201
|
Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B. Cross-talk between myeloid-derived suppressor cells and Mucin1 in breast cancer vaccination: On the verge of a breakthrough. Life Sci 2020; 258:118128. [PMID: 32710947 DOI: 10.1016/j.lfs.2020.118128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/22/2023]
Abstract
Although breast cancer is one of the leading troublesome cancers, the available therapeutic options have not fulfilled the desired outcomes. Immune-based therapy has gained special attention for breast cancer treatment. Although this approach is highly tolerable, its low response rate has rendered it as an undesirable approach. This review aims to describe the essential oncogenic pathways involved in breast cancer, elucidate the immunosuppression and oncogenic effect of Mucin1, and introduce myeloid-derived suppressor cells, which are the main culprits of anti-tumoral immune response attenuation. The various auto-inductive loops between Mucin1 and myeloid-derived suppressor cells are focal in the suppression of anti-tumoral immune responses in patients with breast cancer. These cross-talks between the Mucin1 and myeloid-derived suppressor cells can be the underlying causes of immunotherapy's impotence for patients with breast cancer. This approach can pave the road for the development of a potent vaccine for patients with breast cancer and is translated into clinical settings.
Collapse
Affiliation(s)
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
202
|
Sharma A, Sun J, Singaram I, Ralko A, Lee D, Cho W. Photostable and Orthogonal Solvatochromic Fluorophores for Simultaneous In Situ Quantification of Multiple Cellular Signaling Molecules. ACS Chem Biol 2020; 15:1913-1920. [PMID: 32525312 PMCID: PMC7909721 DOI: 10.1021/acschembio.0c00241] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ratiometric fluorescence sensors are powerful tools for direct quantification of diverse biological analytes. To overcome a shortage of solvatochromic fluorophores crucial for in situ ratiometric imaging of biological targets, we prepared and characterized a small library of modular fluorophores with diverse spectral properties. Among them, WCB and WCR showed excellent spectral properties, including high photostability, brightness, and solvatochromism, and are ideally suited for dual ratiometric imaging due to their spectral orthogonality. By conjugating WCB and WCR with protein-based lipid sensors, we were able to achieve robust simultaneous in situ quantitative imaging of two metabolically linked signaling lipids, phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate in live cells. This study shows that any combination of signaling molecules can be simultaneously quantified in a spatiotemporally resolved manner by ratiometric imaging with finely tuned solvatochromic fluorophores.
Collapse
Affiliation(s)
| | | | - Indira Singaram
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607, United States
| | - Arthur Ralko
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607, United States
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607, United States
| |
Collapse
|
203
|
Zeng C, Xiong D, Zhang K, Yao J. Shank-associated RH domain interactor signaling in tumorigenesis. Oncol Lett 2020; 20:2579-2586. [PMID: 32782575 PMCID: PMC7400965 DOI: 10.3892/ol.2020.11850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Shank-associated RH domain interactor (SHARPIN) is a component of the linear ubiquitin chain activation complex, which is essential for p53 signaling and inflammation. Previous studies have demonstrated that SHARPIN functions in tumor cell survival, growth, invasion and tumorigenesis. These functions include the regulation of p53 proteins via poly-ubiquitination, interaction with a type II protein arginine methyltransferase 5 in melanoma cells, modulating ras-associated protein-1 through p38 and c-Jun N-terminal kinases/c-Jun signaling, and mediating phosphoinositide 3-kinase/AKT signaling via phosphatase and tensin homologue deleted on chromosome 10. Hence, SHARPIN not only participates in the inflammatory response but also serves a critical role in tumor cells. The present review summarizes the biological functions of the absence or presence of SHARPIN with regard to activating the canonical NF-κB signaling pathway and the effects on p53 and other signaling pathways for the modulation of tumorigenesis. Therefore, this review provides insight into the underlying role and mechanisms of SHARPIN in tumorigenesis, as well as its potential application in cancer therapy.
Collapse
Affiliation(s)
- Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Dan Xiong
- Department of Hematology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Ketao Zhang
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Jie Yao
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| |
Collapse
|
204
|
Young BP, Post KL, Chao JT, Meili F, Haas K, Loewen C. Sentinel interaction mapping - a generic approach for the functional analysis of human disease gene variants using yeast. Dis Model Mech 2020; 13:dmm044560. [PMID: 32471850 PMCID: PMC7358137 DOI: 10.1242/dmm.044560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Advances in sequencing technology have led to an explosion in the number of known genetic variants of human genes. A major challenge is to now determine which of these variants contribute to diseases as a result of their effect on gene function. Here, we describe a generic approach using the yeast Saccharomyces cerevisiae to quickly develop gene-specific in vivo assays that can be used to quantify the level of function of a genetic variant. Using synthetic dosage lethality screening, 'sentinel' yeast strains are identified that are sensitive to overexpression of a human disease gene. Variants of the gene can then be functionalized in a high-throughput fashion through simple growth assays using solid or liquid media. Sentinel interaction mapping (SIM) has the potential to create functional assays for the large majority of human disease genes that do not have a yeast orthologue. Using the tumour suppressor gene PTEN as an example, we show that SIM assays can provide a fast and economical means to screen a large number of genetic variants.
Collapse
Affiliation(s)
- Barry P Young
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kathryn L Post
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jesse T Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fabian Meili
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kurt Haas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
205
|
Moghiman T, Barghchi B, Esmaeili SA, Shabestari MM, Tabaee SS, Momtazi-Borojeni AA. Therapeutic angiogenesis with exosomal microRNAs: an effectual approach for the treatment of myocardial ischemia. Heart Fail Rev 2020; 26:205-213. [PMID: 32632768 DOI: 10.1007/s10741-020-10001-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Therapeutic angiogenesis presents a potential approach for treating ischemic heart diseases especially in patients who are not appropriate candidates for traditional approaches of revascularization. This approach acts through inducing the neovascularization or maturation of pre-existing collateral vessels into functional arteries to bypass the blocked arteries and restore perfusion to ischemic myocardium. Successful stimulation of local angiogenesis can be established by the cross talk between stem cells, endothelial cells, and cardiomyocytes, which is mainly mediated by paracrine communication accompanied by secreted exosomes. Exosomes are extracellular vesicles carrying a complex of signaling molecules, such as microRNAs (miRs) that can modulate the function of recipient cells. Such particles have been indicated to exert cardioprotective role through providing signaling cues for angiogenesis, an effect ascribed mainly to their miRs content. Exosomal miRs-mediated therapeutic angiogenesis has been under drastic preclinical and clinical studies. In the current review, it was aimed to summarize pro-angiogenic exosomal miRs released by various cell types mediating angiogenesis, including stem cells, endothelial cells, and cardiomyocytes, which appear to exert a therapeutic effect on the myocardial ischemia. In brief, secreted exosomal miRs including miR-210, miR-23a-3p, miR-424, let-7f, miR-30b, miR-30c, miR-126, miR-21, miR-132, miR-130a-3p, miR-214, miR-378, miR-126, miR-133, and let-7b-5p could protect against myocardial ischemia through inducing cardiac angiogenesis and vascular regeneration resulting in the increase blood flow to ischemic myocardium.
Collapse
Affiliation(s)
- Toktam Moghiman
- Atherosclerosis Prevention Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Barghchi
- Medical School, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyedeh Samaneh Tabaee
- Cardiology Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
206
|
Rhein Suppresses Neuroinflammation via Multiple Signaling Pathways in LPS-Stimulated BV2 Microglia Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7210627. [PMID: 32714414 PMCID: PMC7341424 DOI: 10.1155/2020/7210627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
Abstract
As a bioactive absorbed compound of rhubarb, Rhein is applied for the treatment of brain injury. However, the underlying pharmacological mechanisms remain unclear. In this study, we aimed to explore antineuroinflammatory functions and underlying mechanisms of Rhein in vitro. BV2 microglia cells were chosen and irritated by LPS. The influence of Rhein on cell viability was determined using MTT assay. We finely gauged the proinflammatory cytokines of TNF-α and IL-1β through tests of immunofluorescence staining, ELISA, RT-qPCR, and western blot. Additionally, mediators including IL-6, IL-12, iNOS, and IL-10 were surveyed by ELISA. Furthermore, protein levels of the underlying signaling pathways (PI3K/Akt, p38, ERK1/2, and TLR4/NF-κB) were tested adopting western blot. We found that Rhein reduced the secretion of pivotal indicators including TNF-α and IL-1β, effectively restraining their mRNA and protein expression in LPS-activated BV2 microglial cells. Besides, Rhein treatment demoted the production of IL-6, IL-12, and iNOS and promoted the excretion of IL-10. Subsequent mechanistic experiments revealed that Rhein obviously downregulated the phosphorylation levels of PI3K, Akt, p38, and ERK1/2 and simultaneously upregulated the PTEN expression. In addition, Rhein antagonized the increase of TLR4, p-IκBα, and NF-κB. In summary, Rhein suppresses neuroinflammation via multiple signaling pathways (PI3K/Akt, p38, ERK1/2, and TLR4/NF-κB) in LPS-stimulated BV2 microglia cells. This study highlights a natural agent for prevention and treatment of neuroinflammation.
