201
|
Abstract
Biological membranes exhibit various function-related shapes, and the mechanism by which these shapes are created is largely unclear. Here, we classify possible curvature-generating mechanisms that are provided by lipids that constitute the membrane bilayer and by proteins that interact with, or are embedded in, the membrane. We describe membrane elastic properties in order to formulate the structural and energetic requirements of proteins and lipids that would enable them to work together to generate the membrane shapes seen during intracellular trafficking.
Collapse
Affiliation(s)
- Joshua Zimmerberg
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1855, USA.
| | | |
Collapse
|
202
|
Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 2006; 19:923-33. [PMID: 15923402 DOI: 10.1096/fj.04-3260com] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased epithelial permeability is observed in inflammatory states. However, the mechanism by which inflammatory mediators such as IFN-gamma increase epithelial permeability is unknown. We recently observed that IFN-gamma induces disassembly of tight junctions (TJ); in this study we asked whether such TJ disassembly is mediated by endocytosis of junctional proteins. The role of three major internalization pathways in disruption of TJ in IFN-gamma-treated intestinal epithelial cells was analyzed using selective inhibitors and markers of the pathways. No role for the clathrin- and caveolar-mediated endocytosis in the IFN-gamma-induced internalization of TJ proteins was observed. However, inhibitors of macropinocytosis blocked internalization of TJ proteins and junctional proteins colocalized with macropinocytosis markers, dextran and phosphatidylinositol-3,4,5-trisphosphate. Internalized TJ proteins were identified in early and recycling endosomes but not in late endosomes/lysosomes. These results for the first time suggest that IFN-gamma produces a leaky epithelial barrier by inducing macropinoytosis of TJ proteins.
Collapse
Affiliation(s)
- Matthias Bruewer
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
203
|
Belouzard S, Rouillé Y. Ubiquitylation of leptin receptor OB-Ra regulates its clathrin-mediated endocytosis. EMBO J 2006; 25:932-42. [PMID: 16482222 PMCID: PMC1409713 DOI: 10.1038/sj.emboj.7600989] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 01/17/2006] [Indexed: 01/17/2023] Open
Abstract
Leptin receptors are constitutively endocytosed in a ligand-independent manner. To study their endocytosis, leptin receptors OB-Ra and OB-Rb were expressed in HeLa cells. Both receptor isoforms were ubiquitylated, internalized by clathrin-mediated endocytosis and transported to Hrs-positive endosomes after their internalization. Proteasome inhibitors inhibited OB-Ra but not OB-Rb internalization from the cell surface. OB-Ra ubiquitylation occurred on lysine residues K877 and K889 in the cytoplasmic tail, the mutation of which abolished OB-Ra internalization. Fusion of an ubiquitin molecule at the C-terminus of an OB-Ra construct defective both in ubiquitylation and endocytosis restored clathrin-dependent endocytosis of the receptor. The internalization of this constitutively mono-ubiquitylated construct was no longer sensitive to proteasome inhibitors, which inhibited OB-Ra endocytosis by blocking its ubiquitylation. Fusion of an ubiquitin molecule to a transferrin receptor deleted from its own endocytosis motif restored clathrin-mediated endocytosis. We propose that mono-ubiquitin conjugates act as internalization motifs for clathrin-dependent endocytosis of leptin receptor OB-Ra.
Collapse
Affiliation(s)
- Sandrine Belouzard
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2511, Institut Pasteur de Lille, Lille Cedex, France
| | - Yves Rouillé
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2511, Institut Pasteur de Lille, Lille Cedex, France
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2511, Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP 447, 59021 Lille Cedex, France. E-mail:
| |
Collapse
|
204
|
Abstract
The purpose of this review is to draw the attention of general readers to the importance of cellular exocytic vesiculation as a normal mechanism of development and subsequent adjustment to changing conditions, focusing on red cell (RBC) vesiculation. Recent studies have emphasized the possible role of these microparticles as diagnostic and investigative tools. RBCs lose membrane, both in vivo and during ex vivo storage, by the blebbing of microvesicles from the tips of echinocytic spicules. Microvesicles shed by RBCs in vivo are rapidly removed by the reticuloendothelial system. During storage, this loss of membrane contributes to the storage lesion and the accumulation of the microvesicles are believed to be thrombogenic and thus to be clinically important.
Collapse
|
205
|
|
206
|
Abstract
Multivesicular endosomes or prevacuolar compartments (PVCs) are membrane-bound organelles that play an important role in mediating protein traffic in the secretory and endocytic pathways of eukaryotic cells. PVCs function as an intermediate compartment for sorting proteins from the Golgi apparatus to vacuoles, sending missorted proteins back to the Golgi from the PVC, and receiving proteins from plasma membrane in the endocytic pathway. PVCs have been identified as multivesicular bodies in mammalian cells and yeast and more recently in plant cells. Whereas much is known about PVC-mediated protein trafficking and PVC biogenesis in mammalian cells and yeast, relatively little is known about the molecular mechanism of plant PVCs. In this review, we summarize and discuss our understanding of the plant PVC and compare it with its counterparts in yeast and mammalian cells.
Collapse
Affiliation(s)
- Beixin Mo
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
207
|
Abstract
Remodeling of cell membranes takes place during motile processes such as cell migration and cell division. Defects of proteins involved in membrane dynamics, including clathrin and dynamin, disrupt cytokinesis. To understand the function of clathrin-containing structures (CCS) in cytokinesis, we have expressed a green fluorescent protein (GFP) fusion protein of clathrin light chain a (GFP-clathrin) in NRK epithelial cells and recorded images of dividing cells near the ventral surface with a spinning disk confocal microscope. Punctate GFP-CCS underwent dynamic appearance and disappearance throughout the ventral surface. Following anaphase onset, GFP-CCS between separated chromosomes migrated toward the equator and subsequently disappeared in the equatorial region. Movements outside separating chromosomes were mostly random, similar to what was observed in interphase cells. Directional movements toward the furrow were dependent on both actin filaments and microtubules, while the appearance/disappearance of CCS was dependent on actin filaments but not on microtubules. These results suggest that CCS are involved in remodeling the plasma membrane along the equator during cytokinesis. Clathrin-containing structures may also play a role in transporting signaling or structural components into the cleavage furrow.
Collapse
Affiliation(s)
- Anne K Warner
- Department of Physiology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | |
Collapse
|
208
|
Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SMV, Newham P, Lindsay MA. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 2005; 145:1093-102. [PMID: 15937518 PMCID: PMC1576229 DOI: 10.1038/sj.bjp.0706279] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cell-penetrating peptides such as antennapedia, TAT, transportan and polyarginine have been extensively employed for in vitro and in vivo delivery of biologically active peptides. However, little is known of the relative efficacy, toxicity and uptake mechanism of individual protein transduction domain-peptide conjugates, factors that will be critical in determining the most effective sequence. In the present study, we show by FACS analysis that unconjugated antennapedia, TAT, transportan and polyarginine demonstrate similar kinetic uptake profiles, being maximal at 1-3 h and independent of cell type (HeLa, A549 and CHO cell lines). A comparison of the magnitude of uptake of cell-penetrating peptide conjugates demonstrated that polyarginine=transportan>antennapedia>TAT. However, examination of cellular toxicity showed that antennapedia<TAT<transportan< intersectionpolyarginine, with antennapedia-peptide conjugates having no significant toxicity even at 100 microM. Confocal studies of the mechanism of antennapedia- and TAT-peptide uptake showed that the time course of uptake and their cellular distribution did not correlate with transferrin, a marker of clathrin-mediated endocytosis. In contrast, the peptides co-localised with a marker of lipid rafts domains, cholera toxin, which was attenuated following the disruption of these domains using methyl-beta-cyclodextrin. Overall, comparison of the uptake and toxicity suggests that antennapedia provides the optimal cell-penetrating peptide for peptide delivery in vitro and that both antennapedia- and TAT-mediated peptide delivery occurs predominantly via lipid raft-dependent but clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Simon W Jones
- AstraZeneca R&D, Respiratory and Inflammation Research Area, Alderley Park, Macclesfield, Cheshire SK10 4TG.
| | | | | | | | | | | | | |
Collapse
|
209
|
Robertson SE, Setty SRG, Sitaram A, Marks MS, Lewis RE, Chou MM. Extracellular signal-regulated kinase regulates clathrin-independent endosomal trafficking. Mol Biol Cell 2005; 17:645-57. [PMID: 16314390 PMCID: PMC1356576 DOI: 10.1091/mbc.e05-07-0662] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular signal-regulated kinase (Erk) is widely recognized for its central role in cell proliferation and motility. Although previous work has shown that Erk is localized at endosomal compartments, no role for Erk in regulating endosomal trafficking has been demonstrated. Here, we report that Erk signaling regulates trafficking through the clathrin-independent, ADP-ribosylation factor 6 (Arf6) GTPase-regulated endosomal pathway. Inactivation of Erk induced by a variety of methods leads to a dramatic expansion of the Arf6 endosomal recycling compartment, and intracellular accumulation of cargo, such as class I major histocompatibility complex, within the expanded endosome. Treatment of cells with the mitogen-activated protein kinase kinase (MEK) inhibitor U0126 reduces surface expression of MHCI without affecting its rate of endocytosis, suggesting that inactivation of Erk perturbs recycling. Furthermore, under conditions where Erk activity is inhibited, a large cohort of Erk, MEK, and the Erk scaffold kinase suppressor of Ras 1 accumulates at the Arf6 recycling compartment. The requirement for Erk was highly specific for this endocytic pathway, because its inhibition had no effect on trafficking of cargo of the classical clathrin-dependent pathway. These studies reveal a previously unappreciated link of Erk signaling to organelle dynamics and endosomal trafficking.
