberrant regulation of Wnt/β-catenin signaling is strongly correlated with the initiation and development of numerous cancers, including GC. Therefore, Wnt/β-catenin signaling has been identified as one of the main targets for extending therapeutic approaches for GC patients. Non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs, are important components of epigenetic mechanisms in gene regulation. They play vital roles in various molecular and cellular processes and regulate many signaling pathways, such as Wnt/β-catenin pathways. Insights into these regulatory molecules involved in GC development may lead to the identification of potential targets for overcoming the limitations of current therapeutic approaches. Consequently, this review aimed to provide a comprehensive overview of ncRNAs interactions involved in Wnt/β-catenin pathway function in GC with diagnostic and therapeutic perspectives. Video Abstract.
Collapse
Affiliation(s)
- Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
224
|
Davati N, Ghorbani A. Discovery of long non-coding RNAs in Aspergillus flavus response to water activity, CO 2 concentration, and temperature changes. Sci Rep 2023; 13:10330. [PMID: 37365206 DOI: 10.1038/s41598-023-37236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Although the role of long non-coding RNAs (lncRNAs) in key biological processes in animals and plants has been confirmed for decades, their identification in fungi remains limited. In this study, we discovered and characterized lncRNAs in Aspergillus flavus in response to changes in water activity, CO2 concentration, and temperature, and predicted their regulatory roles in cellular functions. A total of 472 lncRNAs were identified in the genome of A. flavus, consisting of 470 novel lncRNAs and 2 putative lncRNAs (EFT00053849670 and EFT00053849665). Our analysis of lncRNA expression revealed significant differential expression under stress conditions in A. flavus. Our findings indicate that lncRNAs in A. flavus, particularly down-regulated lncRNAs, may play pivotal regulatory roles in aflatoxin biosynthesis, respiratory activities, cellular survival, and metabolic maintenance under stress conditions. Additionally, we predicted that sense lncRNAs down-regulated by a temperature of 30 °C, osmotic stress, and CO2 concentration might indirectly regulate proline metabolism. Furthermore, subcellular localization analysis revealed that up-and down-regulated lncRNAs are frequently localized in the nucleus under stress conditions, particularly at a water activity of 0.91, while most up-regulated lncRNAs may be located in the cytoplasm under high CO2 concentration.
Collapse
Affiliation(s)
- Nafiseh Davati
- Department of Food Science and Technology, College of Food Industry, Bu-Ali Sina University, Hamedan, 65167-38695, Iran.
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| |
Collapse
|
225
|
Yi K, Yan W, Li X, Yang S, Li J, Yin Y, Yuan F, Wang H, Kang Z, Han D, Zeng Q. Identification of Long Intergenic Noncoding RNAs in Rhizoctonia cerealis following Inoculation of Wheat. Microbiol Spectr 2023; 11:e0344922. [PMID: 37036374 PMCID: PMC10269763 DOI: 10.1128/spectrum.03449-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023] Open
Abstract
Wheat sharp eyespot caused by Rhizoctonia cerealis is primarily a severe threat to worldwide wheat production. Currently, there are no resistant wheat cultivars, and the use of fungicides is the primary method for controlling this disease. Elucidating the mechanisms of R. cerealis pathogenicity can accelerate the pace of the control of this disease. Long intergenic noncoding RNAs (lincRNAs) that function in plant-pathogen interactions might provide a new perspective. We systematically analyzed lincRNAs and identified a total of 1,319 lincRNAs in R. cerealis. We found that lincRNAs are involved in various biological processes, as shown by differential expression analysis and weighted correlation network analysis (WGCNA). Next, one of nine hub lincRNAs in the blue module that was related to infection and growth processes, MSTRG.4380.1, was verified to reduce R. cerealis virulence on wheat by a host-induced gene silencing (HIGS) assay. Following that, RNA sequencing (RNA-Seq) analysis revealed that the significantly downregulated genes in the MSTRG.4380.1 knockdown lines were associated mainly with infection-related processes, including hydrolase, transmembrane transporter, and energy metabolism activities. Additionally, 23 novel microRNAs (miRNAs) were discovered during small RNA (sRNA) sequencing (sRNA-Seq) analysis of MSTRG.4380.1 knockdown, and target prediction of miRNAs suggested that MSTRG.4380.1 does not act as a competitive endogenous RNA (ceRNA). This study performed the first genome-wide identification of R. cerealis lincRNAs and miRNAs. It confirmed the involvement of a lincRNA in the infection process, providing new insights into the mechanism of R. cerealis infection and offering a new approach for protecting wheat from R. cerealis. IMPORTANCE Rhizoctonia cerealis, the primary causal agent of wheat sharp eyespot, has caused significant losses in worldwide wheat production. Since no resistant wheat cultivars exist, chemical control is the primary method. However, this approach is environmentally unfriendly and costly. RNA interference (RNAi)-mediated pathogenicity gene silencing has been proven to reduce the growth of Rhizoctonia and provides a new perspective for disease control. Recent studies have shown that lincRNAs are involved in various biological processes across species, such as biotic and abiotic stresses. Therefore, verifying the function of lincRNAs in R. cerealis is beneficial for understanding the infection mechanism. In this study, we reveal that lincRNAs could contribute to the virulence of R. cerealis, which provides new insights into controlling this pathogen.
Collapse
Affiliation(s)
- Ke Yi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiaqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Yifan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
226
|
Ru W, Zhang S, Liu J, Liu W, Huang B, Chen H. Non-Coding RNAs and Adipogenesis. Int J Mol Sci 2023; 24:9978. [PMID: 37373126 PMCID: PMC10298535 DOI: 10.3390/ijms24129978] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Adipogenesis is regarded as an intricate network in which multiple transcription factors and signal pathways are involved. Recently, big efforts have focused on understanding the epigenetic mechanisms and their involvement in the regulation of adipocyte development. Multiple studies investigating the regulatory role of non-coding RNAs (ncRNAs) in adipogenesis have been reported so far, especially lncRNA, miRNA, and circRNA. They regulate gene expression at multiple levels through interactions with proteins, DNA, and RNA. Exploring the mechanism of adipogenesis and developments in the field of non-coding RNA may provide a new insight to identify therapeutic targets for obesity and related diseases. Therefore, this article outlines the process of adipogenesis, and discusses updated roles and mechanisms of ncRNAs in the development of adipocytes.
