201
|
Wendling CC, Piecyk A, Refardt D, Chibani C, Hertel R, Liesegang H, Bunk B, Overmann J, Roth O. Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria. BMC Evol Biol 2017; 17:98. [PMID: 28399796 PMCID: PMC5387238 DOI: 10.1186/s12862-017-0930-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background Evolutionary shifts in bacterial virulence are often associated with a third biological player, for instance temperate phages, that can act as hyperparasites. By integrating as prophages into the bacterial genome they can contribute accessory genes, which can enhance the fitness of their prokaryotic carrier (lysogenic conversion). Hyperparasitic influence in tripartite biotic interactions has so far been largely neglected in empirical host-parasite studies due to their inherent complexity. Here we experimentally address whether bacterial resistance to phages and bacterial harm to eukaryotic hosts is linked using a natural tri-partite system with bacteria of the genus Vibrio, temperate vibriophages and the pipefish Syngnathus typhle. We induced prophages from all bacterial isolates and constructed a three-fold replicated, fully reciprocal 75 × 75 phage-bacteria infection matrix. Results According to their resistance to phages, bacteria could be grouped into three distinct categories: highly susceptible (HS-bacteria), intermediate susceptible (IS-bacteria), and resistant (R-bacteria). We experimentally challenged pipefish with three selected bacterial isolates from each of the three categories and determined the amount of viable Vibrio counts from infected pipefish and the expression of pipefish immune genes. While the amount of viable Vibrio counts did not differ between bacterial groups, we observed a significant difference in relative gene expression between pipefish infected with phage susceptible and phage resistant bacteria. Conclusion These findings suggest that bacteria with a phage-susceptible phenotype are more harmful against a eukaryotic host, and support the importance of hyperparasitism and the need for an integrative view across more than two levels when studying host-parasite evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0930-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolin C Wendling
- GEOMAR, Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - Agnes Piecyk
- GEOMAR, Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany.,Present address: Max Planck Institute for Evolutionary Biology, Department of Evolutionary Ecology, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Dominik Refardt
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Campus Grüental, CH-8820, Wädenswil, Switzerland
| | - Cynthia Chibani
- Institute for Microbiology and Genetics, Georg-August University Goettingen, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Robert Hertel
- Institute for Microbiology and Genetics, Georg-August University Goettingen, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Heiko Liesegang
- Institute for Microbiology and Genetics, Georg-August University Goettingen, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Olivia Roth
- GEOMAR, Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany
| |
Collapse
|
202
|
Modelling plankton ecosystems in the meta-omics era. Are we ready? Mar Genomics 2017; 32:1-17. [DOI: 10.1016/j.margen.2017.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/30/2022]
|
203
|
Isolation and Characterization of a Shewanella Phage-Host System from the Gut of the Tunicate, Ciona intestinalis. Viruses 2017; 9:v9030060. [PMID: 28327522 PMCID: PMC5371815 DOI: 10.3390/v9030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/08/2017] [Accepted: 03/17/2017] [Indexed: 01/16/2023] Open
Abstract
Outnumbering all other biological entities on earth, bacteriophages (phages) play critical roles in structuring microbial communities through bacterial infection and subsequent lysis, as well as through horizontal gene transfer. While numerous studies have examined the effects of phages on free-living bacterial cells, much less is known regarding the role of phage infection in host-associated biofilms, which help to stabilize adherent microbial communities. Here we report the cultivation and characterization of a novel strain of Shewanella fidelis from the gut of the marine tunicate Ciona intestinalis, inducible prophages from the S. fidelis genome, and a strain-specific lytic phage recovered from surrounding seawater. In vitro biofilm assays demonstrated that lytic phage infection affects biofilm formation in a process likely influenced by the accumulation and integration of the extracellular DNA released during cell lysis, similar to the mechanism that has been previously shown for prophage induction.
Collapse
|
204
|
Emerging Interaction Patterns in the Emiliania huxleyi-EhV System. Viruses 2017; 9:v9030061. [PMID: 28327527 PMCID: PMC5371816 DOI: 10.3390/v9030061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/25/2023] Open
Abstract
Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi/Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed.
Collapse
|
205
|
Wilhelm SW, Bird JT, Bonifer KS, Calfee BC, Chen T, Coy SR, Gainer PJ, Gann ER, Heatherly HT, Lee J, Liang X, Liu J, Armes AC, Moniruzzaman M, Rice JH, Stough JMA, Tams RN, Williams EP, LeCleir GR. A Student's Guide to Giant Viruses Infecting Small Eukaryotes: From Acanthamoeba to Zooxanthellae. Viruses 2017; 9:E46. [PMID: 28304329 PMCID: PMC5371801 DOI: 10.3390/v9030046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of infectious particles that challenge conventional thoughts concerning "what is a virus" has led to the evolution a new field of study in the past decade. Here, we review knowledge and information concerning "giant viruses", with a focus not only on some of the best studied systems, but also provide an effort to illuminate systems yet to be better resolved. We conclude by demonstrating that there is an abundance of new host-virus systems that fall into this "giant" category, demonstrating that this field of inquiry presents great opportunities for future research.
Collapse
Affiliation(s)
- Steven W Wilhelm
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jordan T Bird
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Kyle S Bonifer
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Benjamin C Calfee
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Tian Chen
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Samantha R Coy
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - P Jackson Gainer
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Eric R Gann
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Huston T Heatherly
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jasper Lee
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Xiaolong Liang
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jiang Liu
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - April C Armes
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Mohammad Moniruzzaman
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - J Hunter Rice
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Joshua M A Stough
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Robert N Tams
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Evan P Williams
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Gary R LeCleir
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
206
|
Affiliation(s)
- Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA. .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Susanne Wilken
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| |
Collapse
|
207
|
Visualizing Adsorption of Cyanophage P-SSP7 onto Marine Prochlorococcus. Sci Rep 2017; 7:44176. [PMID: 28281671 PMCID: PMC5345008 DOI: 10.1038/srep44176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Marine cyanobacteria perform roughly a quarter of global carbon fixation, and cyanophages that infect them liberate some of this carbon during infection and cell lysis. Studies of the cyanobacterium Prochlorococcus MED4 and its associated cyanophage P-SSP7 have revealed complex gene expression dynamics once infection has begun, but the initial cyanophage-host interactions remain poorly understood. Here, we used single particle cryo-electron tomography (cryo-ET) to investigate cyanophage-host interactions in this model system, based on 170 cyanophage-to-host adsorption events. Subtomogram classification and averaging revealed three main conformations characterized by different angles between the phage tail and the cell surface. Namely, phage tails were (i) parallel to, (ii) ~45 degrees to, or (iii) perpendicular to the cell surface. Furthermore, different conformations of phage tail fibers correlated with the aforementioned orientations of the tails. We also observed density beyond the tail tip in vertically-oriented phages that had penetrated the cell wall, capturing the final stage of adsorption. Together, our data provide a quantitative characterization of the orientation of phages as they adsorb onto cells, and suggest that cyanophages that abut their cellular targets are only transiently in the “perpendicular” orientation required for successful infection.
Collapse
|
208
|
Roose-Amsaleg C, Fedala Y, Vénien-Bryan C, Garnier J, Boccara AC, Boccara M. Utilization of interferometric light microscopy for the rapid analysis of virus abundance in a river. Res Microbiol 2017; 168:413-418. [PMID: 28263904 DOI: 10.1016/j.resmic.2017.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/16/2022]
Abstract
There is a constant need for direct counting of biotic nanoparticles such as viruses to unravel river functioning. We used, for the first time in freshwater, a new method based on interferometry differentiating viruses from other particles such as membrane vesicles. In the French Marne River, viruses represented between 42 and 72% of the particles. A spring monitoring in 2014 revealed their increase (2.1 × 107 to 2.1 × 108 mL-1) linked to an increase in algal biomass and diversity of bacterial plankton. Predicted virus size distributions were in agreement with transmission electron microscopy analysis suggesting a dominance of large viruses (≥60 nm).