Collapse
|
207
|
Cores Á, Piquero M, Villacampa M, León R, Menéndez JC. NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 2020; 10:E904. [PMID: 32545924 PMCID: PMC7356958 DOI: 10.3390/biom10060904] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 acts by controlling gene expression, being the master regulator of the Phase II antioxidant response, and also being key to the control of neuroinflammation. NRF2 activity is regulated at several levels, including protein degradation by the proteasome, transcription, and post-transcription. The purpose of this review is to offer a concise and critical overview of the main mechanisms of NRF2 regulation and their actual or potential use as targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Marta Piquero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| |
Collapse
|
208
|
Sun J, Singaram I, Soflaee MH, Cho W. A direct fluorometric activity assay for lipid kinases and phosphatases. J Lipid Res 2020; 61:945-952. [PMID: 32341006 PMCID: PMC7269761 DOI: 10.1194/jlr.d120000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Indexed: 11/20/2022] Open
Abstract
Lipid kinases and phosphatases play key roles in cell signaling and regulation, are implicated in many human diseases, and are thus attractive targets for drug development. Currently, no direct in vitro activity assay is available for these important enzymes, which hampers mechanistic studies as well as high-throughput screening of small molecule modulators. Here, we report a highly sensitive and quantitative assay employing a ratiometric fluorescence sensor that directly and specifically monitors the real-time concentration change of a single lipid species. Because of its modular design, the assay system can be applied to a wide variety of lipid kinases and phosphatases, including class I phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN). When applied to PI3K, the assay provided detailed mechanistic information about the product inhibition and substrate acyl-chain selectivity of PI3K and enabled rapid evaluation of small molecule inhibitors. We also used this assay to quantitatively determine the substrate specificity of PTEN, providing new insight into its physiological function. In summary, we have developed a fluorescence-based real-time assay for PI3K and PTEN that we anticipate could be adapted to measure the activities of other lipid kinases and phosphatases with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607
| | - Indira Singaram
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607
| | | | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607. mailto:
| |
Collapse
|
209
|
Riedelberger M, Penninger P, Tscherner M, Hadriga B, Brunnhofer C, Jenull S, Stoiber A, Bourgeois C, Petryshyn A, Glaser W, Limbeck A, Lynes MA, Schabbauer G, Weiss G, Kuchler K. Type I Interferons Ameliorate Zinc Intoxication of Candida glabrata by Macrophages and Promote Fungal Immune Evasion. iScience 2020; 23:101121. [PMID: 32428860 PMCID: PMC7232100 DOI: 10.1016/j.isci.2020.101121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Host and fungal pathogens compete for metal ion acquisition during infectious processes, but molecular mechanisms remain largely unknown. Here, we show that type I interferons (IFNs-I) dysregulate zinc homeostasis in macrophages, which employ metallothionein-mediated zinc intoxication of pathogens as fungicidal response. However, Candida glabrata can escape immune surveillance by sequestering zinc into vacuoles. Interestingly, zinc-loading is inhibited by IFNs-I, because a Janus kinase 1 (JAK1)-dependent suppression of zinc homeostasis affects zinc distribution in macrophages as well as generation of reactive oxygen species (ROS). In addition, systemic fungal infections elicit IFN-I responses that suppress splenic zinc homeostasis, thereby altering macrophage zinc pools that otherwise exert fungicidal actions. Thus, IFN-I signaling inadvertently increases fungal fitness both in vitro and in vivo during fungal infections. Our data reveal an as yet unrecognized role for zinc intoxication in antifungal immunity and suggest that interfering with host zinc homeostasis may offer therapeutic options to treat invasive fungal infections.
Collapse
Affiliation(s)
- Michael Riedelberger
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Bernhard Hadriga
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Carina Brunnhofer
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Sabrina Jenull
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Christelle Bourgeois
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Andriy Petryshyn
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Walter Glaser
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, CT, USA
| | - Gernot Schabbauer
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, and Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
210
|
Wang L, Lu G, Shen HM. The Long and the Short of PTEN in the Regulation of Mitophagy. Front Cell Dev Biol 2020; 8:299. [PMID: 32478067 PMCID: PMC7237741 DOI: 10.3389/fcell.2020.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Mitophagy is a key mitochondrial quality control mechanism for effective and selective elimination of damaged mitochondria through the autophagy-lysosome machinery. Defective mitophagy is associated with pathogenesis of important human diseases including neurodegenerative diseases, heart failure, innate immunity, and cancer. In the past two decades, the mechanistic studies of mitophagy have made many breakthroughs with the discoveries of phosphatase and tensin homolog (PTEN)-induced kinase protein 1 (PINK1)-parkin-mediated ubiquitin (Ub)-driven pathway and BCL2/adenovirus E1B 19 kDa protein-interacting proteins 3 (BNIP3)/NIX or FUN14 domain containing 1 (FUNDC1) mitochondrial receptor-mediated pathways. Recently, several isoforms of dual phosphatase PTEN, such as PTEN-long (PTEN-L), have been identified, and some of them are implicated in the mitophagy process via their protein phosphatase activity. In this review, we aim to discuss the regulatory roles of PTEN isoforms in mitophagy. These discoveries may provide new opportunities for development of novel therapeutic strategies for mitophagy-related diseases such as neurodegenerative disorders via targeting PTEN isoforms and mitophagy.
Collapse
Affiliation(s)
- Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
211
|
Huang Y, Wang H, Hao Y, Lin H, Dong M, Ye J, Song L, Wang Y, Li Q, Shan B, Jiang Y, Li H, Shao Z, Kroemer G, Zhang H, Bai L, Jin T, Wang C, Ma Y, Cai Y, Ding C, Liu S, Pan Y, Jiang W, Zhou R. Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity. Nat Cell Biol 2020; 22:716-727. [PMID: 32367047 DOI: 10.1038/s41556-020-0510-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022]
Abstract
PTEN is a dual-specificity phosphatase that is frequently mutated in human cancer, and its deficiency in cancer has been associated with therapy resistance and poor survival. Although the intrinsic tumour-suppressor function of PTEN has been well established, evidence of its role in the tumour immune microenvironment is lacking. Here, we show that chemotherapy-induced antitumour immune responses and tumour suppression rely on myeloid-cell PTEN, which is essential for chemotherapy-induced activation of the NLRP3 inflammasome and antitumour immunity. PTEN directly interacts with and dephosphorylates NLRP3 to enable NLRP3-ASC interaction, inflammasome assembly and activation. Importantly, supplementation of IL-1β restores chemotherapy sensitivity in mouse myeloid cells with a PTEN deficiency. Clinically, chemotherapy-induced IL-1β production and antitumour immunity in patients with cancer is correlated with PTEN expression in myeloid cells, but not tumour cells. Our results demonstrate that myeloid PTEN can determine chemotherapy responsiveness by promoting NLRP3-dependent antitumour immunity and suggest that myeloid PTEN might be a potential biomarker to predict chemotherapy responses.
Collapse
Affiliation(s)
- Yi Huang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China
| | - Huanyu Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yize Hao
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hualong Lin
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Menghao Dong
- Wannan Medical College, Wuhu, China.,Department of Oncology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jin Ye
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Song
- National Center for Protein Sciences (Beijing), State Key Laboratory of Proteomics, Institute of Lifeomics, Beijing, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingqing Li
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Benjie Shan
- Department of Oncology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yizhou Jiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Fudan University, Shanghai, China.,Department of Oncology, Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongqi Li
- Fudan University Zhongshan Hospital, Shanghai Medical College, Shanghai, China
| | - Zhiming Shao
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Fudan University, Shanghai, China.,Department of Oncology, Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guido Kroemer
- Suzhou Institute of Systems Medicine, Suzhou, China.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Bai
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuting Ma
- Suzhou Institute of Systems Medicine, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongping Cai
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Fudan University, Shanghai, China.
| | - Yueyin Pan
- Department of Oncology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
212
|
Ho J, Cruise ES, Dowling RJO, Stambolic V. PTEN Nuclear Functions. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036079. [PMID: 31712221 DOI: 10.1101/cshperspect.a036079] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.
Collapse
Affiliation(s)
- Jason Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Edward S Cruise
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
213
|
Haddadi N, Travis G, Nassif NT, Simpson AM, Marsh DJ. Toward Systems Pathology for PTEN Diagnostics. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037127. [PMID: 31615872 DOI: 10.1101/cshperspect.a037127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Germline alterations of the tumor suppressor PTEN have been extensively characterized in patients with PTEN hamartoma tumor syndromes, encompassing subsets of Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus and Proteus-like syndromes, as well as autism spectrum disorder. Studies have shown an increase in the risk of developing specific cancer types in the presence of a germline PTEN mutation. Furthermore, outside of the familial setting, somatic variants of PTEN occur in numerous malignancies. Here we introduce and discuss the prospect of moving toward a systems pathology approach for PTEN diagnostics, incorporating clinical and molecular pathology data with the goal of improving the clinical management of patients with a PTEN mutation. Detection of a germline PTEN mutation can inform cancer surveillance and in the case of somatic mutation, have value in predicting disease course. Given that PTEN functions in the PI3K/AKT/mTOR pathway, identification of a PTEN mutation may highlight new therapeutic opportunities and/or inform therapeutic choices.
Collapse
Affiliation(s)
- Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Glena Travis
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Najah T Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Centre for Health Technologies, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Ann M Simpson
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Centre for Health Technologies, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Deborah J Marsh
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Centre for Health Technologies, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Northern Clinical School, Kolling Institute, Faculty of Medicine and Health, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
214
|
Jiang H, D'Agostino GD, Cole PA, Dempsey DR. Selective protein N-terminal labeling with N-hydroxysuccinimide esters. Methods Enzymol 2020; 639:333-353. [PMID: 32475408 DOI: 10.1016/bs.mie.2020.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In order to gain detailed insight into the biochemical behavior of proteins, researchers have developed chemical tools to incorporate new functionality into proteins beyond the canonical 20 amino acids. Important considerations regarding effective chemical modification of proteins include chemoselectivity, near stoichiometric labeling, and reaction conditions that maintain protein stability. Taking these factors into account, we discuss an N-terminal labeling strategy that employs a simple two-step "one-pot" method using N-hydroxysuccinimide (NHS) esters. The first step converts a R-NHS ester into a more chemoselective R-thioester. The second step reacts the in situ generated R-thioester with a protein that harbors an N-terminal cysteine to generate a new amide bond. This labeling reaction is selective for the N-terminus with high stoichiometry. Herein, we provide a detailed description of this method and further highlight its utility with a large protein (>100kDa) and labeling with a commonly used cyanine dye.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Gabriel D D'Agostino
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Philip A Cole
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Daniel R Dempsey
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
215
|
TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism. Nat Commun 2020; 11:1880. [PMID: 32312982 PMCID: PMC7170963 DOI: 10.1038/s41467-020-15819-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
PI3K/AKT signaling is known to regulate cancer metabolism, but whether metabolic feedback regulates the PI3K/AKT pathway is unclear. Here, we demonstrate the important reciprocal crosstalk between the PI3K/AKT signal and pentose phosphate pathway (PPP) branching metabolic pathways. PI3K/AKT activation stabilizes G6PD, the rate-limiting enzyme of the PPP, by inhibiting the newly identified E3 ligase TIRM21 and promotes the PPP. PPP metabolites, in turn, reinforce AKT activation and further promote cancer metabolic reprogramming by blocking the expression of the AKT inhibitor PHLDA3. Knockout of TRIM21 or PHLDA3 promotes crosstalk and cell proliferation. Importantly, PTEN null human cancer cells and in vivo murine models are sensitive to anti-PPP treatments, suggesting the importance of the PPP in maintaining AKT activation even in the presence of a constitutively activated PI3K pathway. Our study suggests that blockade of this reciprocal crosstalk mechanism may have a therapeutic benefit for cancers with PTEN loss or PI3K/AKT activation.