Collapse
Affiliation(s)
- Wenxiu Ru
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Sihuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| |
Collapse
|
227
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
228
|
Graham ML, Li M, Gong AY, Deng S, Jin K, Wang S, Chen XM. Cryptosporidium parvum hijacks a host's long noncoding RNA U90926 to evade intestinal epithelial cell-autonomous antiparasitic defense. Front Immunol 2023; 14:1205468. [PMID: 37346046 PMCID: PMC10280636 DOI: 10.3389/fimmu.2023.1205468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Cryptosporidium is a zoonotic apicomplexan parasite that infects the gastrointestinal epithelium and other mucosal surfaces in humans. It is an important opportunistic pathogen in AIDS patients and a leading cause of infectious diarrhea and diarrheal-related death in children worldwide. The intestinal epithelial cells provide the first line of defense against Cryptosporidium infection and play a central role in activating and regulating the host's antiparasitic response. Increasing evidence suggests that long noncoding RNAs (lncRNAs) participate in host-pathogen interactions and play a regulatory role in the pathogenesis of diseases but the underlying molecular mechanisms are not fully understood. We previously identified a panel of host lncRNAs that are upregulated in murine intestinal epithelial cells following Cryptosporidium infection, including U90926. We demonstrate here that U90926 is acting in a pro-parasitic manner in regulating intestinal epithelial cell-autonomous antiparasitic defense. Inhibition of U90926 resulted in a decreased infection burden of the parasite while overexpression of U90926 showed an increase in infection burden in cultured murine intestinal epithelial cells. Induction of U90926 suppressed transcription of epithelial defense genes involved in controlling Cryptosporidium infection through epigenetic mechanisms. Specifically, transcription of Aebp1, which encodes the Aebp1 protein, a potent modulator of inflammation and NF-κB signaling, was suppressed by U90926. Gain- or loss-of-function of Aebp1 in the host's epithelial cells caused reciprocal alterations in the infection burden of the parasite. Interestingly, Cryptosporidium carries the Cryptosporidium virus 1 (CSpV1), a double-stranded (ds) RNA virus coding two dsRNA fragments, CSpV1-dsRdRp and CSpV1-dsCA. Both CSpV1-dsRdRp and CSpV1-dsCA can be delivered into infected cells as previously reported. We found that cells transfected with in vitro transcribed CSpV1-dsCA or CSpV1-dsRdRp displayed an increased level of U90926, suggesting that CSpV1 is involved in the upregulation of U90926 during Cryptosporidium infection. Our study highlights a new strategy by Cryptosporidium to hijack a host lncRNA to suppress epithelial cell-autonomous antiparasitic defense and allow for a robust infection.
Collapse
Affiliation(s)
- Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Ai-Yu Gong
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Kehua Jin
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Shuhong Wang
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
229
|
Xu R, He H, Wang Y, Peng Q, Mei K, Liu Y, Yang Q. LncRNA AK001796 promotes cell proliferation via acting as a ceRNA of miR-150 in hepatocellular carcinoma. Genet Mol Biol 2023; 46:e20220277. [PMID: 37272834 DOI: 10.1590/1678-4685-gmb-2022-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Long non-coding RNA AK001796 was initially identified altered in lung cancer. Recent research showed it could participate in the prognosis of hepatocellular carcinoma (HCC). However, the general biological role of AK001796 and its underlying mechanisms in HCC remain unclear. Here we demonstrated that the expression level of AK001796 in HCC tissues and cell lines was up-regulated. Silencing AK001796 suppressed the proliferation ability of HCC cells. Through dual luciferase reporter assays and loss/gain of functions studies, we identified that AK001796 could bind to miR-150, a star microRNA, promoting HCC proliferation. Furthermore, it was reported that growth factor receptor binding protein 2-associated binder 1 (GAB1) is a target gene of miR-150. Owing to AK001796 being a decoy for miR-150 and binding the same putative sites of miR-150 as GAB1, we presented that inhibition of miR-150 in AK001796 silencing cells reversed the reduction in GAB1. Subsequently, our findings demonstrated that silencing AK001796 can impair phospho-ERK1/2 and phospho-AKT. In conclusion, our investigation revealed that AK001796 promoted proliferation by enhancing phospho-ERK1/2 and phospho-AKT through AK001796/miR-150/GAB1 axis in HCC. These results provided further evidence for the critical roles of AK001796 accumulating HCC and suggested that AK001796 might act as an HCC biomarker in clinical treatment.