Collapse
Affiliation(s)
- Sarah E Robertson
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
210
|
Rappoport JZ, Benmerah A, Simon SM. Analysis of the AP-2 adaptor complex and cargo during clathrin-mediated endocytosis. Traffic 2005; 6:539-47. [PMID: 15941406 PMCID: PMC1360144 DOI: 10.1111/j.1600-0854.2005.00280.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previously, we reported that the hetero-tetrameric adaptor complex AP-2 co-localizes with the static population of clathrin spots, whereas it is excluded from clathrin spots that disappear from the plasma membrane (forming clathrin-coated vesicles). More recently however, another group provided evidence that AP-2 markers could be observed coincident with disappearing clathrin spots. Thus, we tested several possible explanations for the apparent discrepancies in these two studies. We evaluated the potential contribution of nonred emission of clathrin-dsRed (used in both studies) in the simultaneous measurement of AP-2 and clathrin at various times. Additionally, we directly compared two different green fluorescent protein-tagged AP-2 constructs (similar to those used in the previous reports). These studies demonstrated that the duration of expression time greatly influences the subcellular localization of the AP-2 markers. Furthermore, we quantitatively evaluated the AP-2 fluorescence at the sites of numerous static and disappearing clathrin spots (at least 80 per group) and confirmed our initial observation that while AP-2 is present in nearly all static clathrin spots, it is excluded from the disappearing population of clathrin spots. Finally, in order to verify that clathrin spot disappearance represents clathrin-coated vesicle internalization, we simultaneously imaged clathrin and the cargo molecule transferrin at the cell surface.
Collapse
Affiliation(s)
- Joshua Z. Rappoport
- The Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, PO Box 304, New York, NY 10021, USA
| | - Alexandre Benmerah
- Department of Infectious Diseases, Institut Cochin (INSERM U567, CNRS UMR 8104, Université Paris 5), 27 rue du Faubourg St Jacques, Paris 75014, France
| | - Sanford M. Simon
- The Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, PO Box 304, New York, NY 10021, USA
- *Corresponding author: Sanford M. Simon,
| |
Collapse
|
211
|
Bagshaw RD, Mahuran DJ, Callahan JW. Lysosomal membrane proteomics and biogenesis of lysosomes. Mol Neurobiol 2005; 32:27-41. [PMID: 16077181 DOI: 10.1385/mn:32:1:027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/14/2004] [Indexed: 12/30/2022]
Abstract
This review focuses on events involved in the biogenesis of the lysosome. This organelle contains a diverse array of soluble, luminal proteins capable of digesting all the macromolecules in the cell. Altered function of lysosomes or its constituent enzymes has been implicated in a host of human pathologies, including storage diseases, cancer, and infectious and neurodegenerative diseases. Luminal enzymes are well-characterized, and aspects of how they are incorporated into lysosomes are known. However, little is known about the composition of the membrane surrounding the organelle or how the membrane is assembled. Our starting point to study lysosome biogenesis is to define the composition of the membrane by the use of proven methods for purification of lysosomes to near homogeneity and then to characterize membrane-associated and integral lysosomal membrane proteins. This has been achieved using advanced proteomics (electrophoretic or chromatographic separations of proteins followed by time-of-flight mass spectrometric identification of peptide sequences). To date, we have identified 55 proteins in the membrane-associated fraction and 215 proteins in the integral membrane. By applying these methods to mouse models of lysosome dysgenesis (such as BEIGE, Pale Ear, PEARL) that are related to human diseases such as Chediak-Higashi and Hermansky-Pudlak syndromes, it may be possible to define the membrane protein composition of lysosomes in each of these mutants and to determine how they differ from normal. Identifying proteins affected in the respective mutants may provide hints about how they are targeted to the lysosomal membrane and how failure to target them leads to disease; these features are pivotal to understanding lysosome biogenesis and have the potential to implicate lysosomes in a broad range of human pathologies.
Collapse
Affiliation(s)
- Richard D Bagshaw
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
212
|
Myers MD, Dragone LL, Weiss A. Src-like adaptor protein down-regulates T cell receptor (TCR)-CD3 expression by targeting TCRzeta for degradation. ACTA ACUST UNITED AC 2005; 170:285-94. [PMID: 16027224 PMCID: PMC2171412 DOI: 10.1083/jcb.200501164] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Src-like adaptor protein (SLAP) down-regulates expression of the T cell receptor (TCR)–CD3 complex during a specific stage of thymocyte development when the TCR repertoire is selected. Consequently, SLAP−/− thymocytes display alterations in thymocyte development. Here, we have studied the mechanism of SLAP function. We demonstrate that SLAP-deficient thymocytes have increased TCRζ chain expression as a result of a defect in TCRζ degradation. Failure to degrade TCRζ leads to an increased pool of fully assembled TCR–CD3 complexes that are capable of recycling back to the cell surface. We also provide evidence that SLAP functions in a pathway that requires the phosphorylated TCRζ chain and the Src family kinase Lck, but not ZAP-70 (ζ-associated protein of 70 kD). These studies reveal a unique mechanism by which SLAP contributes to the regulation of TCR expression during a distinct stage of thymocyte development.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Down-Regulation
- Humans
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- Protein Binding
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins pp60(c-src)/genetics
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/biosynthesis
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Signal Transduction
- T-Lymphocytes/physiology
- ZAP-70 Protein-Tyrosine Kinase
- src Homology Domains
Collapse
Affiliation(s)
- Margaret D Myers
- Department of Medicine, Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
213
|
Abstract
Many viruses express membrane proteins. For enveloped viruses in particular, membrane proteins are frequently structural components of the virus that mediate the essential tasks of receptor recognition and membrane fusion. The functional activities of these proteins require that they are sorted correctly in infected cells. These sorting events often depend on the ability of the virus to mimic cellular protein trafficking signals and to interact with the cellular trafficking machinery. Importantly, loss or modification of these signals can influence virus infectivity and pathogenesis.
Collapse
Affiliation(s)
- R Byland
- MRC-LMCB and Department of Biochemistry and Molecular Biology, University College London, London, WC1E 6BT, UK
| | | |
Collapse
|
214
|
Hung CH, Qiao X, Lee PT, Lee MGS. Clathrin-dependent targeting of receptors to the flagellar pocket of procyclic-form Trypanosoma brucei. EUKARYOTIC CELL 2005; 3:1004-14. [PMID: 15302833 PMCID: PMC500874 DOI: 10.1128/ec.3.4.1004-1014.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In trypanosomatids, endocytosis and exocytosis occur exclusively at the flagellar pocket, which represents about 0.43% of the pellicle membrane and is a deep invagination of the plasma membrane where the flagellum extends from the cell. Receptor molecules are selectively retained at the flagellar pocket. We studied the function of clathrin heavy chain (TbCLH) in the trafficking of the flagellar pocket receptors in Trypanosoma brucei by using the double-stranded RNA interference approach. It appears that TbCLH is essential for the survival of both the procyclic form and the bloodstream form of T. brucei, even though structures resembling large coated endocytic vesicles are absent in procyclic-form trypanosomes. Down-regulation of TbCLH by RNA interference (RNAi) for 24 h rapidly and drastically reduced the uptake of macromolecules via receptor-mediated endocytosis in procyclic-form trypanosomes. This result suggested the importance of TbCLH in receptor-mediated endocytosis of the procyclic-form trypanosome, in which the formation of large coated endocytic vesicles may not be required. Surprisingly, induction of TbCLH RNAi in the procyclic T. brucei for a period of 48 h prohibited the export of the flagellar pocket-associated transmembrane receptor CRAM from the endoplasmic reticulum to the flagellar pocket, while trafficking of the glycosylphosphatidylinositol-anchored procyclin coat was not significantly affected. After 72 h of induction of TbCLH RNAi, procyclics exhibited morphological changes to an apolar round shape without a distinct structure of the flagellar pocket and flagellum. Although trypanosomes, like other eukaryotes, use similar organelles and machinery for protein sorting and transport, our studies reveal a novel role for clathrin in the secretory pathway of trypanosomes. We speculate that the clathrin-dependent trafficking of proteins to the flagellar pocket may be essential for the biogenesis and maintenance of the flagellar pocket in trypanosomes.
