201
|
Briz V, Liu Y, Zhu G, Bi X, Baudry M. A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release. J Cell Biol 2015; 210:1225-37. [PMID: 26391661 PMCID: PMC4586750 DOI: 10.1083/jcb.201504092] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/19/2015] [Indexed: 01/11/2023] Open
Abstract
Estrogen gates metabotropic glutamate receptor–dependent long-term depression at mossy fiber–CA3 synapses through a mechanism involving GPER1-mediated BDNF release, mTOR-dependent protein synthesis, and proteasome activity. Estrogen is an important modulator of hippocampal synaptic plasticity and memory consolidation through its rapid action on membrane-associated receptors. Here, we found that both estradiol and the G-protein–coupled estrogen receptor 1 (GPER1) specific agonist G1 rapidly induce brain-derived neurotrophic factor (BDNF) release, leading to transient stimulation of activity-regulated cytoskeleton-associated (Arc) protein translation and GluA1-containing AMPA receptor internalization in field CA3 of hippocampus. We also show that type-I metabotropic glutamate receptor (mGluR) activation does not induce Arc translation nor long-term depression (LTD) at the mossy fiber pathway, as opposed to its effects in CA1, and it only triggers LTD after GPER1 stimulation. Furthermore, this form of mGluR-dependent LTD is associated with ubiquitination and proteasome-mediated degradation of GluA1, and is prevented by proteasome inhibition. Overall, our study identifies a novel mechanism by which estrogen and BDNF regulate hippocampal synaptic plasticity in the adult brain.
Collapse
Affiliation(s)
- Victor Briz
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766 VIB Center for the Biology of Disease, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766 College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766
| | - Guoqi Zhu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766 Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei 230038, China
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
| |
Collapse
|
202
|
Kurt AH, Çelik A, Kelleci BM. Oxidative/antioxidative enzyme-mediated antiproliferative and proapoptotic effects of the GPER1 agonist G-1 on lung cancer cells. Oncol Lett 2015; 10:3177-3182. [PMID: 26722308 DOI: 10.3892/ol.2015.3711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Estrogen mediates fast signal responses or transcriptional events via G protein-coupled estrogen receptor 1 (GPER1). However, there is no data on the effect of GPER1 on lung cancer cell proliferation and apoptosis. The present study aimed to analyze the anticancer effects of the GPER1 agonist G-1 on A549 human lung cancer cells. A549 cells were treated with 17β-estradiol and G-1, and cell proliferation was analyzed using MTT and WST assays. In addition, the apoptotic effects induced by G-1 were investigated using acridine orange/ethidium bromide staining. A549 cells were treated with a half maximal inhibitory concentration of G-1 for 72 h, and nitric oxide (NO) levels and superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) enzyme activities were analyzed by spectrophotometry. The results revealed that G-1 significantly decreased cell proliferation. In addition to the antiproliferative effect of G-1, a marked increase in apoptotic activity was observed when cells were treated with 2×10-5 M G-1. Furthermore, G-1 increased NO levels, and SOD and GPx activity. These findings indicate that the GPER1 agonist G-1 is able to exert antiproliferative and proapoptotic effects on A549 cells, and that oxidant and antioxidant molecules may mediate these effects.
Collapse
Affiliation(s)
- Akif Hakan Kurt
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ahmet Çelik
- Department of Biochemistry, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Bekir Mehmet Kelleci
- Department of Biology, Faculty of Science and Art, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
203
|
Song H, Zhang T, Yang P, Li M, Yang Y, Wang Y, Du J, Pan K, Zhang K. Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRγ signals. Toxicol In Vitro 2015; 30:521-8. [PMID: 26363202 DOI: 10.1016/j.tiv.2015.09.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
Abstract
The effects and mechanisms of bisphenol A (BPA) on the development of breast cancer are still not well illustrated. The present study revealed that nanomolar BPA significantly promoted the proliferation of both estrogen receptor (ER) positive (MCF-7) and negative (SkBr3) breast cancer cells, which was confirmed by up regulation of proliferating cell nuclear antigen (PCNA) and Bcl-2. Neither ERα nor G-protein-coupled estrogen receptor (GPER) mediated this effect of BPA because their inhibitors had no effect on the BPA induced cell proliferation. However, silencing of estrogen related receptor gamma (ERRγ) by its specific siRNA significantly abolished BPA induced proliferation of breast cancer cells, while si-ERRα had no similar effect. Moreover, nanomolar BPA up regulated the mRNA and protein levels of ERRγ and triggered its nuclear translocation via a time dependent manner. Further studies revealed that 10(-8)M BPA obviously increased the phosphorylation of ERK1/2, while had no similar effect on the phosphorylation of JNK and p38 MAPK. Further, PD 98059, the inhibitor of ERK1/2, significantly abolished the BPA induced up regulation of ERRγ and proliferation of breast cancer cells. Collectively, our results revealed that nanomolar BPA can trigger the proliferation of breast cancer cells via ERK1/2/ERRγ signals. Given that nanomolar BPA has been widely detected in human tissues, the clinical relevance of BPA and breast cancer progression should be further investigated.
Collapse
Affiliation(s)
- Haixing Song
- School of Biomedicine Sciences, Chengdu Medical College, Chengdu, China
| | - Tao Zhang
- School of Biomedicine Sciences, Chengdu Medical College, Chengdu, China
| | - Ping Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Minhui Li
- Center of Science and Research, Chengdu Medical College, Chengdu, China
| | - Yuhan Yang
- School of Biomedicine Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Wang
- School of Biomedicine Sciences, Chengdu Medical College, Chengdu, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kejian Pan
- School of Biomedicine Sciences, Chengdu Medical College, Chengdu, China.
| | - Kun Zhang
- School of Biomedicine Sciences, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
204
|
Prossnitz ER, Hathaway HJ. What have we learned about GPER function in physiology and disease from knockout mice? J Steroid Biochem Mol Biol 2015; 153:114-26. [PMID: 26189910 PMCID: PMC4568147 DOI: 10.1016/j.jsbmb.2015.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
205
|
Kim MJ, Kim TH, Lee HH. G-protein Coupled Estrogen Receptor (GPER/GPR30) and Women's Health. J Menopausal Med 2015; 21:79-81. [PMID: 26357644 PMCID: PMC4561744 DOI: 10.6118/jmm.2015.21.2.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 12/02/2022] Open
Abstract
Estrogen - the female sexual hormone playing the most important role - plays a physiologically significant role, not only regulating in cell signals with second messenger but also being active in regulating transcription. Estrogen receptor (ER) which is a protein accepting estrogen not only play the role of a transcription factor combining with other genes to regulate their activity like other nuclear receptors but also performs external activities, combining with DNA, etc. G-protein coupled ER (GPER) that has been recently discovered exists as 7-membrane and has non-genomic (rapid) signaling. These functions, however, are not extensively addressed. This paper discusses the roles of GPER and its physiological mechanism.