Collapse
Affiliation(s)
- Rui Xu
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Haitao He
- Jilin University, College of Basic Medical Sciences, Department of Cell Biology, Changchun, Jilin Province, China
| | - Yue Wang
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Qi Peng
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Ke Mei
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Yan Liu
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Qing Yang
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| |
Collapse
|
230
|
Zhang X, Zhang Y, Geng G, Gao J, Tong J, Shi L, Liu J. lncRNA NEAT1 is required for splenic erythroid differentiation. J Genet Genomics 2023; 50:454-457. [PMID: 36773722 DOI: 10.1016/j.jgg.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Affiliation(s)
- Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Guangfeng Geng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lihong Shi
- Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
231
|
Liu D, Xu C, Liu Y, Ouyang W, Lin S, Xu A, Zhang Y, Xie Y, Huang Q, Zhao W, Chen Z, Wang L, Chen S, Huang J, Wu ZB, Sun X. A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors. Front Med 2023; 17:458-475. [PMID: 36928550 DOI: 10.1007/s11684-022-0968-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 03/18/2023]
Abstract
The Ly-6 and uPAR (LU) domain-containing proteins represent a large family of cell-surface markers. In particular, mouse Ly-6A/Sca-1 is a widely used marker for various stem cells; however, its human ortholog is missing. In this study, based on a systematic survey and comparative genomic study of mouse and human LU domain-containing proteins, we identified a previously unannotated human gene encoding the candidate ortholog of mouse Ly-6A/Sca-1. This gene, hereby named LY6A, reversely overlaps with a lncRNA gene in the majority of exonic sequences. We found that LY6A is aberrantly expressed in pituitary tumors, but not in normal pituitary tissues, and may contribute to tumorigenesis. Similar to mouse Ly-6A/Sca-1, human LY6A is also upregulated by interferon, suggesting a conserved transcriptional regulatory mechanism between humans and mice. We cloned the full-length LY6A cDNA, whose encoded protein sequence, domain architecture, and exon-intron structures are all well conserved with mouse Ly-6A/Sca-1. Ectopic expression of the LY6A protein in cells demonstrates that it acts the same as mouse Ly-6A/Sca-1 in their processing and glycosylphosphatidylinositol anchoring to the cell membrane. Collectively, these studies unveil a novel human gene encoding a candidate biomarker and provide an interesting model gene for studying gene regulatory and evolutionary mechanisms.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aining Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Biomedical Big Data Center, First Affiliated Hospital, Zhejiang University School of Medicine, and Cancer Center, Zhejiang University, Hangzhou, 310000, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
232
|
Palos K, Yu L, Railey CE, Nelson Dittrich AC, Nelson ADL. Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. THE PLANT CELL 2023; 35:1762-1786. [PMID: 36738093 PMCID: PMC10226578 DOI: 10.1093/plcell/koad027] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 05/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large and diverse class of genes in eukaryotic genomes that contribute to a variety of regulatory processes. Functionally characterized lncRNAs play critical roles in plants, ranging from regulating flowering to controlling lateral root formation. However, findings from the past decade have revealed that thousands of lncRNAs are present in plant transcriptomes, and characterization has lagged far behind identification. In this setting, distinguishing function from noise is challenging. However, the plant community has been at the forefront of discovery in lncRNA biology, providing many functional and mechanistic insights that have increased our understanding of this gene class. In this review, we examine the key discoveries and insights made in plant lncRNA biology over the past two and a half decades. We describe how discoveries made in the pregenomics era have informed efforts to identify and functionally characterize lncRNAs in the subsequent decades. We provide an overview of the functional archetypes into which characterized plant lncRNAs fit and speculate on new avenues of research that may uncover yet more archetypes. Finally, this review discusses the challenges facing the field and some exciting new molecular and computational approaches that may help inform lncRNA comparative and functional analyses.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Li’ang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Caylyn E Railey
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Graduate Field, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
233
|
Zhao X, Sun X, Chen Y, Wu H, Liu Y, Jiang Y, Xie F, Chen Y. Mining of long non-coding RNAs with target genes in response to rust based on full-length transcriptome in Kentucky bluegrass. FRONTIERS IN PLANT SCIENCE 2023; 14:1158035. [PMID: 37229126 PMCID: PMC10204806 DOI: 10.3389/fpls.2023.1158035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Kentucky bluegrass (Poa pratensis L.) is an eminent turfgrass species with a complex genome, but it is sensitive to rust (Puccinia striiformis). The molecular mechanisms of Kentucky bluegrass in response to rust still remain unclear. This study aimed to elucidate differentially expressed lncRNAs (DELs) and genes (DEGs) for rust resistance based on the full-length transcriptome. First, we used single-molecule real-time sequencing technology to generate the full-length transcriptome of Kentucky bluegrass. A total of 33,541 unigenes with an average read length of 2,233 bp were obtained, which contained 220 lncRNAs and 1,604 transcription factors. Then, the comparative transcriptome between the mock-inoculated leaves and rust-infected leaves was analyzed using the full-length transcriptome as a reference genome. A total of 105 DELs were identified in response to rust infection. A total of 15,711 DEGs were detected (8,278 upregulated genes, 7,433 downregulated genes) and were enriched in plant hormone signal transduction and plant-pathogen interaction pathways. Additionally, through co-location and expression analysis, it was found that lncRNA56517, lncRNA53468, and lncRNA40596 were highly expressed in infected plants and upregulated the expression of target genes AUX/IAA, RPM1, and RPS2, respectively; meanwhile, lncRNA25980 decreased the expression level of target gene EIN3 after infection. The results suggest that these DEGs and DELs are important candidates for potentially breeding the rust-resistant Kentucky bluegrass.