Collapse
Affiliation(s)
- Céline Roose-Amsaleg
- UMR 7619 METIS, Sorbonne Universités, CNRS, Univ Paris 06, EPHE, 4 place Jussieu, 75005 Paris, France.
| | - Yasmina Fedala
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL Research University, CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France; Institut Langevin, ESPCI ParisTech, PSL Research University, CNRS UMR 7587, 1 rue Jussieu, 75005 Paris, France.
| | - Catherine Vénien-Bryan
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie UMR 7590, Sorbonne Universités, Univ Paris 06, CNRS, MNHN, IRD, 4 place Jussieu, 75005 Paris, France.
| | - Josette Garnier
- UMR 7619 METIS, Sorbonne Universités, CNRS, Univ Paris 06, EPHE, 4 place Jussieu, 75005 Paris, France.
| | - Albert-Claude Boccara
- Institut Langevin, ESPCI ParisTech, PSL Research University, CNRS UMR 7587, 1 rue Jussieu, 75005 Paris, France.
| | - Martine Boccara
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL Research University, CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France; Atelier de Bioinformatique, UMR 7205 ISYEB Sorbonne Universités, Univ Paris 06, CNRS, MNHN, EPHE, 45 rue Buffon, 75005 Paris, France.
| |
Collapse
|
209
|
Sullivan MB, Weitz JS, Wilhelm S. Viral ecology comes of age. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:33-35. [PMID: 27888577 DOI: 10.1111/1758-2229.12504] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Matthew B Sullivan
- Department of Microbiology and Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, 43214, USA
| | - Joshua S Weitz
- Department of Biological Sciences Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Steven Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
210
|
Thurber RV, Payet JP, Thurber AR, Correa AMS. Virus-host interactions and their roles in coral reef health and disease. Nat Rev Microbiol 2017; 15:205-216. [PMID: 28090075 DOI: 10.1038/nrmicro.2016.176] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.
Collapse
Affiliation(s)
- Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jérôme P Payet
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.,College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Andrew R Thurber
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.,College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Adrienne M S Correa
- BioSciences Department, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
211
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
212
|
Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free $d_2^*$ oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res 2016; 45:39-53. [PMID: 27899557 PMCID: PMC5224470 DOI: 10.1093/nar/gkw1002] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/31/2016] [Indexed: 01/17/2023] Open
Abstract
Viruses and their host genomes often share similar oligonucleotide frequency (ONF) patterns, which can be used to predict the host of a given virus by finding the host with the greatest ONF similarity. We comprehensively compared 11 ONF metrics using several k-mer lengths for predicting host taxonomy from among ∼32 000 prokaryotic genomes for 1427 virus isolate genomes whose true hosts are known. The background-subtracting measure [Formula: see text] at k = 6 gave the highest host prediction accuracy (33%, genus level) with reasonable computational times. Requiring a maximum dissimilarity score for making predictions (thresholding) and taking the consensus of the 30 most similar hosts further improved accuracy. Using a previous dataset of 820 bacteriophage and 2699 bacterial genomes, [Formula: see text] host prediction accuracies with thresholding and consensus methods (genus-level: 64%) exceeded previous Euclidian distance ONF (32%) or homology-based (22-62%) methods. When applied to metagenomically-assembled marine SUP05 viruses and the human gut virus crAssphage, [Formula: see text]-based predictions overlapped (i.e. some same, some different) with the previously inferred hosts of these viruses. The extent of overlap improved when only using host genomes or metagenomic contigs from the same habitat or samples as the query viruses. The [Formula: see text] ONF method will greatly improve the characterization of novel, metagenomic viruses.
Collapse
Affiliation(s)
- Nathan A Ahlgren
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Pkwy Los, Angeles, CA 90089, USA
| | - Jie Ren
- Molecular and Computational Biology Program, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Yang Young Lu
- Molecular and Computational Biology Program, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Pkwy Los, Angeles, CA 90089, USA
| | - Fengzhu Sun
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Pkwy Los, Angeles, CA 90089, USA.,Molecular and Computational Biology Program, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA.,Center for Computational Systems Biology, Fudan University, Shanghai 200433, China
| |
Collapse
|
213
|
Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, Vairale MG. Bacteriophages and its applications: an overview. Folia Microbiol (Praha) 2016; 62:17-55. [PMID: 27718043 DOI: 10.1007/s12223-016-0471-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/12/2016] [Indexed: 01/21/2023]
Abstract
Bacteriophages (or phages), the most abundant viral entity of the planet, are omni-present in all the ecosystems. On the basis of their unique characteristics and anti-bacterial property, phages are being freshly evaluated taxonomically. Phages replicate inside the host either by lytic or lysogenic mode after infecting and using the cellular machinery of a bacterium. Since their discovery by Twort and d'Herelle in the early 1900s, phage became an important agent for combating pathogenic bacteria in clinical treatments and its related research gained momentum. However, due to recent emergence of bacterial resistance on antibiotics, applications of phage (phage therapy) become an inevitable option of research. Phage particles become popular as a biotechnological tool and treatment of pathogenic bacteria in a range of applied areas. However, there are few concerns over the application of phage-based solutions. This review deals with the updated phage taxonomy (ICTV 2015 Release and subsequent revision) and phage biology and the recent development of its application in the areas of biotechnology, biosensor, therapeutic medicine, food preservation, aquaculture diseases, pollution remediation, and wastewater treatment and issues related with limitations of phage-based remedy.
Collapse
Affiliation(s)
- Sonika Sharma
- Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| | | | | | - Rishika Prasad
- Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
- School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | | | | | - Mohan G Vairale
- Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India
| |
Collapse
|
214
|
O'Malley MA. The ecological virus. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:71-79. [PMID: 26972871 DOI: 10.1016/j.shpsc.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Ecology is usually described as the study of organisms interacting with one another and their environments. From this view of ecology, viruses - not usually considered to be organisms - would merely be part of the environment. Since the late 1980s, however, a growing stream of micrographic, experimental, molecular, and model-based (theoretical) research has been investigating how and why viruses should be understood as ecological actors of the most important sort. Viruses, especially phage, have been revealed as participants in the planet's most crucial food webs, even though viruses technically consume nothing (they do not metabolize by themselves). Even more impressively, viruses have been identified as regulators of planetary biogeochemistry, in which they control cycles such as carbon, nitrogen and phosphorus - cycles on which all life depends. Although much biogeochemical research black-boxes the entities filling functional roles, it is useful to focus a little more closely to understand how viruses can be held responsible for the global processes of life. This paper will give a brief overview of the history of virus ecology and tease out the implications of large-scale ecological modelling with viruses. This analysis suggests that viruses should be conceptualized as ecological actors that are at least comparable and possibly equal to organismal actors. Ecological agency can therefore be distinguished from standard interpretations of biological agency.
