201
|
Fernando HSD, Saavedra-Rodriguez K, Perera R, Black WC, De Silva BGDNK. Resistance to commonly used insecticides and underlying mechanisms of resistance in Aedes aegypti (L.) from Sri Lanka. Parasit Vectors 2020; 13:407. [PMID: 32778147 PMCID: PMC7418196 DOI: 10.1186/s13071-020-04284-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/03/2020] [Indexed: 11/28/2022] Open
Abstract
Background Drastic increases of dengue fever (DF) over the past few years have prompted studies on the development of resistance to insecticides in the mosquito vector, Aedes aegypti (Linnaeus). In Sri Lanka control of the vector population is essentially achieved using larvicides (temephos) and adulticides (principally pyrethroids). The present study investigates resistance to commonly used insecticides and underlying mechanisms of Ae. aegypti in selected sites in Sri Lanka. Methods In this study, susceptibility to three commonly used adulticides (malathion, permethrin and deltamethrin) and the larvicide temephos were tested for Ae. aegypti sampled from five localities in Sri Lanka using WHO dose diagnostics tests. In addition, we performed dose-response tests for permethrin to determine lethal concentrations (LCs) with CDC bottle bioassays. An assessment of the activity of metabolic detoxifying enzymes (multifunction oxidases (MFOs), glutathione S-transferases (GSTs) and esterases) and determination of frequency of the kdr mutations (F1534C, V1016G and S989P) were also carried out to ascertain the associated resistance mechanisms. Kdr genotype frequencies were compared with samples collected from the same sites in 2015 to determine the change of allele frequencies over the years. Results The present study revealed resistance in all Ae. aegypti populations studied, with low mortality percentages for both permethrin (10–89%) and deltamethrin (40–92%). Dose response tests revealed highest resistance ratios (RR) for permethrin and temephos from Colombo district whereas Puttalum district exhibited the lowest. High frequencies of the 1534C allele (0.052–0.802) were found in the study sites in 2017. Comparison with samples collected in 2015 revealed a substantial increase in this allele. The activity of MFOs and p-nitro phenyl-acetate esterase was significantly greater in most Sri Lankan populations in comparison to that of the New Orleans (NO) susceptible strain. In contrast, the activity of α-esterase and β-esterase was similar or lower than that in the NO strain. Conclusions Aedes aegypti from Sri Lanka is resistant to pyrethroid insecticides showing rapid selection for kdr mutations and varying metabolic mechanisms. Continued monitoring of vector populations is crucial to mitigate the development of resistance to commonly used insecticides and in turn, controlling the vector population.![]()
Collapse
Affiliation(s)
- H Sachini D Fernando
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - B G D Nissanka Kolitha De Silva
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
202
|
Silvério MRS, Espindola LS, Lopes NP, Vieira PC. Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses. Molecules 2020; 25:E3484. [PMID: 32751878 PMCID: PMC7435582 DOI: 10.3390/molecules25153484] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023] Open
Abstract
The mosquito species Aedes aegypti is one of the main vectors of arboviruses, including dengue, Zika and chikungunya. Considering the deficiency or absence of vaccines to prevent these diseases, vector control remains an important strategy. The use of plant natural product-based insecticides constitutes an alternative to chemical insecticides as they are degraded more easily and are less harmful to the environment, not to mention their lower toxicity to non-target insects. This review details plant species and their secondary metabolites that have demonstrated insecticidal properties (ovicidal, larvicidal, pupicidal, adulticidal, repellent and ovipositional effects) against the mosquito, together with their mechanisms of action. In particular, essential oils and some of their chemical constituents such as terpenoids and phenylpropanoids offer distinct advantages. Thiophenes, amides and alkaloids also possess high larvicidal and adulticidal activities, adding to the wealth of plant natural products with potential in vector control applications.
Collapse
Affiliation(s)
- Maíra Rosato Silveiral Silvério
- NPPNS, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, São Paulo, Brazil
| | | | - Norberto Peporine Lopes
- NPPNS, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, São Paulo, Brazil
| | - Paulo Cézar Vieira
- NPPNS, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, São Paulo, Brazil
| |
Collapse
|
203
|
da Silva WJ, Pilz-Júnior HL, Heermann R, da Silva OS. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review. Parasit Vectors 2020; 13:376. [PMID: 32727530 PMCID: PMC7391577 DOI: 10.1186/s13071-020-04236-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
The control of insects of medical importance, such as Aedes aegypti and Aedes albopictus are still the only effective way to prevent the transmission of diseases, such as dengue, chikungunya and Zika. Their control is performed mainly using chemical products; however, they often have low specificity to non-target organisms, including humans. Also, studies have reported resistance to the most commonly used insecticides, such as the organophosphate and pyrethroids. Biological control is an ecological and sustainable method since it has a slow rate of insect resistance development. Bacterial species of the genera Xenorhabdus and Photorhabdus have been the target of several research groups worldwide, aiming at their use in agricultural, pharmaceutical and industrial products. This review highlights articles referring to the use of Xenorhabdus and Photorhabdus for insects and especially for mosquito control proposing future ways for their biotechnological applicability. Approximately 24 species of Xenorhabdus and five species of Photorhabdus have been described to have insecticidal properties. These studies have shown genes that are capable of encoding low molecular weight proteins, secondary toxin complexes and metabolites with insecticide activities, as well as antibiotic, fungicidal and antiparasitic molecules. In addition, several species of Xenorhabdus and Photorhabdus showed insecticidal properties against mosquitoes. Therefore, these biological agents can be used in new control methods, and must be, urgently considered in short term, in studies and applications, especially in mosquito control.![]()
Collapse
Affiliation(s)
- Wellington Junior da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Harry Luiz Pilz-Júnior
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Ralf Heermann
- Institut für Molekulare Physiologie, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| | - Onilda Santos da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
204
|
Screening of insecticide resistance in Aedes aegypti populations collected from parishes in Eastern Jamaica. PLoS Negl Trop Dis 2020; 14:e0008490. [PMID: 32716942 PMCID: PMC7410332 DOI: 10.1371/journal.pntd.0008490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 08/06/2020] [Accepted: 06/16/2020] [Indexed: 01/03/2023] Open
Abstract
Owing to the increased reports in Aedes-borne diseases in the Caribbean and Latin America, the United States Agency for International Development assisted the Jamaican Ministry of Health and Wellness in conducting insecticide susceptibility tests on Aedes aegypti populations. Sentinel sites were established in seven parishes of Jamaica (St. Catherine, Kingston and St. Andrew, St. Thomas, Portland, St. Mary and St. Ann) and Aedes aegypti eggs were collected, reared to adults per collected population and their susceptibility to varying pyrethroids and organophosphates were tested using the World Health Organization paper bioassays for these insecticides. The Centers for Disease Control and Prevention bottle bioassay was used to assess susceptibility to the carbamate, bendiocarb. The voltage gated sodium channel gene mutations V1016I and I1011V, normally associated with pyrethroid resistance, were also analysed. The results showed that Aedes aegypti collected from all parishes exhibited resistance to pyrethroids at the following concentrations, permethrin 0.25–2.5%; deltamethrin 0.03–0.15%; lambda-cyhalothrin 0.03–0.3%; and etofenprox 0.5–2.5%. The insecticide deltamethrin at concentration 0.3% was the only pyrethroid tested that resulted in high mortality, 94.9 ± 0.34% knockdown within 1 hour of exposure and 98.95 ± 0.01% mortality (p <0.01) at 24 hours post exposure. The frequency of the voltage gated sodium channel gene mutation V1016I was high in the tested population, possibly accounting for the reduced sensitivity to pyrethroids. Organophosphate resistance was also observed in all populations tested. Mortality rates for 0.8% Malathion was 0.8 ± 0.70–60.68 ± 0.38% after 24 hour and 0.00–47.10 ± 3.02%, for pirimiphos-methyl 0.21%. Bendiocarb applied as 12.5 μg/ bottle resulted in mortality rates of 76.25 ± 4.30–100 ± 0.00% after 30 minutes of exposure. The results showed that Ae. aegypti from the seven parishes analysed demonstrated resistance to the insecticides tested. Deltamethrin and bendiocarb at concentrations 0.3% and 12.5μg respectively, were considered most effective, causing high mortality in the local populations. Routine monitoring and evaluations of Ae. aegypti populations from the included parishes are recommended. Additionally, the study results represent the most comprehensive testing to date with local Aedes aegypti populations distributed across different parishes of Jamaica and should be useful to guide national and sub national strategies for vector control and surveillance. The recent outbreaks of chikungunya, Zika and dengue viruses in the Caribbean and Latin America during 2013–2018, have motivated local health authorities in individual countries to seek international assistance from multiple agencies and adjust their vector management strategies in order to contain the transmission of Aedes-borne diseases. Countries within the region rely mainly on the use of commercially available insecticides to manage the mosquito populations and by extension, reduce the transmission of vector-borne diseases. However, this practice is stymied by the ability of these insects to develop resistance mechanisms to insecticides of frequent use. Many countries in the Caribbean and Latin America regions lack the facilities and supplies to conduct routine insecticide susceptibility testing. In an effort to ascertain knowledge on the presence of insecticide resistance in Aedes aegypti populations, and to determine which insecticide is more effective to reduce vector populations of Jamaica, we conducted an array of bioassays with three different types of insecticides (pyrethroid, organophosphate, carbamate) to use local evidence and inform public health authorities on vector control status and alternatives.
Collapse
|
205
|
Enayati A, Hanafi-Bojd AA, Sedaghat MM, Zaim M, Hemingway J. Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region. Malar J 2020; 19:258. [PMID: 32680514 PMCID: PMC7367398 DOI: 10.1186/s12936-020-03335-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/13/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND While Iran is on the path to eliminating malaria, the disease with 4.9 million estimated cases and 9300 estimated deaths in 2018 remains a serious health problem in the World Health Organization (WHO) Eastern Mediterranean Region. Anopheles stephensi is the main malaria vector in Iran and its range extends from Iraq to western China. Recently, the vector invaded new territories in Sri Lanka and countries in the Horn of Africa. Insecticide resistance in An. stephensi is a potential issue in controlling the spread of this vector. METHODS Data were collated from national and international databases, including PubMed, Google Scholar, Scopus, ScienceDirect, SID, and IranMedex using appropriate search terms. RESULTS Indoor residual spaying (IRS) with DDT was piloted in Iran in 1945 and subsequently used in the malaria eradication programme. Resistance to DDT in An. stephensi was detected in Iran, Iraq, Pakistan, and Saudi Arabia in the late 1960s. Malathion was used for malaria control in Iran in 1967, then propoxur in 1978, followed by pirimiphos-methyl from 1992 to 1994. The pyrethroid insecticide lambda-cyhalothrin was used from 1994 to 2003 followed by deltamethrin IRS and long-lasting insecticidal nets (LLINs). Some of these insecticides with the same sequence were used in other malaria-endemic countries of the region. Pyrethroid resistance was detected in An. stephensi in Afghanistan in 2010, in 2011 in India and in 2012 in Iran. The newly invaded population of An. stephensi in Ethiopia was resistant to insecticides of all four major insecticide classes. Different mechanisms of insecticide resistance, including metabolic and insecticide target site insensitivity, have been developed in An. stephensi. Resistance to DDT was initially glutathione S-transferase based. Target site knockdown resistance was later selected by pyrethroids. Esterases and altered acetylcholinesterase are the underlying cause of organophosphate resistance and cytochrome p450s were involved in pyrethroid metabolic resistance. CONCLUSIONS Anopheles stephensi is a major malaria vector in Iran and many countries in the region and beyond. The species is leading in terms of development of insecticide resistance as well as developing a variety of resistance mechanisms. Knowledge of the evolution of insecticide resistance and their underlying mechanisms, in particular, are important to Iran, considering the final steps the country is taking towards malaria elimination, but also to other countries in the region for their battle against malaria. This systematic review may also be of value to countries and territories newly invaded by this species, especially in the Horn of Africa, where the malaria situation is already dire.