Collapse
Affiliation(s)
- Xueying Zhao
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xiaoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yang Chen
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Hanfu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yujiao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Fuchun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- College of Horticulture, Northeast Agricultural University, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
234
|
Hu D, Messadi DV. Immune-Related Long Non-Coding RNA Signatures for Tongue Squamous Cell Carcinoma. Curr Oncol 2023; 30:4817-4832. [PMID: 37232821 DOI: 10.3390/curroncol30050363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) represents one of the major subsets of head and neck cancer, which is characterized by unfavorable prognosis, frequent lymph node metastasis, and high mortality rate. The molecular events regulating tongue tumorigenesis remain elusive. In this study, we aimed to identify and evaluate immune-related long non-coding RNAs (lncRNAs) as prognostic biomarkers in TSCC. METHODS The lncRNA expression data for TSCC were obtained from The Cancer Genome Atlas (TCGA) and the immune-related genes were downloaded from the Immunology Database and Analysis Portal (ImmPort). Pearson correlation analysis was performed to identify immune-related lncRNAs. The TCGA TSCC patient cohort was randomly divided into training and testing cohorts. In the training cohort, univariate and multivariate Cox regression analyses were used to determining key immune-related lncRNAs, which were then validated through Cox regression analysis, principal component analysis (PCA), and receiver operating characteristic (ROC) analysis in the testing cohort. RESULTS Six immune-related signature lncRNAs (MIR4713HG, AC104088.1, LINC00534, NAALADL2-AS2, AC083967.1, FNDC1-IT1) were found to have prognostic value in TSCC. Multivariate and univariate cox regression analyses showed that the risk score based on our six-lncRNA model, when compared to other clinicopathological factors (age, gender, stage, N, T), was an important indicator of survival rate. In addition, Kaplan-Meier survival analysis demonstrated significantly higher overall survival in the low-risk patient group than the high-risk patient group within both training and testing cohorts. The ROC analysis indicated that the AUCs for 5-year overall survival were 0.790, 0.691, and 0.721, respectively, for training, testing, and entire cohorts. Finally, PCA analysis demonstrated that the high-risk and low-risk patient groups presented significant deviation regarding their immune status. CONCLUSIONS A prognostic model based on six immune-related signature lncRNAs was established. This six-lncRNA prognostic model has clinical significance and may be helpful in the development of personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Daniel Hu
- School of Dentistry, University of California, Los Angeles, CA 90095-1668, USA
| | - Diana V Messadi
- School of Dentistry, University of California, Los Angeles, CA 90095-1668, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
235
|
Xu Y, Zhu J, Huang W, Xu K, Yang R, Zhang QC, Sun L. PrismNet: predicting protein-RNA interaction using in vivo RNA structural information. Nucleic Acids Res 2023:7151359. [PMID: 37140045 DOI: 10.1093/nar/gkad353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Fundamental to post-transcriptional regulation, the in vivo binding of RNA binding proteins (RBPs) on their RNA targets heavily depends on RNA structures. To date, most methods for RBP-RNA interaction prediction are based on RNA structures predicted from sequences, which do not consider the various intracellular environments and thus cannot predict cell type-specific RBP-RNA interactions. Here, we present a web server PrismNet that uses a deep learning tool to integrate in vivo RNA secondary structures measured by icSHAPE experiments with RBP binding site information from UV cross-linking and immunoprecipitation in the same cell lines to predict cell type-specific RBP-RNA interactions. Taking an RBP and an RNA region with sequential and structural information as input ('Sequence & Structure' mode), PrismNet outputs the binding probability of the RBP and this RNA region, together with a saliency map and a sequence-structure integrative motif. The web server is freely available at http://prismnetweb.zhanglab.net.
Collapse
Affiliation(s)
- Yiran Xu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenze Huang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kui Xu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Rui Yang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Lei Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
236
|
Salih MM, Robinson EK, Malekos E, Perez E, Capili A, Kim K, Zhang WZ, Cloonan SM, Carpenter S. LincRNA-Cox2 Regulates Smoke-induced Inflammation in Murine Macrophages. Am J Respir Cell Mol Biol 2023; 68:511-522. [PMID: 36657060 DOI: 10.1165/rcmb.2022-0413oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2023] [Indexed: 01/20/2023] Open
Abstract
Cigarette smoke (CS) exposure is a risk factor for many chronic diseases, including chronic obstructive pulmonary disease, but the mechanism by which smoke exposure can alter homeostasis and bring about chronic inflammation is poorly understood. Here, we showcase a novel role for smoke in regulating long noncoding RNAs, showing that it activates lincRNA-Cox2, which we previously characterized as functional in inflammatory regulation. Exposing lincRNA-Cox2 murine models to smoke in vivo confirmed lincRNA-Cox2 as a regulator of inflammatory gene expression in response to smoke both systemically and within the lung. We also report that lincRNA-Cox2 negatively regulates genes in smoked bone marrow-derived macrophages exposed to LPS stimulation. In addition to the effects on long noncoding RNAs, we also report dysregulated transcription and splicing of inflammatory protein-coding genes in the bone marrow niche after CS exposure in vivo. Collectively, this work provides insights into how innate immune signaling from gene expression to splicing is altered after in vivo exposure to CS and highlights an important new role for lincRNA-Cox2 in regulating immune genes after smoke exposure.
Collapse
Affiliation(s)
- Mays Mohammed Salih
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California
| | - Elektra Kantzari Robinson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California
| | - Eric Malekos
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California
| | - Elizabeth Perez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Allyson Capili
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California
| |
Collapse
|
237
|
Gao Y, Yang Y, Wei J, Yue J, Wang Y, Zhang Q, Jin M, Wang R, Yang X, Zhang J, Liu X, Liu L, Zhang Y, Yang R. LNCGM1082-mediated NLRC4 activation drives resistance to bacterial infection. Cell Mol Immunol 2023; 20:475-488. [PMID: 36941318 PMCID: PMC10203293 DOI: 10.1038/s41423-023-00995-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
The activation of NLRC4 is a major host response against intracellular bacteria infection. However, NLRC4 activation after a host senses diverse stimuli is difficult to understand. Here, we found that the lncRNA LNCGM1082 plays a critical role in the activation of NLRC4. LNCGM1082 in macrophages affects the maturation of interleukin (IL)-1β and pyroptotic cell death only after exposure to an NLRC4 ligand. Similar to NLRC4-/- mice, LNCGM1082-/- mice were highly sensitive to Salmonella Typhimurium (S. T) infection. LNCGM1082 deficiency in mouse or human macrophages inhibited IL-1β maturation and pyroptosis. Mechanistically, LNCGM1082 induced the binding of PKCδ with NLRC4 in both mice and humans. In contrast, NLRC4 did not bind PKCδ in LNCGM1082-/- macrophages. The activity of the lncRNA LNCGM1082 induced by S. T may be mediated through TLR5 in the macrophages of both mice and humans. In summary, our data indicate that TLR5-mediated LNCGM1082 activity can promote the binding of PKCδ with NLRC4 to activate NLRC4 and induce resistance to bacterial infection.