Collapse
Affiliation(s)
- Mi-Jin Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Korea. ; Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University, Asan, Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hae-Hyeog Lee
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
206
|
Chimento A, Sirianni R, Casaburi I, Zolea F, Rizza P, Avena P, Malivindi R, De Luca A, Campana C, Martire E, Domanico F, Fallo F, Carpinelli G, Cerquetti L, Amendola D, Stigliano A, Pezzi V. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo. Oncotarget 2015; 6:19190-203. [PMID: 26131713 PMCID: PMC4662484 DOI: 10.18632/oncotarget.4241] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/23/2015] [Indexed: 12/26/2022] Open
Abstract
We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Fabiana Zolea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Pietro Rizza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Carmela Campana
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Emilia Martire
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Francesco Domanico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Francesco Fallo
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Giulia Carpinelli
- Department of Cell Biology and Neurosciences, National Institute of Health, Rome, Italy
| | - Lidia Cerquetti
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Rome, Italy
| | | | - Antonio Stigliano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Rome, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
207
|
Wróbel AM, Gregoraszczuk EŁ. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells. Toxicol Lett 2015; 238:110-6. [PMID: 26253279 DOI: 10.1016/j.toxlet.2015.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/13/2015] [Accepted: 08/02/2015] [Indexed: 11/27/2022]
Abstract
In the present study, we examined cAMP levels and activation of the MAPK/ERK1/2 and PI3K/Akt signaling pathways in response to the actions of parabens on GPR30 in MCF-7 and MCF-10A cells. Cells were exposed to methyl-, propyl- or butylparaben at a concentration of 20nM; 17-β-estradiol (10nM) was used as a positive control. 17β-estradiol and all tested parabens increased GPR30 gene and protein expression in MCF-7 and MCF-10A cells. No parabens affected cAMP levels in either cell line, with the exception of propylparaben in MCF-10A cells. 17β-estradiol, propylparaben, and butylparaben increased phosphorylation of ERK1/2 in MCF-7 cells, whereas 17β-estradiol, methyl- and butylparaben, but not propylparaben, increased phosphorylation of ERK1/2 in MCF-10A cells. Akt activation was noted only in MCF-7 cells and only with propylparaben treatment. Collectively, the data presented here point to a nongenomic mechanism of action of parabens in activation GPR30 in both cancer and non-cancer breast cell lines through βγ dimer-mediated activation of the ERK1/2 pathway, but not the cAMP/PKA pathway. Moreover, among investigated parabens, propylparaben appears to inhibit apoptosis in cancer cells through activation of Akt kinases, confirming conclusions suggested by our previously published data. Nevertheless, continuing research on the carcinogenic action of parabens is warranted.
Collapse
Affiliation(s)
- Anna Maria Wróbel
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Ewa Łucja Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
208
|
Daniel JM, Witty CF, Rodgers SP. Long-term consequences of estrogens administered in midlife on female cognitive aging. Horm Behav 2015; 74:77-85. [PMID: 25917862 PMCID: PMC4573273 DOI: 10.1016/j.yhbeh.2015.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 12/15/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Many of the biochemical, structural, and functional changes that occur as the female brain ages are influenced by changes in levels of estrogens. Administration of estrogens begun during a critical window near menopause is hypothesized to prevent or delay age-associated cognitive decline. However, due to potential health risks women often limit use of estrogen therapy to a few years to treat menopausal symptoms. The long-term consequences for the brain of short-term use of estrogens are unknown. Interestingly, there are preliminary data to suggest that short-term use of estrogens during the menopausal transition may afford long-term cognitive benefits to women as they age. Thus, there is the intriguing possibility that short-term estrogen therapy may provide lasting benefits to the brain and cognition. The focus of the current review is an examination of the long-term impact for cognition of midlife use of estrogens. We review data from our lab and others indicating that the ability of midlife estrogens to impact estrogen receptors in the hippocampus may contribute to its ability to exert lasting impacts on cognition in aging females.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology, Tulane University New Orleans, LA 70118, USA; Program in Neuroscience, Tulane University New Orleans, LA 70118, USA.
| | - Christine F Witty
- Program in Neuroscience, Tulane University New Orleans, LA 70118, USA
| | | |
Collapse
|
209
|
Karthik GM, Ma R, Lövrot J, Kis LL, Lindh C, Blomquist L, Fredriksson I, Bergh J, Hartman J. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells. Cancer Lett 2015. [PMID: 26208432 DOI: 10.1016/j.canlet.2015.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breast cancer cells with stem cell characteristics (CSC) are a distinct cell population with phenotypic similarities to mammary stem cells. CSCs are important drivers of tumorigenesis and the metastatic process. Tamoxifen is the most widely used hormonal therapy for estrogen receptor (ER) positive cancers. In our study, tamoxifen was effective in reducing proliferation of ER + adherent cancer cells, but not their CSC population. We isolated, expanded and incubated CSC from seven breast cancers with or without tamoxifen. By genome-wide transcriptional analysis we identified tamoxifen-induced transcriptional pathways associated with ribosomal biogenesis and mRNA translation, both regulated by the mTOR-pathway. We observed induction of the key mTOR downstream targets S6K1, S6RP and 4E-BP1 in-patient derived CSCs by tamoxifen on protein level. Using the mTOR inhibitors rapamycin, everolimus and PF-04691502 (a dual PI3K/mTOR inhibitor) and in combination with tamoxifen, significant reduction in mammosphere formation was observed. Hence, we suggest that the CSC population play a significant role during endocrine resistance through activity of the mTOR pathway. In addition, tamoxifen further stimulates the mTOR-pathway but can be antagonized using mTOR-inhibitors.