Collapse
|
215
|
Complete genome sequence of bacteriophage P2559Y, a marine phage that infects Croceibacter atlanticus HTCC2559. Mar Genomics 2016; 29:35-38. [DOI: 10.1016/j.margen.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 11/22/2022]
|
216
|
Eggleston EM, Hewson I. Abundance of Two Pelagibacter ubique Bacteriophage Genotypes along a Latitudinal Transect in the North and South Atlantic Oceans. Front Microbiol 2016; 7:1534. [PMID: 27733846 PMCID: PMC5039313 DOI: 10.3389/fmicb.2016.01534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
This study characterizes viral and bacterial dynamics along a latitudinal transect in the Atlantic Ocean from approximately 10 N-40 S. Overall viral abundance decreased with depth, on average there were 1.64 ± 0.71 × 107 virus like particles (VLPs) in surface waters, decreasing to an average of 6.50 ± 2.26 × 105 VLPs in Antarctic Bottom Water. This decrease was highly correlated to bacterial abundance. There are six major water masses in the Southern Tropical Atlantic Ocean, and inclusion of water mass, temperature and salinity variables explained a majority of the variation in total viral abundance. Recent discovery of phages infecting bacteria of the SAR11 clade of Alphaproteobacteria (i.e., pelagiphages) leads to intriguing questions about the roles they play in shaping epipelagic communities. Viral-size fraction DNA from epipelagic water was used to quantify the abundance of two pelagiphages, using pelagiphage-specific quantitative PCR primers and probes along the transect. We found that HTVC010P, a member of a podoviridae sub-family, was most abundant in surface waters. Copy numbers ranged from an average of 1.03 ± 2.38 × 105 copies ml-1 in surface waters, to 5.79 ± 2.86 × 103 in the deep chlorophyll maximum. HTVC008M, a T4-like myovirus, was present in the deep chlorophyll maximum (5.42 ± 2.8 × 103 copies ml-1 on average), although it was not as highly abundant as HTVC010P in surface waters (6.05 ± 3.01 × 103 copies ml-1 on average). Interestingly, HTVC008M was only present at a few of the most southern stations, suggesting latitudinal biogeography of SAR11 phages.
Collapse
Affiliation(s)
- Erin M Eggleston
- Department of Microbiology, Cornell UniversityIthaca, NY, USA; Biology Department, St. Lawrence UniversityCanton, NY, USA
| | - Ian Hewson
- Department of Microbiology, Cornell University Ithaca, NY, USA
| |
Collapse
|
217
|
Boccara M, Fedala Y, Bryan CV, Bailly-Bechet M, Bowler C, Boccara AC. Full-field interferometry for counting and differentiating aquatic biotic nanoparticles: from laboratory to Tara Oceans. BIOMEDICAL OPTICS EXPRESS 2016; 7:3736-3746. [PMID: 27699134 PMCID: PMC5030046 DOI: 10.1364/boe.7.003736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 05/29/2023]
Abstract
There is a huge abundance of viruses and membrane vesicles in seawater. We describe a new full-field, incoherently illuminated, shot-noise limited, common-path interferometric detection method that we couple with the analysis of Brownian motion to detect, quantify, and differentiate biotic nanoparticles. We validated the method with calibrated nanoparticles and homogeneous DNA or RNA viruses. The smallest virus size that we characterized with a suitable signal-to-noise ratio was around 30 nm in diameter. Analysis of Brownian motions revealed anisotropic trajectories for myoviruses.We further applied the method for vesicles detection and for analysis of coastal and oligotrophic samples from Tara Oceans circumnavigation.
Collapse
Affiliation(s)
- Martine Boccara
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France; Atelier de Bioinformatique, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, 45 rue Buffon, 75005 Paris, France; These authors contributed equally to this paper;
| | - Yasmina Fedala
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France; Institut Langevin, ESPCI ParisTech, PSL Research University, CNRS UMR 7587, 1 rue Jussieu, 75005 Paris, France; These authors contributed equally to this paper
| | - Catherine Venien Bryan
- Institut de Minéralogie et de Physique des Milieux Condensés UMR 7590, UPMC, Paris, France
| | - Marc Bailly-Bechet
- Atelier de Bioinformatique, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, 45 rue Buffon, 75005 Paris, France; Laboratoire Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Bâtiment Gregor Mendel, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France
| | - Albert Claude Boccara
- Institut Langevin, ESPCI ParisTech, PSL Research University, CNRS UMR 7587, 1 rue Jussieu, 75005 Paris, France;
| |
Collapse
|
218
|
Virocell Metabolism: Metabolic Innovations During Host-Virus Interactions in the Ocean. Trends Microbiol 2016; 24:821-832. [PMID: 27395772 DOI: 10.1016/j.tim.2016.06.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/24/2022]
Abstract
Marine viruses are considered to be major ecological, evolutionary, and biogeochemical drivers of the marine environment, responsible for nutrient recycling and determining species composition. Viruses can re-shape their host's metabolic network during infection, generating the virocell-a unique metabolic state that supports their specific requirement. Here we discuss the concept of 'virocell metabolism' and its formation by rewiring of host-encoded metabolic networks, or by introducing virus-encoded auxiliary metabolic genes which provide the virocell with novel metabolic capabilities. The ecological role of marine viruses is commonly assessed by their relative abundance and phylogenetic diversity, lacking the ability to assess the dynamics of active viral infection. The new ability to define a unique metabolic state of the virocell will expand the current virion-centric approaches in order to quantify the impact of marine viruses on microbial food webs.
Collapse
|
219
|
Sheyn U, Rosenwasser S, Ben-Dor S, Porat Z, Vardi A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. THE ISME JOURNAL 2016; 10:1742-54. [PMID: 26784355 PMCID: PMC4918435 DOI: 10.1038/ismej.2015.228] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 10/13/2014] [Accepted: 11/06/2015] [Indexed: 11/09/2022]
Abstract
The cosmopolitan coccolithophore Emiliania huxleyi is a unicellular eukaryotic alga responsible for vast blooms in the ocean. These blooms have immense impact on large biogeochemical cycles and are terminated by a specific large double-stranded DNA E. huxleyi virus (EhV, Phycodnaviridae). EhV infection is accompanied by induction of hallmarks of programmed cell death and production of reactive oxygen species (ROS). Here we characterized alterations in ROS metabolism and explored its role during infection. Transcriptomic analysis of ROS-related genes predicted an increase in glutathione (GSH) and H2O2 production during infection. In accordance, using biochemical assays and specific fluorescent probes we demonstrated the overproduction of GSH during lytic infection. We also showed that H2O2 production, rather than superoxide, is the predominant ROS during the onset of the lytic phase of infection. Using flow cytometry, confocal microscopy and multispectral imaging flow cytometry, we showed that the profound co-production of H2O2 and GSH occurred in the same subpopulation of cells but at different subcellular localization. Positively stained cells for GSH and H2O2 were highly infected compared with negatively stained cells. Inhibition of ROS production by application of a peroxidase inhibitor or an H2O2 scavenger inhibited host cell death and reduced viral production. We conclude that viral infection induced remodeling of the host antioxidant network that is essential for a successful viral replication cycle. This study provides insight into viral replication strategy and suggests the use of specific cellular markers to identify and quantify the extent of active viral infection during E. huxleyi blooms in the ocean.
Collapse
Affiliation(s)
- Uri Sheyn
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shilo Rosenwasser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
220
|
Holmfeldt K, Solonenko N, Howard-Varona C, Moreno M, Malmstrom RR, Blow MJ, Sullivan MB. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems. Environ Microbiol 2016; 18:3949-3961. [PMID: 27235779 DOI: 10.1111/1462-2920.13392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/21/2015] [Indexed: 01/21/2023]
Abstract
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. Here, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding and modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.