Collapse
Affiliation(s)
- Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yazheng Yang
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
| | - Jianmei Wei
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
| | - Jianmei Yue
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
| | - Ya Wang
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
| | - Mengli Jin
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
| | - Rong Wang
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
| | - Xiaorong Yang
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
| | - Junqi Zhang
- College of Life Science, Nankai University, Tianjin, 300121, China
| | - Xinqi Liu
- College of Life Science, Nankai University, Tianjin, 300121, China
| | - Lin Liu
- China National Center for Bioinformation & Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
238
|
Li L, Guo N, Liu T, Yang S, Hu X, Shi S, Li S. Genome-wide identification and characterization of long non-coding RNA in barley roots in response to Piriformospora indica colonization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111666. [PMID: 36858207 DOI: 10.1016/j.plantsci.2023.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Currently, there is very limited information about long noncoding RNAs (lncRNAs) found in barley. It remains unclear whether barley lncRNAs are responsive to Piriformospora indica (P. indica) colonization.We found that barley roots exhibited fast development and that large roots branched after P. indica colonization. Genome-wide high-throughput RNA-seq and bioinformatic analysis showed that 4356 and 5154 differentially expressed LncRNAs (DELs) were found in response to P. indica at 3 and 7 days after colonization (dai), respectively, and 2456 DELs were found at 7 dai compared to 3 dai. Based on the coexpression correlation of lncRNAmRNA, we found that 98.6% of lncRNAs were positively correlated with 3430 mRNAs at 3 dai and 7 dai. Further GO analysis showed that 30 lncRNAs might be involved in the regulation of gene transcription; 23 lncRNAs might participate in cell cycle regulation. Moreover, the metabolite analysis indicated that chlorophyll a, sucrose, protein, gibberellin, and auxin were in accordance with the results of the transcriptome, and the respective lncRNAs were positively correlated with these target RNAs. Gene silencing suggested that lncRNA TCONS_00262342 is probably a key regulator of GA3 synthesis pathway, which participates in P. indica and barley interactions. We concluded that acting as a molecular material basis and resource, lncRNAs respond to P. indica colonization by regulating metabolite content in barley and coordinate the complex regulatory process of higher life by constructing highly positive correlations with their target mRNAs.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Nannan Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tiance Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinting Hu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Si Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
239
|
Luo Q, Lv X, Yang L, Zheng W, Xu T, Sun Y. Long non-coding RNA LTCONS8875 regulates innate immunity by up-regulating IRAK4 in Miichthys miiuy (miiuy croaker). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104653. [PMID: 36736935 DOI: 10.1016/j.dci.2023.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In recent years, many studies have shown that long non-coding RNAs (lncRNAs) can regulate many biochemical processes, such as cell growth, proliferation, and immune response, which have attracted great attention. There are relatively many studies on lncRNA in mammals, while the research on lncRNA in lower vertebrates has just begun. In this study, we found a lncRNA, lncRNA LTCONS8875, related to innate immune response in Miichthys miiuy (miiuy croaker). Our results showed that lncRNA LTCONS8875 can up-regulate the expression of IRAK4 at the mRNA and protein levels, and significantly increase the production of inflammatory factors under LPS stimulation. Our research also confirmed that lncRNA LTCONS8875 plays an active role in regulating inflammation, cell proliferation, and cell viability. In summary, this research results showed that lncRNA LTCONS8875 can as an active regulatory role of innate immunity in miiuy croaker by up-regulating the expression of IRAK4, providing some insights for understanding the network mechanism of non-coding regulation of fish immunity.
Collapse
Affiliation(s)
- Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
240
|
Sawano S, Fukushima M, Akasaka T, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Up- and Downregulated Genes after Long-Term Muscle Atrophy Induced by Denervation in Mice Detected Using RNA-Seq. Life (Basel) 2023; 13:life13051111. [PMID: 37240756 DOI: 10.3390/life13051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Skeletal muscle atrophy occurs rapidly as a result of inactivity. Although there are many reports on changes in gene expression during the early phase of muscle atrophy, the patterns of up-and downregulated gene expression after long-term and equilibrated muscle atrophy are poorly understood. In this study, we comprehensively examined the changes in gene expression in long-term denervated mouse muscles using RNA-Seq. The murine right sciatic nerve was denervated, and the mice were housed for five weeks. The cross-sectional areas of the hind limb muscles were measured using an X-ray CT system 35 days after denervation. After 28 d of denervation, the cross-sectional area of the muscle decreased to approximately 65% of that of the intact left muscle and reached a plateau. Gene expression in the soleus and extensor digitorum longus (EDL) muscles on the 36th day was analyzed using RNA-Seq and validated using RT-qPCR. RNA-Seq analysis revealed that three genes-Adora1, E230016M11Rik, and Gm10718-were upregulated and one gene-Gm20515-was downregulated in the soleus muscle; additionally, four genes-Adora1, E230016M11Rik, Pigh, and Gm15557-were upregulated and one gene-Fzd7-was downregulated in the EDL muscle (FDR < 0.05). Among these genes, E230016M11Rik, one of the long non-coding RNAs, was significantly upregulated in both the muscles. These findings indicate that E230016M11Rik could be a candidate gene for the maintenance of atrophied skeletal muscle size and an atrophic state.