Collapse
|
216
|
Antoch MP, Wrobel M, Gillard B, Kuropatwinski KK, Toshkov I, Gleiberman AS, Karasik E, Moser MT, Foster BA, Andrianova EL, Chernova OV, Gudkov AV. Superior cancer preventive efficacy of low versus high dose of mTOR inhibitor in a mouse model of prostate cancer. Oncotarget 2020; 11:1373-1387. [PMID: 32341756 PMCID: PMC7170500 DOI: 10.18632/oncotarget.27550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a PI3K-related kinase that regulates cell growth, proliferation and survival in response to the availability of energy sources and growth factors. Cancer development and progression is often associated with constitutive activation of the mTOR pathway, thus justifying mTOR inhibition as a promising approach to cancer treatment and prevention. However, development of previous rapamycin analogues has been complicated by their induction of adverse side effects and variable efficacy. Since mTOR pathway regulation involves multiple feedback mechanisms that may be differentially activated depending on the degree of mTOR inhibition, we investigated whether rapamycin dosing could be adjusted to achieve chemopreventive efficacy without side effects. Thus, we tested the efficacy of two doses of a novel, highly bioavailable nanoformulation of rapamycin, Rapatar, in a mouse prostate cancer model (male mice with prostate epithelium-specific Pten-knockout). We found that the highest efficacy was achieved by the lowest dose of Rapatar used in the study. While both doses tested were equally effective in suppressing proliferation of prostate epithelial cells, higher dose resulted in activation of feedback circuits that reduced the drug’s tumor preventive efficacy. These results demonstrate that low doses of highly bioavailable mTOR inhibitor, Rapatar, may provide safe and effective cancer prevention.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Bryan Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Karen K Kuropatwinski
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michael T Moser
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Andrei V Gudkov
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
217
|
Lian Z, Hu Z, Xian H, Jiang R, Huang H, Jiang Y, Zheng Z, Lloyd RS, Yuan J, Sha Y, Wang S, Hu D. Exosomes derived from normal human bronchial epithelial cells down-regulate proliferation and migration of hydroquinone-transformed malignant recipient cells via up-regulating PTEN expression. CHEMOSPHERE 2020; 244:125496. [PMID: 31812062 DOI: 10.1016/j.chemosphere.2019.125496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The gene encoding the tumor suppressor, phosphatase and tensin homolog (PTEN), located on chromosome 10, is frequently expressed at low levels in various tumors, resulting in the stimulation of cell proliferation and migration. However, the role of exosomal PTEN in cell-cell communication during the progress of benzene-induced carcinogenesis remains unclear. The goal of this study was to explore whether exosomes derived from normal human bronchial epithelial cells (16HBE) could transmit PTEN to hydroquinone-transformed malignant recipient cells (16HBE-t) and its possible effects on cell proliferation and migration. Consistent with PTEN expression being down-regulated in transformed cells, we found that its expression was significantly decreased in 16HBE-t relative to 16HBE cells and that purified exosomes secreted by 16HBE, up-regulated PTEN levels in recipient 16HBE-t cells. Thus, down-regulating their proliferation and migration. Further, when exosomes derived from 16HBE cells that had been treated with the PTEN inhibitor SF1670, were incubated with recipient 16HBE-t cells, they exhibited decreased PTEN levels, with a corresponding increase in their proliferation and migration. In conclusion, our study demonstrates that exosomes derived from 16HBE cells can down-regulate proliferation and migration of recipient 16HBE-t cells via transferring PTEN.
Collapse
Affiliation(s)
- Zhenwei Lian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China; Department of Medicine, Jiamusi University, Jiamusi, 154007, China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ran Jiang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Haoyu Huang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yunxia Jiang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhongdaixi Zheng
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 S. W. Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Yan Sha
- Institute of Occupational Disease, Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, 518020, China
| | - Sanming Wang
- Faculty of Health Sciences, University of Macau, Taipa, SAR, Macau, China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
218
|
Barnes PJ, Baker J, Donnelly LE. Cellular Senescence as a Mechanism and Target in Chronic Lung Diseases. Am J Respir Crit Care Med 2020; 200:556-564. [PMID: 30860857 DOI: 10.1164/rccm.201810-1975tr] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cellular senescence is now considered an important driving mechanism for chronic lung diseases, particularly chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Cellular senescence is due to replicative and stress-related senescence with activation of p53 and p16INK4a, respectively, leading to activation of p21CIP1 and cell cycle arrest. Senescent cells secrete multiple inflammatory proteins known as the senescence-associated secretory phenotype, leading to low-grade chronic inflammation, which further drives senescence. Loss of key antiaging molecules sirtuin-1 and sirtuin-6 may be important in acceleration of aging and arises from oxidative stress reducing phosphatase PTEN (phosphatase tensin homolog), thereby activating PI3K (phosphoinositide-3-kinase) and mTOR (mammalian target of rapamycin). MicroRNA-34a (miR-34a), which is regulated by PI3K-mTOR signaling, plays a pivotal role in reducing sirtuin-1/6, and its inhibition with an antagomir results in their restoration, reducing markers of senescence, reducing senescence-associated secretory phenotype, and reversing cell cycle arrest in epithelial cells from peripheral airways of patients with COPD. miR-570 is also involved in reduction of sirtuin-1 and cellular senescence and is activated by p38 mitogen-activated protein kinase. These miRNAs may be released from cells in extracellular vesicles that are taken up by other cells, thereby spreading senescence locally within the lung but also outside the lung through the circulation; this may account for comorbidities of COPD and other lung diseases. Understanding the mechanisms of cellular senescence may result in new treatments for chronic lung disease, either by inhibiting PI3K-mTOR signaling, by inhibiting specific miRNAs, or by deletion of senescent cells with senolytic therapies, already shown to be effective in experimental lung fibrosis.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jonathan Baker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
219
|
Zhong T, Zhou J, Zhan S, Wang L, Niu L, Guo J, Li L, Zhang H. Molecular Characteristics, Phylogeny and Expression Profile of the PTEN Gene in Goats. Biochem Genet 2020; 58:399-411. [PMID: 32020391 DOI: 10.1007/s10528-020-09947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/13/2020] [Indexed: 12/01/2022]
Abstract
Phosphatase and the tensin homologue deleted on chromosome ten (PTEN) has pleiotropic effects on cell growth, organ development, glucose metabolism and insulin resistance in mammals. In the present study, we investigated the molecular characteristics, phylogeny and expression profile of the PTEN gene in different tissues of Jianzhou Daer goats. In this study, eight different tissues from E90, E135 and D90 female goats were collected to quantify the expression pattern of the PTEN gene using quantitative real-time PCR (qPCR), western blotting and FISH. In addition, the dynamic expression of PTEN was also determined during the differentiation of goat precursor adipose cells. A 1212-bp fragment (accession number MG923848), encoding a 403-amino acid protein with a putative molecular weight of 47.14 kDa, was identified in Jianzhou Daer goats by reverse-transcription polymerase chain reaction (RT-PCR). The phylogenetic tree showed that caprine PTEN had a relatively close relationship with ovine PTEN and bovine PTEN. qPCR revealed that PTEN was highly expressed in the liver, lung and spleen, while the lowest expression levels were observed in muscle tissues (P < 0.05). Moreover, the expression of the PTEN gene showed a decreasing trend during the differentiation of goat precursor adipose cells. RNA in situ hybridization yielded a consistent result with the qPCR data. Indeed, low protein expression was found in psoas major muscle and longissimus dorsi muscle, as well as in kidney and liver. However, PTEN protein was expressed at the highest level in the brain. The expression levels of PTEN mRNA and protein were inconsistent with each other, possibly because of post-transcriptional regulation. The findings obtained in our study lay a foundation for further investigations examining the caprine PTEN gene in embryo and organ development.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jingxuan Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
220
|
Abstract
The tumor suppressor phosphatase and tension homolog (PTEN) is frequently mutated in human cancers, and it functions in multiple ways to safeguard cells from tumorigenesis. In the cytoplasm, PTEN antagonizes the PI3K/AKT pathway and suppresses cellular proliferation and survival. In the nucleus, PTEN is indispensable for the maintenance of genomic stability. In addition, PTEN loss leads to extensive changes in gene expression at the transcriptional level. The linker histone H1, generally considered as a transcriptional repressor, binds to the nucleosome to form a structure named the chromatosome. The dynamics between H1 and chromatin play an important role in determining gene expression. Here, we summarize the current understanding of roles of PTEN in controlling chromatin dynamics and global gene expression, which is crucial function of nuclear PTEN. We will also introduce the recent discovery of the PTEN family members and their functions.
Collapse
Affiliation(s)
- Jingyi Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
221
|
Xing X, Guo S, Zhang G, Liu Y, Bi S, Wang X, Lu Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. ACTA ACUST UNITED AC 2020; 53:e9106. [PMID: 31994603 PMCID: PMC6984371 DOI: 10.1590/1414-431x20199106] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023]
Abstract
Reperfusion strategies in acute myocardial infarction (AMI) can cause a series of additional clinical damage, defined as myocardial ischemia/reperfusion (I/R) injury, and thus there is a need for effective therapeutic methods to attenuate I/R injury. miR-26a-5p has been proven to be an essential regulator for biological processes in different cell types. Nevertheless, the role of miR-26a-5p in myocardial I/R injury has not yet been reported. We established an I/R injury model in vitro and in vivo. In vitro, we used cardiomyocytes to simulate I/R injury using hypoxia/reoxygenation (H/R) assay. In vivo, we used C57BL/6 mice to construct I/R injury model. The infarct area was examined by TTC staining. The level of miR-26a-5p and PTEN was determined by bioinformatics methods, qRT-PCR, and western blot. In addition, the viability and apoptosis of cardiomyocytes were separately detected by MTT and flow cytometry. The targeting relationship between miR-26a-5p and PTEN was analyzed by the TargetScan website and luciferase reporter assay. I/R and H/R treatment induced myocardial tissue injury and cardiomyocyte apoptosis, respectively. The results showed that miR-26a-5p was down-regulated in myocardial I/R injury. PTEN was found to be a direct target of miR-26a-5p. Furthermore, miR-26a-5p effectively improved viability and inhibited apoptosis in cardiomyocytes upon I/R injury by inhibiting PTEN expression to activate the PI3K/AKT signaling pathway. miR-26a-5p could protect cardiomyocytes against I/R injury by regulating the PTEN/PI3K/AKT pathway, which offers a potential approach for myocardial I/R injury treatment.