Collapse
Affiliation(s)
- Karin Holmfeldt
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,Department of Biology and Environmental Sciences, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Natalie Solonenko
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Mario Moreno
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | | | - Matthew B Sullivan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
221
|
Hanson CA, Marston MF, Martiny JBH. Biogeographic Variation in Host Range Phenotypes and Taxonomic Composition of Marine Cyanophage Isolates. Front Microbiol 2016; 7:983. [PMID: 27446023 PMCID: PMC4919323 DOI: 10.3389/fmicb.2016.00983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
Despite the important role of phages in marine systems, little is understood about how their diversity is distributed in space. Biogeographic patterns of marine phages may be difficult to detect due to their vast genetic diversity, which may not be accurately represented by conserved marker genes. To investigate the spatial biogeographic structure of marine phages, we isolated over 400 cyanophages on Synechococcus host strain WH7803 at three coastal locations in the United States (Rhode Island, Washington, and southern California). Approximately 90% of the cyanophage isolates were myoviruses, while the other 10% were podoviruses. The diversity of isolates was further characterized in two ways: (i) taxonomically, using conserved marker genes and (ii) phenotypically, by testing isolates for their ability to infect a suite of hosts, or their "host range." Because host range is a highly variable trait even among closely related isolates, we hypothesized that host range phenotypes of cyanophage isolates would vary more strongly among locations than would taxonomic composition. Instead, we found evidence for strong biogeographic variation both in taxonomic composition and host range phenotypes, with little taxonomic overlap among the three coastal regions. For both taxonomic composition and host range phenotypes, cyanophage communities from California and Rhode Island were the most dissimilar, while Washington communities exhibited similarity to each of the other two locations. These results suggest that selection imposed by spatial variation in host dynamics influence the biogeographic distribution of cyanophages.
Collapse
Affiliation(s)
- China A Hanson
- School of Biological and Chemical Sciences, Queen Mary University of London, LondonUK; Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CAUSA
| | - Marcia F Marston
- Department of Biology and Marine Biology, Roger Williams University, Bristol, RI USA
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA USA
| |
Collapse
|
222
|
Fiorito G, Affuso A, Basil J, Cole A, de Girolamo P, D'Angelo L, Dickel L, Gestal C, Grasso F, Kuba M, Mark F, Melillo D, Osorio D, Perkins K, Ponte G, Shashar N, Smith D, Smith J, Andrews PLR. Guidelines for the Care and Welfare of Cephalopods in Research -A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab Anim 2016; 49:1-90. [PMID: 26354955 DOI: 10.1177/0023677215580006] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This paper is the result of an international initiative and is a first attempt to develop guidelines for the care and welfare of cephalopods (i.e. nautilus, cuttlefish, squid and octopus) following the inclusion of this Class of ∼700 known living invertebrate species in Directive 2010/63/EU. It aims to provide information for investigators, animal care committees, facility managers and animal care staff which will assist in improving both the care given to cephalopods, and the manner in which experimental procedures are carried out. Topics covered include: implications of the Directive for cephalopod research; project application requirements and the authorisation process; the application of the 3Rs principles; the need for harm-benefit assessment and severity classification. Guidelines and species-specific requirements are provided on: i. supply, capture and transport; ii. environmental characteristics and design of facilities (e.g. water quality control, lighting requirements, vibration/noise sensitivity); iii. accommodation and care (including tank design), animal handling, feeding and environmental enrichment; iv. assessment of health and welfare (e.g. monitoring biomarkers, physical and behavioural signs); v. approaches to severity assessment; vi. disease (causes, prevention and treatment); vii. scientific procedures, general anaesthesia and analgesia, methods of humane killing and confirmation of death. Sections covering risk assessment for operators and education and training requirements for carers, researchers and veterinarians are also included. Detailed aspects of care and welfare requirements for the main laboratory species currently used are summarised in Appendices. Knowledge gaps are highlighted to prompt research to enhance the evidence base for future revision of these guidelines.
Collapse
Affiliation(s)
- Graziano Fiorito
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Association for Cephalopod Research 'CephRes', Italy
| | - Andrea Affuso
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Animal Model Facility - BIOGEM S.C.A.R.L., Ariano Irpino (AV), Italy
| | - Jennifer Basil
- Biology Department, Brooklyn College - CUNY Graduate Center, Brooklyn, NY, USA
| | - Alison Cole
- Association for Cephalopod Research 'CephRes', Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Napoli, Italy AISAL - Associazione Italiana per le Scienze degli Animali da Laboratorio, Milano, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Napoli, Italy AISAL - Associazione Italiana per le Scienze degli Animali da Laboratorio, Milano, Italy
| | - Ludovic Dickel
- Groupe mémoire et Plasticité comportementale, University of Caen Basse-Normandy, Caen, France
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Frank Grasso
- BioMimetic and Cognitive Robotics, Department of Psychology, Brooklyn College - CUNY, Brooklyn, NY, USA
| | - Michael Kuba
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Felix Mark
- Integrative Ecophysiology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Daniela Melillo
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Sussex, UK
| | - Kerry Perkins
- School of Life Sciences, University of Sussex, Sussex, UK
| | | | - Nadav Shashar
- Department of Life Sciences, Eilat Campus, Ben-Gurion University of the Negev, Beer, Sheva, Israel
| | - David Smith
- FELASA, Federation for Laboratory Animal Science Associations
| | | | - Paul L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, UK Association for Cephalopod Research 'CephRes', Italy
| |
Collapse
|
223
|
Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol 2016; 31:161-168. [DOI: 10.1016/j.mib.2016.04.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/19/2022]
|
224
|
Jian H, Xiong L, Xu G, Xiao X. Filamentous phage SW1 is active and influences the transcriptome of the host at high-pressure and low-temperature. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:358-362. [PMID: 26929122 DOI: 10.1111/1758-2229.12388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As the most abundant biological entities on the planet, viruses are involved in global biogeochemical cycles, and they have been shown to play an important role in the overall functioning of the deep-sea ecosystem. Nevertheless, little is known about whether and how deep-sea viruses affect the physiology of their bacterial hosts. Previously, the filamentous phage SW1 was identified in the bathypelagic bacterium Shewanella piezotolerans WP3, which was isolated from the upper sediment of West Pacific ocean. In this study, phage SW1 was shown to be active under in situ environmental conditions (20 MPa and 4°C) by transmission electron microscopy and reverse-transcription quantitative polymerase chain reaction. Further comparative analysis showed that SW1 had a significant influence on the growth and transcriptome of its host. The transcription of genes responsible for basic cellular activities, including the transcriptional/translational apparatus, arginine synthesis, purine metabolism and the flagellar motor, were down-regulated by the phage. Our results present the first characterization of a phage-host interaction under high-pressure and low-temperature conditions, which indicated that the phage adjusted the energy utilization strategy of the host for improved survival in deep-sea environments.
Collapse
Affiliation(s)
- Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology
| | - Lei Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology
| | - Guanpeng Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
225
|
Obeng N, Pratama AA, Elsas JDV. The Significance of Mutualistic Phages for Bacterial Ecology and Evolution. Trends Microbiol 2016; 24:440-449. [DOI: 10.1016/j.tim.2015.12.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022]
|
226
|
Carlson MCG, McCary ND, Leach TS, Rocap G. Pseudo-nitzschia Challenged with Co-occurring Viral Communities Display Diverse Infection Phenotypes. Front Microbiol 2016; 7:527. [PMID: 27148216 PMCID: PMC4837327 DOI: 10.3389/fmicb.2016.00527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/31/2016] [Indexed: 11/13/2022] Open
Abstract
Viruses are catalysts of biogeochemical cycling, architects of microbial community structure, and terminators of phytoplankton blooms. Viral lysis of diatoms, a key group of eukaryotic phytoplankton, has the potential to impact carbon export and marine food webs. However, the impact of viruses on diatom abundance and community composition is unknown. Diatom-virus dynamics were explored by sampling every month at two coastal and estuarine locations in Washington state, USA resulting in 41 new isolates of the pennate diatom Pseudo-nitzschia and 20 environmental virus samples. We conducted a total of 820 pair-wise crosses of the Pseudo-nitzschia isolates and viral communities. Viral communities infected Pseudo-nitzschia isolates in 8% of the crosses overall and 16% of crosses when the host and viral communities were isolated from the same sample. Isolates ranged in their permissivity to infection with some isolates not infected by any viral samples and others infected by up to 10 viral communities. Isolates that were infected by the most viral communities also had the highest maximum observed viral titers (as high as 16000 infectious units ml-1). Titers of the viral communities were host dependent, as titers for one viral sample on eight different hosts spanned four orders of magnitude. Sequencing of the Pseudo-nitzschia Internal Transcribed Spacer 1 (ITS1) of the revealed multiple subgroups of hosts with 100% ITS1 identities that were infected by different viral communities. Indeed, we repeatedly isolated groups of isolates with identical ITS1 sequences from the same water sample that displayed different viral infection phenotypes. The interactions between Pseudo-nitzschia and the viral communities highlight the diversity of diatoms and emphasize the complexity and variability of diatom-virus dynamics in the ocean.