Collapse
Affiliation(s)
- Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara 252-5201, Japan
| | - Misaki Fukushima
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Taiki Akasaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| |
Collapse
|
241
|
Guo X, Zhang Y, Zhang Z, Lu L, Liu Y, Li Z, Zhou T, Zhang J, Li W, You W, Tao G, Chen W, Zeng H, Pan K. Gastric cancer-associated long non-coding RNA profiling and noninvasive biomarker screening based on a high-risk population cohort. Cancer Med 2023. [PMID: 37084181 DOI: 10.1002/cam4.5905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Effective noninvasive biomarkers of gastric cancer (GC) are critical for early detection and improvement of prognosis. We performed genome-wide long non-coding RNA (lncRNA) microarray analysis to identify and validate novel GC biomarkers depending on a high-risk population cohort. METHODS LncRNA profiles were described using the Human LncRNA Microarray between GC and control plasma samples. The differential candidate lncRNAs were validated in two stages by quantitative reverse transcription polymerase chain reaction (qRT-PCR). We further evaluated the joint effect between the GC-associated lncRNA and Helicobacter pylori (H. pylori) infection on the risk of cardia and non-cardia GC, respectively. RESULTS Different lncRNA expression profiles were identified between GC and control plasma with a total of 1206 differential lncRNAs including 470 upregulated and 736 downregulated in GC compared with the control group. The eight significantly upregulated lncRNAs (RP11-521D12.1, AC011995.3, RP11-5P4.3, RP11-244 K5.6, RP11-422 J15.1, CTD-2306 M5.1, CTC-428G20.2, and AC009133.20) in GC cases both in the present study and a similar microarray screening study by our collaborative team were selected for a two-stage validation. After the large sample size validation, the subjects with higher expression of RP11-244 K5.6 showed a significantly increased risk of GC with an adjusted odds ratio (OR) as 2.68 and 95% confidence interval (CI) as 1.15-6.24. Joint effects between RP11-244 K5.6 expression and H. pylori infection on the risk of GC were evaluated with no statistical significance. CONCLUSIONS Our study found different lncRNA expression profiles between GC and control plasma and preliminarily identified RP11-244 K5.6 as a potential noninvasive biomarker for GC screening.
Collapse
Affiliation(s)
- Xiaoying Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyi Zhang
- Department of Gastroenterology, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Linzhi Lu
- Department of Gastroenterology, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Yuqin Liu
- Cancer Epidemiology Research Center, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Zhexuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingying Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenqing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weicheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guoquan Tao
- Department of General Surgery, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Wanqing Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmei Zeng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaifeng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
242
|
Wu P, Nie Z, Huang Z, Zhang X. CircPCBL: Identification of Plant CircRNAs with a CNN-BiGRU-GLT Model. PLANTS (BASEL, SWITZERLAND) 2023; 12:1652. [PMID: 37111874 PMCID: PMC10143888 DOI: 10.3390/plants12081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Circular RNAs (circRNAs), which are produced post-splicing of pre-mRNAs, are strongly linked to the emergence of several tumor types. The initial stage in conducting follow-up studies involves identifying circRNAs. Currently, animals are the primary target of most established circRNA recognition technologies. However, the sequence features of plant circRNAs differ from those of animal circRNAs, making it impossible to detect plant circRNAs. For example, there are non-GT/AG splicing signals at circRNA junction sites and few reverse complementary sequences and repetitive elements in the flanking intron sequences of plant circRNAs. In addition, there have been few studies on circRNAs in plants, and thus it is urgent to create a plant-specific method for identifying circRNAs. In this study, we propose CircPCBL, a deep-learning approach that only uses raw sequences to distinguish between circRNAs found in plants and other lncRNAs. CircPCBL comprises two separate detectors: a CNN-BiGRU detector and a GLT detector. The CNN-BiGRU detector takes in the one-hot encoding of the RNA sequence as the input, while the GLT detector uses k-mer (k = 1 - 4) features. The output matrices of the two submodels are then concatenated and ultimately pass through a fully connected layer to produce the final output. To verify the generalization performance of the model, we evaluated CircPCBL using several datasets, and the results revealed that it had an F1 of 85.40% on the validation dataset composed of six different plants species and 85.88%, 75.87%, and 86.83% on the three cross-species independent test sets composed of Cucumis sativus, Populus trichocarpa, and Gossypium raimondii, respectively. With an accuracy of 90.9% and 90%, respectively, CircPCBL successfully predicted ten of the eleven circRNAs of experimentally reported Poncirus trifoliata and nine of the ten lncRNAs of rice on the real set. CircPCBL could potentially contribute to the identification of circRNAs in plants. In addition, it is remarkable that CircPCBL also achieved an average accuracy of 94.08% on the human datasets, which is also an excellent result, implying its potential application in animal datasets. Ultimately, CircPCBL is available as a web server, from which the data and source code can also be downloaded free of charge.
Collapse
Affiliation(s)
- Pengpeng Wu
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Zhenjun Nie
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
- School of Information and Computer Science, Anhui Agricultural University, Hefei 230036, China
| | - Zhiqiang Huang
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
- School of Information and Computer Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Zhang
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
- School of Information and Computer Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
243
|
Zhao X, Ye J, Lin X, Xue H, Zou X, Liu G, Deng M, Sun B, Guo Y, Liu D, Li Y. Identification of Key Functional Genes and LncRNAs Influencing Muscle Growth and Development in Leizhou Black Goats. Genes (Basel) 2023; 14:genes14040881. [PMID: 37107639 PMCID: PMC10138011 DOI: 10.3390/genes14040881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Meat yield and quality are important economic traits of livestock. Herein, longissimus dorsi (LD) muscles of Leizhou black goats aged 0, 3, and 6 months were used to identify differentially expressed messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) by high-throughput RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to analyze differentially expressed genes. Expression levels of regulator of calcineurin 1 (RCAN1) and olfactory receptor 2AP1 (OR2AP1) were significantly different in LD muscles of goats aged 0, 3, and 6 months, indicating potentially important roles in postnatal muscle development. Differentially expressed lncRNAs and mRNAs were mainly enriched in biological processes and pathways related to cellular energy metabolism, consistent with previous studies. Three lncRNAs, TCONS_00074191, TCONS_00074190, and TCONS_00078361, may play a cis-acting role with methyltransferase-like 11B (METTL11B) genes and participate in the methylation of goat muscle proteins. Some of the identified genes may provide valuable resources for future studies on postnatal meat development in goat muscles.