Collapse
Affiliation(s)
- Chien-Hui Hung
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
215
|
Suetsugu N, Kagawa T, Wada M. An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. PLANT PHYSIOLOGY 2005; 139:151-62. [PMID: 16113208 PMCID: PMC1203365 DOI: 10.1104/pp.105.067371] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) that act redundantly, and the avoidance response is mediated by phot2 alone. A mutant, J-domain protein required for chloroplast accumulation response 1 (jac1), lacks the accumulation response under weak blue light but shows a normal avoidance response under strong blue light. In dark-adapted wild-type cells, chloroplasts accumulate on the bottom of cells. Both the jac1 and phot2 mutants are defective in this chloroplast movement in darkness. Positional cloning of JAC1 reveals that this gene encodes a J-domain protein, resembling clathrin-uncoating factor auxilin at its C terminus. The amounts of JAC1 transcripts and JAC1 proteins are not regulated by light and by phototropins. A green fluorescent protein-JAC1 fusion protein showed a similar localization pattern to green fluorescent protein alone in a transient expression assay using Arabidopsis mesophyll cells and onion (Allium cepa) epidermal cells, suggesting that the JAC1 protein may be a soluble cytosolic protein. Together, these results suggest that JAC1 is an essential component of phototropin-mediated chloroplast movement.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Division of Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | | | | |
Collapse
|
216
|
Guaderrama-Díaz M, Solís CF, Velasco-Loyden G, Laclette JP, Mas-Oliva J. Control of scavenger receptor-mediated endocytosis by novel ligands of different length. Mol Cell Biochem 2005; 271:123-32. [PMID: 15881663 DOI: 10.1007/s11010-005-5756-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The scavenger receptor recognized as a multiligand family of receptors falls in the group that is internalised through endocytosis. In this report we used several recombinant fragments of the tapeworm protein paramyosin, known to form filamentous dimers that bind collagenous structures as ligands of different length for the class A type I scavenger receptor (SR-AI). While native CHO cells are unresponsive to any of the recombinant fragments, it is shown that CHO cells transfected with this receptor efficiently internalise recombinant fragments that correspond to two thirds of the full-length paramyosin. In contrast, recombinant products corresponding to one-third of the full-length paramyiosin are not internalised. It is also shown that important molecules in the organization of the coated pit, are enriched when the two-thirds long paramyosin fragments were bound and internalised through the SR-AI. Moreover, internalisation of these fragments trigger a classical apoptotic pathway shown by the presence of TUNEL positive cells and the appearance of apoptotic bodies. We report paramyosin as a new ligand for the scavenger receptor and provide evidence supporting the notion that these receptors upon the formation of arrays with length-specific molecules, not only trigger endocytosis but also seem to regulate the synthesis of molecules involved in the organization of coated pits.
Collapse
|
217
|
Madziva MT, Bai J, Bhalla A, Chapman ER, Edwardson JM. Effects of synaptotagmin reveal two distinct mechanisms of agonist-stimulated internalization of the M4 muscarinic acetylcholine receptor. Br J Pharmacol 2005; 144:761-71. [PMID: 15778699 PMCID: PMC1576056 DOI: 10.1038/sj.bjp.0706035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Synaptotagmin has been reported to function in clathrin-mediated endocytosis. Here, we investigated its involvement in agonist-stimulated internalization of M4 muscarinic acetylcholine receptors exogenously expressed in human embryonic kidney (HEK-293 tsA201) cells. 2. Synaptotagmin I was present at low levels in these cells, and when overexpressed resided at the plasma membrane. 3. Synaptotagmin overexpression alone did not affect receptor internalization, but 'rescued' internalization that had been inhibited by either dominant-negative dynamin-1 or dominant-negative arrestin-2. Both normal and 'rescued' internalization were sensitive to inhibitors of clathrin-mediated endocytosis, but not to inhibitors of the function of caveolae. 4. There was no increase in AP-2 recruitment to the plasma membrane in cells overexpressing synaptotagmin. However, a mutant form of the receptor lacking a potential AP-2 recruitment motif, while being internalized normally in response to agonist stimulation, was not rescued by synaptotagmin in cells expressing dominant-negative dynamin or arrestin. 5. A mutant form of synaptotagmin (K326,327A), which binds phosphatidylinositol-4,5-bisphosphate (PIP2) much more weakly than the wild-type protein, did not rescue internalization. Furthermore, internalization was inhibited by the PH domain of phospholipase C-delta1, which sequesters PIP2, and synaptotagmin was now unable to rescue. 6. We propose that AP-2 binding to the C-terminal tail of the receptor is not normally required for its endocytosis, but that the synaptotagmin-mediated rescue involves the formation of a ternary complex with the receptor and AP-2. PIP2 might play a role as an intermediary in the formation of this complex.
Collapse
Affiliation(s)
- Michael T Madziva
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD
| | - Jihong Bai
- Department of Physiology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Akhil Bhalla
- Department of Physiology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Edwin R Chapman
- Department of Physiology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD
- Author for correspondence:
| |
Collapse
|
218
|
Ficinska J, Van Minnebruggen G, Nauwynck HJ, Bienkowska-Szewczyk K, Favoreel HW. Pseudorabies virus glycoprotein gD contains a functional endocytosis motif that acts in concert with an endocytosis motif in gB to drive internalization of antibody-antigen complexes from the surface of infected monocytes. J Virol 2005; 79:7248-54. [PMID: 15890963 PMCID: PMC1112093 DOI: 10.1128/jvi.79.11.7248-7254.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Viral glycoproteins gB and gD of the swine alphaherpesvirus pseudorabies virus (PRV), which is closely related to human herpes simplex virus and varicella-zoster virus, are able to drive internalization of antibody-antigen complexes that may form at the cell surface of infected monocytes, thereby protecting these cells from efficient antibody-mediated lysis. We found earlier that gB relies on an endocytosis motif in its cytoplasmic domain for its function during this internalization process. Here, we report that the PRV gD protein also contains a functional endocytosis motif (YRLL) in its cytoplasmic domain that drives spontaneous endocytosis of gD from the cell surface early in infection and that acts in concert with the endocytosis motif in gB to contribute to efficient internalization of antibody-antigen complexes in PRV-infected monocytes.
Collapse
Affiliation(s)
- Jolanta Ficinska
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
219
|
Prato S, Maxwell T, Pinzón-Charry A, Schmidt CW, Corradin G, López JA. MHC class I-restricted exogenous presentation of a synthetic 102-mer malaria vaccine polypeptide. Eur J Immunol 2005; 35:681-9. [PMID: 15688345 DOI: 10.1002/eji.200425771] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The circumsporozoite (CS) is the most abundant surface protein of the Plasmodium sporozoite, and is also present early in the liver stage of the infection. Following successful protective experiments in mice and monkeys, the synthetic 102-mer malaria vaccine polypeptide representing the C-terminal region of the CS of Plasmodium falciparum was tested in a clinical trial with healthy human volunteers. This vaccine induced strong CD8(+), CD4(+) T lymphocyte and antibody responses specific for the immunizing peptide. CD8(+) T lymphocyte responses elicited in HLA-A*0201 volunteers recognized two well-defined cytotoxic T lymphocyte epitopes within the CS. Here, we show that both monocyte-derived dendritic cells (Mo-DC) and Epstein-Barr virus-transformed B-lymphoblastoid cells (LCL) can present a cytotoxic T lymphocyte epitope contained within the 102-mer synthetic peptide. Paraformaldehyde and low temperature inhibited presentation, indicating that cellular processing was required. Using specific inhibitors, we show that, in both cell types, processing requires the proteasome and the MHC class I pathway, while the endosomal compartment appears to be critical only for the presentation by Mo-DC. Antigen uptake is associated with actin polymerization in both cell types. These in vitro results demonstrate the likely pathway of antigen presentation achieved via vaccination with this synthetic peptide.
Collapse
Affiliation(s)
- Sandro Prato
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
220
|
Dafforn TR, Smith CJI. Natively unfolded domains in endocytosis: hooks, lines and linkers. EMBO Rep 2005; 5:1046-52. [PMID: 15520805 PMCID: PMC1299171 DOI: 10.1038/sj.embor.7400276] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 09/15/2004] [Indexed: 01/08/2023] Open
Abstract
It is commonly assumed that a protein must adopt a tertiary structure to achieve its active native state and that regions of a protein that are devoid of alpha-helix or beta-sheet structures are functionally inert. Although extended proline-rich regions are recognized as presenting binding motifs to, for example, Src homology 2 (SH2) and SH3 domains, the idea persists that natively unfolded regions in functional proteins are simply 'spacers' between the folded domains. Such a view has been challenged in recent years and the importance of natively unfolded proteins in biology is now being recognized. In this review, we highlight the role of natively unfolded domains in the field of endocytosis, and show that some important endocytic proteins lack a traditionally folded structure and harbour important binding motifs in their unstructured linker regions.