Collapse
Affiliation(s)
| | - Ran Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - John Lövrot
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lorand Levente Kis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Claes Lindh
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | | | - Irma Fredriksson
- Department of Breast and Endocrine Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Radiumhemmet - Karolinska Oncology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden.
| |
Collapse
|
210
|
Kurt AH, Bosnak M, Inan SY, Celik A, Uremis MM. Epileptogenic effects of G protein-coupled estrogen receptor 1 in the rat pentylenetetrazole kindling model of epilepsy. Pharmacol Rep 2015; 68:66-70. [PMID: 26721354 DOI: 10.1016/j.pharep.2015.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND G protein-coupled estrogen receptor 1 (GPER-1) has been demonstrated in several parts of the brain and may play an important role in estrogen downstream signaling pathway. However, the effects of this receptor on epileptic seizure are not clearly known. Therefore, the effects of GPER-1 agonist, G-1, GPER-1 antagonist, G-15 and the main estrogenic hormone, 17β-estradiol were investigated on seizures and brain tissue oxidative damages induced by pentylenetetrazole (PTZ) in rats. METHODS In this study, 30 adult male Wistar albino rats were used. Due to intraperitoneal (ip) injections of a subconvulsant dose of PTZ (35mg/kg) which was repeated 12 times every 48h, chemical kindling occurred and kindling seizure was recorded for 30min. The rats were injected with 17β-estradiol (5μg/kg, ip) or G-1 (5μg/kg, ip), G-15 (5μg/kg, ip), Saline, Ethanol and Dimethyl sulfoxide (DMSO) 30min before each dose of PTZ. Observed seizures were classified between the phase 0-5. Thirty minutes later when the last 12. PTZ administration, all rats were sacrificed and the brain cortex, hippocampus sections were removed and the tissue superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) levels on these tissues were studied. RESULTS GPER1 agonist, G-1 and estrogenic hormone, 17β-estradiol significantly increased the development of PTZ kindling the seizures. However, GPER1 antagonist, G-15 did not change the development of PTZ kindling the seizures. In the cortex and hippocampus homogenates, the NO levels after G-1 administration had significantly increased (p<0.05) compared to the PTZ groups but SOD activities and MDA levels demonstrated no difference between the groups. CONCLUSIONS This is the first study that explores that GPER-1 receptors have epileptogenic effect on PTZ-induced kindling rat. GPER1 may mediate the epileptogenic effect of estrogens by changing the oxidative or anti-oxidative parameters in the brain.
Collapse
Affiliation(s)
- Akif Hakan Kurt
- Department of Pharmacology, Medical Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Mehmet Bosnak
- Department of Physiology, Medical Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaraş, Turkey
| | - Salim Yalcın Inan
- Department of Medical Pharmacology, Meram Faculty of Medicine, University of Konya-NE, Konya, Turkey
| | - Ahmet Celik
- Department of Biochemistry, Medical Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Muhammed Mehdi Uremis
- Department of Biochemistry, Medical Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
211
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
212
|
Sladek CD, Michelini LC, Stachenfeld NS, Stern JE, Urban JH. Endocrine‐Autonomic Linkages. Compr Physiol 2015; 5:1281-323. [DOI: 10.1002/cphy.c140028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
213
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
214
|
Ogawa M, Kitakaze T, Harada N, Yamaji R. Female-specific regulation of skeletal muscle mass by USP19 in young mice. J Endocrinol 2015; 225:135-45. [PMID: 25901042 DOI: 10.1530/joe-15-0128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 01/31/2023]
Abstract
17β-Estradiol (E₂) is thought to be responsible for sex-specific differences in skeletal muscle mass. The biological function of E₂ is exerted through its binding to estrogen receptor α (ERα). The expression of ubiquitin-specific peptidase 19 (USP19) is upregulated during muscle atrophy and by E₂-activated ERα. Here, we investigated the involvement of USP19 in sex difference in muscle mass in young mice. Knockdown of USP19 in hindlimb muscles increased the mass and fiber size in soleus muscle in females but not males. Using Usp19 promoter reporter constructs, a functional half-estrogen response element (hERE) was identified in intron 1 of Usp19. ERα bound to hERE in an E₂-dependent manner in C2C12 myoblasts and in soleus muscle in ovariectomized (OVX) female mice. Furthermore, under normal physiological conditions, ERα bound to hERE in soleus muscle only in females. In contrast, administration of E₂ resulted in increased Usp19 mRNA expression, decreased muscle mass, and recruitment of ERα to hERE in soleus muscle in males. Knockdown of ERα in hindlimb muscles decreased Usp19 mRNA expression and increased the mass of soleus muscle only in females. Knockdown of USP19 resulted in increased levels of ubiquitin conjugates in soleus muscle in females. OVX increased the levels of ubiquitin conjugates and administration of E₂ decreased OVX-induced levels of ubiquitin conjugates. These results demonstrate that in soleus muscle in young female mice under physiological conditions, E₂ upregulates USP19 expression through ERα and consequently leads to decreases in ubiquitin conjugates and muscle mass.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Tomoya Kitakaze
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Naoki Harada
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Ryoichi Yamaji
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| |
Collapse
|
215
|
Gui Y, Shi Z, Wang Z, Li JJ, Xu C, Tian R, Song X, Walsh MP, Li D, Gao J, Zheng XL. The GPER agonist G-1 induces mitotic arrest and apoptosis in human vascular smooth muscle cells independent of GPER. J Cell Physiol 2015; 230:885-95. [PMID: 25204801 DOI: 10.1002/jcp.24817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/05/2014] [Indexed: 02/05/2023]
Abstract
The G protein-coupled estrogen receptor (GPER) has been implicated in the regulation of smooth muscle cell (SMC) proliferation. The GPER selective agonist G-1 has been a useful tool for exploring the biological roles of GPER in a variety of experimental settings, including SMC proliferation. The present study, originally designed to investigate cellular and signaling mechanisms underlying the regulatory role of GPER in vascular SMC proliferation using G-1, unexpectedly revealed off-target effects of G-1. G-1(1-10 μM) inhibited bromodeoxyuridine (BrdU) incorporation of human SMCs and caused G2/M cell accumulation. G-1 treatment also increased mitotic index concurrent with a decrease in phosphorylation of Cdk1 (Tyr 15) and an increase in phosphorylation of the mitotic checkpoint protein BuBR1. Furthermore, G-1 caused microtubule disruption, mitotic spindle damage, and tubulin depolymerization. G-1 induced cell apoptosis as indicated by the appearance of TUNEL-positive and annexin V-positive cells with enhanced cleavage of caspases 3 and 9. However, neither the GPER antagonist G-15 nor the MAPK kinase inhibitor PD98059 prevented these G-1 effects. Down-regulation of GPER or p44/42 MAPK with siRNA transfection also did not affect the G-1-induced apoptosis. We conclude that G-1 inhibits proliferation of SMCs through mechanisms involving mitotic arrest and apoptosis, independent of GPER and the MAPK pathway.