Collapse
Affiliation(s)
- Xiaowei Xing
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shuang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Guanghao Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yusheng Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shaojie Bi
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
222
|
Avery AC. The Genetic and Molecular Basis for Canine Models of Human Leukemia and Lymphoma. Front Oncol 2020; 10:23. [PMID: 32038991 PMCID: PMC6992561 DOI: 10.3389/fonc.2020.00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging details of the gene expression and mutational features of canine lymphoma and leukemia demonstrate areas of similarities and differences between disease subsets in the humans and dogs. Many features of canine diffuse large B-cell lymphoma resemble the ABC form of human DLBCL, including constitutive activation of the NF-kB pathway, and almost universal presence of double expressing MYC/BCL2 lymphomas. Frequent TRAF3 mutations and absence of BCL6 expression are differences with the human disease that need further exploration. Canine peripheral T-cell lymphoma is more common in dogs than in people and behaves in a similarly aggressive manner. Common features of canine and human PTCL include activation of the PI3 kinase pathways, loss of PTEN, and the tumor suppressor CDKN2. There is insufficient data available yet to determine if canine PTCL exhibits the GATA3-TBX21 dichotomy seen in people. Common to all forms of canine lymphoproliferative disease are breed-specific predilections for subsets of disease. This is particularly striking in PTCL, with the Boxer breed being dramatically overrepresented. Breed-specific diseases provide an opportunity for uncovering genetic and environmental risk factors that can aid early diagnosis and prevention.
Collapse
Affiliation(s)
- Anne C Avery
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
223
|
Xia C, Zeng H, Zheng Y. Low‑intensity ultrasound enhances the antitumor effects of doxorubicin on hepatocellular carcinoma cells through the ROS‑miR‑21‑PTEN axis. Mol Med Rep 2020; 21:989-998. [PMID: 32016465 PMCID: PMC7003057 DOI: 10.3892/mmr.2020.10936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer and is a leading cause of cancer-associated mortality. In China, ~466,000 patients are diagnosed with HCC and it is responsible for ~422,000 cases of mortality each year. Surgery is the most effective treatment available; however it is only suitable for patients with early-stage HCC. Chemotherapy has been confirmed as a necessary treatment for patients with advanced HCC, although drug resistance may limit its clinical outcome. Low intensity ultrasound (LIUS) represents a novel therapeutic approach to treat patients with HCC; however, its underlying molecular mechanism remains unclear. In the present study, cell viability, apoptosis and reactive oxygen species (ROS) generation were determined via Cell Counting Kit-8, flow cytometry and 2′,7′-dichlorofluorescein diacetate assays, respectively. The expression of miRNA in HCC cells following exposure to LIUS and doxorubicin (Dox) was analyzed using a microarray and reverse transcription-quantitative polymerase chain reaction analysis. It was revealed treatment with LIUS in combination with Dox was able to induce apoptosis of Huh7 cells, increasing the intracellular levels of reactive oxygen species (ROS) and malondialdehyde. Glutathione peroxidase and superoxide dismutase 1 are ROS-scavenging enzymes, which serve important roles in the oxidative balance, preventing oxidative stress. The protein expression levels of these two enzymes were significantly decreased following treatment with LIUS combined with Dox. The present results suggested that LIUS may decrease Dox resistance in HCC cells and that LIUS may be combined with chemotherapy to treat HCC. By performing microarray analysis, the expression levels of microRNA-21 (miR-21) were decreased following treatment with LIUS combined with Dox. Functional experiments showed that knockdown of miR-21 enhanced the antitumor activity of Dox, whereas overexpression of miR-21 reversed these effects. Phosphatase and tensin homolog (PTEN), a well-known tumor suppressor, was revealed to be a direct target of miR-21, and its translation was suppressed by miR-21. Finally, it was determined that combined treatment of LIUS and Dox induced anticancer effects by blocking the activation of the AKT/mTOR pathway, as demonstrated by the downregulation of phosphorylated (p-)AKT and p-mTOR; N-acetylcysteine, a general ROS inhibitor reversed the suppressive effects on the AKT/mTOR pathway mediated by LIUS and Dox. Collectively, the present results suggested that LIUS increased cell sensitivity to Dox via the ROS/miR-21/PTEN pathway. Chemotherapy combined with LIUS may represent a novel effective therapeutic strategy to treat patients with advanced HCC.
Collapse
Affiliation(s)
- Chunhua Xia
- Department of Ultrasound, Suqian Obstetrics and Gynecology Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Huabei Zeng
- Department of Ultrasound, Suqian Obstetrics and Gynecology Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Yanfen Zheng
- Department of Ultrasound, School of Imaging of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014060, P.R. China
| |
Collapse
|
224
|
SNHG1 promotes MPP +-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol Res 2020; 53:1. [PMID: 31907031 PMCID: PMC6943908 DOI: 10.1186/s40659-019-0267-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNA small molecule RNA host gene 1 (SNHG1) was previously identified to be relevant with Parkinson’s disease (PD) pathogenesis. This work aims to further elucidate the regulatory networks of SNHG1 involved in PD. Methods 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-hydrochloride (MPTP)-induced mice and 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells were respectively constructed as the in vivo and in vitro PD models. Expression levels of SNHG1 and miR-153-3p were detected by qRT-PCR. Protein expression levels of phosphate and tension homology deleted on chromosome ten (PTEN) were measured by western blotting assay. Cell viability and apoptosis were determined by MTT and flow cytometry assays. The interactions among SNHG1, miR-153-3p and PTEN were identified by luciferase reporter assay, RNA immunoprecipitation, and/or RNA pull-down analysis. Results Increased SNHG1 expression was found in midbrain of MPTP-induced PD mice and MPP+-treated SH-SY5Y cells. Overexpression of SNHG1 lowered viability and enhanced apoptosis in MPP+-treated SH-SY5Y cells. Moreover, SNHG1 acted as a molecular sponge to inhibit the expression of miR-153-3p. Furthermore, miR-153-3p-mediated suppression of MPP+-induced cytotoxicity was abated following SNHG1 up-regulation. Additionally, PTEN was identified as a direct target of miR-153-3p, and SNHG1 could serve as a competing endogenous RNA (ceRNA) of miR-153-3p to improve the expression of PTEN. Besides, enforced expression of PTEN displayed the similar functions as SNHG1 overexpression in regulating the viability and apoptosis of MPP+-treated SH-SY5Y cells. Finally, SNHG1 was found to activate PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells by targeting miR-153-3p. Conclusion SNHG1 aggravates MPP+-induced cellular toxicity in SH-SY5Y cells by regulating PTEN/AKT/mTOR signaling via sponging miR-153-3p, indicating the potential of SNHG1 as a promising therapeutic target for PD.
Collapse
|
225
|
Tu T, Chen J, Chen L, Stiles BL. Dual-Specific Protein and Lipid Phosphatase PTEN and Its Biological Functions. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036301. [PMID: 31548229 DOI: 10.1101/cshperspect.a036301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) encodes a 403-amino acid protein with an amino-terminal domain that shares sequence homology with the actin-binding protein tensin and the putative tyrosine-protein phosphatase auxilin. Crystal structure analysis of PTEN has revealed a C2 domain that binds to phospholipids in membranes and a phosphatase domain that displays dual-specific activity toward both tyrosine (Y), serine (S)/threonine (T), as well as lipid substrates in vitro. Characterized primarily as a lipid phosphatase, PTEN plays important roles in multiple cellular processes including cell growth/survival as well as metabolism.
Collapse
Affiliation(s)
- Taojian Tu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | - Jingyu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | - Lulu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | - Bangyan L Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
226
|
New Insights in the IP 3 Receptor and Its Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:243-270. [PMID: 31646513 DOI: 10.1007/978-3-030-12457-1_10] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.
Collapse
|
227
|
Yang Q, Zhu L, Jin L. Human Follicle in vitro Culture Including Activation, Growth, and Maturation: A Review of Research Progress. Front Endocrinol (Lausanne) 2020; 11:548. [PMID: 32849312 PMCID: PMC7431469 DOI: 10.3389/fendo.2020.00548] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
Fertility preservation has received unprecedented attention nowadays. In addition to cryopreservation and re-implantation of embryos, oocytes, and ovarian tissue pieces, in vitro culture system for follicles/oocytes has been considered as an alternative strategy for fertility preservation. Since the metabolic dynamics and required nutrients are not entirely the same in different stages of follicular development, optimization of each culture step is needed. In this paper, literature regarding culture conditions in three steps were analyzed. Known additives in activation stage included 740Y-P, bpV(HOpic), follicle stimulating hormone (FSH), human serum albumin (HSA), ITS, growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and cyclic adenosine monophosphate (cAMP), with different degrees of activation promotion and potential detrimental effect on DNA integrity. For isolated follicles growth stage, actin A, FSH, basic fibroblast growth factor (bFGF), estradiol were proved to improve development or proliferation. As for maturation, addition of growth hormone, melatonin, C-type natriuretic peptide (CNP), GDF9, cilostamide, or forskolin helped to regulate maturation rate or improve oocyte quality. Based on previous sequential culture system for human follicles, optimization is needed to achieve higher maturation rate and better oocyte quality, pursuant to current review, which demonstrated the effects of various additives on different stages.