Collapse
Affiliation(s)
- Ahmadali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zaim
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
206
|
Chanda J, Saili K, Phiri F, Stevenson JC, Mwenda M, Chishimba S, Mulube C, Mambwe B, Lungu C, Earle D, Bennett A, Eisele TP, Kamuliwo M, Steketee RW, Keating J, Miller JM, Sikaala CH. Pyrethroid and Carbamate Resistance in Anopheles funestus Giles along Lake Kariba in Southern Zambia. Am J Trop Med Hyg 2020; 103:90-97. [PMID: 32618244 PMCID: PMC7416976 DOI: 10.4269/ajtmh.19-0664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whereas data on insecticide resistance and its underlying mechanisms exist for parts of Zambia, data remain limited in the southern part of the country. This study investigated the status of insecticide resistance, metabolic mechanisms, and parasite infection in Anopheles funestus along Lake Kariba in southern Zambia. Indoor-resting mosquitoes were collected from 20 randomly selected houses within clusters where a mass drug administration trial was conducted and raised to F1 progeny. Non–blood-fed 2- to 5-day-old female An. funestus were exposed to WHO insecticide-impregnated papers with 0.05% deltamethrin, 0.1% bendiocarb, 0.25% pirimiphos-methyl, or 4% dichloro-diphenyl-trichloroethane (DDT). In separate assays, An. funestus were pre-exposed to piperonyl butoxide (PBO) to determine the presence of monooxygenases. Wild-caught An. funestus that had laid eggs for susceptibility assays were screened for circumsporozoite protein of Plasmodium falciparum by ELISA, and sibling species were identified by polymerase chain reaction. Anopheles funestus showed resistance to deltamethrin and bendiocarb but remained susceptible to pirimiphos-methyl and DDT. The pre-exposure of An. funestus to PBO restored full susceptibility to deltamethrin but not to bendiocarb. The overall sporozoite infection rate in An. funestus populations was 5.8%. Detection of pyrethroid and carbamate resistance in An. funestus calls for increased insecticide resistance monitoring to guide planning and selection of effective insecticide resistance management strategies. To prevent the development of resistance and reduce the underlying vectorial capacity of mosquitoes in areas targeted for malaria elimination, an effective integrated vector management strategy is needed.
Collapse
Affiliation(s)
- Javan Chanda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Kochelani Saili
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Foustina Phiri
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | - Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Macha Research Trust, Choma, Zambia
| | - Mulenga Mwenda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Sandra Chishimba
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Conceptor Mulube
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Brenda Mambwe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Christopher Lungu
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Duncan Earle
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California
| | - Thomas P Eisele
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Mulakwa Kamuliwo
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | | | - Joseph Keating
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Chadwick H Sikaala
- SADC Malaria Elimination Eight Secretariat, Windhoek, Namibia.,National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| |
Collapse
|
207
|
Yang F, Schildhauer S, Billeter SA, Hardstone Yoshimizu M, Payne R, Pakingan MJ, Metzger ME, Liebman KA, Hu R, Kramer V, Padgett KA. Insecticide Resistance Status of Aedes aegypti (Diptera: Culicidae) in California by Biochemical Assays. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1176-1183. [PMID: 32159787 PMCID: PMC7334890 DOI: 10.1093/jme/tjaa031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 05/25/2023]
Abstract
Insecticide resistance in Aedes aegypti mosquitoes poses a major threat to public health worldwide. There are two primary biological mechanisms that can lead to insecticide resistance, target site and metabolic resistance, both of which confer resistance to specific classes of insecticides. Due to the limited number of chemical compounds available for mosquito control, it is important to determine current enzymatic profiles among mosquito populations. This study assessed resistance profiles for three metabolic pathways, α-esterases, β-esterases, and mixed-function oxidases (MFOs), as well as insensitivity of the acetylcholinesterase (iAChE) enzyme in the presence of propoxur, among Ae. aegypti from the Central Valley and southern California. All field-collected Ae. aegypti demonstrated elevated MFOs and iAChE activity, indicating potential development of pyrethroid and organophosphate resistance, respectively. Although regional variations were found among α-esterase and β-esterase activity, levels were generally elevated, further suggesting additional mechanisms for developing organophosphate resistance. Furthermore, mosquito samples from southern California exhibited a higher expression level to all three metabolic enzymes and iAChE activity in comparison to mosquitoes from the central region. These results could help guide future mosquito control efforts, directing the effective use of insecticides while limiting the spread of resistance.
Collapse
Affiliation(s)
- Fan Yang
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Samuel Schildhauer
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Sarah A Billeter
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Melissa Hardstone Yoshimizu
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Robert Payne
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Mary Joyce Pakingan
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Marco E Metzger
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Kelly A Liebman
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Renjie Hu
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Vicki Kramer
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| | - Kerry A Padgett
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA
| |
Collapse
|
208
|
Saeung M, Ngoen-Klan R, Thanispong K, Muenworn V, Bangs MJ, Chareonviriyaphap T. Susceptibility of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to Temephos in Thailand and Surrounding Countries. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1207-1220. [PMID: 32159772 DOI: 10.1093/jme/tjaa035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Aedes-borne virus disease control relies on insecticides to interrupt transmission. Temephos remains a key chemical for control of immature stage Aedes in Thailand and much of Southeast Asia. However, repeated use of insecticides may result in selection for resistance in vector populations, thus compromising operational intervention. Herein, the phenotypic response to temephos by Aedes aegypti (L.) and Aedes albopictus (Skuse) collected in Thailand and surrounding countries is presented. Data from 345 collection sites are included: 283 from literature review (244 sites with Ae. aegypti, 21 with Ae. albopictus, and 18 having both species sampled), plus 62 locations with Ae. aegypti in Thailand conducted between 2014 and 2018. Susceptibility assays followed WHO guidelines using the recommended discriminating dose of temephos (0.012 mg/liter) against late third to early fourth instar Ae. aegypti. Findings revealed 34 locations with susceptible Ae. aegypti, 13 with suspected resistance, and 15 indicating resistance. Published data between 1999 and 2019 in Thailand found Ae. aegypti resistant in 73 of 206 collection sites, whereas 3 locations from 11 sampled with low-level resistant in Ae. albopictus. From surrounding countries conducting temephos assays (Cambodia, Lao PDR, Myanmar, Malaysia, and Singapore), resistance is present in Ae. aegypti and Ae. albopictus from 27 of 56 and 19 of 28 locations, respectively. Routine insecticide susceptibility monitoring should be an operational requirement in vector control programs. Given the wide distribution and apparent increase in temephos-resistance, alternative larvicidal compounds must be considered if chemical control is to remain a viable vector control strategy.
Collapse
Affiliation(s)
- Manop Saeung
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Ratchadawan Ngoen-Klan
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Kanutcharee Thanispong
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Vithee Muenworn
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Public Health & Malaria Control Department, PT Freeport Indonesia/International SOS, Kuala Kencana, Papua, Indonesia
| | | |
Collapse
|
209
|
Brühl CA, Després L, Frör O, Patil CD, Poulin B, Tetreau G, Allgeier S. Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137800. [PMID: 32249002 DOI: 10.1016/j.scitotenv.2020.137800] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Bacillus thuringiensis subsp. israelensis (Bti) has been used in mosquito control programs to reduce nuisance in Europe for decades and is generally considered an environmentally-safe, effective and target-specific biocide. However, the use of Bti is not uncontroversial. Target mosquitoes and affected midges represent an important food source for many aquatic and terrestrial predators and reduction of their populations is likely to result in food-web effects at higher trophic levels. In the context of global biodiversity loss, this appears particularly critical since treated wetlands are often representing conservation areas. In this review, we address the current large-scale use of Bti for mosquito nuisance control in Europe, provide a description of its regulation followed by an overview of the available evidence on the parameters that are essential to evaluate Bti use in mosquito control. Bti accumulation and toxin persistence could result in a chronic expose of mosquito populations ultimately affecting their susceptibility, although observed increase in resistance to Bti in mosquito populations is low due to the four toxins involved. A careful independent monitoring of mosquito susceptibility, using sensitive bioassays, is mandatory to detect resistance development timely. Direct Bti effects were documented for non-target chironomids and other invertebrate groups and are discussed for amphibians. Field studies revealed contrasting results on possible impacts on chironomid abundances. Indirect, food-web effects were rarely studied in the environment. Depending on study design and duration, Bti effects on higher trophic levels were demonstrated or not. Further long-term field studies are needed, especially with observations of bird declines in Bti-treated wetland areas. Socio-economic relevance of mosquito control requires considering nuisance, vector-borne diseases and environmental effects jointly. Existing studies indicate that a majority of the population is concerned regarding potential environmental effects of Bti mosquito control and that they are willing to pay for alternative, more environment-friendly techniques.
Collapse
Affiliation(s)
- Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, D-76829 Landau, Germany.
| | - Laurence Després
- Université Grenoble Alpes, CNRS, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France
| | - Oliver Frör
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, D-76829 Landau, Germany
| | - Chandrashekhar D Patil
- Centre of Island Research and Environmental Observatory, PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, F-66860 Perpignan, France
| | - Brigitte Poulin
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, F-13200 Arles, France
| | | | - Stefanie Allgeier
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, D-76829 Landau, Germany
| |
Collapse
|
210
|
Kumar D, Kumar P, Singh H, Agrawal V. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25987-26024. [PMID: 32385820 DOI: 10.1007/s11356-020-08444-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Mosquitoes spread several life-threatening diseases such as malaria, filaria, dengue, Japanese encephalitis, West Nile fever, chikungunya, and yellow fever and are associated with millions of deaths every year across the world. However, insecticides of synthetic origin are conventionally used for controlling various vector-borne diseases but they have various associated drawbacks like impact on non-targeted species, negative effects on the environment, and development of resistance in vector species by alteration of the target site. Plant extracts, phytochemicals, and their nanoformulations can serve as ovipositional attractants, insect growth regulators, larvicides, and repellents with least effects on the environment. Such plant-derived products exhibit broad-spectrum resistance against various mosquito species and are relatively cheaper, environmentally safer, biodegradable, easily accessible, and are non-toxic to non-targeted organisms. Therefore, in this review article, the current knowledge of phytochemical sources exhibiting larvicidal activity and their variations in response to solvents used for their extraction is underlined. Also, different methods such as physical, chemical, and biological for silver nanoparticle (AgNPs) synthesis, their mechanism of synthesis using plant extract, their potent larvicidal activity, and the possible mechanism by which these particles kill mosquito larvae are discussed. In addition, constraints related to commercialization of nanoherbal products at government and academic or research level and barriers from laboratory experiments to field trial have also been discussed. This comprehensive information can be gainfully employed for the development of herbal larvicidal formulations and nanopesticides against insecticide-resistant vector species in the near future. Graphical abstract.
Collapse
Affiliation(s)
- Dinesh Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Pawan Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Himmat Singh
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Veena Agrawal
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
211
|
Hassandoust S, Moosa-Kazemi SH, Vatandoost H, Sedaghat MM, Akbarzadeh K. Evaluation of Susceptibility of Aedes caspius (Diptera: Culicidae) to Insecticides in a Potent Arboviral-Prone Area, Southern Iran. J Arthropod Borne Dis 2020; 14:214-227. [PMID: 33365349 PMCID: PMC7738927 DOI: 10.18502/jad.v14i2.3748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Southern part of the country is a high risk for mosquito transmitted Arboviruses. This study was carried out to determine the base line susceptibility of the Aedini mosquitoes to the WHO-recommended insecticide. Methods: Larval collection was carried out by dipping method and adult collection occurred by suction tube from January to December 2017. The adult susceptibility test was assessed to Bendiocarb 0.1%, DDT 4%, Deltamethrin 0.05%, Lambda-cyhalothrin 0.05%, Malathion 5% and, Permethrin 0.75% at different interval times as well as at discriminative dose recommended by WHO. The larval susceptibility test was occurred using Temephos and Bacillus thuringiensis serotype H-14, at different concentrations. The LT50, LT90 and LC50, LC90 values were calculated for plotting the regression line using Microsoft office Excel software ver. 2007. Results: Aedes caspius was quite resistant to DDT, Malathion, Bendiocarb and showed susceptible or tolerant to other insecticides.The LT50 and LT90 values to DDT in this species were 157.896, and 301.006 minutes, respectively. The LC50 and LC90 values of Ae. caspius to Temephos were 0.000068, and 0.000130ppm, the figures for B. thuringiensis was 111.62 and 210.2ppm, respectively. Conclusion: A routine and continuous study for monitoring and evaluation of different species of Aedes to insectides is recommend at different parts of country for decision making.