Collapse
Affiliation(s)
- Yu Gui
- The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. J Neurosci 2015; 35:2384-97. [PMID: 25673833 DOI: 10.1523/jneurosci.1298-14.2015] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Both estrous cycle and sex affect the numbers and types of neuronal and glial profiles containing the classical estrogen receptors α and β, and synaptic levels in the rodent dorsal hippocampus. Here, we examined whether the membrane estrogen receptor, G-protein-coupled estrogen receptor 1 (GPER1), is anatomically positioned in the dorsal hippocampus of mice to regulate synaptic plasticity. By light microscopy, GPER1-immunoreactivity (IR) was most noticeable in the pyramidal cell layer and interspersed interneurons, especially those in the hilus of the dentate gyrus. Diffuse GPER1-IR was found in all lamina but was most dense in stratum lucidum of CA3. Ultrastructural analysis revealed discrete extranuclear GPER1-IR affiliated with the plasma membrane and endoplasmic reticulum of neuronal perikarya and dendritic shafts, synaptic specializations in dendritic spines, and clusters of vesicles in axon terminals. Moreover, GPER1-IR was found in unmyelinated axons and glial profiles. Overall, the types and amounts of GPER1-labeled profiles were similar between males and females; however, in females elevated estrogen levels generally increased axonal labeling. Some estradiol-induced changes observed in previous studies were replicated by the GPER agonist G1: G1 increased PSD95-IR in strata oriens, lucidum, and radiatum of CA3 in ovariectomized mice 6 h after administration. In contrast, estradiol but not G1 increased Akt phosphorylation levels. Instead, GPER1 actions in the synapse may be due to interactions with synaptic scaffolding proteins, such as SAP97. These results suggest that although estrogen's actions via GPER1 may converge on the same synaptic elements, different pathways are used to achieve these actions.
Collapse
|
217
|
Borahay MA, Al-Hendy A, Kilic GS, Boehning D. Signaling Pathways in Leiomyoma: Understanding Pathobiology and Implications for Therapy. Mol Med 2015; 21:242-56. [PMID: 25879625 DOI: 10.2119/molmed.2014.00053] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Uterine leiomyomas are the most common tumors of the female genital tract, affecting 50% to 70% of females by the age of 50. Despite their prevalence and enormous medical and economic impact, no effective medical treatment is currently available. This is, in part, due to the poor understanding of their underlying pathobiology. Although they are thought to start as a clonal proliferation of a single myometrial smooth muscle cell, these early cytogenetic alterations are considered insufficient for tumor development and additional complex signaling pathway alterations are crucial. These include steroids, growth factors, transforming growth factor-beta (TGF-β)/Smad; wingless-type (Wnt)/β-catenin, retinoic acid, vitamin D, and peroxisome proliferator-activated receptor γ (PPARγ). An important finding is that several of these pathways converge in a summative way. For example, mitogen-activated protein kinase (MAPK) and Akt pathways seem to act as signal integrators, incorporating input from several signaling pathways, including growth factors, estrogen and vitamin D. This underlines the multifactorial origin and complex nature of these tumors. In this review, we aim to dissect these pathways and discuss their interconnections, aberrations and role in leiomyoma pathobiology. We also aim to identify potential targets for development of novel therapeutics.
Collapse
Affiliation(s)
- Mostafa A Borahay
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America.,Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Gokhan S Kilic
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, United States of America
| |
Collapse
|
218
|
Barton M, Prossnitz ER. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol Metab 2015; 26:185-92. [PMID: 25767029 PMCID: PMC4731095 DOI: 10.1016/j.tem.2015.02.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 01/13/2023]
Abstract
The G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings on its roles in obesity, diabetes, and atherosclerosis, including GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA; UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| |
Collapse
|
219
|
Tian PC, Wang HL, Chen GH, Luo Q, Chen Z, Wang Y, Liu YF. 2,2′,4,4′-Tetrabromodiphenyl ether promotes human neuroblastoma SH-SY5Y cells migration via the GPER/PI3K/Akt signal pathway. Hum Exp Toxicol 2015; 35:124-34. [PMID: 25784559 DOI: 10.1177/0960327115578974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroblastoma is the predominant tumor of early childhood. 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) has the highest concentration among all polybrominated diphenyl ether (PBDE) congeners in human body, particularly for children. Considering that accumulating evidences showed developmental neurotoxicity of PBDE, there is an urgent need to investigate the effects of BDE-47 on the development of neuroblastoma. This study revealed that BDE-47 had limited effects on the cytotoxicity while significantly increased the in vitro migration and invasion of human neuroblastoma SH-SY5Y cells. This was further confirmed by the results that BDE-47 treatment significantly downregulated the expression of E-cadherin and zona occludin-1 and upregulated the expression of matrix metalloproteinase-9 (MMP-9). Silencing of MMP-9 by specific small interfering RNA significantly abolished the BDE-47-induced migration and invasion of SH-SY5Y cells. Further, the signals G protein-coupled estrogen receptor 1 (GPER)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) mediated the BDE-47-induced upregulation of MMP-9 and in vitro migration of SH-SY5Y cells since G15 (GPER inhibitor) and LY 294002 (PI3K/Akt inhibitor) significantly abolished the effects of BDE-47. Our results revealed that BDE-47 significantly triggered the metastasis of human neuroblastoma SH-SY5Y cells via upregulation of MMP-9 by the GPER/PI3K/Akt signal pathway. This study revealed for the first time that BDE-47 can promote the migration of SH-SY5Y cells. It also provided a better understanding about the metastasis of human neuroblastoma induced by environmental endocrine disruptors.