Collapse
Affiliation(s)
- Timothy R. Dafforn
- Department of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Corinne J. I. Smith
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
- Tel: +44 24 76 52 2 461; Fax: +44 024 76 52 3 568;
| |
Collapse
|
221
|
Kam NWS, Dai H. Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality. J Am Chem Soc 2005; 127:6021-6. [PMID: 15839702 DOI: 10.1021/ja050062v] [Citation(s) in RCA: 866] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various proteins adsorb spontaneously on the sidewalls of acid-oxidized single-walled carbon nanotubes. This simple nonspecific binding scheme can be used to afford noncovalent protein-nanotube conjugates. The proteins are found to be readily transported inside various mammalian cells with nanotubes acting as the transporter via the endocytosis pathway. Once released from the endosomes, the internalized protein-nanotube conjugates can enter into the cytoplasm of cells and perform biological functions, evidenced by apoptosis induction by transported cytochrome c. Carbon nanotubes represent a new class of molecular transporters potentially useful for future in vitro and in vivo protein delivery applications.
Collapse
Affiliation(s)
- Nadine Wong Shi Kam
- Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
222
|
Yan Q, Sun W, Kujala P, Lotfi Y, Vida TA, Bean AJ. CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol Biol Cell 2005; 16:2470-82. [PMID: 15772161 PMCID: PMC1087250 DOI: 10.1091/mbc.e04-11-1014] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
223
|
Darsow T, Booker TK, Piña-Crespo JC, Heinemann SF. Exocytic trafficking is required for nicotine-induced up-regulation of alpha 4 beta 2 nicotinic acetylcholine receptors. J Biol Chem 2005; 280:18311-20. [PMID: 15741168 DOI: 10.1074/jbc.m501157200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primary target for nicotine in the brain is the neuronal nicotinic acetylcholine receptor (nAChR). It has been well documented that nAChRs respond to chronic nicotine exposure by up-regulation of receptor numbers, which may underlie some aspects of nicotine addiction. In order to investigate the mechanism of nicotine-induced nAChR up-regulation, we have developed a cell culture system to assess membrane trafficking and nicotine-induced up-regulation of surface-expressed alpha(4)beta(2) nAChRs. Previous reports have implicated stabilization of the nAChRs at the plasma membrane as the potential mechanism of up-regulation. We have found that whereas nicotine exposure results in up-regulation of surface receptors in our system, it does not alter surface receptor internalization from the plasma membrane, postendocytic trafficking, or lysosomal degradation. Instead, we find that transport of nAChRs through the secretory pathway to the plasma membrane is required for nicotine-induced up-regulation of surface receptors. Therefore, nicotine appears to regulate surface receptor levels at a step prior to initial insertion in the plasma membrane rather than by altering their endocytic trafficking or degradation rates as had been previously suggested.
Collapse
Affiliation(s)
- Tamara Darsow
- Molecular Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
224
|
Timsit YE, Miller SLH, Mohney RP, O'Bryan JP. The U-box ligase carboxyl-terminus of Hsc 70-interacting protein ubiquitylates Epsin. Biochem Biophys Res Commun 2005; 328:550-9. [PMID: 15694383 DOI: 10.1016/j.bbrc.2005.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Indexed: 02/04/2023]
Abstract
Epsin is an endocytic adaptor protein involved in the regulation of clathrin-dependent endocytosis. We and others have demonstrated that Epsin is ubiquitylated in cells and requires its ubiquitin interacting motifs (UIMs) for this modification. To further elucidate the mechanism of Epsin ubiquitylation, we initiated studies to identify the E3 ligase(s) that modifies Epsin. In this study, we discovered that the U-box ubiquitin ligase carboxyl-terminus of Hsc70 interacting protein (CHIP) ubiquitylated Epsin. Using an in vitro ubiquitylation assay, we demonstrate that CHIP specifically ubiquitylated Epsin in a UIM-dependent manner. Furthermore, overexpression of CHIP in cells increased Epsin ubiquitylation also in a UIM-dependent manner. Together, these data provide evidence that CHIP functions to ubiquitylate the endocytic protein Epsin.
Collapse
Affiliation(s)
- Yoav E Timsit
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, NC 27709, USA
| | | | | | | |
Collapse
|
225
|
Boonyarattanakalin S, Martin SE, Dykstra SA, Peterson BR. Synthetic mimics of small Mammalian cell surface receptors. J Am Chem Soc 2005; 126:16379-86. [PMID: 15600339 DOI: 10.1021/ja046663o] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Receptors on the surface of mammalian cells promote the uptake of cell-impermeable ligands by receptor-mediated endocytosis. To mimic this process, we synthesized small molecules designed to project anti-dinitrophenyl antibody-binding motifs from the surface of living Jurkat lymphocytes. These synthetic receptors comprise N-alkyl derivatives of 3beta-cholesterylamine as the plasma membrane anchor linked to 2,4-dinitrophenyl (DNP) and structurally similar fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD) headgroups. Insertion of two beta-alanine subunits between a DNP derivative and 3beta-cholesterylamine yielded a receptor that avidly associates with cell surfaces (cellular t(1/2) approximately 20 h). When added to Jurkat cells at 10 microM, this receptor enhanced uptake of an anti-DNP IgG ligand by approximately 200-fold in magnitude and approximately 400-fold in rate within 4 h (ligand internalization t(1/2) approximately 95 min at 37 degrees C). This non-natural receptor mimics many natural receptors by dynamically cycling between plasma membranes and intracellular endosomes (recycling t(1/2) approximately 3 min), targeting of protein ligands to proposed cholesterol and sphingolipid-enriched lipid raft membrane microdomains, and delivery of protein ligands to late endosomes/lysosomes. Quantitative dithionite quenching of fluorescent extracellular NBD headgroups demonstrated that other 3beta-cholesterylamine derivatives bearing fewer beta-alanines in the linker region or N-acyl derivatives of 3beta-cholesterylamine were less effective receptors due to more extensive trafficking to internal membranes. Synthetic cell surface receptors have potential applications as cellular probes, tools for drug delivery, and methods to deplete therapeutically important extracellular ligands.
Collapse
Affiliation(s)
- Siwarutt Boonyarattanakalin
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
226
|
Abstract
Albumin is the most abundant protein in serum and contributes to the maintenance of oncotic pressure as well as to transport of hydrophobic molecules. Although albumin is a large anionic protein, it is not completely retained by the glomerular filtration barrier. In order to prevent proteinuria, albumin is reabsorbed along the proximal tubules by receptor-mediated endocytosis, which involves the binding proteins megalin and cubilin. Endocytosis depends on proper vesicle acidification. Disturbance of endosomal acidification or loss of the binding proteins leads to tubular proteinuria. Furthermore, endocytosis is subject to modulation by different signaling systems, such as protein kinase A (PKA), protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3-K) and transforming growth factor beta (TGF-beta). In addition to being reabsorbed in the proximal tubule, albumin can also act as a profibrotic and proinflammatory stimulus, thereby initiating or promoting tubulo-interstitial diseases.
Collapse
Affiliation(s)
- Michael Gekle
- Physiologisches Institut, University of Würzburg, 97070 Würzburg, Germany.
| |
Collapse
|
227
|
Tachibana H, Naga Prasad SV, Lefkowitz RJ, Koch WJ, Rockman HA. Level of beta-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation 2005; 111:591-7. [PMID: 15668342 DOI: 10.1161/01.cir.0000142291.70954.df] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased level of myocardial betaAR kinase 1 (betaARK1). Our previous studies have shown that inhibition of betaARK1 with the use of the Gbetagamma sequestering peptide of betaARK1 (betaARKct) can prevent cardiac dysfunction in models of heart failure. Because inhibition of betaARK activity is pivotal for amelioration of cardiac dysfunction, we investigated whether the level of betaARK1 inhibition correlates with the degree of heart failure. METHODS AND RESULTS Transgenic (TG) mice with varying degrees of cardiac-specific expression of betaARKct peptide underwent transverse aortic constriction (TAC) for 12 weeks. Cardiac function was assessed by serial echocardiography in conscious mice, and the level of myocardial betaARKct protein was quantified at termination of the study. TG mice showed a positive linear relationship between the level of betaARKct protein expression and fractional shortening at 12 weeks after TAC. TG mice with low betaARKct expression developed severe heart failure, whereas mice with high betaARKct expression showed significantly less cardiac deterioration than wild-type (WT) mice. Importantly, mice with a high level of betaARKct expression had preserved isoproterenol-stimulated adenylyl cyclase activity and normal betaAR densities in the cardiac membranes. In contrast, mice with low expression of the transgene had marked abnormalities in betaAR function, similar to the WT mice. CONCLUSIONS These data show that the level of betaARK1 inhibition determines the degree to which cardiac function can be preserved in response to pressure overload and has important therapeutic implications when betaARK1 inhibition is considered as a molecular target.