Collapse
Affiliation(s)
- Sahar Hassandoust
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Moosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticide, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Akbarzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
212
|
Alahmadi S, Ibrahim R, Messali M, Ali M. Effect of aminopyridinium-based ionic liquids against larvae of Culex pipiens (Diptera: Culicidae). JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1782601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Saeed Alahmadi
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Reda Ibrahim
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mouslim Messali
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Medhat Ali
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
213
|
Yougang AP, Kamgang B, Tedjou AN, Wilson-Bahun TA, Njiokou F, Wondji CS. Nationwide profiling of insecticide resistance in Aedes albopictus (Diptera: Culicidae) in Cameroon. PLoS One 2020; 15:e0234572. [PMID: 32555588 PMCID: PMC7302487 DOI: 10.1371/journal.pone.0234572] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The Asian mosquito, Aedes albopictus (Skuse), is an invasive mosquito which has become one of the most important vectors of dengue, Zika, and chikungunya viruses worldwide. This species was reported for the first time in Cameroon in early 2000s and became the dominant Aedes species in the urban areas in the southern part of Cameroon but remain poorly characterized. Here, we assessed the susceptibility profile of A. albopictus collected throughout Cameroon and investigated the potential resistance mechanisms involved. Immature stages of A. albopictus were collected between March and July 2017 in 15 locations across Cameroon and reared until G1/G2 generation. Larval, adult bioassays, and synergists [piperonyl butoxide (PBO) and diethyl maleate (DEM)] assays were carried out according to WHO recommendations. F1534C mutation was genotyped in field collected adults (Go) using allele specific PCR. All tested populations were susceptible to both larvicides, temephos and Bacillus thuringiensis israelensis (Bti), after larval bioassays. Adult bioassays revealed a high level of resistance of A. albopictus to 4% DDT with mortality rates ranging from 12.42% in Bafang to 75.04% in Kumba. The resistance was reported also in 0.05% deltamethrin, 0.25% permethrin, and 0.1% propoxur in some locations. A loss of susceptibility to 0.1% bendiocarb was found in one of three populations analysed. A full susceptibility to 1% fenitrothion were observed across the country. A full recovery or partial of susceptibility was observed in A. albopictus when pre-exposed to PBO or DEM and then to DDT and permethrin, respectively. The F1534C kdr mutation was not detected in A. albopictus. This study showed that the susceptibility profile of A. albopictus to insecticide vary according to the sampling location and insecticides used. These findings are useful to planning vector control program against arbovirus vectors in Cameroon and can be used as baseline data for further researches.
Collapse
Affiliation(s)
- Aurelie P. Yougang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | - Armel N. Tedjou
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Theodel A. Wilson-Bahun
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Laboratory of vertebrate and invertebrate bioecology, Faculty of Science and Technology, Marien-Ngouabi University, Brazzaville, Congo
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
214
|
Palli SR. CncC/Maf-mediated xenobiotic response pathway in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21674. [PMID: 32281173 PMCID: PMC9939232 DOI: 10.1002/arch.21674] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 05/08/2023]
Abstract
Insects have evolved resistance to almost all insecticides developed for their control. Multiple mechanisms of resistance, including enhanced metabolism and excretion of insecticides, target-site insensitivity, reduced penetration of insecticides, and avoidance behavior, have been reported. The genes coding for proteins involved in resistance have been identified in numerous insects. The enzymes and transporters required for all three phases of insecticide metabolism and excretion including cytochrome P450 monooxygenases, glutathione S-transferases, UDP-glucuronosyltransferases, carboxylesterases, and ATP-binding cassette transmembrane transporters have been identified. Recent research in multiple insect species identified CNC-bZIP transcription factor superfamily members as regulators of genes coding for enzymes and transporters involved in insecticide metabolic resistance. The information on the pathway including reactive oxygen species, cap "n" collar isoform-C, and its heterodimer partner, muscle aponeurosis fibromatosis transcription factors involved in overexpression of enzymes and transporters involved insecticide resistance will be summarized.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
215
|
Zhang X, Liu Q, Zhu H. Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control. J Math Biol 2020; 81:243-276. [PMID: 32458175 DOI: 10.1007/s00285-020-01509-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Indexed: 01/28/2023]
Abstract
Despite centuries of continuous efforts, mosquito-borne diseases (MBDs) remain enormous health threat of human life worldwide. Lately, the USA government has approved an innovative technology of releasing Wolbachia-infected male mosquitoes to suppress the wild mosquito population. In this paper we first introduce a stage-structured model for natural mosquitos, then we establish a new model considering the releasing of Wolbachia-infected male mosquitoes and the mating competition between the natural male mosquitoes and infected males on the suppression of natural mosquitoes. Dynamical analysis of the two models, including the existence and local stability of the equilibria and bifurcation analysis, reveals the existence of a forward bifurcation or a backward bifurcation with multiple attractors. Moreover, globally dynamical properties are further explored by using Lyapunov function and theory of monotone operators, respectively. Our findings suggest that infected male augmentation itself cannot always guarantee the success of population eradication, but leads to three possible levels of population suppression, so we define the corresponding suppression rate and estimate the minimum release ratio for population eradication. Furthermore, we study how the release ratio of infected males and natural ones, mating competition, the rate of cytoplasmic incompatibility and the basic offspring number affect the suppression rate of natural mosquitoes. Our results show that the successful eradication relies on assessing the reproductive capacity of natural mosquitoes, a selection of suitable Wolbachia strains and an appropriate release amount of infected males. This study will be helpful for public health authorities in designing proper strategies to control vector mosquitoes and prevent the epidemics of MBDs.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Mathematics and Statistics, Southwest University, Chongqing, 400715, People's Republic of China.,LAMPS and CDM, Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Huaiping Zhu
- LAMPS and CDM, Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
216
|
Deguenon JM, Azondekon R, Agossa FR, Padonou GG, Anagonou R, Ahoga J, N’dombidje B, Akinro B, Stewart DA, Wang B, Gittins D, Tihomirov L, Apperson CS, McCord MG, Akogbeto MC, Roe RM. Imergard TMWP: A Non-Chemical Alternative for an Indoor Residual Spray, Effective against Pyrethroid-Resistant Anopheles gambiae (s.l.) in Africa. INSECTS 2020; 11:E322. [PMID: 32456154 PMCID: PMC7290382 DOI: 10.3390/insects11050322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022]
Abstract
Malaria is the deadliest mosquito-borne disease and kills predominantly people in sub-Saharan Africa (SSA). The now widespread mosquito resistance to pyrethroids, with rapidly growing resistance to other insecticide classes recommended by the World Health Organization (WHO), may overturn the successes gained in mosquito control in recent years. It is of utmost importance to search for new, inexpensive, and safe alternatives, with new modes of action, that might improve the efficacy of current insecticides. The efficacy of a novel mechanical insecticidal mineral derived from volcanic rock, ImergardTMWP, was investigated to determine its efficacy as a stand-alone residual wall spray and as a mixture with deltamethrin (K-Othrine® Polyzone) in experimental huts in Cove, Benin. The evaluation was conducted with susceptible (Kisumu) and wild-type Anopheles gambiae (s.l.). Deltamethrin applied alone demonstrated 40-45% mortality (at 72 h post-exposure) during the first four months, which declined to 25% at six months for wild An. gambiae from Cove. ImergardTMWP alone and mixed with deltamethrin, under the same assay conditions, produced 79-82% and 73-81% mortality, respectively, during the same six-month period. ImergardTMWP met the 80% WHO bio-efficacy threshold for residual activity for the first five months with 78% residual activity at six months. ImergardTMWP can be used as a mixture with chemical insecticides or as a stand-alone pesticide for mosquito control in Africa.
Collapse
Affiliation(s)
- Jean M. Deguenon
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (C.S.A.)
| | - Roseric Azondekon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Fiacre R. Agossa
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Gil G. Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Rodrigue Anagonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Juniace Ahoga
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Boris N’dombidje
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - David A. Stewart
- Imerys Filtration Minerals, Inc., Roswell, GA 30076, USA; (D.A.S.); (B.W.); (D.G.); (L.T.)
| | - Bo Wang
- Imerys Filtration Minerals, Inc., Roswell, GA 30076, USA; (D.A.S.); (B.W.); (D.G.); (L.T.)
| | - David Gittins
- Imerys Filtration Minerals, Inc., Roswell, GA 30076, USA; (D.A.S.); (B.W.); (D.G.); (L.T.)
| | - Larissa Tihomirov
- Imerys Filtration Minerals, Inc., Roswell, GA 30076, USA; (D.A.S.); (B.W.); (D.G.); (L.T.)
| | - Charles S. Apperson
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (C.S.A.)
| | - Marian G. McCord
- College of Natural Resources, Campus Box 8001, 2820 Faucette Drive, North Carolina State University, Raleigh, NC 27695, USA;
| | - Martin C. Akogbeto
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (C.S.A.)
| |
Collapse
|
217
|
dos Santos AB, de Albuquerque CMR. Behavioural changes in Tityus stigmurus (Thorell, 1876) (SCORPIONES: BUTHIDAE) exposed to a pyrethroid insecticide. J ETHOL 2020. [DOI: 10.1007/s10164-020-00651-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
218
|
Sahu SS, Thankachy S, Dash S, Kasinathan G, Kumar A. Intensity of pyrethroid resistance in Anopheles culicifacies s.l. (Diptera: Culicidae) in Odisha State, India. Pathog Glob Health 2020; 114:205-211. [PMID: 32275488 DOI: 10.1080/20477724.2020.1751999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
ANOPHELES CULICIFACIES S.L . is the principal malaria vector in India and has recently developed resistance to synthetic pyrethroids. For identifying the possible operational impact, quantitative measure of the intensity of this resistance is required. The purpose of this study was to measure the intensity of pyrethroid resistance in An. culicifacies s.l. The intensity bioassays with wild caught An. culicifacies s.l were carried out in 10 districts of east central India using 5x and 10x diagnostic concentrations of deltamethrin following WHO insecticides susceptibility guidelines. The results showed that the mortality of An. culicifacies s.l. ranged from 70% to 80% while exposed to 1x DC of deltamethrin (0.05%). Further bioassays conducted with 5x concentration of deltamethrin (0.25%) showed that the mortality of An. culicifacies s.l. in all the 10 districts varied from 92% to 97% indicating moderate resistance. While exposing to 10x concentration (0.5%) of this insecticide, 100% mortality was observed in all the districts; thereby confirmed moderate resistance intensity of this species. Since resistance was not confirmed at the 10x concentration, operational failure of this insecticide was unlikely. Hence, it is recommended to continue the use of LLINs for malaria vector control in these areas.
Collapse
Affiliation(s)
- Sudhansu Sekhar Sahu
- Vector Biology and Control, Indian Council of Medical Research-Vector Control Research Centre , Puducherry, India
| | - Sonia Thankachy
- Vector Biology and Control, Indian Council of Medical Research-Vector Control Research Centre , Puducherry, India
| | - Smrutidhara Dash
- Vector Biology and Control, Indian Council of Medical Research-Vector Control Research Centre , Puducherry, India
| | - Gunasekaran Kasinathan
- Vector Biology and Control, Indian Council of Medical Research-Vector Control Research Centre , Puducherry, India
| | - Ashwani Kumar
- Vector Biology and Control, Indian Council of Medical Research-Vector Control Research Centre , Puducherry, India
| |
Collapse
|
219
|
Yared S, Gebressielasie A, Damodaran L, Bonnell V, Lopez K, Janies D, Carter TE. Insecticide resistance in Anopheles stephensi in Somali Region, eastern Ethiopia. Malar J 2020; 19:180. [PMID: 32398055 PMCID: PMC7216317 DOI: 10.1186/s12936-020-03252-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
Background The movement of malaria vectors into new areas is a growing concern in the efforts to control malaria. The recent report of Anopheles stephensi in eastern Ethiopia has raised the necessity to understand the insecticide resistance status of the vector in the region to better inform vector-based interventions. The aim of this study was to evaluate insecticide resistance in An. stephensi in eastern Ethiopia using two approaches: (1) World Health Organization (WHO) bioassay tests in An. stephensi; and (2) genetic analysis of insecticide resistance genes in An. stephensi in eastern Ethiopia. Methods Mosquito larvae and pupae were collected from Kebri Dehar. Insecticide susceptibility of An. stephensi was tested with malathion 5%, bendiocarb 0.1%, propoxur 0.1%, deltamethrin 0.05%, permethrin 0.75%, pirimiphos-methyl 0.25% and DDT 4%, according to WHO standard protocols. In this study, the knockdown resistance locus (kdr) in the voltage gated sodium channel (vgsc) and ace1R locus in the acetylcholinesterase gene (ace-1) were analysed in An. stephensi. Results All An. stephensi samples were resistant to carbamates, with mortality rates of 23% and 21% for bendiocarb and propoxur, respectively. Adult An. stephensi was also resistant to pyrethroid insecticides with mortality rates 67% for deltamethrin and 53% for permethrin. Resistance to DDT and malathion was detected in An. stephensi with mortality rates of 32% as well as An. stephensi was resistance to pirimiphos-methyl with mortality rates 14%. Analysis of the insecticide resistance loci revealed the absence of kdr L1014F and L1014S mutations and the ace1R G119S mutation. Conclusion Overall, these findings support that An. stephensi is resistant to several classes of insecticides, most notably pyrethroids. However, the absence of the kdr L1014 gene may suggest non-target site resistance mechanisms. Continuous insecticide resistance monitoring should be carried out in the region to confirm the documented resistance and exploring mechanisms conferring resistance in An. stephensi in Ethiopia.