Collapse
Affiliation(s)
- Xiuhui Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Junning Ye
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Xunkai Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Huiwen Xue
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
244
|
Li G, Chen Q, Bai Q, Feng Y, Mao K, Yang M, He L, Liu M, Liu J, Wan D. LncRNA expression analysis by comparative transcriptomics among closely related poplars and their regulatory roles in response to salt stress. TREE PHYSIOLOGY 2023:tpad041. [PMID: 37017317 DOI: 10.1093/treephys/tpad041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in regulating key biological processes; however, our knowledge of lncRNAs' roles in plant adaptive evolution is still limited. Here, we determined the divergence of conserved lncRNAs in closely related poplar species that were either tolerant or sensitive to salt stress by comparative transcriptome analysis. Among the 34,363 identified lncRNAs, approximately 3% were shared among poplar species with conserved sequences but diversified in their function, copy number, originating genomic region and expression patterns. Further cluster analysis revealed that the conserved lncRNAs showed more similar expression patterns within salt-tolerant poplars (P. euphratica and P. pruinosa) than between salt-tolerant and salt-sensitive poplars. Among these lncRNAs, the antisense lncRNA lncERF024 was induced by salt and differentiated expression between salt-sensitive and salt-tolerant poplars. Overexpression of lncERF024 in P. alba var. pyramidalis enhanced poplar tolerance to salt stress. Furthermore, RNA pull-down and RNA-seq analysis showed that numerous candidate genes or proteins associated with stress response and photosynthesis might be involved in salt resistance in PeulncERF024-OE poplars. Altogether, our study provided novel insight into how the diversification of lncRNA expression contributes to plant adaptation traits and showed that lncERF024 may be involved in the regulation both of gene expression and protein function conferring salt tolerance in Populus.
Collapse
Affiliation(s)
- Guiting Li
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qingyuan Chen
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qiuxian Bai
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Department of Pharmacology, Ningxia Medical University, Yinchuan,750004, China
| | - Yannan Feng
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Kaili Mao
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Mengran Yang
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ling He
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Meijun Liu
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jianquan Liu
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Dongshi Wan
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
245
|
Li M, Liu Q, Xie S, Fu C, Li J, Tian C, Li X, Li C. LncRNA TCONS_00323213 Promotes Myogenic Differentiation by Interacting with PKNOX2 to Upregulate MyoG in Porcine Satellite Cells. Int J Mol Sci 2023; 24:ijms24076773. [PMID: 37047747 PMCID: PMC10094759 DOI: 10.3390/ijms24076773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Myogenic differentiation is a complex biological process that is regulated by multiple factors, among which long noncoding RNAs (lncRNAs) play an essential role. However, in-depth studies on the regulatory mechanisms of long noncoding RNAs (lncRNAs) in myogenic differentiation are limited. In this study, we characterized the role of the novel lncRNA TCONS_00323213, which is upregulated during porcine skeletal muscle satellite cell (PSC) differentiation in myogenesis. We found that TCONS_00323213 affected the proliferation and differentiation of PSC in vitro. We performed quantitative polymerase chain reaction (qPCR), 5-ethynyl-20-deoxyuridine (EdU), western blotting, immunofluorescence staining, pull-down assays, and cleavage under targets and tagmentation (CUT and Tag) assays to clarify the effects and action mechanisms of TCONS_00323213. LncRNA TCONS_00323213 inhibited myoblast proliferation based on analyses of cell survival rates during PSC proliferation. Functional analyses revealed that TCONS_00323213 promotes cell differentiation and enhances myogenin (MyoG), myosin heavy chain (MyHC), and myocyte enhancer factor 2 (MEF2C) during myoblast differentiation. As determined by pull-down and RNA immunoprecipitation (RIP) assays, the lncRNA TCONS_00323213 interacted with PBX/Knotted Homeobox 2 (PKNOX2). CUT and Tag assays showed that PKNOX2 was significantly enriched on the MyoG promoter after lncRNA TCONS_00323213 knockdown. Our findings demonstrate that the interaction between lncRNA TCONS_00323213 and PKNOX2 relieves the inhibitory effect of PKNOX2 on the MyoG promoter, increases its expression, and promotes PSC differentiation. This novel role of lncRNA TCONS_00323213 sheds light on the molecular mechanisms by which lncRNAs regulate porcine myogenesis.
Collapse
Affiliation(s)
- Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
246
|
Kohestani H, Wereszczynski J. The effects of RNA.DNA-DNA triple helices on nucleosome structures and dynamics. Biophys J 2023; 122:1229-1239. [PMID: 36798026 PMCID: PMC10111275 DOI: 10.1016/j.bpj.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/22/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Noncoding RNAs (ncRNAs) are an emerging epigenetic factor and have been recognized as playing a key role in many gene expression pathways. Structurally, binding of ncRNAs to isolated DNA is strongly dependent on sequence complementary and results in the formation of an RNA.DNA-DNA (RDD) triple helix. However, in vivo DNA is not isolated but is rather packed in chromatin fibers, the fundamental unit of which is the nucleosome. Biochemical experiments have shown that ncRNA binding to nucleosomal DNA is elevated at DNA entry and exit sites and is dependent on the presence of the H3 N-terminal tails. However, the structural and dynamical bases for these mechanisms remain unknown. Here, we have examined the mechanisms and effects of RDD formation in the context of the nucleosome using a series of all-atom molecular dynamics simulations. Results highlight the importance of DNA sequence on complex stability, elucidate the effects of the H3 tails on RDD structures, show how RDD formation impacts the structure and dynamics of the H3 tails, and show how RNA alters the local and global DNA double-helical structure. Together, our results suggest ncRNAs can modify nucleosome, and potentially higher-order chromatin, structures and dynamics as a means of exerting epigenetic control.