Collapse
Affiliation(s)
- P-C Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - H-L Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - G-H Chen
- Department of Neurology, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Q Luo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y-F Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
220
|
Lei K, Liu R, An LH, Luo YF, LeBlanc GA. Estrogen alters the profile of the transcriptome in river snail Bellamya aeruginosa. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:330-338. [PMID: 25398503 DOI: 10.1007/s10646-014-1381-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
We evaluated the transcriptome dynamics of the freshwater river snail Bellamya aeruginosa exposed to 17β-estradiol (E2) using the Roche/454 GS-FLX platform. In total, 41,869 unigenes, with an average length of 586 bp, representing 36,181 contigs and 5,688 singlets were obtained. Among them, 18.08, 36.85, and 25.47 % matched sequences in the GenBank non-redundant nucleic acid database, non-redundant protein database, and Swiss protein database, respectively. Annotation of the unigenes with gene ontology, and then mapping them to biological pathways, revealed large groups of genes related to growth, development, reproduction, signal transduction, and defense mechanisms. Significant differences were found in gene expression in both liver and testicular tissues between control and E2-exposed organisms. These changes in gene expression will help in understanding the molecular mechanisms of the response to physiological stress in the river snail exposed to estrogen, and will facilitate research into biological processes and underlying physiological adaptations to xenoestrogen exposure in gastropods.
Collapse
Affiliation(s)
- Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, No. 8, Da-Yang-Fang, An-Wai-Bei-Yuan Rd., Chao-yang District, Beijing, 100012, China
| | | | | | | | | |
Collapse
|
221
|
Liu J, Jin X, Zhao N, Ye X, Ying C. Bisphenol A promotes X-linked inhibitor of apoptosis protein-dependent angiogenesis via G protein-coupled estrogen receptor pathway. J Appl Toxicol 2015; 35:1309-17. [PMID: 25663485 DOI: 10.1002/jat.3112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/18/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA), one of the high-volume chemicals worldwide, has a core structure resembling that of natural estradiol. Recent evidence has demonstrated that exposure to BPA has a relationship with the risk of cancer. The objective of our study is to investigate the mechanisms underlying the pro-angiogenic effects of BPA. We demonstrated that BPA markedly induces endothelial cell proliferation, migration and tube formation by activating endothelial nitric oxide synthase. BPA-induced nitric oxide generation appeared to be associated with the X-linked inhibitor of apoptosis protein (XIAP), which competes with endothelial nitric oxide synthase for caveolin-1. BPA was shown to exert its pro-angiogenic effect by upregulating XIAP expression via G protein-coupled estrogen receptor (ER) activation but not via ERα or ERβ. Our data suggest that 100 nM BPA promote angiogenesis in a G protein-coupled ER-dependent genomic pathway, and provide a novel insight into the potential role of XIAP in mediating the pro-angiogenic effects of BPA in endothelial cells.
Collapse
Affiliation(s)
- Jian Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xin Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Nana Zhao
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaolei Ye
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
222
|
Liu H, Tang S, Zheng X, Zhu Y, Ma Z, Liu C, Hecker M, Saunders DMV, Giesy JP, Zhang X, Yu H. Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1823-33. [PMID: 25565004 DOI: 10.1021/es503833q] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), 6-hydroxy-tetrabromodiphenyl ether (6-OH-BDE-47), and 6-methoxy-tetrabromodiphenyl ether (6-MeO-BDE-47) are the most detected congeners of polybrominated diphenyl ethers (PBDEs), OH-BDEs, and MeO-BDEs, respectively, in aquatic organisms. Although it has been demonstrated that BDE-47 can interfere with certain endocrine functions that are mediated through several nuclear hormone receptors (NRs), most of these findings were from mammalian cell lines exposed in vitro. In the present study, embryos and larvae of zebrafish were exposed to BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 to compare their accumulation, biotransformation, and bioconcentration factors (BCF) from 4 to 120 hpf. In addition, effects on expression of genes associated with eight different pathways regulated by NRs were investigated at 120 hpf. 6-MeO-BDE-47 was most bioaccumulated and 6-OH-BDE-47, which was the most potent BDE, was least bioaccumulated. Moreover, the amount of 6-MeO-BDE-47, but not BDE-47, transformed to 6-OH-BDE-47 increased in a time-dependent manner, approximately 0.01%, 0.04%, and 0.08% at 48, 96, and 120 hpf, respectively. Expression of genes regulated by the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and mineralocorticoid receptor (MR) was affected in larvae exposed to 6-OH-BDE-47, whereas genes regulated by AhR, ER, and the glucocorticoid receptor (GR) were altered in larvae exposed to BDE-47. The greatest effect on expression of genes was observed in larvae exposed to 6-MeO-BDE-47. Specifically, 6-MeO-BDE-47 affected the expression of genes regulated by AhR, ER, AR, GR, and thyroid hormone receptor alpha (TRα). These pathways were mostly down-regulated at 2.5 μM. Taken together, these results demonstrate the importance of usage of an internal dose to assess the toxic effects of PBDEs. BDE-47 and its analogs elicited distinct effects on expression of genes of different hormone receptor-mediated pathways, which have expanded the knowledge of different mechanisms of endocrine disrupting effects in aquatic vertebrates. Because some of these homologues are natural products, assessments of risks of anthropogenic PBDE need to be made against the background of concentrations from naturally occurring products. Even though PBDEs are being phased out as flame retardants, the natural products remain.
Collapse
MESH Headings
- Animals
- Anisoles/pharmacokinetics
- Anisoles/toxicity
- Biotransformation
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Endocrine Disruptors/pharmacokinetics
- Endocrine Disruptors/toxicity
- Flame Retardants/pharmacokinetics
- Flame Retardants/toxicity
- Gene Expression Regulation, Developmental/drug effects
- Halogenated Diphenyl Ethers/pharmacokinetics
- Halogenated Diphenyl Ethers/toxicity
- Larva/drug effects
- Larva/genetics
- Larva/metabolism
- Polybrominated Biphenyls/pharmacokinetics
- Polybrominated Biphenyls/toxicity
- Receptors, Androgen/genetics
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Estrogen/genetics
- Receptors, Glucocorticoid/genetics
- Receptors, Mineralocorticoid/genetics
- Receptors, Thyroid Hormone/genetics
- Water Pollutants, Chemical/pharmacokinetics
- Water Pollutants, Chemical/toxicity
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Drzewiecka H, Gałęcki B, Jarmołowska-Jurczyszyn D, Kluk A, Dyszkiewicz W, Jagodziński PP. Increased expression of 17-beta-hydroxysteroid dehydrogenase type 1 in non-small cell lung cancer. Lung Cancer 2015; 87:107-16. [DOI: 10.1016/j.lungcan.2014.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 11/05/2014] [Accepted: 12/17/2014] [Indexed: 01/10/2023]
|
224
|
Abstract
In the mammalian testis, spermatogenesis is a highly coordinated process of germ cell development, which ends with the release of ‘mature’ spermatozoa. The fine regulation of spermatogenesis is strictly dependent on sex steroid hormones, which orchestrate the cellular and molecular events underlying normal development of germ cells. Sex steroids actions also rely on the control of germ cell survival, and the programmed cell death by apoptosis has been indicated as a critical process in regulating the size and quality of the germ line. Recently, oestrogens have emerged as important regulators of germ cell fate. However, the beneficial or detrimental effects of oestrogens in spermatogenesis are controversial, with independent reports arguing for their role as cell survival factors or as apoptosis-inducers. The dual behaviour of oestrogens, shifting from ‘angels to devils’ is supported by the clinical findings of increased oestrogens levels in serum and intratesticular milieu of idiopathic infertile men. This review aims to discuss the available information concerning the role of oestrogens in the control of germ cell death and summarises the signalling mechanisms driven oestrogen-induced apoptosis. The present data represent a valuable basis for the clinical management of hyperoestrogenism-related infertility and provide a rationale for the use of oestrogen-target therapies in male infertility.