Collapse
Affiliation(s)
- Solomon Yared
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia.
| | - Araya Gebressielasie
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Victoria Bonnell
- Department of Molecular Biology and Biochemistry, Pennsylvania State University, State College, PA, USA
| | - Karen Lopez
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | |
Collapse
|
220
|
Mundis SJ, Estep AS, Waits CM, Ryan SJ. Spatial variation in the frequency of knockdown resistance genotypes in Florida Aedes aegypti populations. Parasit Vectors 2020; 13:241. [PMID: 32393364 PMCID: PMC7216362 DOI: 10.1186/s13071-020-04112-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/29/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The development of insecticide resistance in disease-vectoring mosquito species can lead to vector control failure and disease resurgence. However, insecticide applications remain an essential public health intervention. In Florida, insecticide resistance in Aedes aegypti, an anthropophilic mosquito species capable of transmitting dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of insecticide resistance can enhance the ability of vector control organizations to target populations effectively. METHODS We used previously collected data on frequencies of mutations that confer resistance to commonly used pyrethroid insecticides in Ae. aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine the scale of clustering for the most resistant variant, we used a Ripley's K function. We also used a spatial scanning statistic technique to identify locations of clusters where higher than expected frequencies of susceptible or resistant mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall explanatory power of these models. RESULTS The scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. We identified statistically significant clusters of genotypes associated with resistance in several coastal cities, although some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consistently significant predictors of knockdown resistance genotype frequency in the top-performing beta regression models, although pyrethroid use surprisingly had a negatively associated with resistance. The incorporation of spatial lags resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process likely explains some of the spatial patterns observed. CONCLUSIONS The genetic mutations that confer resistance to pyrethroids in Ae. aegypti mosquitoes in Florida exhibit spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further work at local scales should be able to identify the mechanisms by which these variables influence selection for alleles associated with resistance.
Collapse
Affiliation(s)
- Stephanie J. Mundis
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL 32607 USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608 USA
| | - Alden S. Estep
- Navy Entomology Center of Excellence, R&D Department, Gainesville, FL 32608 USA
| | - Christy M. Waits
- Navy Entomology Center of Excellence, R&D Department, Gainesville, FL 32608 USA
| | - Sadie J. Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL 32607 USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608 USA
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
221
|
Contreras-Perera Y, Ponce-Garcia G, Villanueva-Segura K, Lopez-Monroy B, Rodríguez-Sanchez IP, Lenhart A, Manrique-Saide P, Flores AE. Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasit Vectors 2020; 13:224. [PMID: 32375862 PMCID: PMC7201803 DOI: 10.1186/s13071-020-04093-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/02/2022] Open
Abstract
Background Insecticide resistance is a serious problem for vector control programmes worldwide. Resistance is commonly attributed to mutations at the insecticide’s target site or increased activity of detoxification enzymes. Methods We determined the knockdown concentration (KC50) and lethal concentration (LC50) of deltamethrin in six natural populations of adult Aedes aegypti from southeastern Mexico. These populations were then selected over five generations using the LC50 from the preceding generation that underwent selection, and the heritability of deltamethrin resistance was quantified. For each generation, we also determined the frequency of the kdr alleles L410, I1016 and C1534, and the levels of activity of three enzyme families (α- and β-esterases, mixed-function oxidases and glutathione S-transferases (GST)) associated with insecticide detoxification. Results There was an increase in KC50 and LC50 values in the subsequent generations of selection with deltamethrin (FS5vs FS0). According to the resistance ratios (RRs), we detected increases in LC50 ranging from 1.5 to 5.6 times the values of the parental generation and in KC50 ranging from 1.3–3.8 times the values of the parental generation. Triple homozygous mutant individuals (tri-locus, LL/II/CC) were present in the parental generations and increased in frequency after selection. The frequency of L410 increased from 1.18-fold to 2.63-fold after selection with deltamethrin (FS5vs FS0) in the populations analyzed; for I1016 an increase between 1.19-fold to 2.79-fold was observed, and C1534 was fixed in all populations after deltamethrin selection. Enzymatic activity varied significantly over the generations of selection. However, only α- esterase activity remained elevated in multiple populations after five generations of deltamethrin selection. We observed an increase in the mean activity levels of GSTs in two of the six populations analyzed. Conclusions The high levels of resistance and their association with high frequencies of kdr mutations (V410L, V1016I and F1534C) obtained through artificial selection, suggest an important role of these mutations in conferring resistance to deltamethrin. We highlight the need to implement strategies that involve the monitoring of kdr frequencies in insecticide resistance monitoring and management programmes.![]()
Collapse
Affiliation(s)
- Yamili Contreras-Perera
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Gustavo Ponce-Garcia
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Karina Villanueva-Segura
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Iram P Rodríguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Audrey Lenhart
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Campus de Ciencias Biologicas y Agropecuarias, Merida, Yucatan, Mexico
| | - Adriana E Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico.
| |
Collapse
|
222
|
Chegeni TN, Fakhar M. Promising Role of Wolbachia as Anti-parasitic Drug Target and Eco-Friendly Biocontrol Agent. ACTA ACUST UNITED AC 2020; 14:69-79. [PMID: 30747079 DOI: 10.2174/1574891x14666190211162403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Wolbachia is the most common endosymbiotic bacteria in insectborne parasites and it is the most common reproductive parasite in the world. Wolbachia has been found worldwide in numerous arthropod and parasite species, including insects, terrestrial isopods, spiders, mites and filarial nematodes. There is a complicated relationship between Wolbachia and its hosts and in some cases, they create a mutual relationship instead of a parasitic relationship. Some species are not able to reproduce in the absence of infection with Wolbachia. Thus, the use of existing strains of Wolbachia bacteria offers a potential strategy for the control of the population of mosquitoes and other pests and diseases. METHODS We searched ten databases and reviewed published papers regarding the role of Wolbachia as a promising drug target and emerging biological control agents of parasitic diseases between 1996 and 2017 (22 years) were considered eligible. Also, in the current study several patents (WO008652), (US7723062), and (US 0345249 A1) were reviewed. RESULTS Endosymbiotic Wolbachia bacteria, which are inherited from mothers, is transmitted to mosquitoes and interferes with pathogen transmission. They can change the reproduction of their host. Wolbachia is transmitted through the cytoplasm of eggs and have evolved different mechanisms for manipulating the reproduction of its hosts, including the induction of reproductive incompatibility, parthenogenesis, and feminization. The extensive effects of Wolbachia on reproduction and host fitness have made Wolbachia the issue of growing attention as a potential biocontrol agent. CONCLUSION Wolbachia has opened a new window to design a costly, potent and ecofriendly drug target for effective treatment and elimination of vector-borne parasitic diseases.
Collapse
Affiliation(s)
- Tooran Nayeri Chegeni
- Department of Parasitology, Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
223
|
Fagbohun IK, Idowu ET, Otubanjo OA, Awolola TS. First report of AChE1 (G119S) mutation and multiple resistance mechanisms in Anopheles gambiae s.s. in Nigeria. Sci Rep 2020; 10:7482. [PMID: 32366848 PMCID: PMC7198501 DOI: 10.1038/s41598-020-64412-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Susceptibility and PBO synergist bioassays were done using 3-5 days old female Anopheles mosquito collected from Lagos State, Nigeria with WHO test papers DDT (4%), permethrin (0.75%), Bendiocarb (1%) and PBO (4%) according to standard procedures. The activities of cytochrome P450s, glutathione S-transferase and carboxylesterases were determined using biochemical assays. The presence of kdr-w, kdr-e and Ace-1R mutations were examined using molecular assays. Resistance to DDT and permethrin in An gambiae s.s from the four Local Government Areas (LGAs) was recorded while suspected resistance to bendiocarb was recorded in mosquitoes from Alimosho and Kosofe LGAs. PBO synergist reduced the knockdown time and also recorded significantly (P < 0.05) higher 24 hrs percentage mortality compared to non-synergized bioassays. Increased activities of detoxifying enzymes was recorded in wild mosquito compared to the insecticides susceptible laboratory strain and this was significant (P < 0.05) in P450s, esterase α and β. Kdr-w was detected in An. gambiae s.s from all the LGAs, kdr-e (L1014S) was detected in Alimosho, Kosofe and Ibeju-Lekki, while the Ace-1R gene was detected in Alimosho and Kosofe. Results from this study provide evidence for resistance of An. gambiae from Lagos State to multiple classes of neurotoxic insecticides with multiple resistance mechanisms to these insecticides.
Collapse
|
224
|
Shah RM, Shad SA. House fly resistance to chlorantraniliprole: cross resistance patterns, stability and associated fitness costs. PEST MANAGEMENT SCIENCE 2020; 76:1866-1873. [PMID: 31840405 DOI: 10.1002/ps.5716] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The house fly, Musca domestica L. (Diptera: Muscidae) is an important public health pest that serves as a carrier for pathogens transmitting various diseases of man and animals. It is well known for rapid resistance development to insecticides applied for its chemical control. Chlorantraniliprole, an anthranilic diamide, a ryanodine receptor agonist, is a promising agent for the integrated pest management of various insect pests. To design a retrospective resistance management strategy, life history traits of the chlorantraniliprole laboratory-selected (CTPR-SEL) and unselected counterpart (UNSEL) sub-populations of a field strain and their reciprocal crosses were studied. RESULTS After eight generations of consecutive selection with chlorantraniliprole, a 750-fold resistance level when compared to a susceptible strain and a 124-fold resistance level when compared to the UNSEL strain had developed in CTPR-SEL. Very low cross resistance to bifenthrin but no cross resistance to spinosad and fipronil was observed in the CTPR-SEL strain. Results of the fitness traits suggest that the CTPR-SEL has a lower relative fitness (0.34), reduced fecundity, a decrease in eggs hatchability, lower biotic potential and net reproductive rate as compared to the UNSEL strain. Interestingly, chlorantraniliprole resistance was unstable in the CTPR-SEL. CONCLUSIONS Fitness costs associated with chlorantraniliprole resistance suggest that the efficacy of this insecticide could be preserved for a prolonged duration of time by alternating its use with insecticides having dissimilar modes of action and no cross resistance. When cross-resistance is absent, a sequence of two insecticides is expected to be more durable than a mixture unless the population's h2 of resistance to the mixture is less than half of the mean of the population's h2 of resistance to the two individual components of the mixture. Unstable chlorantraniliprole resistance could also help to sustain its efficacy by being withdrawn from usage for some period of time. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rizwan Mustafa Shah
- Department of Entomology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ali Shad
- Department of Entomology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
225
|
Fahmy NT, Osman A, Badr MS, Morcos N, Diclaro JW, Abd-ElSamie EM. Deciphering pyrethroid resistance in Cx. pipiens (L): Implications of cytochrome P450; expression profiling and regulatory microRNA. Mol Cell Probes 2020; 52:101579. [PMID: 32339604 DOI: 10.1016/j.mcp.2020.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Over the past decades, the extensive use of pyrethroids insecticides for vector control has resulted in the development of insecticide resistance. Cytochrome P450 has been recognized to play a critical role in the metabolic detoxification of insecticides. In the current study, Culex pipiens mosquitoes were collected from Giza Governorate in Egypt and tested for insecticide susceptibility against deltamethrin. First detection of Knockdown resistance gene (Kdr) mutations in field collected mosquitoes was performed. Activities of cytochrome oxidase P450 detoxification enzyme that synchronized with the resistance development, was assessed. Expression profiles of cytochrome P450s and their putative corresponding regulating miRNAs, which was previously reported in Cx. pipiens pallens were evaluated in pyrethroid resistant field-collected Cx. pipiens using RT-qPCR and stem-loop RT-qPCR, respectively. Specific stem-loop reverse transcription primers and forward primers were designed for miRNAs profiling. Our results elucidated the pyrethroid resistance development and revealed its relation to the metabolic and target site modification mechanisms with a first report of L1014F-kdr mutation detection. RT-qPCR results have showed an up-regulation in the expression of the studied P450 transcripts. Negative correlations were found between the expression of P450s and their regulatory miRNAs except for CYP9J35, where positive correlation was found with its corresponding miR-13. Interestingly, our data was the first to detect negative correlation between miR-285 and its putative CYP6Cp1 target gene. These findings highlighted the significance of identifying P450 gene along with regulatory miRNAs as a key mechanism implicated in pyrethroid resistance in field Culex vector population. The elucidation of this mechanism would shed light on the development of insecticide resistance and would help in shaping strategies to combat such vectors.