Collapse
|
228
|
Jiao Y, Li Y, Jiang P, Fu Z, Liu Y. High MAST2 mRNA expression and its role in diagnosis and prognosis of liver cancer. Sci Rep 2019; 9:19865. [PMID: 31882722 PMCID: PMC6934750 DOI: 10.1038/s41598-019-56476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Liver cancer is a high morbidity and low survival disease all over the world. Chromosomal instability is hallmark of liver cancer. Microtubule-associated serine and threonine kinase 2 (MAST2), as a microtubule associated protein, may involve in tumorous chromosomal instability and plays important roles in cell proliferation and survival. The role of MAST2 in liver cancer has not been well elucidated, which is the aim of our study. In this study, The Cancer Genome Atlas database was used to study the MAST2 mRNA expression in liver cancer, and Chi-squared tests were performed to test the correlation between clinical features and MAST2 expression. ROC curve was performed to examined the diagnostic capacity. The prognostic value of MAST2 in liver cancer was assessed through Kaplan-Meier curves as well as Cox analysis. Our results showed MAST2 was upregulated in liver cancer, and the area under the curve (AUC) was 0.925 and indicated powerful diagnostic capability. High MAST2 expression was associated with advanced clinical status such as histological type (p = 0.0059), histologic grade (p = 0.0142), stage (p = 0.0008), T classification (p = 0.0028), N classification (p = 0.0107), survival status (p = 0.0062), and poor prognosis of patients. Importantly, MAST2 was an independent risk factor for patients' prognosis after adjusting for other risk factors including stage, T classification, and residual tumor. In total, MAST2 is a potential diagnostic and prognostic biomarker of liver cancer.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Peiqiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Zhuo Fu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| |
Collapse
|
229
|
A tumorigenic index for quantitative analysis of liver cancer initiation and progression. Proc Natl Acad Sci U S A 2019; 116:26873-26880. [PMID: 31843886 DOI: 10.1073/pnas.1911193116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary liver cancer develops from multifactorial etiologies, resulting in extensive genomic heterogeneity. To probe the common mechanism of hepatocarcinogenesis, we interrogated temporal gene expression profiles in a group of mouse models with hepatic steatosis, fibrosis, inflammation, and, consequently, tumorigenesis. Instead of anticipated progressive changes, we observed a sudden molecular switch at a critical precancer stage, by developing analytical platform that focuses on transcription factor (TF) clusters. Coarse-grained network modeling demonstrated that an abrupt transcriptomic transition occurred once changes were accumulated to reach a threshold. Based on the experimental and bioinformatic data analyses as well as mathematical modeling, we derived a tumorigenic index (TI) to quantify tumorigenic signal strengths. The TI is powerful in predicting the disease status of patients with metabolic disorders and also the tumor stages and prognosis of liver cancer patients with diverse backgrounds. This work establishes a quantitative tool for triage of liver cancer patients and also for cancer risk assessment of chronic liver disease patients.
Collapse
|
230
|
Cao F, Liu Z, Sun G. Diagnostic value of miR-193a-3p in Alzheimer's disease and miR-193a-3p attenuates amyloid-β induced neurotoxicity by targeting PTEN. Exp Gerontol 2019; 130:110814. [PMID: 31857133 DOI: 10.1016/j.exger.2019.110814] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/25/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Many microRNAs (miRNAs) have been reported to be aberrantly expressed in Alzheimer's disease (AD) patients. The present study aimed to explore the diagnostic value and neuroprotective role of miR-193a-3p in AD. METHODS 108 sporadic AD patients and 93 healthy controls were included. An Aβ25-35 insult cellular AD model of PC12 and SH-SY5Y was established. The relative expression levels of miR-193a-3p were calculated using qRT-PCR. Receiver operating characteristic (ROC) curve was applied to evaluate the usefulness of miR-193a-3p for detecting AD. Cell viability and apoptotic rates were calculated. Luciferase reporter assay was performed to confirm the interaction between miR-193a-3p and PTEN. RESULTS miR-193a-3p expression was downregulated in both AD patients and the cellular AD model (all P < 0.001). Remarkable positive association was detected between serum miR-193a-3p level and MMSE score in AD patients (r = 0.5889, P < 0.0001). The diagnostic sensitivity and specificity were 89.8% and 77.4%, respectively, and the area under the curve (AUC) was 0.914. Overexpression of miR-193a-3p weakened Aβ25-35 induced cell viability inhibition, and reduced Aβ25-35 induced cell apoptosis in PC12 cells (all P < 0.01). Downregulation of miR-193a-3p intensified the effect of Aβ25-35 PTEN was proved to be the target gene of miR-193a-3p. CONCLUSION MiR-193a-3p could be a novel biomarker for AD diagnosis, and may protect against neurotoxicity in AD by targeting PTEN.
Collapse
Affiliation(s)
- Fengjun Cao
- Department of Neurology, Shanxian Central Hospital, Heze 274300, China
| | - Zhongjie Liu
- Department of Neurology, Shanxian Central Hospital, Heze 274300, China
| | - Guanjun Sun
- Department of Neurology, Shanxian Central Hospital, Heze 274300, China.
| |
Collapse
|
231
|
Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, Angulo JC, López JI. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036293. [PMID: 31501265 DOI: 10.1101/cshperspect.a036293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN is a major tumor-suppressor protein whose expression and biological activity are frequently diminished in sporadic or inherited cancers. PTEN gene deletion or loss-of-function mutations favor tumor cell growth and are commonly found in clinical practice. In addition, diminished PTEN protein expression is also frequently observed in tumor samples from cancer patients in the absence of PTEN gene alterations. This makes PTEN protein levels a potential biomarker parameter in clinical oncology, which can guide therapeutic decisions. The specific detection of PTEN protein can be achieved by using highly defined anti-PTEN monoclonal antibodies (mAbs), characterized with precision in terms of sensitivity for the detection technique, specificity for PTEN binding, and constraints of epitope recognition. This is especially relevant taking into consideration that PTEN is highly targeted by mutations and posttranslational modifications, and different PTEN protein isoforms exist. The precise characterization of anti-PTEN mAb reactivity is an important step in the validation of these reagents as diagnostic and prognostic tools in clinical oncology, including their routine use in analytical immunohistochemistry (IHC). Here, we review the current status on the use of well-defined anti-PTEN mAbs for PTEN immunodetection in the clinical context and discuss their potential usefulness and limitations for a more precise cancer diagnosis and patient benefit.
Collapse
Affiliation(s)
- Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo N-0310, Norway
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid 28904, Spain.,Clinical Department, European University of Madrid, Laureate Universities, Madrid 28904, Spain
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain.,University of the Basque Country, Leioa 48940, Spain
| |
Collapse
|
232
|
Sheng S, Jiwen W, Dexiang Z, Bohao Z, Yueqi W, Han L, Xiaoling N, Tao S, Liu H. DMBT1 suppresses progression of gallbladder carcinoma through PI3K/AKT signaling pathway by targeting PTEN. Biosci Biotechnol Biochem 2019; 83:2257-2264. [PMID: 31411121 DOI: 10.1080/09168451.2019.1654361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ABSTRACT
Gallbladder carcinoma (GBC) is a highly lethal malignancy of the gastrointestinal tract. Despite extensive research, the underlying molecular mechanism of GBC remains largely unclear. Deleted in malignant brain tumors 1 (DMBT1) is low-expression during cancer progression and as a potential tumor-suppressor gene in various types of cancer. However, its role in Gallbladder cancer remains poorly understood. Here, we found that DMBT1 was significantly low-expression and deletion of copy number in GBC tissues by qRT-PCR and Western blot. Overexpression of DMBT1 impaired survival, promoted apoptosis in GBC cells in vitro, and inhibited tumor progression in vivo. Further study of underlying mechanisms demonstrated that DMBT1 combined with PTEN which could stabilize PTEN protein, resulting in inhibiting the activation of PI3K/AKT signaling pathway. Our study revealed a new sight of DMBT1 as a tumor-suppressor gene on the PI3K/AKT pathway in GBC, which may be a potential therapeutic target for improving treatment.
Collapse
Affiliation(s)
- Shen Sheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wang Jiwen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhang Dexiang
- Department of General Surgery, Zhongshan-Xuhui Hospital Affiated to Fudan University, Shanghai, China
| | - Zheng Bohao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wang Yueqi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liu Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ni Xiaoling
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suo Tao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
233
|
Fernández-Acero T, Bertalmio E, Luna S, Mingo J, Bravo-Plaza I, Rodríguez-Escudero I, Molina M, Pulido R, Cid VJ. Expression of Human PTEN-L in a Yeast Heterologous Model Unveils Specific N-Terminal Motifs Controlling PTEN-L Subcellular Localization and Function. Cells 2019; 8:cells8121512. [PMID: 31779149 PMCID: PMC6952770 DOI: 10.3390/cells8121512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
The tumour suppressor PTEN is frequently downregulated, mutated or lost in several types of tumours and congenital disorders including PHTS (PTEN Hamartoma Tumour Syndrome) and ASD (Autism Spectrum Disorder). PTEN is a lipid phosphatase whose activity over the lipid messenger PIP3 counteracts the stimulation of the oncogenic phosphatidylinositol 3-kinase (PI3K) pathway. Recently, several extended versions of PTEN produced in the cell by alternative translation initiation have been described, among which, PTEN-L and PTEN-M represent the longest isoforms. We previously developed a humanized yeast model in which the expression of PI3K in Saccharomyces cerevisiae led to growth inhibition that could be suppressed by co-expression of PTEN. Here, we show that the expression of PTEN-L and PTEN-M in yeast results in robust counteracting of PI3K-dependent growth inhibition. N-terminally tagged GFP-PTEN-L was sharply localized at the yeast plasma membrane. Point mutations of a putative membrane-binding helix located at the PTEN-L extension or its deletion shifted localization to nuclear. Also, a shift from plasma membrane to nucleus was observed in mutants at basic amino acid clusters at the PIP2-binding motif, and at the Cα2 and CBR3 loops at the C2 domain. In contrast, C-terminally tagged PTEN-L-GFP displayed mitochondrial localization in yeast, which was shifted to plasma membrane by removing the first 22 PTEN-L residues. Our results suggest an important role of the N-terminal extension of alternative PTEN isoforms on their spatial and functional regulation.
Collapse
Affiliation(s)
- Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Eleonora Bertalmio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Sandra Luna
- Instituto de Investigación Sanitaria Biocruces Bizkaia, 48903 Barakaldo, Spain; (S.L.); (J.M.)
| | - Janire Mingo
- Instituto de Investigación Sanitaria Biocruces Bizkaia, 48903 Barakaldo, Spain; (S.L.); (J.M.)
| | - Ignacio Bravo-Plaza
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Rafael Pulido
- Instituto de Investigación Sanitaria Biocruces Bizkaia, 48903 Barakaldo, Spain; (S.L.); (J.M.)