Collapse
|
225
|
Méndez-Luna D, Martínez-Archundia M, Maroun RC, Ceballos-Reyes G, Fragoso-Vázquez MJ, González-Juárez DE, Correa-Basurto J. Deciphering the GPER/GPR30-agonist and antagonists interactions using molecular modeling studies, molecular dynamics, and docking simulations. J Biomol Struct Dyn 2015; 33:2161-72. [PMID: 25587872 DOI: 10.1080/07391102.2014.994102] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30's molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π-π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations.
Collapse
Affiliation(s)
- D Méndez-Luna
- a Laboratorio de modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, 11340 México, D.F. , Mexico
| | | | | | | | | | | | | |
Collapse
|
226
|
Sex steroid signaling: implications for lung diseases. Pharmacol Ther 2015; 150:94-108. [PMID: 25595323 DOI: 10.1016/j.pharmthera.2015.01.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
There is increasing recognition that sex hormones (estrogen, progesterone, and testosterone) have biological and pathophysiological actions in peripheral, non-reproductive organs, including the lung. Clinically, sex differences in the incidence, morbidity and mortality of lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, lung cancer and pulmonary hypertension have been noted, although intrinsic sex differences vs. the roles of sex steroids are still not well-understood. Accordingly, it becomes important to ask the following questions: 1) Which sex steroids are involved? 2) How do they affect different components of the lung under normal circumstances? 3) How does sex steroid signaling change in or contribute to lung disease, and in this regard, are sex steroids detrimental or beneficial? As our understanding of sex steroid signaling in the lung improves, it is important to consider whether such information can be used to develop new therapeutic strategies to target lung diseases, perhaps in both sexes or in a sex-specific manner. In this review, we focus on the basics of sex steroid signaling, and the current state of knowledge regarding how they influence structure and function of specific lung components across the life span and in the context of some important lung diseases. We then summarize the potential for sex steroids as useful biomarkers and therapeutic targets in these lung diseases as a basis for future translational research in the area of gender and individualized medicine.
Collapse
|
227
|
Ding Q, Hussain Y, Chorazyczewski J, Gros R, Feldman RD. GPER-independent effects of estrogen in rat aortic vascular endothelial cells. Mol Cell Endocrinol 2015; 399:60-8. [PMID: 25150623 DOI: 10.1016/j.mce.2014.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/18/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
GPER (aka GPR30) has been identified as an important mechanism by which estrogen mediates its effects. Previous studies from our laboratories and those of others have demonstrated that GPER activation mediates a range of vascular contractile and growth regulatory responses. However, the importance of GPER in mediating the actions of estradiol (E2) in rat aortic endothelial cells is unclear. Therefore, we sought to determine the importance of GPER vs. the "classical" estrogen receptor (ER) in mediating the endothelial growth regulatory effects of E2. To do this we assessed the effect of E2 in regulating phosphoERK content and apoptotic rates in rat aortic endothelial cells and the role of GPER in mediating these effects. E2 mediated a concentration-dependent inhibition of both ERK phosphorylation and serum deprivation-induced apoptosis with a maximal effect at a concentration of 10 nM. Pretreatment with the ER antagonist ICI 182780 abolished E2-mediated inhibition of both ERK phosphorylation and apoptosis. In contrast, pretreatment with GPER antagonist G15 had no significant effect on E2-mediated inhibition of ERK phosphorylation or on apoptosis. Further, downregulation of GPER expression with a GPER shRNA adenovirus did not block E2-mediated inhibitory effects on ERK phosphorylation and apoptosis. In fact, these inhibitory effects of E2 were further enhanced by GPER downregulation. Downregulation of ERα expression reversed the E2-mediated inhibitory effects to stimulatory effects. E2's phosphoERK and apoptosis stimulatory effects seen with ERα downregulation are attenuated by pretreatment with G15. In conclusion, in rat aortic endothelial cells, E2-mediated endothelial effects are predominantly driven by ER and not by GPER.
Collapse
Affiliation(s)
- Q Ding
- Departments of Medicine, Physiology and Pharmacology, Robarts Research Institute, London, Canada
| | - Y Hussain
- Departments of Medicine, Physiology and Pharmacology, Robarts Research Institute, London, Canada
| | - J Chorazyczewski
- Departments of Medicine, Physiology and Pharmacology, Robarts Research Institute, London, Canada
| | - R Gros
- Departments of Medicine, Physiology and Pharmacology, Robarts Research Institute, London, Canada
| | - R D Feldman
- Departments of Medicine, Physiology and Pharmacology, Robarts Research Institute, London, Canada.