Collapse
Affiliation(s)
- Hideo Tachibana
- Departments of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
228
|
Cottrell JR, Borok E, Horvath TL, Nedivi E. CPG2: a brain- and synapse-specific protein that regulates the endocytosis of glutamate receptors. Neuron 2005; 44:677-90. [PMID: 15541315 PMCID: PMC3065105 DOI: 10.1016/j.neuron.2004.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 08/05/2004] [Accepted: 10/13/2004] [Indexed: 01/20/2023]
Abstract
Long-term maintenance and modification of synaptic strength involve the turnover of neurotransmitter receptors. Glutamate receptors are constitutively and acutely internalized, presumptively through clathrin-mediated receptor endocytosis. Here, we show that cpg2 is a brain-specific splice variant of the syne-1 gene that encodes a protein specifically localized to a postsynaptic endocytotic zone of excitatory synapses. RNAi-mediated CPG2 knockdown increases the number of postsynaptic clathrin-coated vesicles, some of which traffic NMDA receptors, disrupts the constitutive internalization of glutamate receptors, and inhibits the activity-induced internalization of synaptic AMPA receptors. Manipulating CPG2 levels also affects dendritic spine size, further supporting a function in regulating membrane transport. Our results suggest that CPG2 is a key component of a specialized postsynaptic endocytic mechanism devoted to the internalization of synaptic proteins, including glutamate receptors. The activity dependence and distribution of cpg2 expression further suggest that it contributes to the capacity for postsynaptic plasticity inherent to excitatory synapses.
Collapse
Affiliation(s)
- Jeffrey R. Cottrell
- The Picower Center for Learning and Memory Department of Brain and Cognitive Sciences
| | - Erzsebet Borok
- Department of Obstetrics/Gynecology and Reproductive Sciences
| | - Tamas L. Horvath
- Department of Obstetrics/Gynecology and Reproductive Sciences
- Department of Neurobiology Yale University Medical School New Haven, Connecticut 06520
| | - Elly Nedivi
- The Picower Center for Learning and Memory Department of Brain and Cognitive Sciences
- Department of Biology Massachusetts Institute of Technology Cambridge, Massachusetts 02139
- Correspondence:
| |
Collapse
|
229
|
Foerg C, Ziegler U, Fernandez-Carneado J, Giralt E, Rennert R, Beck-Sickinger AG, Merkle HP. Decoding the Entry of Two Novel Cell-Penetrating Peptides in HeLa Cells: Lipid Raft-Mediated Endocytosis and Endosomal Escape†. Biochemistry 2005; 44:72-81. [PMID: 15628847 DOI: 10.1021/bi048330+] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular entry of peptide, protein, and nucleic acid biopharmaceuticals is severely impeded by the cell membrane. Linkage or assembly of such agents and cell-penetrating peptides (CPP) with the ability to cross cellular membranes has opened a new horizon in biomedical research. Nevertheless, the uptake mechanisms of most CPP have been controversially discussed and are poorly understood. We present data on two recently developed oligocationic CPP, the sweet arrow peptide SAP, a gamma-zein-related sequence, and a branched human calcitonin derived peptide, hCT(9-32)-br, carrying a simian virus derived nuclear localization sequence in the side chain. Uptake in HeLa cells and intracellular trafficking of N-terminally carboxyfluorescein labeled peptides was studied by confocal laser scanning microscopy and flow cytometry using biochemical markers in combination with quenching and colocalization approaches. Both peptides were readily internalized by HeLa cells through interaction with the extracellular matrix followed by lipid raft-mediated endocytosis as confirmed by reduced uptake at lower temperature, in the presence of endocytosis inhibitors and through cholesterol depletion by methyl-beta-cyclodextrin, supported by colocalization with markers for clathrin-independent pathways. In contrast to the oligocationic SAP and hCT(9-32)-br, interaction with the extracellular matrix, however, was no prerequisite for the observed lipid raft-mediated uptake of the weakly cationic, unbranched hCT(9-32). Transient involvement of endosomes in intracellular trafficking of SAP and hCT(9-32)-br prior to endosomal escape of both peptides was revealed by colocalization and pulse-chase studies of the peptides with the early endosome antigen 1. The results bear potential for CPP as tools for intracellular drug delivery.
Collapse
Affiliation(s)
- Christina Foerg
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Switzerland
| | | | | | | | | | | | | |
Collapse
|
230
|
Kerr ML, Small DH. Cytoplasmic domain of the ?-amyloid protein precursor of Alzheimer's disease: Function, regulation of proteolysis, and implications for drug development. J Neurosci Res 2005; 80:151-9. [PMID: 15672415 DOI: 10.1002/jnr.20408] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The beta-amyloid protein precursor (APP) has been extensively studied for its role in amyloid production and the pathogenesis of Alzheimer's disease (AD). However, little is known about the normal function of APP and its biological interactions. In this Mini-Review, the role of the cytoplasmic domain of APP in APP trafficking and proteolysis is described. These studies suggest that proteins that bind to the cytoplasmic domain may be important targets for drug development in AD.
Collapse
Affiliation(s)
- Megan L Kerr
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, and Monash University Centre for Brain and Behaviour, Monash University, Victoria, Australia
| | | |
Collapse
|
231
|
Abstract
Dynamin-related proteins (DRPs) compose a diverse family of proteins that function, through GTPase stimulated self-assembly, to remodel cellular membranes. The molecular mechanism by which DRPs mediate membrane remodeling events and the specific role of their GTPase cycle is still not fully understood. Although DRPs are members of the GTPase superfamily, they possess unique kinetic properties. In particular, they have relatively low affinity for guanine nucleotides and, under conditions that favor self-assembly, they have high rates of GTP turnover. Established fixed time point assays used for the analysis of assembly stimulated GTPase activity are prone to inaccuracies due to substrate depletion and are also limited by lack of time resolution. We describe a simple, continuous, coupled GTP regenerating assay that tackles the limitations of the fixed time point assays and can be used for the kinetic analysis of DRP GTP hydrolysis under unassembled and assembled conditions.
Collapse
Affiliation(s)
- Elena Ingerman
- Section of Molecular and Cellular Biology, Center of Genetics and Development, University of California, Davis, USA
| | | |
Collapse
|
232
|
He H, Lowry VK, Ferro PJ, Kogut MH. CpG-oligodeoxynucleotide-stimulated chicken heterophil degranulation is serum cofactor and cell surface receptor dependent. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:255-264. [PMID: 15572073 DOI: 10.1016/j.dci.2004.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 06/30/2004] [Accepted: 07/12/2004] [Indexed: 05/24/2023]
Abstract
Synthetic oligodeoxynucleotide containing unmethylated CpG motif (CpG-ODN) is immune stimulatory to chicken heterophils. Recognition of CpG-ODN by chicken heterophils leads to the mobilization and release of granules. This CpG-ODN-induced heterophil degranulation was chicken serum (CS)-dependent. Heat-denaturation and membrane filtration of CS revealed that the active serum cofactor(s) was likely a protein in nature with a molecule mass within 50,000 to 100,000. This serum cofactor(s) was heat-resistant at 56 degrees C for 1h. The involvement of a cell surface receptor in recognition of CpG-ODN was also demonstrated by (1) trypsin treatment of the heterophils abrogated the degranulation response and (2) CpG-ODN-induced heterophil degranulation was sensitive to the inhibition of Clathrin-dependent endocytosis. In addition, among various microbial agonists, including CpG-ODN, lipopolysaccharide, lipoteichoic acid, phorbol myristate acetate, and formalin-killed Salmonella enteritidis, CpG-ODN was the only agonist that displayed serum-dependent induction of degranulation in chicken heterophils. This is the first report that shows serum-dependent activation of leukocytes by CpG-ODN.
Collapse
Affiliation(s)
- Haiqi He
- USDA, ARS, Southern Plains Agricultural Research Center, 2881 F and B Road, College Station, TX 77845, USA.
| | | | | | | |
Collapse
|
233
|
Raben N, Fukuda T, Gilbert AL, de Jong D, Thurberg BL, Mattaliano RJ, Meikle P, Hopwood JJ, Nagashima K, Nagaraju K, Plotz PH. Replacing acid α-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers. Mol Ther 2005; 11:48-56. [PMID: 15585405 DOI: 10.1016/j.ymthe.2004.09.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 09/02/2004] [Indexed: 11/28/2022] Open
Abstract
Pompe disease (type II glycogen storage disease) is an autosomal recessive disorder caused by a deficiency of lysosomal acid alpha-glucosidase (GAA) leading to the accumulation of glycogen in the lysosomes primarily in cardiac and skeletal muscle. The recombinant human GAA (rhGAA) is currently in clinical trials for enzyme replacement therapy of Pompe disease. Both clinical data and the results of preclinical studies in our knockout model of this disease show that rhGAA is much more effective in resolving the cardiomyopathy than the skeletal muscle myopathy. By contrast, another form of human GAA--transgenic enzyme constitutively produced in liver and secreted into the bloodstream of knockout mice (Gaa-/-)--completely prevented both cardiac and skeletal muscle glycogen accumulation. In the experiments reported here, the transgenic enzyme was much less efficient when delivered to skeletal muscle after significant amounts of glycogen had already accumulated. Furthermore, the transgenic enzyme and the rhGAA have similar therapeutic effects, and both efficiently clear glycogen from cardiac muscle and type I muscle fibers, but not type II fibers. Low abundance of proteins involved in endocytosis and trafficking of lysosomal enzymes combined with increased autophagy in type II fibers may explain the resistance to therapy.