- IKERBASQUE, Fundación Vasca para la Ciencia, 48011 Bilbao, Spain
- Correspondence: (R.P.); (V.J.C.)
| | - Víctor J. Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
- Correspondence: (R.P.); (V.J.C.)
| |
Collapse
|
234
|
Zhou Y, Mu L, Liu XL, Li Q, Ding LX, Chen HC, Hu Y, Li FS, Sun WJ, He BC, Wu K. Tetrandrine inhibits proliferation of colon cancer cells by BMP9/ PTEN/ PI3K/AKT signaling. Genes Dis 2019; 8:373-383. [PMID: 33997184 PMCID: PMC8093580 DOI: 10.1016/j.gendis.2019.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Despite advances in screening and treatment, colon cancer remains one of the leading causes of cancer-related death. Finding novel and useful drug treatment targets is also an urgent need for clinical applications. Tetrandrine (Tet) is extracted from the Chinese medicinal herbal medicine, which is a well-known calcium blocker with a variety of pharmacological activities, including anti-cancer. In this study, we recruited cell viability assay, flow cytometry analysis, cloning formation to confirm that Tet can inhibit the proliferation of SW620 cells, and induce apoptosis. Mechanically, we confirmed that Tet up-regulates the mRNA and protein level of BMP9 in SW620 cells. Over-expression BMP9 enhances the anti-cancer effects of Tet in SW620 cells, but these effects can be partly reversed by silencing BMP9. Also, Tet reduces phosphorylation of Aktl/2/3 in SW620 cells, which could be elevated by overexpressed BMP9 and impaired by silencing BMP9. Furthermore, we demonstrated that Tet reduces phosphorylated PTEN, which can be promoted by overexpressed BMP9, analogously also be attenuated through silencing BMP9. Finally, we introduced a xenograft tumor model to investigate the anti-proliferative effect of Tet, further to explore the effects of BMP9 and PTEN in SW620 cells. Our findings suggested that the anti-cancer activity of Tet in SW620 cells may be mediated partly by up-regulating BMP9, followed by inactivation PI3K/Akt through up-regulating PTEN at least.
Collapse
Affiliation(s)
- Ya Zhou
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li Mu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiao-Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qin Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li-Xuan Ding
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hong-Chuan Chen
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying Hu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fu-Shu Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wen-Juan Sun
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ke Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
235
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
236
|
Yang X, Chen G, Chen Z. MicroRNA-200a-3p Is a Positive Regulator in Cardiac Hypertrophy Through Directly Targeting WDR1 as Well as Modulating PTEN/PI3K/AKT/CREB/WDR1 Signaling. J Cardiovasc Pharmacol 2019; 74:453-461. [PMID: 31651553 DOI: 10.1097/fjc.0000000000000732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiac hypertrophy is an adaptive expansion of the myocardium due to the overloaded stress of heart. Recently, emerging studies have drawn a conclusion that microRNAs (miRNAs) are involved in myocardial hypertrophy and even heart failure. To figure out the role of microRNA-200a-3p (miR-200a-3p) in cardiac hypertrophy, the in vitro cardiac hypertrophy model was established in H9c2 cells using angiotensin II (Ang-II) as previously described. First of all, we observed a significant increase of miR-200a-3p expression in Ang-II-induced hypertrophic H9c2 cells. Moreover, inhibition of miR-200a-3p dramatically reversed the Ang-II-upregulated expression of hypertrophic markers (atrial natriuretic peptide, brain natriuretic peptide, and β-MHC) and the expanded cell surface area in H9c2 cells. In addition, our results indicated that miR-200a-3p directly targeted both WDR1 and phosphatase and tensin homolog (PTEN). In this regard, miR-200a-3p further activated PI3K/AKT/CREB pathway so as to intensify its negative regulation on WDR1. At length, WDR1 silence, PTEN inhibitor, and PI3K activator recovered the repressive effect of miR-200a-3p suppression on the development of cardiac hypertrophy. Jointly, our study suggested that miR-200a-3p facilitated cardiac hypertrophy by not only directly targeting WDR1 but also through modulating PTEN/PI3K/AKT/CREB/WDR1 signaling, therefore proving novel downstream molecular pathway of miR-200a-3p in cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, China
| | - Gang Chen
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengxu Chen
- Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, China
| |
Collapse
|
237
|
Conjunctival Melanoma: Genetic and Epigenetic Insights of a Distinct Type of Melanoma. Int J Mol Sci 2019; 20:ijms20215447. [PMID: 31683701 PMCID: PMC6862213 DOI: 10.3390/ijms20215447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022] Open
Abstract
Conjunctival melanoma (CjM) is a rare, primary cancer of the ocular region. Genetic and epigenetic characteristics of conjunctival melanoma have not been completely elucidated yet. Conjunctival melanoma presents similarities with cutaneous melanoma, with substantial differences in the biological behavior. We reviewed the genetic and epigenetic insights of CjM involved in invasion and metastatic spread. CjM is commonly characterized by mutations of v-raf murine sarcoma viral oncogene homolog B1 (BRAF), neurofibromin 1 (NF1) and telomerase reverse transcriptase (TERT), high expression of mammalian target of rapamycin (mTOR) and heat shock protein 90 (HSP90), frequent phosphatase and tensin homolog (PTEN) loss and upregulation of specific miRNAs. These features should identify CjM as a distinct subset of melanoma with its own profile, which is more similar to cutaneous melanoma than mucosal melanoma and remarkably different from uveal melanoma.
Collapse
|
238
|
Ali R, Alabdullah M, Miligy I, Normatova M, Babaei-Jadidi R, Nateri AS, Rakha EA, Madhusudan S. ATM Regulated PTEN Degradation Is XIAP E3 Ubiquitin Ligase Mediated in p85α Deficient Cancer Cells and Influence Platinum Sensitivity. Cells 2019; 8:E1271. [PMID: 31635307 PMCID: PMC6848936 DOI: 10.3390/cells8101271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 01/22/2023] Open
Abstract
Ataxia-telegiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), and p85α are key tumour suppressors. Whether ATM regulates PTEN expression and influence platinum sensitivity is unknown. We generated ATM knockdowns (KD) and CRISPR knock outs (KO) in glioblastoma (LN18, LN229) and ovarian cancer cells (OVCAR3, OVCAR4). Doxycycline inducible PTEN expression was generated in LN18 and LN229 cells. Transient KD of p85α, CK2, and XIAP was accomplished using siRNAs. Stable p85α knock-in was isolated in LN18 cells. Molecular biology assays included proteasome activity assays, PCR, flow cytometry analysis (cell cycle, double strand break accumulation, apoptosis), immunofluorescence, co-immunoprecipitation, clonogenic, invasion, migration, and 3D neurosphere assays. The clinicopathological significance of ATM, PTEN, p85α, and XIAP (X-linked inhibitor of apoptosis protein) was evaluated in 525 human ovarian cancers using immunohistochemistry. ATM regulated PTEN is p85α dependant. ATM also controls CK2α level which in turn phosphorylates and stabilizes PTEN. In addition, p85α physically interacts with CK2α and protects CK2α from ATM regulated degradation. ATM deficiency resulted in accumulation of XIAP/p-XIAP levels which ubiquitinated PTEN and CK2α thereby directing them to degradation. ATM depletion in the context of p85α deficiency impaired cancer cell migration and invasion reduced 3D-neurosphere formation and increased toxicity to cisplatin chemotherapy. Increased sensitivity to platinum was associated with DNA double strand breaks accumulation, cell cycle arrest, and induction of autophagy. In ovarian cancer patients, ATM, PTEN, p85α, and XIAP protein levels predicted better progression free survival after platinum therapy. We unravel a previously unknown function of ATM in the regulation of PTEN throμgh XIAP mediated proteasome degradation.
Collapse
Affiliation(s)
- Reem Ali
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Muslim Alabdullah
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Islam Miligy
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Makhliyo Normatova
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Roya Babaei-Jadidi
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Abdolrahman S Nateri
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
- Department of Oncology, Nottingham University Hospital, Nottingham NG5 1PB, UK.
| |
Collapse
|
239
|
Heikenwalder M, Lorentzen A. The role of polarisation of circulating tumour cells in cancer metastasis. Cell Mol Life Sci 2019; 76:3765-3781. [PMID: 31218452 PMCID: PMC6744547 DOI: 10.1007/s00018-019-03169-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Metastasis is the spread of cancer cells from a primary tumour to a distant site of the body. Metastasising tumour cells have to survive and readjust to different environments, such as heterogeneous solid tissues and liquid phase in lymph- or blood circulation, which they achieve through a high degree of plasticity that renders them adaptable to varying conditions. One defining characteristic of the metastatic process is the transition of tumour cells between different polarised phenotypes, ranging from differentiated epithelial polarity to migratory front-rear polarity. Here, we review the polarisation types adopted by tumour cells during the metastatic process and describe the recently discovered single-cell polarity in liquid phase observed in circulating tumour cells. We propose that single-cell polarity constitutes a mode of polarisation of the cell cortex that is uncoupled from the intracellular polarisation machinery, which distinguishes single-cell polarity from other types of polarity identified so far. We discuss how single-cell polarity can contribute to tumour metastasis and the therapeutic potential of this new discovery.
Collapse
Affiliation(s)
- Mathias Heikenwalder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
240
|
Molecular Mechanisms of Cardiac Remodeling and Regeneration in Physical Exercise. Cells 2019; 8:cells8101128. [PMID: 31547508 PMCID: PMC6829258 DOI: 10.3390/cells8101128] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Regular physical activity with aerobic and muscle-strengthening training protects against the occurrence and progression of cardiovascular disease and can improve cardiac function in heart failure patients. In the past decade significant advances have been made in identifying mechanisms of cardiomyocyte re-programming and renewal including an enhanced exercise-induced proliferational capacity of cardiomyocytes and its progenitor cells. Various intracellular mechanisms mediating these positive effects on cardiac function have been found in animal models of exercise and will be highlighted in this review. 1) activation of extracellular and intracellular signaling pathways including phosphatidylinositol 3 phosphate kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), EGFR/JNK/SP-1, nitric oxide (NO)-signaling, and extracellular vesicles; 2) gene expression modulation via microRNAs (miR), in particular via miR-17-3p and miR-222; and 3) modulation of cardiac cellular metabolism and mitochondrial adaption. Understanding the cellular mechanisms, which generate an exercise-induced cardioprotective cellular phenotype with physiological hypertrophy and enhanced proliferational capacity may give rise to novel therapeutic targets. These may open up innovative strategies to preserve cardiac function after myocardial injury as well as in aged cardiac tissue.