| |
Collapse
|
228
|
Zhu Y, Liu D, Shaner ZC, Chen S, Hong W, Stellwag EJ. Nuclear progestin receptor (pgr) knockouts in zebrafish demonstrate role for pgr in ovulation but not in rapid non-genomic steroid mediated meiosis resumption. Front Endocrinol (Lausanne) 2015; 6:37. [PMID: 25852646 PMCID: PMC4365747 DOI: 10.3389/fendo.2015.00037] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Progestins, progesterone derivatives, are the most critical signaling steroid for initiating final oocyte maturation (FOM) and ovulation, in order to advance fully-grown immature oocytes to become fertilizable eggs in basal vertebrates. It is well-established that progestin induces FOM at least partly through a membrane receptor and a non-genomic steroid signaling process, which precedes progestin triggered ovulation that is mediated through a nuclear progestin receptor (Pgr) and genomic signaling pathway. To determine whether Pgr plays a role in a non-genomic signaling mechanism during FOM, we knocked out Pgr in zebrafish using transcription activator-like effector nucleases (TALENs) and studied the oocyte maturation phenotypes of Pgr knockouts (Pgr-KOs). Three TALENs-induced mutant lines with different frame shift mutations were generated. Homozygous Pgr-KO female fish were all infertile while no fertility effects were evident in homozygous Pgr-KO males. Oocytes developed and underwent FOM normally in vivo in homozygous Pgr-KO female compared to the wild-type controls, but these mature oocytes were trapped within the follicular cells and failed to ovulate from the ovaries. These oocytes also underwent normal germinal vesicle breakdown (GVBD) and FOM in vitro, but failed to ovulate even after treatment with human chronic gonadotropin (HCG) or progestin (17α,20β-dihydroxyprogesterone or DHP), which typically induce FOM and ovulation in wild-type oocytes. The results indicate that anovulation and infertility in homozygous Pgr-KO female fish was, at least in part, due to a lack of functional Pgr-mediated genomic progestin signaling in the follicular cells adjacent to the oocytes. Our study of Pgr-KO supports previous results that demonstrate a role for Pgr in steroid-dependent genomic signaling pathways leading to ovulation, and the first convincing evidence that Pgr is not essential for initiating non-genomic progestin signaling and triggering of meiosis resumption.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, USA
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- *Correspondence: Yong Zhu, Department of Biology, Howell Science Complex, East Carolina University, 1000 E. 5th Street, Greenville, NC 27858, USA e-mail:
| | - Dongteng Liu
- Department of Biology, East Carolina University, Greenville, NC, USA
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Zoe C. Shaner
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Shixi Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wanshu Hong
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | | |
Collapse
|
229
|
Mihailidou AS, Ashton AW. Cardiac effects of aldosterone: does gender matter? Steroids 2014; 91:32-7. [PMID: 25173820 DOI: 10.1016/j.steroids.2014.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022]
Abstract
Ischemic heart disease (IHD) continues to be the most common cause of death globally, although mortality rates are decreasing with significant advances in treatment. Higher prevalence of co-morbidities in women only partly explains the lack of decrease in mortality rates in younger women due to. Until recently there has been gender bias in pre-clinical studies and many clinical trials, resulting in a significant gap in knowledge whether there are differential responses to therapy for women, particularly younger women. There is increasing evidence that there are significant gender-specific differences in the outcome of post-infarction remodelling, prevalence of hypertension and sudden cardiac death. These differences indicate that cardiac tissue in females displays significant physiological and biochemical differences compared to males. However, the mechanisms mediating these differences, and how they change with age, are poorly understood. Circulating levels and physiological effects of aldosterone vary across the menstrual cycle suggesting female steroid sex hormones may not only regulate production of, but also responses to, aldosterone in pre-menopausal women. This modified tissue response may foster a homeostatic environment where higher levels of aldosterone are tolerated without adverse cardiac effect. Moreover, there is limited data on the direct regulation of this signalling axis by androgens in female animals/subjects. This review explores the relationship between gender and the effects of aldosterone in cardiovascular disease (CVD), an issue of significant need that may lead to changes in best practice to optimise clinical care and improve outcomes for females with CVD.
Collapse
Affiliation(s)
- Anastasia S Mihailidou
- Kolling Institute of Medical Research, Royal North Shore Hospital, and The University of Sydney, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.
| | - Anthony W Ashton
- Kolling Institute of Medical Research, Royal North Shore Hospital, and The University of Sydney, Sydney, Australia; Division of Perinatal Research, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
230
|
Takeuchi K, Yang Y, Takayasu Y, Gertner M, Hwang JY, Aromolaran K, Bennett MVL, Zukin RS. Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulted CA1 neurons after transient global ischemia. Brain Res 2014; 1621:222-30. [PMID: 25463028 DOI: 10.1016/j.brainres.2014.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
Global ischemia in humans or induced experimentally in animals causes selective and delayed neuronal death in pyramidal neurons of the hippocampal CA1. The ovarian hormone estradiol administered before or immediately after insult affords histological protection in experimental models of focal and global ischemia and ameliorates the cognitive deficits associated with ischemic cell death. However, the impact of estradiol on the functional integrity of Schaffer collateral to CA1 (Sch-CA1) pyramidal cell synapses following global ischemia is not clear. Here we show that long term estradiol treatment initiated 14 days prior to global ischemia in ovariectomized female rats acts via the IGF-1 receptor to protect the functional integrity of CA1 neurons. Global ischemia impairs basal synaptic transmission, assessed by the input/output relation at Sch-CA1 synapses, and NMDA receptor (NMDAR)-dependent long term potentiation (LTP), assessed at 3 days after surgery. Presynaptic function, assessed by fiber volley and paired pulse facilitation, is unchanged. To our knowledge, our results are the first to demonstrate that estradiol at near physiological concentrations enhances basal excitatory synaptic transmission and ameliorates deficits in LTP at synapses onto CA1 neurons in a clinically-relevant model of global ischemia. Estradiol-induced rescue of LTP requires the IGF-1 receptor, but not the classical estrogen receptors (ER)-α or β. These findings support a model whereby estradiol acts via the IGF-1 receptor to maintain the functional integrity of hippocampal CA1 synapses in the face of global ischemia. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Koichi Takeuchi
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yupeng Yang
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yukihiro Takayasu
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael Gertner
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Kelly Aromolaran
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
231
|
Kwon O, Kang ES, Kim I, Shin S, Kim M, Kwon S, Oh SR, Ahn YS, Kim CH. GPR30 mediates anorectic estrogen-induced STAT3 signaling in the hypothalamus. Metabolism 2014; 63:1455-61. [PMID: 25200186 DOI: 10.1016/j.metabol.2014.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 07/12/2014] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Estrogen plays an important role in the control of energy balance in the hypothalamus. Leptin-independent STAT3 activation (i.e., tyrosine(705)-phosphorylation of STAT3, pSTAT3) in the hypothalamus is hypothesized as the primary mechanism of the estrogen-induced anorexic response. However, the type of estrogen receptor that mediates this regulation is unknown. We investigated the role of the G protein-coupled receptor 30 (GPR30) in estradiol (E2)-induced STAT3 activation in the hypothalamus. MATERIALS/METHODS Regulation of STAT3 activation by E2, G-1, a specific agonist of GPR30 and G-15, a specific antagonist of GPR30 was analyzed in vitro and in vivo. Effect of GPR30 activation on eating behavior was analyzed in vivo. RESULTS E2 stimulated pSTAT3 in cells expressing GPR30, but not expressing estrogen receptor ERα and ERβ. G-1 induced pSTAT3, and G-15 inhibited E2-induced pSTAT3 in primary cultures of hypothalamic neurons. A cerebroventricular injection of G-1 increased pSTAT3 in the arcuate nucleus of mice, which was associated with a decrease in food intake and body weight gain. CONCLUSIONS These results suggest that GPR30 is the estrogen receptor that mediates the anorectic effect of estrogen through the STAT3 pathway in the hypothalamus.