Collapse
Affiliation(s)
- Nina Raben
- Arthritis and Rheumatism Branch, NIAMS, National Institutes of Health, 9000 Rockville Pike, Building 10/9N244, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Grimmer S, Ying M, Wälchli S, van Deurs B, Sandvig K. Golgi Vesiculation Induced by Cholesterol Occurs by a Dynamin- and cPLA2-Dependent Mechanism. Traffic 2004; 6:144-56. [PMID: 15634214 DOI: 10.1111/j.1600-0854.2005.00258.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It was recently demonstrated that an increase in the cellular cholesterol level leads to vesiculation of the Golgi apparatus. This vesiculation affects the entire Golgi apparatus and is a reversible process. We have now started to elucidate the mechanism behind this cholesterol-induced vesiculation of the Golgi apparatus. Transient transfection of cells with dominant negative mutant constructs of dynamin 1 and 2 inhibited the vesiculation; expression of dynK44A in HeLa cells stably transfected with this construct had the same effect. However, the vesiculation seems to be independent of clathrin, as cholesterol-induced vesiculation still occurred following knock down of clathrin heavy chain in HeLa cells using RNA interference as well as in BHK cells where expression of antisense to clathrin heavy chain had been induced. Importantly, the cPLA2 inhibitor MAFP and the chelator BAPTA-AM that binds cytosolic Ca2+ inhibited the cholesterol-induced vesiculation, suggesting involvement of a cPLA2 that requires cytosolic Ca2+ for translocation to membranes. Furthermore, in response to an increased cellular cholesterol level, an EGFP-cPLA2 fusion protein translocated to the Golgi apparatus. Thus, our results demonstrate that the cholesterol-induced vesiculation of the Golgi apparatus is mediated by a cPLA2- and dynamin-dependent mechanism.
Collapse
Affiliation(s)
- Stine Grimmer
- Institute for Cancer Research, Department of Biochemistry, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
235
|
Claing A. Regulation of G protein-coupled receptor endocytosis by ARF6 GTP-binding proteins. Biochem Cell Biol 2004; 82:610-7. [PMID: 15674428 DOI: 10.1139/o04-113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of G protein-coupled receptors is regulated by a broad variety of membrane-bound and intracellular proteins. These act in concert to activate signaling pathways that will lead to the desensitization of activated receptors and, for most receptor types, their trafficking to intracellular compartments. This review focuses mainly on the endocytic pathways used by a G protein-coupled receptor and on the proteins that play an essential role in the regulation of the internalization process, most specifically the ADP-ribosylation factors. This family of proteins has been shown to be important for vesicle trafficking between different cellular membranes. The latest findings regarding the molecular mechanisms that regulate internalization of an agonist-stimulated receptor are presented here. Finally, a perspective on how ARF6 proteins might regulate the internalization process is also proposed.Key words: G protein-coupled receptors, endocytosis, ADP-ribosylation factor.
Collapse
Affiliation(s)
- Audrey Claing
- Department of Pharmacology, School of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
236
|
Abazeed ME, Blanchette JM, Fuller RS. Cell-free transport from the trans-golgi network to late endosome requires factors involved in formation and consumption of clathrin-coated vesicles. J Biol Chem 2004; 280:4442-50. [PMID: 15572353 DOI: 10.1074/jbc.m412553200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Transport between the trans-Golgi network (TGN) and late endosome represents a conserved, clathrin-dependent sorting event that separates lysosomal from secretory cargo molecules and is also required for localization of integral membrane proteins to the TGN. Previously, we reported a cell-free reaction that reconstitutes transport from the yeast TGN to the late endosome/prevacuolar compartment (PVC) and requires the PVC t-SNARE Pep12p. Here, we report that factors required both for formation of clathrin-coated vesicles at the TGN (the Chc1p clathrin heavy chain and the Vps1p dynamin homolog) and for vesicle fusion at the PVC (the Vps21p rab protein and Vps45p SM (Sec1/Munc18) protein) are required for cell-free transport. The marker for TGN-PVC transport, Kex2p, is initially present in a clathrin-containing membrane compartment that is competent for delivery of Kex2p to the PVC. A Kex2p chimera containing the cytosolic tail (C-tail) of the vacuolar protein sorting receptor, Vps10p, is also efficiently transported to the PVC. Antibodies against the Kex2p and Vps10p C-tails selectively block transport of Kex2p and the Kex2-Vps10p chimera. The requirements for factors involved in vesicle formation and fusion, the identification of the donor compartment as a clathrin-containing membrane, and the need for accessibility of C-tail sequences argue that the TGN-PVC transport reaction involves selective incorporation of TGN cargo molecules into clathrin-coated vesicle intermediates. Further biochemical dissection of this reaction should help elucidate the molecular requirements and hierarchy of events in TGN-to-PVC sorting and transport.
Collapse
Affiliation(s)
- Mohamed E Abazeed
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
237
|
Reilly JF, Mizukoshi E, Maher PA. Ligand dependent and independent internalization and nuclear translocation of fibroblast growth factor (FGF) receptor 1. DNA Cell Biol 2004; 23:538-48. [PMID: 15383174 DOI: 10.1089/dna.2004.23.538] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Basic fibroblast growth factor (FGF-2) is one of the prototype members of a rapidly expanding family of polypeptides. FGF-2 acts on cells via a dual-receptor system consisting of high-affinity tyrosine kinase receptors (FGFR) and low-affinity receptors comprised of heparan sulfate proteoglycans. Following ligand binding and subsequent internalization, both FGF-2 and FGFR1 are translocated to the nucleus where they have activities distinct from those expressed at the cell surface. Despite the growing number of growth factors and receptors shown to translocate to the nucleus, little is known about the mechanisms of internalization and translocation and how these processes are regulated. In the studies reported in this paper, we examined the roles of clathrin-dependent and -independent endocytosis in the uptake of FGFR1 and one of its ligands, FGF-2. While the uptake of FGF-2 occurred at least partly by a caveolar-dependent mechanism, that of FGFR1 was independent of both caveolae and coated pits. Surprisingly, neither the uptake of FGF-2 nor FGFR1 required the activity of the receptor tyrosine kinase. In addition, we identified a cell cycle-dependent pathway of FGFR1 nuclear translocation that appears to be independent of ligand binding.
Collapse
Affiliation(s)
- John F Reilly
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
238
|
El Sayegh TY, Arora PD, Laschinger CA, Lee W, Morrison C, Overall CM, Kapus A, McCulloch CAG. Cortactin associates with N-cadherin adhesions and mediates intercellular adhesion strengthening in fibroblasts. J Cell Sci 2004; 117:5117-31. [PMID: 15383621 DOI: 10.1242/jcs.01385] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The regulation of N-cadherin-mediated intercellular adhesion strength in fibroblasts is poorly characterized; this is due, in part, to a lack of available quantitative models. We used a recombinant N-cadherin chimeric protein and a Rat 2 fibroblast, donor-acceptor cell model, to study the importance of cortical actin filaments and cortactin in the strengthening of N-cadherin adhesions. In wash-off assays, cytochalasin D (1 microM) reduced intercellular adhesion by threefold, confirming the importance of cortical actin filaments in strengthening of N-cadherin-mediated adhesions. Cortactin, an actin filament binding protein, spatially colocalized to, and directly associated with, nascent N-cadherin adhesion complexes. Transfection of Rat-2 cells with cortactin-specific, RNAi oligonucleotides reduced cortactin protein by 85% and intercellular adhesion by twofold compared with controls (P<0.005) using the donor-acceptor model. Cells with reduced cortactin exhibited threefold less N-cadherin-mediated intercellular adhesion strength compared with controls in wash-off assays using N-cadherin-coated beads. Immunoprecipitation and immunoblotting showed that N-cadherin-associated cortactin was phosphorylated on tyrosine residue 421 after intercellular adhesion. While tyrosine phosphorylation of cortactin was not required for recruitment to N-cadherin adhesions it was necessary for cadherin-mediated intercellular adhesion strength. Thus cortactin, and phosphorylation of its tyrosine residues, are important for N-cadherin-mediated intercellular adhesion strength.