Collapse
Affiliation(s)
| | | | - Terence S Leach
- School of Oceanography, University of Washington Seattle, WA, USA
| | - Gabrielle Rocap
- School of Oceanography, University of Washington Seattle, WA, USA
| |
Collapse
|
227
|
Aguirre de Cárcer D, López-Bueno A, Alonso-Lobo JM, Quesada A, Alcamí A. Metagenomic analysis of lacustrine viral diversity along a latitudinal transect of the Antarctic Peninsula. FEMS Microbiol Ecol 2016; 92:fiw074. [PMID: 27059864 DOI: 10.1093/femsec/fiw074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 01/21/2023] Open
Abstract
Environmental viruses constitute the most abundant biological entities on earth, and harbor an enormous genetic diversity. While their strong influence on the ecosystem is widely acknowledged, current knowledge about their diversity and distribution remains limited. Here we present the metagenomic study of viral communities from freshwater bodies located along a transect of the Antarctic Peninsula. These ecosystems were chosen on the basis of environmental and biogeographical variation. The results obtained indicate that the virus assemblages were diverse, and that the larger fraction represented viruses with no close relatives in the databases. Comparisons to existing metaviromes showed that the communities studied were dissimilar to other freshwater viromes including those from the Arctic. Finally, we observed no indication of there being a reduction in either viral richness or diversity estimates with increasing latitude along the studied transect, further adding to the controversy regarding the possible existence of latitudinal gradients of diversity in the microbial world.
Collapse
Affiliation(s)
- Daniel Aguirre de Cárcer
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan M Alonso-Lobo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
228
|
Ziv C, Malitsky S, Othman A, Ben-Dor S, Wei Y, Zheng S, Aharoni A, Hornemann T, Vardi A. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proc Natl Acad Sci U S A 2016; 113:E1907-16. [PMID: 26984500 PMCID: PMC4822627 DOI: 10.1073/pnas.1523168113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine viruses are the most abundant biological entities in the oceans shaping community structure and nutrient cycling. The interaction between the bloom-forming alga Emiliania huxleyi and its specific large dsDNA virus (EhV) is a major factor determining the fate of carbon in the ocean, thus serving as a key host-pathogen model system. The EhV genome encodes for a set of genes involved in the de novo sphingolipid biosynthesis, not reported in any viral genome to date. We combined detailed lipidomic and biochemical analyses to characterize the functional role of this virus-encoded pathway during lytic viral infection. We identified a major metabolic shift, mediated by differential substrate specificity of virus-encoded serine palmitoyltransferase, a key enzyme of sphingolipid biosynthesis. Consequently, unique viral glycosphingolipids, composed of unusual hydroxylated C17 sphingoid bases (t17:0) were highly enriched in the infected cells, and their synthesis was found to be essential for viral assembly. These findings uncover the biochemical bases of the virus-induced metabolic rewiring of the host sphingolipid biosynthesis during the chemical "arms race" in the ocean.
Collapse
Affiliation(s)
- Carmit Ziv
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
| | - Shifra Ben-Dor
- Biological Services Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yu Wei
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Shuning Zheng
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
229
|
Hurwitz BL, U'Ren JM, Youens-Clark K. Computational prospecting the great viral unknown. FEMS Microbiol Lett 2016; 363:fnw077. [DOI: 10.1093/femsle/fnw077] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2016] [Indexed: 12/14/2022] Open
|
230
|
Fadeev E, De Pascale F, Vezzi A, Hübner S, Aharonovich D, Sher D. Why Close a Bacterial Genome? The Plasmid of Alteromonas Macleodii HOT1A3 is a Vector for Inter-Specific Transfer of a Flexible Genomic Island. Front Microbiol 2016; 7:248. [PMID: 27014193 PMCID: PMC4781885 DOI: 10.3389/fmicb.2016.00248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Genome sequencing is rapidly becoming a staple technique in environmental and clinical microbiology, yet computational challenges still remain, leading to many draft genomes which are typically fragmented into many contigs. We sequenced and completely assembled the genome of a marine heterotrophic bacterium, Alteromonas macleodii HOT1A3, and compared its full genome to several draft genomes obtained using different reference-based and de novo methods. In general, the de novo assemblies clearly outperformed the reference-based or hybrid ones, covering >99% of the genes and representing essentially all of the gene functions. However, only the fully closed genome (∼4.5 Mbp) allowed us to identify the presence of a large, 148 kbp plasmid, pAM1A3. While HOT1A3 belongs to A. macleodii, typically found in surface waters (“surface ecotype”), this plasmid consists of an almost complete flexible genomic island (fGI), containing many genes involved in metal resistance previously identified in the genomes of Alteromonas mediterranea (“deep ecotype”). Indeed, similar to A. mediterranea, A. macleodii HOT1A3 grows at concentrations of zinc, mercury, and copper that are inhibitory for other A. macleodii strains. The presence of a plasmid encoding almost an entire fGI suggests that wholesale genomic exchange between heterotrophic marine bacteria belonging to related but ecologically different populations is not uncommon.
Collapse
Affiliation(s)
- Eduard Fadeev
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Fabio De Pascale
- Department of Biology and CRIBI Biotechnology Centre, University of Padua Padova, Italy
| | - Alessandro Vezzi
- Department of Biology and CRIBI Biotechnology Centre, University of Padua Padova, Italy
| | - Sariel Hübner
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaVancouver, Canada; The Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| |
Collapse
|
231
|
Skvortsov T, de Leeuwe C, Quinn JP, McGrath JW, Allen CCR, McElarney Y, Watson C, Arkhipova K, Lavigne R, Kulakov LA. Metagenomic Characterisation of the Viral Community of Lough Neagh, the Largest Freshwater Lake in Ireland. PLoS One 2016; 11:e0150361. [PMID: 26927795 PMCID: PMC4771703 DOI: 10.1371/journal.pone.0150361] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/12/2016] [Indexed: 11/18/2022] Open
Abstract
Lough Neagh is the largest and the most economically important lake in Ireland. It is also one of the most nutrient rich amongst the world’s major lakes. In this study, 16S rRNA analysis of total metagenomic DNA from the water column of Lough Neagh has revealed a high proportion of Cyanobacteria and low levels of Actinobacteria, Acidobacteria, Chloroflexi, and Firmicutes. The planktonic virome of Lough Neagh has been sequenced and 2,298,791 2×300 bp Illumina reads analysed. Comparison with previously characterised lakes demonstrates that the Lough Neagh viral community has the highest level of sequence diversity. Only about 15% of reads had homologs in the RefSeq database and tailed bacteriophages (Caudovirales) were identified as a major grouping. Within the Caudovirales, the Podoviridae and Siphoviridae were the two most dominant families (34.3% and 32.8% of the reads with sequence homology to the RefSeq database), while ssDNA bacteriophages constituted less than 1% of the virome. Putative cyanophages were found to be abundant. 66,450 viral contigs were assembled with the largest one being 58,805 bp; its existence, and that of another 34,467 bp contig, in the water column was confirmed. Analysis of the contigs confirmed the high abundance of cyanophages in the water column.