Collapse
Affiliation(s)
| | - Ahmed Osman
- Faculty of Science, Ain Shams University, Cairo, Egypt; Egypt Japan University of Science Technology, Alexandria, Egypt.
| | - Mohamed S Badr
- Medical Research Center, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nadia Morcos
- Faculty of Science, Ain Shams University, Cairo, Egypt.
| | | | - Emtithal M Abd-ElSamie
- Faculty of Science, Cairo University, Giza, Egypt; Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt.
| |
Collapse
|
226
|
Weedall GD, Mugenzi LMJ, Menze BD, Tchouakui M, Ibrahim SS, Amvongo-Adjia N, Irving H, Wondji MJ, Tchoupo M, Djouaka R, Riveron JM, Wondji CS. A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci Transl Med 2020; 11:11/484/eaat7386. [PMID: 30894503 DOI: 10.1126/scitranslmed.aat7386] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/09/2018] [Indexed: 11/02/2022]
Abstract
Metabolic resistance to insecticides such as pyrethroids in mosquito vectors threatens control of malaria in Africa. Unless it is managed, recent gains in reducing malaria transmission could be lost. To improve monitoring and assess the impact of insecticide resistance on malaria control interventions, we elucidated the molecular basis of pyrethroid resistance in the major African malaria vector, Anopheles funestus We showed that a single cytochrome P450 allele (CYP6P9a_R) in A. funestus reduced the efficacy of insecticide-treated bednets for preventing transmission of malaria in southern Africa. Expression of key insecticide resistance genes was detected in populations of this mosquito vector throughout Africa but varied according to the region. Signatures of selection and adaptive evolutionary traits including structural polymorphisms and cis-regulatory transcription factor binding sites were detected with evidence of selection due to the scale-up of insecticide-treated bednet use. A cis-regulatory polymorphism driving the overexpression of the major resistance gene CYP6P9a allowed us to design a DNA-based assay for cytochrome P450-mediated resistance to pyrethroid insecticides. Using this assay, we tracked the spread of pyrethroid resistance and found that it was almost fixed in mosquitoes from southern Africa but was absent from mosquitoes collected elsewhere in Africa. Furthermore, a field study in experimental huts in Cameroon demonstrated that mosquitoes carrying the resistance CYP6P9a_R allele survived and succeeded in blood feeding more often than did mosquitoes that lacked this allele. Our findings highlight the need to introduce a new generation of insecticide-treated bednets for malaria control that do not rely on pyrethroid insecticides.
Collapse
Affiliation(s)
- Gareth D Weedall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, U.K
| | - Leon M J Mugenzi
- LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Benjamin D Menze
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Sulaiman S Ibrahim
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria
| | - Nathalie Amvongo-Adjia
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Centre for Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaoundé, Cameroon
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Murielle J Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Micareme Tchoupo
- LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture (IITA), Cotonou 08 BP 0932, Benin
| | - Jacob M Riveron
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK. .,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
227
|
Calderón JM, Fuya P, Santacoloma L, González C. Deltamethrin resistance in Chagas disease vectors colonizing oil palm plantations: implications for vector control strategies in a public health-agriculture interface. Parasit Vectors 2020; 13:163. [PMID: 32245509 PMCID: PMC7118854 DOI: 10.1186/s13071-020-04048-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Triatomine bugs are responsible for the vectorial transmission of the parasite Trypanosoma cruzi, etiological agent of Chagas disease, a zoonosis affecting 10 million people and with 25 million at risk of infection. Several triatomine species of the genus Rhodnius have been found inhabiting palm crowns where insects can find shelter in leaves axils and blood from palm-associated vertebrates. Rhodnius prolixus insects have been collected in oil palms in Colombia, and high T. cruzi infection rates were found. Since pest control is carried out in oil palm plantations, continuous exposure to insecticides could be occurring in these triatomines. Some insecticides suggested for pest control in oil palm plantations are also recommended for triatomine control in human dwellings. In this study, our objective was to assess if triatomines inhabiting oil palms exhibit resistance to deltamethrin, an insecticide used for vector control. Methods Rhodnius prolixus nymphs were sampled in oil palms located in Tauramena, Colombia. To determine deltamethrin resistance, biological and biochemical assays were carried out on fifth-instar nymphs from the F1 generation. For biological assays, pure and commercial deltamethrin were used, and in biochemical assays, activities of detoxifying enzymes related to pyrethroid resistance, such as oxidases, esterases and transferases, were quantified. Results Deltamethrin lethal dosage 50 and 90 in R. prolixus from oil palms was significantly higher than in those from a susceptible colony suggesting possible deltamethrin resistance. Moreover, mortality with commercial deltamethrin was very low in insects from oil palms. In biochemical assays, the activity of evaluated detoxifying enzymes was significantly higher in R. prolixus from oil palms than in those from the susceptible colony. Conclusions Possible deltamethrin resistance found in R. prolixus insects from oil palms could threaten traditional vector control strategies in urban settings if insecticide-resistant triatomines can migrate from oil palms plantations. In palm oil producer countries such as Colombia, the oil palm plantations are growing constantly during the last years. We suggest that pest control strategies in oil palm crops should include triatomine surveillance and toxicological monitoring, especially in zones with several Chagas disease cases.![]()
Collapse
Affiliation(s)
- Johan M Calderón
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá D.C., Colombia.
| | - Patricia Fuya
- Laboratorio de Entomología, Instituto Nacional de Salud, Bogotá D.C., Colombia
| | - Liliana Santacoloma
- Laboratorio de Entomología, Instituto Nacional de Salud, Bogotá D.C., Colombia
| | - Camila González
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá D.C., Colombia
| |
Collapse
|
228
|
Vu TX, Andrianov BV, Vu DC, Goryacheva II. qPCR Identification of the kdr Allele F1534C in Voltage-Gated Sodium Channel Gene (vgsc) of the Major Mosquito Vectors Aedes aegypti and Aedes albopictus in Northern and Central Vietnam. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
229
|
Venugopala KN, Ramachandra P, Tratrat C, Gleiser RM, Bhandary S, Chopra D, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Venugopala R, Deb PK, Chandrashekharappa S, Khalil HE, Alwassil OI, Abed SN, Bataineh YA, Palenge R, Haroun M, Pottathil S, Girish MB, Akrawi SH, Mohanlall V. Larvicidal Activities of 2-Aryl-2,3-Dihydroquinazolin -4-ones against Malaria Vector Anopheles arabiensis, In Silico ADMET Prediction and Molecular Target Investigation. Molecules 2020; 25:molecules25061316. [PMID: 32183140 PMCID: PMC7144721 DOI: 10.3390/molecules25061316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
- Correspondence:
| | - Pushpalatha Ramachandra
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Raquel M. Gleiser
- CREAN-IMBIV (UNC-CONICET), Av. Valparaíso s.n., Córdoba, Argentina and FCEFyN, AV. Sarsfield 299, Universidad Nacional de Cordoba, Cordoba 5000, Argentina;
| | - Subhrajyoti Bhandary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Sandeep Chandrashekharappa
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, TIFR, GKVK, Bellary Road, Bangalore 560 065, India;
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Osama I. Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Sara Nidal Abed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Yazan A. Bataineh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Ramachandra Palenge
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Shinu Pottathil
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Meravanige B. Girish
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
| |
Collapse
|
230
|
Fular A, Gupta S, Sharma AK, Kumar S, Upadhaya D, Shakya M, Nagar G, Ghosh S. Standardization of tick specific biochemical tools for estimation of esterases, monooxygenases and glutathione S-transferase for characterization of acaricide resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:130-139. [PMID: 32284118 DOI: 10.1016/j.pestbp.2020.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/27/2019] [Accepted: 01/17/2020] [Indexed: 06/11/2023]
Abstract
Protocols to determine metabolic resistance in ticks were mainly derived from reports published using mosquitoes and agriculturally important insects without prior standardization. In the present study, biochemical assays were standardized to quantify acaricide metabolizing enzymes in tick homogenates. Three variables viz., age, number of larvae and reaction time were optimized using reference susceptible IVRI-I and deltamethrin resistant IVRI-IV (Resistance Factor = 194) tick strains. The optimum conditions for estimation of general esterases were 10-15 day old 40 larvae with 15 mins reaction time, 15-20 day old 40 larvae with 20 mins reaction time for Glutathione S- transferase, while 10-15 day old 80 larvae with 5 mins reaction time for monooxygenase. The standardized protocols were further validated in multi acaricide resistant strain (IVRI-V) and in nine field isolates having variable resistant factors to different acaricides. In all the nine heterogeneous field isolates, a significant correlation (p < .05) between resistance to synthetic pyrethroids and over-expression of esterases and monooxygenase was noticed. Similarly, esterases and GST activities were significantly correlated with resistance to organophosphates. The details of the assay protocol are explained for adoption in different laboratories.
Collapse
Affiliation(s)
- Ashutosh Fular
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, U.P., India
| | - Snehil Gupta
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, U.P., India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, U.P., India
| | - Sachin Kumar
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, U.P., India
| | - Deepak Upadhaya
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, U.P., India
| | - Mukesh Shakya
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, U.P., India
| | - Gaurav Nagar
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, U.P., India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, U.P., India.
| |
Collapse
|
231
|
Francis S, Crawford J, McKenzie S, Campbell T, Wright D, Hamilton T, Huntley-Jones S, Spence S, Belemvire A, Alavi K, Gutierrez CT. Comparative toxicity of larvicides and growth inhibitors on Aedes aegypti from select areas in Jamaica. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192041. [PMID: 32269812 PMCID: PMC7137934 DOI: 10.1098/rsos.192041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Insecticide resistance has become problematic in tropical and subtropical regions, where Aedes mosquitoes and Aedes-borne arboviral diseases thrive. With the recent occurrence of chikungunya and the Zika virus in Jamaica, the Ministry of Health and Wellness, Jamaica, partnered with the United States Agency for International Development to implement multiple intervention activities to reduce the Aedes aegypti populations in seven parishes across the island and to assess the susceptibility of collected samples to various concentrations of temephos, Bacillus thuringiensis subsp. israelensis, (Bti), diflubenzuron and methoprene. Of the insecticides tested, only temephos has been used in routine larviciding activities in the island. The results showed that only temephos at concentrations 0.625 ppm and Bti at concentrations 6-8 ppm were effective at causing 98-100% mortality of local Ae. aegypti at 24 h exposure. Surprisingly, the growth inhibitors diflubenzuron and methoprene had minimal effect at preventing adult emergence in Ae. aegypti larvae in the populations tested. The results demonstrate the need for insecticide resistance testing as a routine part of vector control monitoring activies in order to determine useful tools that may be incorporated to reduce the abundance of Ae. aegypti.