Collapse
Affiliation(s)
- Havva Kohestani
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Departments of Physics & Biology, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
247
|
Chen P, Cai M, Feng YJ, Li C, Dong ZQ, Xiao WF, Tang L, Zhu Y, Tian T, Deng BY, Pan MH, Lu C. Apoptosis-related long non-coding RNA LINC5438 of Bombyx mori promotes the proliferation of BmNPV. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105380. [PMID: 36963947 DOI: 10.1016/j.pestbp.2023.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Apoptosis, as an important part of the immune response, is one of the core events in the host-virus interaction. Studies have shown that long non-coding RNAs (lncRNAs) play important roles in the process of cell apoptosis and pathophysiology. To investigate the apoptosis-related lncRNAs involved in Bombyx mori nucleopolyhedrovirus (BmNPV) infecting silkworms, transcriptome sequencing was conducted based on silkworm cells infected with BmNPV before and after B. mori inhibitor of apoptosis (Bmiap) gene knockout. A total of 23 differentially expressed lncRNAs were identified as being associated with the mitochondrial apoptosis pathway. Moreover, we demonstrated that B. mori LINC5438 has the function of inhibiting apoptosis in silkworm cells. Overexpression of LINC5438 promoted the proliferation of BmNPV, while interference with LINC5438 inhibited its proliferation, indicating that LINC5438 plays an important role in BmNPV infection. Our results also showed that LINC5438 can regulate the expression of Bmiap, BmDronc, BmICE, and its predicted target gene BmAIF, suggesting that LINC5438 may function through the mitochondrial pathway. These findings provide important insights into the mechanisms of virus-host interaction and the applications of baculoviruses as biological insecticides.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min Cai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yu-Jie Feng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cong Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China; Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Liang Tang
- Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Ting Tian
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Bo-Yuan Deng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
248
|
Chen HH, Hao PH, Zhang FY, Zhang TN. Non-coding RNAs in metabolic reprogramming of bone and soft tissue sarcoma: Fundamental mechanism and clinical implication. Biomed Pharmacother 2023; 160:114346. [PMID: 36738505 DOI: 10.1016/j.biopha.2023.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Sarcomas, comprising approximately 1% of human malignancies, show a poor response to treatment and easy recurrence. Metabolic reprogramming play an important role in tumor development in sarcomas. Accumulating evidence shows that non-coding RNAs (ncRNAs) participate in regulating the cellular metabolism of sarcomas, which improves the understanding of the development of therapy-resistant tumors. This review addresses the regulatory roles of metabolism-related ncRNAs and their implications for sarcoma initiation and progression. Dysregulation of metabolism-related ncRNAs is common in sarcomas and is associated with poor survival. Emerging studies show that abnormal expression of metabolism-related ncRNAs affects cellular metabolism, including glucose, lipid, and mitochondrial metabolism, and leads to the development of aggressive sarcomas. This review summarizes recent advances in the roles of dysregulated metabolism-related ncRNAs in sarcoma development and stemness and describes their potential to serve as biological biomarkers for disease diagnosis and prognosis prediction, as well as therapeutic targets for treating refractory sarcomas.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Fang-Yuan Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
249
|
Zhang L, Yang Y, Zhang L, Ma J, Sun R, Tian Y, Yuan X, Liu B, Yu T, Jiang Z. Identification of long non-coding RNA in formaldehyde-induced cardiac dysplasia in rats. Food Chem Toxicol 2023; 174:113653. [PMID: 36758786 DOI: 10.1016/j.fct.2023.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Formaldehyde exposure during pregnancy can cause fetal congenital heart disease (CHD). However, the regulatory mechanism remains unclear. Studies on the biology of long non-coding RNAs (lncRNAs) show that lncRNAs can influence cardiac development and disease. However, expression patterns and regulatory mechanisms of action of lncRNAs in formaldehyde-induced CHD remain unclear. We used high-throughput sequencing strategies as a means of identifying lncRNA expression profiles in heart tissues of normal and formaldehyde-exposed newborn rats. Overall, 763 differentially expressed lncRNAs were identified, including 325 and 438 that were respectively up-regulated and down-regulated. GO and KEGG analyses indicated that the Ras and hedgehog signaling pathways may be important regulatory pathways in CHD caused by exposure to formaldehyde. A lncRNA-miRNA-mRNA co-expression network was constructed and a key miRNA, rno-miR-665, was identified. Furthermore, qRT-PCR analysis verified that the novel lncRNAs: MSTRG.27313.2, MSTRG.30629.2, MSTRG.36520.33, MSTRG.91234.1, and MSTRG.91233.9, were upregulated in the formaldehyde-exposed group. These differentially expressed lncRNAs identified during formaldehyde-induced CHD in newborn rats help explain CHD pathogenesis and provide an effective reference for diagnosing and treating CHD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, Linyi, 276000, PR China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Xiaoli Yuan
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Bingyu Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Road No. 38 Dengzhou, Qingdao, 266021, PR China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China.
| |
Collapse
|
250
|
Mukherjee A, Islam S, Kieser RE, Kiss DL, Mukherjee C. Long noncoding RNAs are substrates for cytoplasmic capping enzyme. FEBS Lett 2023; 597:947-961. [PMID: 36856012 PMCID: PMC11119571 DOI: 10.1002/1873-3468.14603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 03/02/2023]
Abstract
Cytoplasmic capping returns a cap to specific mRNAs, thus protecting uncapped RNAs from decay. Prior to the identification of cytoplasmic capping, uncapped mRNAs were thought to be degraded. Here, we test whether long noncoding RNAs (lncRNAs) are substrates of the cytoplasmic capping enzyme (cCE). The subcellular localisation of 14 lncRNAs associated with sarcomas were examined in U2OS osteosarcoma cells. We used 5' rapid amplification of cDNA ends (RACE) to assay uncapped forms of these lncRNAs. Inhibiting cytoplasmic capping elevated uncapped forms of selected lncRNAs indicating a plausible role of cCE in targeting them. Analysis of published cap analysis of gene expression (CAGE) data shows increased prevalence of certain 5'-RACE cloned sequences, suggesting that these uncapped lncRNAs are targets of cytoplasmic capping.
Collapse
Affiliation(s)
- Avik Mukherjee
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Safirul Islam
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Rachel E Kieser
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Daniel L Kiss
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
- Houston Methodist Cancer Center, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | | |
Collapse
|