Collapse
Affiliation(s)
- Timofey Skvortsov
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Colin de Leeuwe
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - John P. Quinn
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - John W. McGrath
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Christopher C. R. Allen
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Yvonne McElarney
- Agri-Food & Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Catherine Watson
- Agri-Food & Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Ksenia Arkhipova
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Leonid A. Kulakov
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
232
|
Pradeep Ram AS, Colombet J, Perriere F, Thouvenot A, Sime-Ngando T. Viral Regulation of Prokaryotic Carbon Metabolism in a Hypereutrophic Freshwater Reservoir Ecosystem (Villerest, France). Front Microbiol 2016; 7:81. [PMID: 26903963 PMCID: PMC4746248 DOI: 10.3389/fmicb.2016.00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 01/27/2023] Open
Abstract
The current consensus concerning the viral regulation of prokaryotic carbon metabolism is less well-studied, compared to substrate availability. We explored the seasonal and vertical distribution of viruses and its relative influence on prokaryotic carbon metabolism in a hypereutrophic reservoir, Lake Villerest (France). Flow cytometry and transmission electron microscopy (TEM) analyses to determine viral abundance (VA; range = 6.1–63.5 × 107 ml-1) and viral infection rates of prokaryotes (range = 5.3–32%) respectively suggested that both the parameters varied more significantly with depths than with seasons. Prokaryotic growth efficiency (PGE, considered as a proxy of prokaryotic carbon metabolism) calculated from prokaryotic production and respiration measurements (PGE = prokaryotic production/[prokaryotic production + prokaryotic respiration] × 100) varied from 14 to 80% across seasons and depths. Viruses through selective lyses had antagonistic impacts on PGE by regulating key prokaryotic metabolic processes (i.e., production and respiration). Higher viral lysis accompanied by higher respiration rates and lower PGE in the summer (mean = 22.9 ± 10.3%) than other seasons (mean = 59.1 ± 18.6%), led to significant loss of carbon through bacterial-viral loop and shifted the reservoir system to net heterotrophy. Our data therefore suggests that the putative adverse impact of viruses on the growth efficiency of the prokaryotic community can have strong implications on nutrient flux patterns and on the overall ecosystem metabolism in anthropogenic dominated aquatic systems such as Lake Villerest.
Collapse
Affiliation(s)
- Angia Sriram Pradeep Ram
- UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal Aubière, France
| | - Jonathan Colombet
- UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal Aubière, France
| | - Fanny Perriere
- UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal Aubière, France
| | | | - Télesphore Sime-Ngando
- UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal Aubière, France
| |
Collapse
|
233
|
Cai L, Zhang R, He Y, Feng X, Jiao N. Metagenomic Analysis of Virioplankton of the Subtropical Jiulong River Estuary, China. Viruses 2016; 8:v8020035. [PMID: 26848678 PMCID: PMC4776190 DOI: 10.3390/v8020035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 11/24/2022] Open
Abstract
Viruses are the most abundant biological entities in the oceans, and encompass a significant reservoir of genetic diversity. However, little is known about their biodiversity in estuary environments, which represent a highly dynamic and potentially more diverse habitat. Here, we report a metagenomic analysis of the dsDNA viral community from the Jiulong River Estuary (JRE), China, and provide a comparative analysis with other closely related environments. The results showed that the majority of JRE virome did not show any significant similarity to the database. For the major viral group (Caudovirales) detected in the sample, Podoviridae (44.88%) were the most abundant family, followed by Siphoviridae (32.98%) and Myoviridae (17.32%). The two most abundant viruses identified in the virome were phages HTVC010P and HMO-2011, which infect bacteria belonging to marine SAR11 and SAR116 clades, respectively. Two contigs larger than 20 kb, which show similar overall genome architectures to Celeribacter phage P12053L and Thalosomonas phage BA3, respectively, were generated during assembly. Comparative analysis showed that the JRE virome was more similar to marine viromes than to freshwater viromes, and shared a relative coarse-grain genetic overlap (averaging 14.14% ± 1.68%) with other coastal viromes. Our study indicated that the diversity and community structure of the virioplankton found in JRE were mainly affected by marine waters, with less influence from freshwater discharge.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| | - Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| |
Collapse
|
234
|
Dann LM, Paterson JS, Newton K, Oliver R, Mitchell JG. Distributions of Virus-Like Particles and Prokaryotes within Microenvironments. PLoS One 2016; 11:e0146984. [PMID: 26785114 PMCID: PMC4718716 DOI: 10.1371/journal.pone.0146984] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
Microbial interactions are important for ecosystem function, but occur at the microscale and so are difficult to observe. Previous studies in marine systems have shown significant shifts in microbial community abundance and composition over scales of micrometres to centimetres. This study investigates the microscale abundance distributions of virus-like particles (VLPs) and prokaryotes in the lower reaches of a river to determine the extent to which microscale microbial patchiness exists in freshwater systems. Here we report local hotspots surrounded by gradients that reach a maximum 80 and 107 fold change in abundance over 0.9 cm for prokaryotic and VLP subpopulations. Changes in prokaryotic and VLP hotspots were tightly coupled. There were no gradients at tens of centimetres across the boundary layers, which is consistent with strong mixing and turbulence-driven aggregation found in river systems. Quantification of the patchiness shows a marked asymmetry with patches 10 times greater than background common, but depletions being rare or absent in most samples. This consistent asymmetry suggests that coldspots depleted by grazing and lysis are rapidly mixed to background concentrations, while the prevalence of hotspots indicates persistence against disruption. The hotspot to coldspot relative abundance may be useful for understanding microbial river dynamics. The patchiness indicates that the mean- field approach of bulk phase sampling misses the microbially relevant community variation and may underestimate the concentrations of these important microbial groups.
Collapse
Affiliation(s)
- Lisa M. Dann
- School of Biological Sciences at Flinders University, Adelaide, South Australia
- * E-mail:
| | - James S. Paterson
- School of Biological Sciences at Flinders University, Adelaide, South Australia
| | - Kelly Newton
- School of Biological Sciences at Flinders University, Adelaide, South Australia
| | - Rod Oliver
- Land and Water Research Division at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia
| | - James G. Mitchell
- School of Biological Sciences at Flinders University, Adelaide, South Australia
| |
Collapse
|
235
|
Liu Z, Liu S. High Phosphate Concentrations Accelerate Bacterial Peptide Decomposition in Hypoxic Bottom Waters of the Northern Gulf of Mexico. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:676-684. [PMID: 26650147 DOI: 10.1021/acs.est.5b03039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite extensive studies of the development and dynamics of hypoxia in coastal oceans, factors controlling the decomposition rates and pathways of labile organic matter (OM) in hypoxic waters are not well understood. Here we investigate peptide decomposition in a stratified water column in the hypoxic region of the northern Gulf of Mexico by conducting on-deck incubation experiments amended with tetrapeptide ala-val-phe-ala (AVFA), a fragment of RuBisCO. Our results show that decomposition efficiency of AVFA was limited by the availability of soluble reactive phosphorus (Pi) in the surface water (<0.3 μM), as it was greatly enhanced after Pi addition to the incubation water. In contrast, peptide decomposition rate in the subsurface water, enriched with Pi (0.4-1.2 μM), was twice as high as that in the surface water, concomitant with the development of fast-growing bacteria during the incubation. Consistent with the Growth Rate Hypothesis, these results indicate that a high level of Pi is crucial in stimulating the growth of bacterial strains with high RNA contents and thus faster OM decomposition in marine environments. This high decomposition potential of OM in subsurface hypoxic waters presents a positive feedback on hypoxia formation in Pi-enriched coastal subsurface waters, as a higher OM decomposition rate leads to rapid consumption of dissolved oxygen (DO).