Collapse
Affiliation(s)
- Sheena Francis
- Natural Products Institute, University of the West Indies, Mona, Jamaica
- Abt Associates, 70 Half-Way Tree Road, Kingston, Jamaica
- Zika AIRS Project Jamaica, 70 Half-Way Tree Road, Kingston, Jamaica
| | - Jervis Crawford
- Zika AIRS Project Jamaica, 70 Half-Way Tree Road, Kingston, Jamaica
| | - Sashell McKenzie
- Zika AIRS Project Jamaica, 70 Half-Way Tree Road, Kingston, Jamaica
| | - Towanna Campbell
- Zika AIRS Project Jamaica, 70 Half-Way Tree Road, Kingston, Jamaica
| | - Danisha Wright
- Natural Products Institute, University of the West Indies, Mona, Jamaica
- Zika AIRS Project Jamaica, 70 Half-Way Tree Road, Kingston, Jamaica
| | - Trevann Hamilton
- Zika AIRS Project Jamaica, 70 Half-Way Tree Road, Kingston, Jamaica
| | | | - Simone Spence
- Health Promotions and Protection, Ministry of Health and Wellness, Kingston, Jamaica
| | - Allison Belemvire
- United States Agency for International Development (USAID), Bureau for Global Health, Office of Infectious Disease, Malaria Division, Arlington, TX, USA
| | - Kristen Alavi
- United States Agency for International Development (USAID), Washington, DC, USA
| | | |
Collapse
|
232
|
Senthil-Nathan S. A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents Against Mosquitoes. Front Physiol 2020; 10:1591. [PMID: 32158396 PMCID: PMC7052130 DOI: 10.3389/fphys.2019.01591] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mosquitoes are a serious threat to the society, acting as vector to several dreadful diseases. Mosquito management programes profoundly depend on the routine of chemical insecticides that subsequently lead to the expansion of resistance midst the vectors, along with other problems such as environmental pollution, bio magnification, and adversely affecting the quality of public and animal health, worldwide. The worldwide risk of insect vector transmitted diseases, with their associated illness and mortality, emphasizes the need for effective mosquitocides. Hence there is an immediate necessity to develop new eco-friendly pesticides. As a result, numerous investigators have worked on the development of eco-friendly effective mosquitocidal compounds of plant origin. These products have a cumulative advantage of being cost-effective, environmentally benign, biodegradable, and safe to non-target organisms. This review aims at describing the current state of research on behavioral, physiological, and biochemical effects of plant derived compounds with larvicidal effects on mosquitoes. The mode of physiological and biochemical action of known compounds derived from various plant families as well as the potential of plant secondary metabolites, plant extracts, and also the essential oils (EO), as mosquitocidal agents are discussed. This review clearly indicates that the application of vegetal-based compounds as mosquito control proxies can serve as alternative biocontrol methods in mosquito management programes.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
233
|
Zhang D, Wang Y, He K, Yang Q, Gong M, Ji M, Chen L. Wolbachia limits pathogen infections through induction of host innate immune responses. PLoS One 2020; 15:e0226736. [PMID: 32078642 PMCID: PMC7032688 DOI: 10.1371/journal.pone.0226736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/03/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Wolbachia has been reported to suppress a variety of pathogen infections in mosquitoes, but the mechanism is undefined. Two possibilities have been proposed. One is that Wolbachia activates host immune responses, and the other one is that Wolbachia competes with pathogens for limited nutrients. METHODOLOGY/PRINCIPAL FINDINGS In this study, we compared host immune responses and the densities of two different strains of Wolbachia in naturally occurring parental and artificially created hybrid host genetic backgrounds. No significant difference in Wolbachia density was found between these hosts. We found that Wolbachia could activate host innate immune responses when the host genetic profile was different from that of its natural host. When these hosts were challenged with pathogenic bacteria, mosquitoes in new host-Wolbachia symbioses had a higher survival rate than in old host-Wolbachia symbioses. CONCLUSIONS/SIGNIFICANCE The presence of Wolbachia per se does not necessarily affect pathogen infections, suggesting that a competition for limited nutrients is not the main reason for Wolbachia-mediated pathogen suppression. Instead, host immune responses are responsible for it. The elucidation of an immunity nature of PI is important to guide future practice: Wolbachia may be genetically engineered to be more immunogenic, it is desired to search and isolate more strains of Wolbachia, and test more host-Wolbachia symbioses for future applications. Our results also suggest Wolbachia-based PI may be applied to naturally Wolbachia-infected mosquito populations, and extend to the control of a broader range of mosquito-borne diseases.
Collapse
Affiliation(s)
- Donghui Zhang
- School of International Education, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingfan Wang
- Program of “5+3” Integrative Clinical Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun He
- Program of Medical Imaging, School of Medical Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggui Yang
- Jiangsu International Travel Healthcare Center, Nanjing, Jiangsu, China
| | - Maoqing Gong
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Disease Prevention and Control, Jining, Shandong, China
| | - Minjun Ji
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
234
|
Sippy R, Rivera GE, Sanchez V, Heras F, Morejón B, Beltrán E, Hikida RS, López-Latorre MA, Aguirre A, Stewart-Ibarra AM, Larsen DA, Neira M. Ingested insecticide to control Aedes aegypti: developing a novel dried attractive toxic sugar bait device for intra-domiciliary control. Parasit Vectors 2020; 13:78. [PMID: 32066486 PMCID: PMC7027216 DOI: 10.1186/s13071-020-3930-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/03/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Illnesses transmitted by Aedes aegypti (Linnaeus, 1762) such as dengue, chikungunya and Zika comprise a considerable global burden; mosquito control is the primary public health tool to reduce disease transmission. Current interventions are inadequate and insecticide resistance threatens the effectiveness of these options. Dried attractive bait stations (DABS) are a novel mechanism to deliver insecticide to Ae. aegypti. The DABS are a high-contrast 28 inch2 surface coated with dried sugar-boric acid solution. Aedes aegypti are attracted to DABS by visual cues only, and the dried sugar solution elicits an ingestion response from Ae. aegypti landing on the surface. The study presents the development of the DABS and tests of their impact on Ae. aegypti mortality in the laboratory and a series of semi-field trials. METHODS We conducted multiple series of laboratory and semi-field trials to assess the survivability of Ae. aegypti mosquitoes exposed to the DABS. In the laboratory experiments, we assessed the lethality, the killing mechanism, and the shelf life of the device through controlled experiments. In the semi-field trials, we released laboratory-reared female Ae. aegypti into experimental houses typical of peri-urban tropical communities in South America in three trial series with six replicates each. Laboratory experiments were conducted in Quito, Ecuador, and semi-field experiments were conducted in Machala, Ecuador, an area with abundant wild populations of Ae. aegypti and endemic arboviral transmission. RESULTS In the laboratory, complete lethality was observed after 48 hours regardless of physiological status of the mosquito. The killing mechanism was determined to be through ingestion, as the boric acid disrupted the gut of the mosquito. In experimental houses, total mosquito mortality was greater in the treatment house for all series of experiments (P < 0.0001). CONCLUSIONS The DABS devices were effective at killing female Ae. aegypti under a variety of laboratory and semi-field conditions. DABS are a promising intervention for interdomiciliary control of Ae. aegypti and arboviral disease prevention.
Collapse
Affiliation(s)
- Rachel Sippy
- Institute for Global Health & Translational Science, SUNY-Upstate Medical University, Syracuse, NY, USA.,Department of Geography, University of Florida, Gainesville, FL, USA
| | - Galo E Rivera
- Center for Research on Health in Latin America, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Vector Biology Group, Max Plank Institute for Infection Biology, Berlin, Germany
| | - Valeria Sanchez
- Institute for Global Health & Translational Science, SUNY-Upstate Medical University, Syracuse, NY, USA.,Unidad Académica de Ciencias Químicas y de la Salud, Universidad Técnica de Machala, Machala, Ecuador
| | - Froilán Heras
- Institute for Global Health & Translational Science, SUNY-Upstate Medical University, Syracuse, NY, USA.,Unidad Académica de Ciencias Químicas y de la Salud, Universidad Técnica de Machala, Machala, Ecuador
| | - Bianca Morejón
- Center for Research on Health in Latin America, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Biology Division, College of Arts and Sciences, Kansas State University, Manhattan, KS, USA
| | - Efraín Beltrán
- Unidad Académica de Ciencias Químicas y de la Salud, Universidad Técnica de Machala, Machala, Ecuador
| | | | - María A López-Latorre
- Center for Research on Health in Latin America, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Medical School, College of Health Sciences, Universidad de las Américas, Quito, Ecuador
| | - Alex Aguirre
- Center for Research on Health in Latin America, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Anna M Stewart-Ibarra
- Institute for Global Health & Translational Science, SUNY-Upstate Medical University, Syracuse, NY, USA. .,Department of Medicine, SUNY-Upstate Medical University, Syracuse, NY, USA. .,Department of Public Health and Preventative Medicine, SUNY-Upstate Medical University, Syracuse, NY, USA. .,InterAmerican Institute for Global Change Research (IAI), Montevideo, Uruguay.
| | - David A Larsen
- Department of Public Health, Syracuse University, Syracuse, NY, USA.
| | - Marco Neira
- Center for Research on Health in Latin America, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| |
Collapse
|
235
|
An Experimental Hut Evaluation of PBO-Based and Pyrethroid-Only Nets against the Malaria Vector Anopheles funestus Reveals a Loss of Bed Nets Efficacy Associated with GSTe2 Metabolic Resistance. Genes (Basel) 2020; 11:genes11020143. [PMID: 32013227 PMCID: PMC7073577 DOI: 10.3390/genes11020143] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Growing insecticide resistance in malaria vectors is threatening the effectiveness of insecticide-based interventions, including Long Lasting Insecticidal Nets (LLINs). However, the impact of metabolic resistance on the effectiveness of these tools remains poorly characterized. Using experimental hut trials and genotyping of a glutathione S-transferase resistance marker (L119F-GSTe2), we established that GST-mediated resistance is reducing the efficacy of LLINs against Anopheles funestus. Hut trials performed in Cameroon revealed that Piperonyl butoxide (PBO)-based nets induced a significantly higher mortality against pyrethroid resistant An. funestus than pyrethroid-only nets. Blood feeding rate and deterrence were significantly higher in all LLINs than control. Genotyping the L119F-GSTe2 mutation revealed that, for permethrin-based nets, 119F-GSTe2 resistant mosquitoes have a greater ability to blood feed than susceptible while the opposite effect is observed for deltamethrin-based nets. For Olyset Plus, a significant association with exophily was observed in resistant mosquitoes (OR = 11.7; p < 0.01). Furthermore, GSTe2-resistant mosquitoes (cone assays) significantly survived with PermaNet 2.0 (OR = 2.1; p < 0.01) and PermaNet 3.0 (side) (OR = 30.1; p < 0.001) but not for Olyset Plus. This study shows that the efficacy of PBO-based nets (e.g., blood feeding inhibition) against pyrethroid resistant malaria vectors could be impacted by other mechanisms including GST-mediated metabolic resistance not affected by the synergistic action of PBO. Mosaic LLINs incorporating a GST inhibitor (diethyl maleate) could help improve their efficacy in areas of GST-mediated resistance.
Collapse
|
236
|
Ali M, Ibrahim R, Alahmadi S, Alsharif SM, Mansour F, Elshazly H, Shawer D. Ovicidal, pupicidal and bactericidal effects of aminopyridinium-based ionic liquids on Culex pipiens and certain human pathogenic bacteria. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1836909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Medhat Ali
- Department of Biology, College of Science, Taibah University, Medina, KSA
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Reda Ibrahim
- Department of Biology, College of Science, Taibah University, Medina, KSA
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Saeed Alahmadi
- Department of Biology, College of Science, Taibah University, Medina, KSA
| | - Sultan M. Alsharif
- Department of Biology, College of Science, Taibah University, Medina, KSA
| | - Fatimah Mansour
- Department of Biology, College of Science, Taibah University, Medina, KSA
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences & Arts – Scientific Departments, Qassim University, Buraidah, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Dalia Shawer
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
237
|
Hassan F, Singh KP, Ali V, Behera S, Shivam P, Das P, Dinesh DS. Detection and functional characterization of sigma class GST in Phlebotomus argentipes and its role in stress tolerance and DDT resistance. Sci Rep 2019; 9:19636. [PMID: 31873171 PMCID: PMC6928345 DOI: 10.1038/s41598-019-56209-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/09/2019] [Indexed: 01/01/2023] Open
Abstract
Several Glutathione S-transferases (GSTs) enzymes, in insects, have previously been implicated in resistance developed against DDT and other insecticides. The GST enzyme particularly sigma class have important physiological role in detoxification of lipid peroxidation by-products in insects. Phlebotomus argentipes has been intensely exposed to DDT over years due to Indoor Residual Spray (IRS) programme for Kala-azar elimination in Bihar, India. However, in P. argentipes, role of GSTs in DDT resistance have not been elucidated. Here, sigma class GST of P. argentipes (Parg-GSTσ) was successfully cloned, expressed and purified by affinity chromatography. The recombinant Parg-GSTσ was found to be highly active towards cumene hydroperoxide and 4-HNE having specific activity 92.47 & 203.92 µM/min/mg of protein, respectively and exhibited low activity towards universal substrate CDNB i.e., 8.75 µM/min/mg of protein. RT-PCR and immunoblot analysis showed at least 2 and 1.8 fold overexpression of Parg-GSTσ in the single exposed and non exposed DDT resistant P. argentipes as compared to susceptible, implicating Parg-GSTσ also involved in DDT resistance probably by imparting enhanced stress tolerance. The DDT, H2O2 and temperature induction assays demonstrated stress-dependent induction of Parg-GSTσ expression indicating its important role in oxidative stress redressal.