Collapse
|
241
|
Yang S, Zhao Y, Wang L, Liu C, Lu Y, Fang Z, Shi H, Zhang W, Wu X. MicroRNA‑4712‑5p promotes proliferation of the vulvar squamous cell carcinoma cell line A431 by targeting PTEN through the AKT/cyclin D1 signaling pathways. Oncol Rep 2019; 42:1689-1698. [PMID: 31545465 PMCID: PMC6787978 DOI: 10.3892/or.2019.7320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to screen differentially expressed miRNAs in vulvar squamous cell carcinoma (VSCC), observe the role of microRNA-4712-5p in VSCC and investigate its targets and regulatory mechanism. Differentially expressed miRNAs in human VSCC tissues were screened. microRNA-4712-5p was selected and its expression level was verified in clinical tissue samples and the VSCC cell line A431 by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The overexpression vector of microRNA-4712-5p was prepared and transfected into A431 cells; subsequently, cell invasion and metastasis were examined by Cell Counting Kit-8 and Transwell migration assays. Furthermore, the target gene of miRNA-4712-5p was predicted by bioinformatics and verified by The Dual-Luciferase® Reporter (DLR™) Assay System. The expression of phosphatase and tensin homologue (PTEN) and its downstream proteins, such as protein kinase B (PKB; AKT), glycogen synthase kinase (GSK)3β and cyclin D1, were detected by western blot assays. The expression level of microRNA-4712-5p in VSCC tissues and the A431 cell line was found to be significantly increased, promoting proliferation and invasion of VSCC. The DLR™ assay indicated that PTEN was a target of miR-4712-5p. RT-qPCR revealed that PTEN expression was markedly lower in VSCC tissues compared with that in adjacent tissues. After A431 cells were transfected with the miRNA-4712-5p overexpression vector, phospho-AKT (p-AKT) and cyclin D1 expression were notably increased, but miRNA-4712-5p-targeted PTEN and phospho-GSK3β (p-GSK3β) protein markedly decreased. Therefore, microRNA-4712-5p can reduce the expression of PTEN, further affecting its downstream p-AKT, p-GSK3β and cyclin D1 signaling pathways, promoting the proliferation and invasion of VSCC.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanyan Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lufang Wang
- Department of Gynecology and Obstetrics, Union Hospital Affiliated to Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ye Lu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhidong Fang
- China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hongshuang Shi
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenyi Zhang
- Rehabilitation Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| | - Xin Wu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
242
|
Bowen C, Ostrowski MC, Leone G, Gelmann EP. Loss of PTEN Accelerates NKX3.1 Degradation to Promote Prostate Cancer Progression. Cancer Res 2019; 79:4124-4134. [PMID: 31213464 PMCID: PMC6753942 DOI: 10.1158/0008-5472.can-18-4110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/28/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
NKX3.1 is the most commonly deleted gene in prostate cancer and a gatekeeper suppressor. NKX3.1 is a growth suppressor, mediator of apoptosis, inducer of antioxidants, and enhancer of DNA repair. PTEN is a ubiquitous tumor suppressor that is often decreased in prostate cancer during tumor progression. Steady-state turnover of NKX3.1 is mediated by DYRK1B phosphorylation at NKX3.1 serine 185 that leads to polyubiquitination and proteasomal degradation. In this study, we show PTEN is an NKX3.1 phosphatase that protects NKX3.1 from degradation. PTEN specifically opposed phosphorylation at NKX3.1(S185) and prolonged NKX3.1 half-life. PTEN and NKX3.1 interacted primarily in the nucleus as loss of PTEN nuclear localization abrogated its ability to bind to and protect NKX3.1 from degradation. The effect of PTEN on NKX3.1 was mediated via rapid enzyme-substrate interaction. An effect of PTEN on Nkx3.1 gene transcription was seen in vitro, but not in vivo. In gene-targeted mice, Nkx3.1 expression significantly diminished shortly after loss of Pten expression in the prostate. Nkx3.1 loss primarily increased prostate epithelial cell proliferation in vivo. In these mice, Nkx3.1 mRNA was not affected by Pten expression. Thus, the prostate cancer suppressors PTEN and NKX3.1 interact and loss of PTEN is responsible, at least in part, for progressive loss of NKX3.1 that occurs during tumor progression. SIGNIFICANCE: PTEN functions as a phosphatase of NKX3.1, a gatekeeper suppressor of prostate cancer.
Collapse
Affiliation(s)
- Cai Bowen
- Departments of Medicine and of Pathology and Cell Biology, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, Columbia University, 177 Ft. Washington Ave., MHB 6N-435, New York, NY, 10032
| | - Michael C. Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Gustavo Leone
- Medical University of South Carolina, Hollings Cancer Center, 86 Jonathan Lucas Street, MSC 955, Charleston, SC 29425
| | - Edward P. Gelmann
- Departments of Medicine and of Pathology and Cell Biology, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, Columbia University, 177 Ft. Washington Ave., MHB 6N-435, New York, NY, 10032
- Corresponding author present address: University of Arizona Medical Center, Division of Hematology/Oncology, 1515 N Campbell Avenue, Room 1969K, Tucson, AZ 85724-5024
| |
Collapse
|
243
|
Shi L, Li B, Zhang B, Zhen C, Zhou J, Tang S. Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway. Stem Cell Res Ther 2019; 10:217. [PMID: 31358051 PMCID: PMC6664599 DOI: 10.1186/s13287-019-1340-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/21/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both genetic and environmental factors are implicated in the pathogenesis of cleft palate. However, the molecular and cellular mechanisms that regulate the development of palatal shelves, which are composed of mesenchymal cells, have not yet been fully elucidated. This study aimed to determine the stemness and multilineage differentiation potential of mouse embryonic palatal mesenchyme (MEPM) cells in palatal shelves and to explore the underlying regulatory mechanism associated with cleft palate formation. METHODS Palatal shelves excised from mice models were cultured in vitro to ascertain whether MEPM are stem cells through immunofluorescence and flow cytometry. The osteogenic, adipogenic, and chondrogenic differentiation potential of MEPM cells were also determined to characterize MEPM stemness. In addition, the role of the PTEN-Akt-mTOR autophagic pathway was investigated using quantitative RT-PCR, Western blotting, and transmission electron microscopy. RESULTS MEPM cells in culture exhibited cell surface marker expression profiles similar to that of mouse bone marrow stem cells and exhibited positive staining for vimentin (mesodermal marker), nestin (ectodermal marker), PDGFRα, Efnb1, Osr2, and Meox2 (MEPM cells markers). In addition, exposure to PDGFA stimulated chemotaxis of MEPM cells. MEPM cells exhibited stronger potential for osteogenic differentiation as compared to that for adipogenic and chondrogenic differentiation. Undifferentiated MEPM cells displayed a high concentration of autophagosomes, which disappeared after differentiation (at passage four), indicating the involvement of PTEN-Akt-mTOR signaling. CONCLUSIONS Our findings suggest that MEPM cells are ectomesenchymal stem cells with a strong osteogenic differentiation potential and that maintenance of their stemness via PTEN/AKT/mTOR autophagic signaling prevents cleft palate development.
Collapse
Affiliation(s)
- Lungang Shi
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Binchen Li
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Binna Zhang
- Center for Translational Medicine, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Congyuan Zhen
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| |
Collapse
|
244
|
Todorova PK, Fletcher-Sananikone E, Mukherjee B, Kollipara R, Vemireddy V, Xie XJ, Guida PM, Story MD, Hatanpaa K, Habib AA, Kittler R, Bachoo R, Hromas R, Floyd JR, Burma S. Radiation-Induced DNA Damage Cooperates with Heterozygosity of TP53 and PTEN to Generate High-Grade Gliomas. Cancer Res 2019; 79:3749-3761. [PMID: 31088835 PMCID: PMC6635038 DOI: 10.1158/0008-5472.can-19-0680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/08/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Glioblastomas are lethal brain tumors that are treated with conventional radiation (X-rays and gamma rays) or particle radiation (protons and carbon ions). Paradoxically, radiation is also a risk factor for GBM development, raising the possibility that radiotherapy of brain tumors could promote tumor recurrence or trigger secondary gliomas. In this study, we determined whether tumor suppressor losses commonly displayed by patients with GBM confer susceptibility to radiation-induced glioma. Mice with Nestin-Cre-driven deletions of Trp53 and Pten alleles were intracranially irradiated with X-rays or charged particles of increasing atomic number and linear energy transfer (LET). Mice with loss of one allele each of Trp53 and Pten did not develop spontaneous gliomas, but were highly susceptible to radiation-induced gliomagenesis. Tumor development frequency after exposure to high-LET particle radiation was significantly higher compared with X-rays, in accordance with the irreparability of DNA double-strand breaks (DSB) induced by high-LET radiation. All resultant gliomas, regardless of radiation quality, presented histopathologic features of grade IV lesions and harbored populations of cancer stem-like cells with tumor-propagating properties. Furthermore, all tumors displayed concomitant loss of heterozygosity of Trp53 and Pten along with frequent amplification of the Met receptor tyrosine kinase, which conferred a stem cell phenotype to tumor cells. Our results demonstrate that radiation-induced DSBs cooperate with preexisting tumor suppressor losses to generate high-grade gliomas. Moreover, our mouse model can be used for studies on radiation-induced development of GBM and therapeutic strategies. SIGNIFICANCE: This study uncovers mechanisms by which ionizing radiation, especially particle radiation, promote GBM development or recurrence.