Collapse
Affiliation(s)
- Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Shuting Liu
- Marine Science Institute, The University of Texas at Austin , Port Aransas, Texas 78373, United States
| |
Collapse
|
236
|
Adriaenssens EM, van Zyl LJ, Cowan DA, Trindade MI. Metaviromics of Namib Desert Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA Viruses. Viruses 2016; 8:v8010014. [PMID: 26761024 PMCID: PMC4728574 DOI: 10.3390/v8010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022] Open
Abstract
Viral communities of two different salt pans located in the Namib Desert, Hosabes and Eisfeld, were investigated using a combination of multiple displacement amplification of metaviromic DNA and deep sequencing, and provided comprehensive sequence data on both ssDNA and dsDNA viral community structures. Read and contig annotations through online pipelines showed that the salt pans harbored largely unknown viral communities. Through network analysis, we were able to assign a large portion of the unknown reads to a diverse group of ssDNA viruses. Contigs belonging to the subfamily Gokushovirinae were common in both environmental datasets. Analysis of haloarchaeal virus contigs revealed the presence of three contigs distantly related with His1, indicating a possible new lineage of salterproviruses in the Hosabes playa. Based on viral richness and read mapping analyses, the salt pan metaviromes were novel and most closely related to each other while showing a low degree of overlap with other environmental viromes.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Marla I Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| |
Collapse
|
237
|
Abstract
Global microbial cell numbers in the seabed exceed those in the overlying water column, yet these organisms receive less than 1% of the energy fixed as organic matter in the ocean. The microorganisms of this marine deep biosphere subsist as stable and diverse communities with extremely low energy availability. Growth is exceedingly slow, possibly regulated by virus-induced mortality, and the mean generation times are tens to thousands of years. Intermediate substrates such as acetate are maintained at low micromolar concentrations, yet their turnover time may be several hundred years. Owing to slow growth, a cell community may go through only 10,000 generations from the time it is buried beneath the mixed surface layer until it reaches a depth of tens of meters several million years later. We discuss the efficiency of the energy-conserving machinery of subsurface microorganisms and how they may minimize energy consumption through necessary maintenance, repair, and growth.
Collapse
Affiliation(s)
- Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark; ,
| | - Ian P G Marshall
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark; ,
| |
Collapse
|
238
|
Cenens W, Makumi A, Govers SK, Lavigne R, Aertsen A. Viral Transmission Dynamics at Single-Cell Resolution Reveal Transiently Immune Subpopulations Caused by a Carrier State Association. PLoS Genet 2015; 11:e1005770. [PMID: 26720743 PMCID: PMC4697819 DOI: 10.1371/journal.pgen.1005770] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22) throughout a population of its host (Salmonella Typhimurium) at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host. Extensive co-evolution with their host has shaped bacterial viruses into the most abundant and sophisticated pathogens known to date. However, how these important viral pathogens manage to safely exploit their host without jeopardizing stable co-existence remains a central question, since horizontal (lytic) transmission can reduce the number of susceptible host cells and cause pathogen extinction, while vertical (lysogenic) transmission impairs pathogen abundance. Scrutinizing transmission of temperate phage P22 throughout a bacterial population at single cell resolution now revealed that this phage is able to disseminate immunity factors that allow the emergence of transiently resistant subpopulations of host cells. The continued fostering and consumption of such subpopulations points to an entirely new strategy by which viruses could manage to sustain an active infection with their host.
Collapse
Affiliation(s)
- William Cenens
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Angela Makumi
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Sander K. Govers
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
239
|
|
240
|
Engelhardt T, Orsi WD, Jørgensen BB. Viral activities and life cycles in deep subseafloor sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:868-873. [PMID: 26109514 DOI: 10.1111/1758-2229.12316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Viruses are highly abundant in marine subsurface sediments and can even exceed the number of prokaryotes. However, their activity and quantitative impact on microbial populations are still poorly understood. Here, we use gene expression data from published continental margin subseafloor metatranscriptomes to qualitatively assess viral diversity and activity in sediments up to 159 metres below seafloor (mbsf). Mining of the metatranscriptomic data revealed 4651 representative viral homologues (RVHs), representing 2.2% of all metatranscriptome sequence reads, which have close translated homology (average 77%, range 60-97% amino acid identity) to viral proteins. Archaea-infecting RVHs are exclusively detected in the upper 30 mbsf, whereas RVHs for filamentous inoviruses predominate in the deepest sediment layers. RVHs indicative of lysogenic phage-host interactions and lytic activity, notably cell lysis, are detected at all analysed depths and suggest a dynamic virus-host association in the marine deep biosphere studied here. Ongoing lytic viral activity is further indicated by the expression of clustered, regularly interspaced, short palindromic repeat-associated cascade genes involved in cellular defence against viral attacks. The data indicate the activity of viruses in subsurface sediment of the Peruvian margin and suggest that viruses indeed cause cell mortality and may play an important role in the turnover of subseafloor microbial biomass.
Collapse
Affiliation(s)
- Tim Engelhardt
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus, 8000, Denmark
| | - William D Orsi
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus, 8000, Denmark
| |
Collapse
|
241
|
Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME JOURNAL 2015; 10:1437-55. [PMID: 26623542 DOI: 10.1038/ismej.2015.210] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 01/21/2023]
Abstract
Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage.
Collapse
|
242
|
Abstract
In recent years, remarkable progress has been made in the field of virus environmental ecology. In marine ecosystems, for example, viruses are now thought to play pivotal roles in the biogeochemical cycling of nutrients and to be mediators of microbial evolution through horizontal gene transfer. The diversity and ecology of viruses in soils are poorly understood, but evidence supports the view that the diversity and ecology of viruses in soils differ substantially from those in aquatic systems. Desert biomes cover ∼ 33% of global land masses, and yet the diversity and roles of viruses in these dominant ecosystems remain poorly understood. There is evidence that hot hyperarid desert soils are characterized by high levels of bacterial lysogens and low extracellular virus counts. In contrast, cold desert soils contain high extracellular virus titers. We suggest that the prevalence of microbial biofilms in hyperarid soils, combined with extreme thermal regimens, exerts strong selection pressures on both temperate and virulent viruses. Many desert soil virus sequences show low values of identity to virus genomes in public databases, suggesting the existence of distinct and as-yet-uncharacterized soil phylogenetic lineages (e.g., cyanophages). We strongly advocate for amplification-free metavirome analyses while encouraging the classical isolation of phages from dominant and culturable microbial isolates in order to populate sequence databases. This review provides an overview of recent advances in the study of viruses in hyperarid soils and of the factors that contribute to viral abundance and diversity in hot and cold deserts and offers technical recommendations for future studies.
Collapse
|
243
|
Comparative Genomic and Phylogenomic Analyses Reveal a Conserved Core Genome Shared by Estuarine and Oceanic Cyanopodoviruses. PLoS One 2015; 10:e0142962. [PMID: 26569403 PMCID: PMC4646655 DOI: 10.1371/journal.pone.0142962] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation.
Collapse
|
244
|
Choi A, Kang I, Yang SJ, Cho JC. Complete genome sequence of bacteriophage P8625, the first lytic phage that infects Verrucomicrobia. Stand Genomic Sci 2015; 10:96. [PMID: 26566421 PMCID: PMC4642752 DOI: 10.1186/s40793-015-0091-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022] Open
Abstract
Bacteriophage P8625 is a lytic bacteriophage that infects the verrucomicrobial strain IMCC8625, a marine bacterium affiliated with Verrucomicrobia subdivision 4. Both the bacteriophage and the host bacterial strain were isolated from surface seawater samples collected off the east coast of Korea. The phage particle has an icosahedral capsid with a diameter of ~47 nm and a long tail of ~75 nm in length, showing the distinctive morphology of the Siphoviridae family. The complete genome sequence of phage P8625 is 32,894 bp long with 51.0 % G + C content. This is the first report of the complete genome sequence of a lytic phage that infects the Verrucomicrobia, for which the name "verrucophage" is proposed.