Collapse
Affiliation(s)
- Faizan Hassan
- Department of Vector Biology & Control, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agam Kuan, Patna, 800007, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agam Kuan, Patna, 800007, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agam Kuan, Patna, 800007, India.
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agam Kuan, Patna, 800007, India
| | - Pushkar Shivam
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agam Kuan, Patna, 800007, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agam Kuan, Patna, 800007, India
| | - Diwakar Singh Dinesh
- Department of Vector Biology & Control, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agam Kuan, Patna, 800007, India.
| |
Collapse
|
238
|
Lee JY, Woo RM, Choi CJ, Shin TY, Gwak WS, Woo SD. Beauveria bassiana for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults shows high conidia persistence and productivity. AMB Express 2019; 9:206. [PMID: 31865499 PMCID: PMC6925604 DOI: 10.1186/s13568-019-0933-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to determine the optimal entomopathogenic fungus for the simultaneous control of the adults of two mosquito species, Aedes albopictus and Culex pipiens. The pathogenicity and virulence against the two species of mosquitoes were evaluated by using 30 isolates of Beauveria bassiana, an entomopathogenic fungus isolated from Korea that has high thermotolerance and UV-B tolerance. Regarding pathogenicity, 23 isolates were pathogenic to Ae. albopictus and 12 isolates were pathogenic to Cx. pipiens; Ae. albopictus adults were more susceptible to B. bassiana than Cx. pipiens adults. Among the isolates, 6 isolates that were simultaneously pathogenic to the two species of mosquitoes were used to evaluate virulence and conidia productivity. B. bassiana CN6T1W2 and JN5R1W1 had higher virulence than the other isolates, and they were more virulent in Ae. albopictus than inCx. pipiens. The conidia productivity of B. bassiana JN5R1W1 on millet grain medium was higher than that of B. bassiana CN6T1W2. Based on these results, B. bassiana JN5R1W1 was selected as the most efficient isolate for the simultaneous control of the two mosquito species. B. bassiana JN5R1W1 can be used effectively in the development of fungal insecticides to simultaneously control Ae. albopictus and Cx. pipiens adults with similar distribution areas.
Collapse
|
239
|
Lopes RP, Lima JBP, Martins AJ. Insecticide resistance in Culex quinquefasciatus Say, 1823 in Brazil: a review. Parasit Vectors 2019; 12:591. [PMID: 31852489 PMCID: PMC6921570 DOI: 10.1186/s13071-019-3850-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/10/2019] [Indexed: 11/10/2022] Open
Abstract
Culex quinquefasciatus is a successful invasive species broadly distributed in subtropical regions, including Brazil. It is an extremely annoying mosquito due to its nocturnal biting behavior, in high-density populations and it is a potential bridge between sylvatic arbovirus from birds to man in urban territories. Herein, we present a review concerning the methods of chemical control employed against Cx. quinquefasciatus in Brazil since the 1950's and insecticide resistance data registered in the literature. As there is no specific national programme for Cx. quinquefasciatus control in Brazil, the selection of insecticide resistance is likely due in part to the well-designed chemical campaigns against Aedes aegypti and the elevated employment of insecticides by households and private companies. There are very few publications about insecticide resistance in Cx. quinquefasciatus from Brazil when compared to Ae. aegypti. Nevertheless, resistance to organophosphates, carbamate, DDT, pyrethroids and biolarvicides has been registered in Cx. quinquefasciatus populations from distinct localities of the country. Concerning physiological mechanisms selected for resistance, distinct patterns of esterases, as well as mutations in the acetylcholinesterase (ace-1) and voltage-gated sodium channel (NaV) genes, have been identified in natural populations. Given environmental changes and socioeconomical issues in the cities, in recent years we have been experiencing an increase in the number of disease cases caused by arboviruses, which may involve Cx. quinquefasciatus participation as a key vector. It is urgent to better understand the efficiency and susceptibility status to insecticides, as well as the genetic background of known resistant mechanisms already present in Cx. quinquefasciatus populations for an effective and rapid chemical control when eventually required.
Collapse
Affiliation(s)
- Ramon Pereira Lopes
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
240
|
Suresh M, Jeevanandam J, Chan YS, Danquah MK, Kalaiarasi JMV. Opportunities for Metal Oxide Nanoparticles as a Potential Mosquitocide. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00703-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
241
|
Shelar A, Sangshetti J, Chakraborti S, Singh AV, Patil R, Gosavi S. Helminthicidal and Larvicidal Potentials of Biogenic Silver Nanoparticles Synthesized from Medicinal Plant Momordica charantia. Med Chem 2019; 15:781-789. [PMID: 31208313 DOI: 10.2174/1573406415666190430142637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The drug formulations used to control mosquito vectors and helminth infections have resulted in the development of resistance, and negative impact on non-target organisms and environment. OBJECTIVE Plant-mediated synthesis of silver nanoparticles (P-AgNPs) using aqueous fruit peel extract of M. charantia, applications of P-AgNPs for helminthicidal activity against Indian earthworms (P. posthuma) and larvicidal activity against larvae of mosquito A. albopictus and A. aegypti. METHODS Aqueous fruit peel extract of Momordica charantia was used to reduce silver ions to silver nanoparticles (P-AgNPs). UV-Visible (UV-Vis) Spectroscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy and Transmission Electron Microscopy characterize synthesized P-AgNPs. The motility and survival rate of the worms were recorded for the helminthicidal activity. Percent mortality of larvae of A. albopictus and A. aegypti was recorded for larvicidal activity. RESULTS The UV-Vis absorption spectrum of P-AgNPs showed a strong surface plasmon absorption band in the visible region with a maximum absorption at 445 nm indicating the synthesis of silver nanoparticles by the addition of aqueous fruit peel extract. The XRD spectrum of P-AgNPs showed Bragg's reflection peaks 2θ value characteristics for the Face-Centered Cubic (FCC) structure of silver. The sharp absorption peak in FTIR at 1659 cm-1 assigned to C=O stretching vibration in carbonyl compounds represents terpenoids, flavonoids and polyphenols in the corona of PAgNPs; a 2 mg/mL of P-AgNPs. The concentration aqueous extract and P-AgNPs showed complete death of worms (the morphological alteration/coiling of body). A 20 ppm concentration of PAgNPs showed 85% mortality in larvae of Ae. albopictus and Ae. aegypti. P-AgNPs were nontoxic at low concentrations. CONCLUSION The aqueous extracts played a dual role as reducing and capping agent during the biosynthesis of AgNPs as per FTIR and XRD results. The surface reactivity facilitated by biomolecule corona attached to silver nanoparticles can further help to functionalize AgNPs in various pharmaceuticals, biomedicals, and environmental applications.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | | | | | - Ajay Vikram Singh
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Heisenbergstr 3, 70569 Stuttgart, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Suresh Gosavi
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
242
|
Rapid resistance to pesticide control is predicted to evolve in an invasive fish. Sci Rep 2019; 9:18157. [PMID: 31796760 PMCID: PMC6890735 DOI: 10.1038/s41598-019-54260-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/08/2019] [Indexed: 11/08/2022] Open
Abstract
Xenobiotic resistance is commonly found in species with short generation times such as bacteria, annual plants, and insects. Nevertheless, the fundamental evolutionary principles that govern the spread of resistance alleles hold true for species with longer generation times. One such example could occur with sea lamprey (Petromyzon marinus), a parasitic invasive species in the Laurentian Great Lakes that decimated native fish populations prior to its control with the pesticide 3-trifluoromethyl-4-nitrophenol (TFM). Since the 1950s, tributaries have been treated annually with TFM, where treatments effectively remove most, but not all, larval sea lamprey. We developed an eco-genetic model of sea lamprey to examine factors affecting the evolution of resistance and found that resistance alleles rapidly rise to fixation after 40-80 years of treatment, despite the species' relatively long generation time (4-7 years). The absence of natal homing allows resistant individuals to spread quickly throughout the entire system, but also makes the early detection of resistance challenging. High costs of resistance and density independent reproduction can delay, but not prevent, the onset of resistance. These results illustrate that sea lamprey have the potential to evolve resistance to their primary control agent in the near future, highlighting the urgent need for alternative controls.
Collapse
|
243
|
Sareein N, Phalaraksh C, Rahong P, Techakijvej C, Seok S, Bae YJ. Relationships between predatory aquatic insects and mosquito larvae in residential areas in northern Thailand. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:223-232. [PMID: 31729801 DOI: 10.1111/jvec.12353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
In order to elucidate the poorly understood relationships between mosquito larvae and their predatory aquatic insects in urban and suburban areas of tropical Southeast Asia, where vector-borne diseases are prevalent, aquatic insects were sampled from 14 aquatic habitats in residential areas of Chiang Mai, northern Thailand, during the rainy season (July to November) in 2016. Correlations among biological variables, densities of major predatory aquatic insect groups (i.e., Odonata, Coleoptera, and Hemiptera: OCH group) in wetlands and artificial lentic habitats, and the density of mosquito larvae were analyzed. Among the sampled mosquito larvae, Culex spp. were the most abundant, and both OCH density and water quality were major determinants of Culex spp. density (rs = -0.302 and -0.396, respectively). Logistic regression analyses indicated that the probability of Culex spp. occurrence was significantly and negatively correlated with OCH density. Furthermore, high macrophyte abundance was associated with higher predator density, potentially reducing mosquito density. Hemipteran predators were most negatively correlated with Culex spp. density, regardless of whether macrophyte abundance was high or low (rs = -0.547 and -0.533, respectively). Therefore, hemipteran predators were the most important aquatic insect predators in the urban and suburban residential areas of Chiang Mai, Thailand, and OCH species, such as the hemipteran Micronecta scutellaris, could be used as biological control agents against mosquitoes in the region.
Collapse
Affiliation(s)
- Nattawut Sareein
- Department of Environmental Science and Ecological Engineering, Graduate School, Korea University, Seoul, South Korea
| | - Chitchol Phalaraksh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Panida Rahong
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chotiwut Techakijvej
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sangwoo Seok
- Department of Environmental Science and Ecological Engineering, Graduate School, Korea University, Seoul, South Korea
| | - Yeon Jae Bae
- Department of Environmental Science and Ecological Engineering, Graduate School, Korea University, Seoul, South Korea
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
244
|
Philbert A, Lyantagaye SL, Nkwengulila G. Farmers' pesticide usage practices in the malaria endemic region of North-Western Tanzania: implications to the control of malaria vectors. BMC Public Health 2019; 19:1456. [PMID: 31694595 PMCID: PMC6833290 DOI: 10.1186/s12889-019-7767-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/11/2019] [Indexed: 11/21/2022] Open
Abstract
Background Pesticides remain the mainstay for the control of agricultural pests and disease vectors. However, their indiscriminate use in agriculture has led to development of resistance to both crop pests and disease vectors. This threatens to undermine the success gained through the implementation of chemical based vector control programs. We investigated the practices of farmers with regard to pesticide usage in the vegetable growing areas and their impact on susceptibility status of An. gambiae s.l. Methods A stratified multistage sampling technique using the administrative structure of the Tanzanian districts as sampling frame was used. Wards, villages and then participants with farms where pesticides are applied were purposively recruited at different stages of the process, 100 participants were enrolled in the study. The same villages were used for mosquito larvae sampling from the farms and the surveys were complimented by the entomological study. Larvae were reared in the insectary and the emerging 2–3 days old female adults of Anopheles gambiae s.l were subjected to susceptibility test. Results Forty eight pesticides of different formulations were used for control of crop and Livestock pests. Pyrethroids were the mostly used class of pesticides (50%) while organophosphates and carbamates were of secondary importance. Over 80% of all farmers applied pesticides in mixed form. Susceptibility test results confirmed high phenotypic resistance among An. gambiae populations against DDT and the pyrethroids (Permethrin-0.75%, Cyfluthrin-0.15%, Deltametrin-0.05% and Lambdacyhalothrin-0.05%) with mortality rates 54, 61, 76 and 71%, respectively. Molecular analysis showed An. arabiensis as a dominant species (86%) while An. gambiae s.s constituted only 6%. The kdr genes were not detected in all of the specimens that survived insecticide exposures. Conclusion The study found out that there is a common use of pyrethroids in farms, Livestocks as well as in public health. The study also reports high phenotypic resistance among An. gambiae s.l against most of the pyrethroids tested. The preponderance of pyrethroids in agriculture is of public health concern because this is the class of insecticides widely used in vector control programs and this calls for combined integrated pest and vector management (IPVM).