Collapse
Affiliation(s)
- Pavlina K Todorova
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rahul Kollipara
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vamsidhara Vemireddy
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xian-Jin Xie
- College of Dentistry and College of Public Health, University of Iowa, Iowa City, Iowa
| | - Peter M Guida
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimmo Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
- Veterans Affairs North Texas Health Care System, Dallas, Texas
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert Hromas
- Department of Medicine, University of Texas Health, San Antonio, Texas
| | - John R Floyd
- Department of Neurosurgery, University of Texas Health, San Antonio, Texas
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Department of Neurosurgery, University of Texas Health, San Antonio, Texas
| |
Collapse
|
245
|
Wu J, Chen H, Ye M, Wang B, Zhang Y, Sheng J, Meng T, Chen H. Downregulation of long noncoding RNA HCP5 contributes to cisplatin resistance in human triple-negative breast cancer via regulation of PTEN expression. Biomed Pharmacother 2019; 115:108869. [DOI: 10.1016/j.biopha.2019.108869] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022] Open
|
246
|
Zhang J, Lee YR, Dang F, Gan W, Menon AV, Katon JM, Hsu CH, Asara JM, Tibarewal P, Leslie NR, Shi Y, Pandolfi PP, Wei W. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov 2019; 9:1306-1323. [PMID: 31217297 DOI: 10.1158/2159-8290.cd-18-0083] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/05/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
The function of PTEN in the cytoplasm largely depends on its lipid-phosphatase activity, though which it antagonizes the PI3K-AKT oncogenic pathway. However, molecular mechanisms underlying the role of PTEN in the nucleus remain largely elusive. Here, we report that DNA double-strand breaks (DSB) promote PTEN interaction with MDC1 upon ATM-dependent phosphorylation of T/S398-PTEN. Importantly, DNA DSBs enhance NSD2 (MMSET/WHSC1)-mediated dimethylation of PTEN at K349, which is recognized by the tudor domain of 53BP1 to recruit PTEN to DNA-damage sites, governing efficient repair of DSBs partly through dephosphorylation of γH2AX. Of note, inhibiting NSD2-mediated methylation of PTEN, either through expressing methylation-deficient PTEN mutants or through inhibiting NSD2, sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor and DNA-damaging agents in both cell culture and in vivo xenograft models. Therefore, our study provides a novel molecular mechanism for PTEN regulation of DSB repair in a methylation- and protein phosphatase-dependent manner. SIGNIFICANCE: NSD2-mediated dimethylation of PTEN is recognized by the 53BP1 tudor domain to facilitate PTEN recruitment into DNA-damage sites, governing efficient repair of DNA DSBs. Importantly, inhibiting PTEN methylation sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor combined with DNA-damaging agents in both cell culture and in vivo xenograft models.This article is highlighted in the In This Issue feature, p. 1143.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.,Medical Research Institute, Wuhan University, Wuhan, P.R. China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jesse M Katon
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts
| | - Chih-Hung Hsu
- Department of Public Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.,Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Priyanka Tibarewal
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom.,UCL Cancer Institute, University College London, London, United Kingdom
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts. .,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
247
|
Bruine de Bruin L, Wachters JE, Schrijvers ML, Slagter-Menkema L, Mastik MF, Langendijk JA, van der Wal JE, Schuuring E, van der Laan BFAM. PTEN Is Associated With Worse Local Control in Early Stage Supraglottic Laryngeal Cancer Treated With Radiotherapy. Laryngoscope Investig Otolaryngol 2019; 4:399-404. [PMID: 31453348 PMCID: PMC6703112 DOI: 10.1002/lio2.272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives The aim of this study was to establish the prognostic value of the epidermal growth factor receptor (EGFR) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression on local control in patients with early stage supraglottic laryngeal squamous cell carcinoma (LSCC) treated with radiotherapy only. Study design Retrospective cohort study. Methods Immunohistochemical staining for EGFR and PTEN was performed on pretreatment biopsies of a selected well-defined homogeneous group of 52 patients with T1-T2 supraglottic LSCC treated with radiotherapy between 1990 and 2008. Kaplan-Meier analysis and univariate and multivariate Cox Regression analyses were performed to correlate clinical data and expression levels of EGFR and PTEN with local control. Results Kaplan-Meier survival analysis and Cox Regression analysis showed a significant association between PTEN expression and local control (hazard ratio [HR] = 3.26, 95% confidence interval [CI] = 1.14-9.33, P = .027) and between lymph node status and local control (HR = 3.60, 95% CI = 1.26-10.31, P = .017). Both were independent prognostic factors in a multivariate analysis (HR = 3.28, 95% CI = 1.14-9.39, P = .027 and HR = 3.62, 95% CI = 1.26-10.37, P = .017, respectively). There was no significant association between EGFR expression and local control (HR = 1.32, 95% CI = 1.17-10.14, P = .79). Conclusion This study showed an association between both high PTEN expression and the presence of lymph node metastasis and deteriorated local control in early stage supraglottic LSCC treated with radiotherapy. Level of Evidence NA.
Collapse
Affiliation(s)
- Leonie Bruine de Bruin
- Department of Otorhinolaryngology/Head and Neck Surgery University Medical Center Groningen, University of Groningen Groningen The Netherlands.,Graduate School of Medical Sciences (Groningen University Institute for Drug Exploration) University of Groningen Groningen The Netherlands
| | - Jan E Wachters
- Department of Otorhinolaryngology/Head and Neck Surgery University Medical Center Groningen, University of Groningen Groningen The Netherlands.,Graduate School of Medical Sciences (Groningen University Institute for Drug Exploration) University of Groningen Groningen The Netherlands
| | - Michiel L Schrijvers
- Department of Otorhinolaryngology/Head and Neck Surgery University Medical Center Groningen, University of Groningen Groningen The Netherlands.,Graduate School of Medical Sciences (Groningen University Institute for Drug Exploration) University of Groningen Groningen The Netherlands
| | - Lorian Slagter-Menkema
- Department of Otorhinolaryngology/Head and Neck Surgery University Medical Center Groningen, University of Groningen Groningen The Netherlands.,Graduate School of Medical Sciences (Groningen University Institute for Drug Exploration) University of Groningen Groningen The Netherlands.,Department of Pathology and Medical Biology University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Mirjam F Mastik
- Graduate School of Medical Sciences (Groningen University Institute for Drug Exploration) University of Groningen Groningen The Netherlands.,Department of Pathology and Medical Biology University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Johannes A Langendijk
- Graduate School of Medical Sciences (Groningen University Institute for Drug Exploration) University of Groningen Groningen The Netherlands.,Department of Radiation Oncology University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Jacqueline E van der Wal
- Department of Pathology and Medical Biology University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Ed Schuuring
- Graduate School of Medical Sciences (Groningen University Institute for Drug Exploration) University of Groningen Groningen The Netherlands.,Department of Pathology and Medical Biology University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Bernard F A M van der Laan
- Department of Otorhinolaryngology/Head and Neck Surgery University Medical Center Groningen, University of Groningen Groningen The Netherlands.,Graduate School of Medical Sciences (Groningen University Institute for Drug Exploration) University of Groningen Groningen The Netherlands
| |
Collapse
|
248
|
Liu X, Zhang P, Xie C, Sham KWY, Ng SSM, Chen Y, Cheng CHK. Activation of PTEN by inhibition of TRPV4 suppresses colon cancer development. Cell Death Dis 2019; 10:460. [PMID: 31189890 PMCID: PMC6561944 DOI: 10.1038/s41419-019-1700-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a Ca2+-permeable cation channel that is known to be an osmosensor and thermosensor. Currently, limited evidence shows that TRPV4 plays opposite roles in either promoting or inhibiting cancer development in different cancer types. Furthermore, the precise biological functions and the underlying mechanisms of TRPV4 in carcinogenesis are still poorly understood. In this study, we demonstrated that TRPV4 is upregulated in colon cancer and associated with poor prognosis. Contrary to the reported cell death-promoting activity of TRPV4 in certain cancer cells, TRPV4 positively regulates cell survival in human colon cancer in vitro and in vivo. Inhibition of TRPV4 affects the cell cycle progression from the G1 to S phase through modulating the protein expression of D-type cyclins. Apoptosis and autophagy induced by TRPV4 silencing attenuate cell survival and potentiate the anticancer efficacy of chemotherapeutics against colon cancer cells. In addition, PTEN is activated by inhibition of TRPV4 as indicated by the dephosphorylation and increased nuclear localization. Knockdown of PTEN significantly abrogates TRPV4 silencing induced growth inhibition and recovers the capability of clonogenicity, as well as reduced apoptosis in colon cancer cells. Thus, PTEN regulates the antigrowth effects induced by TRPV4 inhibition through both phosphatase-dependent and independent mechanisms. In conclusion, inhibition of TRPV4 suppresses colon cancer development via activation of PTEN pathway. This finding suggests that downregulation of TPRV4 expression or activity would conceivably constitute a novel approach for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Longgang E.N.T. hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Peng Zhang
- Longgang E.N.T. hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen, China
| | - Chuanming Xie
- Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Kathy W Y Sham
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Simon S M Ng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yangchao Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
249
|
Luo J, Liu Z. Long non-coding RNA TTN-AS1 promotes the progression of lung adenocarcinoma by regulating PTEN/PI3K/AKT signaling pathway. Biochem Biophys Res Commun 2019; 514:140-147. [DOI: 10.1016/j.bbrc.2019.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
250
|
Lipid-dependent Akt-ivity: where, when, and how. Biochem Soc Trans 2019; 47:897-908. [PMID: 31147387 PMCID: PMC6599160 DOI: 10.1042/bst20190013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Akt is an essential protein kinase activated downstream of phosphoinositide 3-kinase and frequently hyperactivated in cancer. Canonically, Akt is activated by phosphoinositide-dependent kinase 1 and mechanistic target of rapamycin complex 2, which phosphorylate it on two regulatory residues in its kinase domain upon targeting of Akt to the plasma membrane by PI(3,4,5)P3. Recent evidence, however, has shown that, in addition to phosphorylation, Akt activity is allosterically coupled to the engagement of PI(3,4,5)P3 or PI(3,4)P2 in cellular membranes. Furthermore, the active membrane-bound conformation of Akt is protected from dephosphorylation, and Akt inactivation by phosphatases is rate-limited by its dissociation. Thus, Akt activity is restricted to membranes containing either PI(3,4,5)P3 or PI(3,4)P2. While PI(3,4,5)P3 has long been associated with signaling at the plasma membrane, PI(3,4)P2 is gaining increasing traction as a signaling lipid and has been implicated in controlling Akt activity throughout the endomembrane system. This has clear implications for the phosphorylation of both freely diffusible substrates and those localized to discrete subcellular compartments.
Collapse
|