Collapse
Affiliation(s)
- Ahyoung Choi
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Seung-Jo Yang
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| |
Collapse
|
245
|
Xu Y, Zhang R, Jiao N. Complete genome sequence of Paracoccus marcusii phage vB_PmaS-R3 isolated from the South China Sea. Stand Genomic Sci 2015; 10:94. [PMID: 26561517 PMCID: PMC4641407 DOI: 10.1186/s40793-015-0089-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 10/26/2015] [Indexed: 04/23/2023] Open
Abstract
Paracoccus spp. are isolated from both terrestrial and aquatic habitats, indicating their ubiquitous existence in the environment. Here we present the first phage isolated from this genus, vB_PmaS-R3, and its complete genome sequence. Paracoccus phage vB_PmaS-R3 is a siphophage isolated from the South China Sea. The genome sequence is 42,093 bp, with a G + C content of 56.36 %. Fifty-two open reading frames were predicted from the genome. The genome can mainly be divided into three regions: genes for DNA metabolism, regulatory genes and structure forming genes. Genes encoding DNA metabolism and structural proteins showed high sequence homology to corresponding genes of Burkholderia phage KL1 and Pseudomonas phage PA73. In addition, four gene transfer agent-like genes were found in the vB_PmaS-R3 genome. A putative L-alanoyl-D-glutamate peptidase was predicted as the endolysin. A MazG gene was found in the vB_PmaS-R3 genome, which indicates genomic adaption to the nutrient-limited marine environment.
Collapse
Affiliation(s)
- Yongle Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| |
Collapse
|
246
|
Abstract
Viruses that infect bacteria (bacteriophages; also known as phages) were discovered 100 years ago. Since then, phage research has transformed fundamental and translational biosciences. For example, phages were crucial in establishing the central dogma of molecular biology - information is sequentially passed from DNA to RNA to proteins - and they have been shown to have major roles in ecosystems, and help drive bacterial evolution and virulence. Furthermore, phage research has provided many techniques and reagents that underpin modern biology - from sequencing and genome engineering to the recent discovery and exploitation of CRISPR-Cas phage resistance systems. In this Timeline, we discuss a century of phage research and its impact on basic and applied biology.
Collapse
|
247
|
Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Res 2015; 219:22-38. [PMID: 26546154 DOI: 10.1016/j.virusres.2015.10.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022]
Abstract
The number of reported mycoviruses is increasing exponentially due to the current ability to detect mycoviruses using next-generation sequencing (NGS) approaches, with a large number of viral genomes built in-silico using data from fungal transcriptome projects. We decided to screen a collection of fungi originating from a specific marine environment (associated with the seagrass Posidonia oceanica) for the presence of mycoviruses: our findings reveal a wealth of diversity among these symbionts and this complexity will require further studies to address their specific role in this ecological niche. In specific, we identified twelve new virus species belonging to nine distinct lineages: they are members of megabirnavirus, totivirus, chrysovirus, partitivirus and five still undefined clades. We showed evidence of an endogenized virus ORF, and evidence of accumulation of dsRNA from metaviridae retroviral elements. We applied different techniques for detecting the presence of mycoviruses including (i) dsRNA extraction and cDNA cloning, (ii) small and total RNA sequencing through NGS techniques, (iii) rolling circle amplification (RCA) and total DNA extraction analyses, (iv) virus purifications and electron microscopy. We tried also to critically evaluate the intrinsic value and limitations of each of these techniques. Based on the samples we could compare directly, RNAseq analysis is superior to sRNA for de novo assembly of mycoviruses. To our knowledge this is the first report on the virome of fungi isolated from marine environment. The GenBank/eMBL/DDBJ accession numbers of the sequences reported in this paper are: KT601099-KT601110; KT601114-KT601120; KT592305; KT950836-KT950841.
Collapse
|
248
|
Antunes A, Alam I, Simões MF, Daniels C, Ferreira AJS, Siam R, El-Dorry H, Bajic VB. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:304-9. [PMID: 26529193 PMCID: PMC4678784 DOI: 10.1016/j.gpb.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/09/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine–seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine–seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.
Collapse
Affiliation(s)
- André Antunes
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Intikhab Alam
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Marta Filipa Simões
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Camille Daniels
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ari J S Ferreira
- Biology Department, American University in Cairo, New Cairo 11835, Egypt
| | - Rania Siam
- Biology Department, American University in Cairo, New Cairo 11835, Egypt
| | - Hamza El-Dorry
- Biology Department, American University in Cairo, New Cairo 11835, Egypt
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
249
|
Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, Minot S, Bushman FD, Grice EA. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 2015; 6:e01578-15. [PMID: 26489866 PMCID: PMC4620475 DOI: 10.1128/mbio.01578-15] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Viruses make up a major component of the human microbiota but are poorly understood in the skin, our primary barrier to the external environment. Viral communities have the potential to modulate states of cutaneous health and disease. Bacteriophages are known to influence the structure and function of microbial communities through predation and genetic exchange. Human viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite these important roles, little is known regarding the human skin virome and its interactions with the host microbiome. Here we evaluated the human cutaneous double-stranded DNA virome by metagenomic sequencing of DNA from purified virus-like particles (VLPs). In parallel, we employed metagenomic sequencing of the total skin microbiome to assess covariation and infer interactions with the virome. Samples were collected from 16 subjects at eight body sites over 1 month. In addition to the microenviroment, which is known to partition the bacterial and fungal microbiota, natural skin occlusion was strongly associated with skin virome community composition. Viral contigs were enriched for genes indicative of a temperate phage replication style and also maintained genes encoding potential antibiotic resistance and virulence factors. CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we modeled the structure of bacterial and phage communities together to reveal a complex microbial environment with a Corynebacterium hub. These results reveal the previously underappreciated diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome. IMPORTANCE To date, most cutaneous microbiome studies have focused on bacterial and fungal communities. Skin viral communities and their relationships with their hosts remain poorly understood despite their potential to modulate states of cutaneous health and disease. Previous studies employing whole-metagenome sequencing without purification for virus-like particles (VLPs) have provided some insight into the viral component of the skin microbiome but have not completely characterized these communities or analyzed interactions with the host microbiome. Here we present an optimized virus purification technique and corresponding analysis tools for gaining novel insights into the skin virome, including viral "dark matter," and its potential interactions with the host microbiome. The work presented here establishes a baseline of the healthy human skin virome and is a necessary foundation for future studies examining viral perturbations in skin health and disease.
Collapse
Affiliation(s)
- Geoffrey D Hannigan
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacquelyn S Meisel
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Amanda S Tyldsley
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qi Zheng
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brendan P Hodkinson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adam J SanMiguel
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Samuel Minot
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A Grice
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
250
|
Kang I, Jang H, Cho JC. Complete genome sequences of bacteriophages P12002L and P12002S, two lytic phages that infect a marine Polaribacter strain. Stand Genomic Sci 2015; 10:82. [PMID: 26500718 PMCID: PMC4615864 DOI: 10.1186/s40793-015-0076-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023] Open
Abstract
The bacterial genus Polaribacter is distributed widely in marine environments; however, there have been no reports of phages infecting Polaribacter strains. Here, we describe the isolation and genome sequencing of two lytic siphophages, P12002L and P12002S, that infect Polaribacter sp. strain IMCC12002. The two phages and host strain were isolated from coastal seawater of Korea. Complete genome sequences of the two phages were similar to each other and about 50 kb in length, with a G + C content of 28.9 %. The two genomes showed typical characteristics of phage genomes: a modular structure and high proportion of hypothetical proteins. The genome sequences have been deposited in GenBank under accession numbers KR136259 (P12002L) and KR136260 (P12002S).
Collapse
Affiliation(s)
- Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Hani Jang
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| |
Collapse
|