Collapse
Affiliation(s)
- Tarek Y El Sayegh
- CIHR Group in Matrix Dynamics, University of Toronto, Fitzgerald Building, 150 College Street, Ontario, M5S 3E2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Izumi G, Sakisaka T, Baba T, Tanaka S, Morimoto K, Takai Y. Endocytosis of E-cadherin regulated by Rac and Cdc42 small G proteins through IQGAP1 and actin filaments. ACTA ACUST UNITED AC 2004; 166:237-48. [PMID: 15263019 PMCID: PMC2172308 DOI: 10.1083/jcb.200401078] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
E-cadherin is a key cell–cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of extracellular signals. To elucidate the mechanism of this endocytosis, we developed here a new cell-free assay system for this reaction using the AJ-enriched fraction from rat liver. We found here that non-trans-interacting, but not trans-interacting, E-cadherin underwent endocytosis in a clathrin-dependent manner. The endocytosis of trans-interacting E-cadherin was inhibited by Rac and Cdc42 small G proteins, which were activated by trans-interacting E-cadherin or trans-interacting nectins, which are known to induce the formation of AJs in cooperation with E-cadherin. This inhibition was mediated by reorganization of the actin cytoskeleton by Rac and Cdc42 through IQGAP1, an actin filament-binding protein and a downstream target of Rac and Cdc42. These results indicate the important role of the Rac/Cdc42-IQGAP1 system in the dynamic organization and maintenance of the E-cadherin–based AJs.
Collapse
Affiliation(s)
- Genkichi Izumi
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
240
|
Chang HC, Hull M, Mellman I. The J-domain protein Rme-8 interacts with Hsc70 to control clathrin-dependent endocytosis in Drosophila. ACTA ACUST UNITED AC 2004; 164:1055-64. [PMID: 15051737 PMCID: PMC2172058 DOI: 10.1083/jcb.200311084] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By screening for mutants exhibiting interactions with a dominant-negative dynamin, we have identified the Drosophila homologue of receptor-mediated endocytosis (Rme) 8, a J-domain-containing protein previously shown to be required for endocytosis in Caenorhabditis elegans. Analysis of Drosophila Rme-8 mutants showed that internalization of Bride of sevenless and the uptake of tracers were blocked. In addition, endosomal organization and the distribution of clathrin were greatly disrupted in Rme-8 cells, suggesting that Rme-8 participates in a clathrin-dependent process. The phenotypes of Rme-8 mutants bear a strong resemblance to those of Hsc70-4, suggesting that these two genes act in a common pathway. Indeed, biochemical and genetic data demonstrated that Rme-8 interacts specifically with Hsc70-4 via its J-domain. Thus, Rme-8 appears to function as an unexpected but critical cochaperone with Hsc70 in endocytosis. Because Hsc70 is known to act in clathrin uncoating along with auxilin, another J-protein, its interaction with Rme-8 indicates that Hsc70 can act with multiple cofactors, possibly explaining its pleiotropic effects on the endocytic pathway.
Collapse
Affiliation(s)
- Henry C Chang
- Dept. of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, 333 Cedar Street, PO Box 208002, New Haven, CT 06520-8002, USA
| | | | | |
Collapse
|
241
|
Vääräniemi J, Halleen JM, Kaarlonen K, Ylipahkala H, Alatalo SL, Andersson G, Kaija H, Vihko P, Väänänen HK. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res 2004; 19:1432-40. [PMID: 15312243 DOI: 10.1359/jbmr.040603] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2003] [Revised: 04/19/2004] [Accepted: 05/07/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED In osteoclasts, TRACP co-localized with cathepsin K in transcytotic vesicles and was activated by cathepsin K in vitro, suggesting that TRACP may degrade organic matrix components in transcytotic vesicles in an event regulated by cathepsin K. INTRODUCTION TRACP is an enzyme with unknown biological function. In addition to its phosphatase activity, TRACP is capable of generating reactive oxygen species (ROS). Bone-resorbing osteoclasts contain large amounts of TRACP, and transgenic animal models suggest that TRACP has a role in bone resorption. Osteoclasts resorb bone by secreting acid and lysosomal enzymes such as cathepsin K into an extracellular resorption lacuna between the cell membrane and bone surface. Matrix degradation products are then endocytosed, transcytosed, and secreted through a functional secretory domain in the basolateral membrane facing bone marrow. MATERIALS AND METHODS We have studied intracellular localization of TRACP in osteoclasts with antibodies against various known endosomal and lysosomal proteins using confocal microscopy. We also studied co-localization of TRACP with cathepsin K and endocytosed bone matrix components and the effect of cathepsin K digestion on the ROS generating activity of TRACP in vitro. RESULTS Double-staining experiments of TRACP with endosomal and lysosomal markers showed that, although some endosomal staining was detected, TRACP was not present in lysosomes. However, TRACP was present in transcytotic vesicles, where it co-localized with cathepsin K. Cathepsin K digestion of TRACP in vitro increased the phosphatase activity by 5.6-fold and the ROS generating activity by 2.0-fold. CONCLUSIONS These results suggest that cathepsin K may activate the ROS-generating activity of TRACP in transcytotic vesicles of resorbing osteoclasts, the ROS being targeted to finalize degradation of organic bone matrix components during their transcytosis.
Collapse
Affiliation(s)
- Jukka Vääräniemi
- Department of Anatomy, Institute of Biomedicine, University of Turku, Turku FIN-20520, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Horng JT, Tan CY. Biochemical characterization of the coating mechanism of the endosomal donor compartment of synaptic vesicles. Neurochem Res 2004; 29:1411-6. [PMID: 15202773 DOI: 10.1023/b:nere.0000026405.62006.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The heterotetrameric adaptor protein complex, AP-3, sorts proteins to both the endosome/lysosome and the synaptic vesicles. We have characterized the recruitment of pure AP-3 complex and ADP-ribosylation factor (ARF) onto the endosomal donor compartments that give rise to synaptic vesicles. We demonstrated that endosomes become heavier in a sucrose gradient after incubation with rat brain cytosol and a nonhydrolyzable GTP analog, GTPgammaS. This process requires a small GTPase, ARF-1. Furthermore, the endosomal coating is specific for AP-3 but not the AP-2 complex. This process requires only two soluble proteins AP-3 and ARF, with the recruitment of AP-3 being saturable at about 30 nM. These results establish that the synaptic vesicle's donor membrane is coated with AP-3 before vesiculation, in a coat-protein-specific and dose-dependent fashion.
Collapse
Affiliation(s)
- Jim-Tong Horng
- Department of Biochemistry, Chang Gung University, Kweishan, Taiwan.
| | | |
Collapse
|
243
|
Du L, Post SR. Macrophage colony-stimulating factor differentially regulates low density lipoprotein and transferrin receptors. J Lipid Res 2004; 45:1733-40. [PMID: 15210846 DOI: 10.1194/jlr.m400140-jlr200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endocytosis mediated by both LDL receptors (LDLRs) and transferrin receptors (TfRs) occurs in clathrin-coated pits and requires specific tyrosine-based internalization sequences located in the cytoplasmic domain of these receptors. Internalization of these receptors is mediated by endocytic proteins that interact with the internalization domains. We previously showed that macrophage colony-stimulating factor (M-CSF) rapidly increases LDLR-dependent uptake and metabolism of LDL. To study the mechanism by which M-CSF regulates LDL uptake, we compared the effect of M-CSF on the internalization of LDL and transferrin (Tf). Our results show that M-CSF substantially increased the rate of LDLR internalization without increasing LDLR localization on the cell surface. In contrast, M-CSF treatment of macrophages rapidly increased the localization of TfR to the cell surface but did not alter the relative rate of Tf internalization. Moreover, M-CSF regulated TfR and LDLR via the activation of distinct signaling pathways. Recruitment of TfR to the cell surface was attenuated by phosphatidylinositol 3-kinase inhibitors, whereas stimulated LDL uptake was inhibited by the serine/threonine phosphatase inhibitor okadaic acid. Taken together, our results indicate that M-CSF differentially regulates receptors that undergo endocytosis and that increased LDL uptake results from a selective increase in the rate of LDLR internalization.
Collapse
Affiliation(s)
- Liqin Du
- Graduate Program in Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
244
|
Rusin M, Zientek H, Krześniak M, Małusecka E, Zborek A, Krzyzowska-Gruca S, Butkiewicz D, Vaitiekunaite R, Lisowska K, Grzybowska E, Krawczyk Z. Intronic polymorphism (1541-1542delGT) of the constitutive heat shock protein 70 gene has functional significance and shows evidence of association with lung cancer risk. Mol Carcinog 2004; 39:155-63. [PMID: 14991745 DOI: 10.1002/mc.20009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Somatic mutations of 11q23.3-linked constitutive heat shock protein 70 gene (HSPA8 alias HSC70) are detected by others in breast carcinomas. To examine whether intragenic, somatic mutations of HSPA8 occur in lung carcinomas, we sequenced its exons 2-8, with adjacent intronic sequences, in a series of DNA samples from non-small-cell lung cancers (NSCLC). Twenty-one polymorphisms were detected, but no somatic mutation. However, we observed an association between the HSC70 1541-1542delGT genotype and the immunohistochemical staining pattern of HSC70 protein. Tumors with weak (+) HSC70 protein staining were more frequent in the carriers of the polymorphic 1541-1542delGT allele than in the homozygotes of the major allele (20% vs. 6%, P=0.05 by Fisher's exact test). This statistically significant association prompted us to test the polymorphism functionally. The method we developed for the functional evaluation of intronic sequence alterations showed that the HSPA8 intron 2 with the deleted GT dinucleotide was associated with noticeable (approximately 20%) and statistically significant (P=0.005) reduction of the reporter gene activity. Our case-control analysis showed that the 1541-1542delGT heterozygous genotype was associated with significantly decreased risk for lung cancer (crude odds ratio (OR)=0.44; 95% confidence interval (CI): 0.23-0.84). To the best of our knowledge, this is the first report on the association between a polymorphism of a gene coding for the chaperone protein and lung cancer risk. Moreover, the simple method reported here, based on the dual-luciferase reporter assay system, can be useful for testing functional significance of polymorphisms located in introns of other genes.