Collapse
Affiliation(s)
- Anitha Philbert
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania.
| | | | - Gamba Nkwengulila
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
245
|
Roca-Acevedo G, Del Solar Kupfer CP, Dressel Roa P, Toloza AC. First Determination of Pyrethroid Knockdown Resistance Alleles in Human Head Lice (Phthiraptera: Pediculidae) From Chile. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1698-1703. [PMID: 31219149 DOI: 10.1093/jme/tjz101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The infestation with the human ectoparasite, Pediculus humanus capitis (De Geer), is a common public health problem affecting schoolchildren worldwide. In Chile, the main active ingredients present in the over-the-counter pediculicides contain pyrethroids. Despite the extended use of these products, there is no evidence of the insecticide resistance status of the head lice geographically located in Chile. The most extended resistant mechanism of pyrethroids consists of the target site insensitivity (Kdr) determined by the presence of mutations linked to insecticide-binding sites in the voltage-sensitive sodium channel. T917I is recognized as the main mutation in head lice, and detection is considered to be a biomarker of resistance. The goal of the present study was to detect the presence and distribution of T917I mutation in five geographic locations of Chile. All five geographically selected louse populations had a frequency of pyrethroid resistance genes that ranged from 36 to 77%, and 94.9% of the collected head lice had one or two T917I mutant alleles. Moreover, the frequency of the aggregate resistant alleles was 50.5%. This is the first evidence that head lice in Chile had the mutations commonly associated with the resistance to pyrethroids. Moreover, the overrepresentation of heterozygotes in the studied populations suggests that head lice in Chile are currently under active selective pressure.
Collapse
Affiliation(s)
- Gonzalo Roca-Acevedo
- Centro de Investigaciones de Plagas e Insecticidas (UNIDEF-CONICET), Juan Bautista de La Salle 4397, Buenos Aires, Argentina
| | | | | | - Ariel Ceferino Toloza
- Centro de Investigaciones de Plagas e Insecticidas (UNIDEF-CONICET), Juan Bautista de La Salle 4397, Buenos Aires, Argentina
| |
Collapse
|
246
|
Kittayapong P, Ninphanomchai S, Limohpasmanee W, Chansang C, Chansang U, Mongkalangoon P. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl Trop Dis 2019; 13:e0007771. [PMID: 31658265 PMCID: PMC6837763 DOI: 10.1371/journal.pntd.0007771] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 11/07/2019] [Accepted: 09/10/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Important arboviral diseases, such as dengue, chikungunya, and Zika virus infections, are transmitted mainly by the Aedes aegypti vector. So far, controlling this vector species with current tools and strategies has not demonstrated sustainable and significant impacts. Our main objective was to evaluate whether open field release of sterile males, produced from combining the sterile insect technique using radiation with the insect incompatible technique through Wolbachia-induced incompatibility (SIT/IIT), could suppress natural populations of Ae. aegypti in semi-rural village settings in Thailand. METHODOLOGY/PRINCIPAL FINDINGS Irradiated Wolbachia-infected Aedes aegypti males produced by the SIT/IIT approach were completely sterile and were able to compete with the wild fertile ones. Open field release of these sterile males was conducted in an ecologically isolated village in Chachoengsao Province, eastern Thailand. House-to-house visit and media reports resulted in community acceptance and public awareness of the technology. During intervention, approximately 100-200 sterile males were released weekly in each household. After 6 months of sterile male release, a significant reduction (p<0.05) of the mean egg hatch rate (84%) and the mean number of females per household (97.30%) was achieved in the treatment areas when compared to the control ones. CONCLUSIONS/SIGNIFICANCE Our study represents the first open field release of sterile Ae. aegypti males developed from a combined SIT/IIT approach. Entomological assessment using ovitraps, adult sticky traps, and portable vacuum aspirators confirmed the success in reducing natural populations of Ae. aegypti females in treated areas. Public awareness through media resulted in positive support for practical use of this strategy in wider areas. Further study using a systematic randomized trial is needed to determine whether this approach could have a significant impact on the diseases transmitted by Ae. aegypti vector.
Collapse
Affiliation(s)
- Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Suwannapa Ninphanomchai
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Wanitch Limohpasmanee
- Thailand Institute of Nuclear Technology, Ministry of Science and Technology, Nakhon Nayok, Thailand
| | - Chitti Chansang
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Uruyakorn Chansang
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Piti Mongkalangoon
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
247
|
Chemical Compositions and Mosquito Larvicidal Activities of Essential Oils from Piper Species Growing Wild in Central Vietnam. Molecules 2019; 24:molecules24213871. [PMID: 31717867 PMCID: PMC6864731 DOI: 10.3390/molecules24213871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/30/2023] Open
Abstract
Mosquitoes are the deadliest animals on earth and are the vectors of several neglected tropical diseases. Recently, essential oils have emerged as potential renewable, cost-effective, and environmentally benign alternatives to synthetic pesticides for control of mosquitoes. In this work, thirteen species of Piper were collected from different areas of central Vietnam. The essential oils were obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry. The essential oils were screened for mosquito larvicidal activity against Aedes aegypti. Four of the Piper essential oils showed outstanding larvicidal activity against Ae. aegypti, namely P. caninum, P. longum, P. montium, and P. mutabile, with LC50 and LC90 values less than 10 µg/mL. Multivariate analysis has correlated concentrations of β-caryophyllene, β-bisabolene, α-pinene, and β-pinene with mosquito larvicidal activity.
Collapse
|
248
|
Susceptibility to insecticides and resistance mechanisms in three populations of Aedes aegypti from Peru. Parasit Vectors 2019; 12:494. [PMID: 31640810 PMCID: PMC6805503 DOI: 10.1186/s13071-019-3739-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/05/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epidemics of dengue, chikungunya and Zika are a growing threat to areas where Aedes aegypti are present. The efficacy of chemical control of Ae. aegypti is threatened by the increasing frequency of insecticide resistance. The objective of this study was to determine the susceptibility status as well as the biochemical and molecular mechanisms underlying insecticide resistance in three populations of Ae. aegypti in high risk areas of dengue, chikungunya, and Zika in Peru. METHODS Bioassays were conducted on adult Ae. aegypti to evaluate their susceptibility to insecticides used currently or historically for mosquito control in Peru, including six pyrethroids, three organophosphates and one organochlorine, in populations of Ae. aegypti from the districts of Chosica (Department of Lima), Punchana (Department of Loreto) and Piura (Department of Piura). Resistance mechanisms were determined by biochemical assays to assess activity levels of key detoxification enzyme groups (nonspecific esterases, multi-function oxidases, glutathione S-transferases and insensitive acetylcholinesterase). Real-time PCR assays were used to detect two kdr mutations (V1016I and F1534C) on the voltage-gated sodium channel gene. RESULTS Resistance to DDT was detected in all three populations, and resistance to pyrethroids was detected in all populations except the population from Chosica, which still exhibited susceptibility to deltamethrin. Resistance to organophosphates was also detected, with the exception of populations from Punchana and Piura, which still demonstrated susceptibility to malathion. In general, no increase or alteration of activity of any enzyme group was detected. Both 1016I and 1534C alleles were detected in Punchana and Piura, while only the 1534C allele was detected in Chosica. CONCLUSIONS The results suggest that resistance to multiple classes of insecticides exist in areas important to Ae. aegypti-borne disease transmission in Peru. The F1534C mutation was present in all 3 populations and the V1016I mutation was present in 2 populations. To our knowledge, this is the first report of the presence of 1016I and 1534C in Ae. aegypti in Peru. The absence of highly elevated enzymatic activity suggests that target site resistance is a key mechanism underlying insecticide resistance in these populations, although further research is needed to fully understand the role of metabolic resistance mechanisms in these populations.
Collapse
|
249
|
Chen XD, Gill TA, Nguyen CD, Killiny N, Pelz-Stelinski KS, Stelinski LL. Insecticide toxicity associated with detoxification enzymes and genes related to transcription of cuticular melanization among color morphs of Asian citrus psyllid. INSECT SCIENCE 2019; 26:843-852. [PMID: 29485745 DOI: 10.1111/1744-7917.12582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/09/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
The Asian citrus psyllid (Diaphorina citri Kuwayama) is known to exhibit abdominal color polymorphisms. In the current study, susceptibility to four insecticides was compared among orange/yellow, blue/green and gray/brown color morphs of field collected D. citri. The LD50 values and 95% fiducial limits were quantified for each insecticide and color morph combination and ranged between 0.10 ng/μL (0.06-0.10) and 6.16 ng/μL (3.30-12.50). Second, we measured the detoxification enzyme activity levels of orange/yellow, blue/green and gray/brown color morphs for cytochrome P450, glutathione S-transferase, and general esterase. The mean P450 activity (equivalent units) was significantly lower in gray/brown (0.152 ± 0.006) and blue/green morphs (0.149 ± 0.005) than in the orange/yellow morphs (0.179 ± 0.008). GST activity (μmol/min/mg protein) was significantly lower in the orange/yellow morph (299.70 ±1.24) than gray/brown (350.86 ± 1.19) and blue/green (412.25 ± 1.37) morphs. The mean EST activity (μmol/min/mg protein) was significantly higher in blue/green (416.72 ± 5.12) and gray/brown morphs (362.19 ± 4.69) than in the orange/yellow morphs (282.56 ± 2.93). Additionally, we analyzed the relative expression of assortment genes involved in cuticular melanization and basal immunity. The transcripts of Dopa Decarboxylase and Tyrosine Hydroxylase were expressed higher in blue/green and gray/brown than orange/yellow morphs. The transcription results paralleled the susceptibility of D. citri to organophosphate, neonicotinoid and pyrethroid insecticides. GST and EST activity may also be correlated with low levels of insecticide susceptibility. Cuticular melanization could be a factor for the development of resistance to insecticides among different color morphs.
Collapse
Affiliation(s)
- Xue Dong Chen
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Torrence A Gill
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Chi D Nguyen
- Environmental Horticulture Department, Mid-Florida Research and Education Center, University of Florida, Apopka, Florida, USA
| | - Nabil Killiny
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Kirsten S Pelz-Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Lukasz L Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
250
|
Pichler V, Malandruccolo C, Serini P, Bellini R, Severini F, Toma L, Di Luca M, Montarsi F, Ballardini M, Manica M, Petrarca V, Vontas J, Kasai S, Della Torre A, Caputo B. Phenotypic and genotypic pyrethroid resistance of Aedes albopictus, with focus on the 2017 chikungunya outbreak in Italy. PEST MANAGEMENT SCIENCE 2019; 75:2642-2651. [PMID: 30729706 DOI: 10.1002/ps.5369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/31/2018] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The highly invasive mosquito species Aedes albopictus has become a major health concern in temperate areas due to its role as vector of exotic arboviruses. Pyrethroid insecticides represent the main tools for limiting the circulation of such mosquito-borne viruses. The present work aim to extend previous reports on phenotypic pyrethroid-resistance in European Ae. albopictus, to identify its genetic basis and to monitor the geographical distribution of resistant genotypes, with a particular focus on sites experiencing the 2017 chikungunya outbreak in Italy. RESULTS Bioassays, performed according to World Health Organization protocols, showed full susceptibility to deltamethrin (concentration = 0.05%) and varying levels of resistance to permethrin (0.75%) and/or α-cypermethrin (0.05%) across Italy, with highest levels in the core of the 2017 chikungunya outbreak. Partial genotyping of the VSSC gene revealed widespread distribution of V1016G mutation and confirmed its association with pyrethroid resistance. CONCLUSION The results obtained show that the condition for the spread of pyrethroid resistance in Ae. albopictus in Europe exists under strong selective pressure due to intensive insecticide spraying to control exotic arbovirus outbreak or high levels of nuisance. The results draw attention to the need for an evidence-based implementation of mosquito nuisance control, taking insecticide resistance management into consideration. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Rome, Italy
| | - Chiara Malandruccolo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Rome, Italy
| | - Paola Serini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Rome, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente "G.Nicoli", Crevalcore, Italy
| | - Francesco Severini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Luciano Toma
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Di Luca
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | | | - Marco Ballardini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Vincenzo Petrarca
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Rome, Italy
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Agricultural University of Athens, Athens, Greece
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Rome, Italy
| |
Collapse
|