Collapse
Affiliation(s)
- Marek Rusin
- Department of Tumor Biology, Center of Oncology-Maria Skłodowska-Curie Memorial Institute, Gliwice, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Hammarstedt M, Garoff H. Passive and active inclusion of host proteins in human immunodeficiency virus type 1 gag particles during budding at the plasma membrane. J Virol 2004; 78:5686-97. [PMID: 15140966 PMCID: PMC415843 DOI: 10.1128/jvi.78.11.5686-5697.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human immunodeficiency virus type 1 particles form by budding at the surface of most cell types. In this process, a piece of the plasma membrane is modified into an enveloped virus particle. The process is driven by the internal viral protein Pr55(gag). We have studied how host proteins in the membrane are dealt with by Pr55(gag) during budding. Are they included in or excluded from the particle? The question was approached by measuring the relative concentrations of host and viral proteins in the envelope of Pr55(gag) particles and in their donor membranes in the cell. We observed that the bulk of the host proteins, including actin and clathrin, were passively included into the virus-like Gag particles. This result suggests that budding by Pr55(gag) proceeds without significant alteration of the original host protein composition at the cell membrane. Nevertheless, some proteins were concentrated in the particles, and a few were excluded. The concentrated proteins included cyclophilin A and Tsg-101. These were recruited to the plasma membrane by Pr55(gag). The membrane-bound cyclophilin A was concentrated into particles as efficiently as Pr55(gag), whereas Tsg-101 was concentrated more efficiently. The latter finding is consistent with a role for Tsg-101 in Gag particle release.
Collapse
Affiliation(s)
- Maria Hammarstedt
- Department of Biosciences at Novum, Karolinska Institute, S-14157 Huddinge, Sweden
| | | |
Collapse
|
246
|
Zhu GD, L'Hernault SW. The Caenorhabditis elegans spe-39 gene is required for intracellular membrane reorganization during spermatogenesis. Genetics 2004; 165:145-57. [PMID: 14504223 PMCID: PMC1462752 DOI: 10.1093/genetics/165.1.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caenorhabditis elegans spermatid formation involves asymmetric partitioning of cytoplasm during the second meiotic division. This process is mediated by specialized ER/Golgi-derived fibrous body-membranous organelles (FB-MOs), which have a fibrous body (FB) composed of bundled major sperm protein filaments and a vesicular membranous organelle (MO). spe-39 mutant spermatocytes complete meiosis but do not usually form spermatids. Ultrastructural examination of spe-39 spermatocytes reveals that MOs are absent, while FBs are disorganized and not surrounded by the membrane envelope usually observed in wild type. Instead, spe-39 spermatocytes contain many small vesicles with internal membranes, suggesting they are related to MOs. The spe-39 gene was identified and it encodes a novel hydrophilic protein. Immunofluorescence with a specific SPE-39 antiserum reveals that it is distributed through much of the cytoplasm and not specifically associated with FB-MOs in spermatocytes and spermatids. The spe-39 gene has orthologs in Drosophila melanogaster and humans but no homolog was identified in the yeast genome. This suggests that the specialized membrane biogenesis steps that occur during C. elegans spermatogenesis are part of a conserved process that requires SPE-39 homologs in other metazoan cell types.
Collapse
Affiliation(s)
- Guang-Dan Zhu
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences and Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
247
|
Ong WY, Halliwell B. Iron, atherosclerosis, and neurodegeneration: a key role for cholesterol in promoting iron-dependent oxidative damage? Ann N Y Acad Sci 2004; 1012:51-64. [PMID: 15105255 DOI: 10.1196/annals.1306.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article reviews the roles and interactions of iron, atherosclerosis, and neurodegeneration. It highlights the importance of cholesterol in promoting iron-dependent oxidative damage. An intriguing possibility is that hypercholesterolemia can increase brain iron load and both the aggregation of beta-amyloid and the ability of iron on plaques to catalyze oxidative damage. This could explain why hypercholesterolemia is a risk factor for Alzheimer's disease. Further work is necessary to study the mechanism of increased iron transport across the blood brain barrier in atherosclerosis.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore 119260.
| | | |
Collapse
|
248
|
Chim N, Gall WE, Xiao J, Harris MP, Graham TR, Krezel AM. Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae. Proteins 2004; 54:784-93. [PMID: 14997574 DOI: 10.1002/prot.10636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The SWA2/AUX1 gene has been proposed to encode the Saccharomyces cerevisiae ortholog of mammalian auxilin. Swa2p is required for clathrin assembly/dissassembly in vivo, thereby implicating it in intracellular protein and lipid trafficking. While investigating the 287-residue N-terminal region of Swa2p, we found a single stably folded domain between residues 140 and 180. Using binding assays and structural analysis, we established this to be a ubiquitin-associated (UBA) domain, unidentified by bioinformatics of the yeast genome. We determined the solution structure of this Swa2p domain and found a characteristic three-helix UBA fold. Comparisons of structures of known UBA folds reveal that the position of the third helix is quite variable. This helix in Swa2p UBA contains a bulkier tyrosine in place of smaller residues found in other UBAs and cannot pack as close to the second helix. The molecular surface of Swa2p UBA has a mostly negative potential, with a single hydrophobic surface patch found also in the UBA domains of human protein, HHR23A. The presence of a UBA domain implicates Swa2p in novel roles involving ubiquitin and ubiquitinated substrates. We propose that Swa2p is a multifunctional protein capable of recognizing several proteins through its protein-protein recognition domains.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
249
|
van der Wouden JM, Maier O, van IJzendoorn SCD, Hoekstra D. Membrane dynamics and the regulation of epithelial cell polarity. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:127-64. [PMID: 12921237 DOI: 10.1016/s0074-7696(03)01003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plasma membranes of epithelial cells consist of two domains, an apical and a basolateral domain, the surfaces of which differ in composition. The separation of these domains by a tight junction and the fact that specific transport pathways exist for intracellular communication between these domains and distinct intracellular compartments relevant to cell polarity development, have triggered extensive research on issues that focus on how the polarity is generated and maintained. Apart from proper assembly of tight junctions, their potential functioning as landmark for the transport machinery, cell-cell adhesion is obviously instrumental in barrier formation. In recent years, distinct endocytic compartments, defined as subapical compartment or common endosome, were shown to play a prominent role in regulating membrane trafficking to and from polarized membrane domains. Sorting devices remain to be determined but likely include distinct rab proteins, and evidence is accumulating to indicate that signaling events may direct intracellular membrane transport, intimately involved in the biogenesis and maintenance of polarized membrane domains and hence the development of cell polarity.
Collapse
Affiliation(s)
- Johanna M van der Wouden
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
250
|
Aschenbrenner L, Naccache SN, Hasson T. Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. Mol Biol Cell 2004; 15:2253-63. [PMID: 15004223 PMCID: PMC404020 DOI: 10.1091/mbc.e04-01-0002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
After clathrin-mediated endocytosis, clathrin removal yields an uncoated vesicle population primed for fusion with the early endosome. Here we present the first characterization of uncoated vesicles and show that myo6, an unconventional myosin, functions to move these vesicles out of actin-rich regions found in epithelial cells. Time-lapse microscopy revealed that myo6-associated uncoated vesicles were motile and exhibited fusion and stretching events before endosome delivery, processes that were dependent on myo6 motor activity. In the absence of myo6 motor activity, uncoated vesicles remained trapped in the actin mesh, where they exhibited Brownian-like motion. Exit from the actin mesh occurred by a slow diffusion-based mechanism, delaying transferrin trafficking to the early endosome. Expression of a myo6 mutant that bound tightly to F-actin produced immobilized vesicles and blocked trafficking. Depolymerization of the actin cytoskeleton rescued this block and specifically accelerated transferrin delivery to the early endosome without affecting earlier steps in endocytosis. Therefore actin is a physical barrier impeding uncoated vesicle trafficking, and myo6 is recruited to move the vesicles through this barrier for fusion with the early endosome.
Collapse
Affiliation(s)
- Laura Aschenbrenner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|