Collapse
Affiliation(s)
- Obin Kwon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Insook Kim
- Division of Metabolic Disease, Department of Biomedical Science, National Institutes of Health, Osong, Korea
| | - Sora Shin
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mijung Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Somin Kwon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - So Ra Oh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Soo Ahn
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
232
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol 2014; 170:1652-75. [PMID: 24528240 PMCID: PMC3892290 DOI: 10.1111/bph.12448] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Albini A, Rosano C, Angelini G, Amaro A, Esposito AI, Maramotti S, Noonan DM, Pfeffer U. Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors. Curr Med Chem 2014; 21:458-500. [PMID: 24304271 PMCID: PMC4153070 DOI: 10.2174/09298673113206660291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/19/2013] [Accepted: 10/04/2013] [Indexed: 01/25/2023]
Abstract
Observations on the role of ovarian hormones in breast cancer growth, as well as interest in contraception, stimulated research into the biology of estrogens. The identification of the classical receptors ERα and ERβ and the transmembrane receptor GPER and the resolution of the structure of the ligand bound to its receptor established the principal molecular mechanisms of estrogen action. The presence of estrogen-like compounds in many plants used in traditional medicine or ingested as food ingredients, phytoestrogens, as well as the estrogenic activities of many industrial pollutants and pesticides, xenoestrogens, have prompted investigations into their role in human health. Phyto- and xenoestrogens bind to the estrogen receptors with a lower affinity than the endogenous estrogens and can compete or substitute the hormone. Xenoestrogens, which accumulate in the body throughout life, are believed to increase breast cancer risk, especially in cases of prenatal and prepuberal exposure whereas the role of phytoestrogens is still a matter of debate. At present, the application of phytoestrogens appears to be limited to the treatment of post-menopausal symptoms in women where the production of endogenous estrogens has ceased. In this review we discuss chemistry, structure and classification, estrogen signaling and the consequences of the interactions of estrogens, phytoestrogens and xenoestrogens with their receptors, the complex interactions of endogenous and exogenous ligands, the evaluation of the health risks related to xenoestrogens, and the perspectives toward the synthesis of potent third generation selective estrogen receptor modulators (SERMs).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - U Pfeffer
- Universita degli Studi dell'Insubria, Facolta di Medicina e Chirurgia, Dipartimento di Biotecnologie e Scienze della Vita, Viale Dunant, n.3 Varese, Italy, 21100.
| |
Collapse
|
234
|
Manokawinchoke J, Ritprajak P, Osathanon T, Pavasant P. Estradiol induces osteoprotegerin expression by human dental pulp cells. Odontology 2014; 104:10-8. [PMID: 25255977 DOI: 10.1007/s10266-014-0178-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/06/2014] [Indexed: 01/19/2023]
Abstract
Estrogen deficiency is associated with increased inflammation related periapical bone resorption. The present study aimed to evaluate the effect and intracellular mechanism(s) of estrogen on osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) expression in human dental pulp cells (HDPs). HDPs were treated with estradiol at a concentration of 0.1-10 μM. The results showed that estradiol induced OPG expression at both the mRNA and protein levels in a dose-dependent manner. However, no influence on RANKL expression was observed. An estrogen receptor (ER) inhibitor failed to attenuate the estradiol-induced OPG expression. Furthermore, ER-α and ER-β agonists did not simulate estradiol's effects on OPG expression by HDPs. However, a significant OPG upregulation was observed in HDPs treated with an estradiol-BSA conjugate or a GPR30 agonist. An ERK inhibitor significantly enhanced estradiol-induced OPG expression, whereas a p38 inhibitor markedly attenuated this expression. In conclusion, OPG expression by HDPs may be regulated by estradiol binding a membrane receptor and the balance between the ERK and p38 signaling pathways.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Patcharee Ritprajak
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology and Immunology, and DRU in Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand. .,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
235
|
Zhang KS, Chen HQ, Chen YS, Qiu KF, Zheng XB, Li GC, Yang HD, Wen CJ. Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway. Biomed Pharmacother 2014; 68:1037-43. [PMID: 25312822 DOI: 10.1016/j.biopha.2014.09.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer deaths worldwide. Recent evidences indicated that bisphenol A (BPA), a wide contaminant with endocrine disrupting activity, could enhance the susceptibility of carcinogenesis. Although there are increasing opportunities for lung cells exposure to BPA via inhalation, there is no study concerning the effects of BPA on the development of lung cancer. The present study revealed that BPA less than 10(-4)M had limited effects on the proliferation of lung cancer A549 cells, however, BPA treatment significantly stimulated the in vitro migration and invasion of cells combing with the morphological changes and up regulation of matrix metalloproteinase-2 (MMP-2) and MMP-9. G-protein-coupled estrogen receptor (GPER), while not estrogen receptor α/β (ERα/β), mediated the BPA induced up regulation of MMPs. Further, BPA treatment induced rapid activation of ERK1/2 via GPER/EGFR. GPER/ERFR/ERK1/2 mediated the BPA induced upregulation of MMPs and in vitro migration of lung cancer A549 cells. In summary, our data presented here revealed for the first time that BPA can promote the in vitro migration and invasion of lung cancer cells via upregulation of MMPs and GPER/EGFR/ERK1/2 signals, which mediated these effects. This study suggested that more attention should be paid on the BPA and other possible environmental estrogens induced development of lung cancer.
Collapse
Affiliation(s)
- Kun-Shui Zhang
- Department of Pharmacy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Hui-Qing Chen
- Guangdong Prevention and Treatment Center for Occupational Diseases, Guangzhou 510310, China
| | - Yi-Shen Chen
- Department of Pharmacy, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Kai-Feng Qiu
- Department of Pharmacy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Xiao-Bin Zheng
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Guo-Cheng Li
- Department of Pharmacy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Hai-Di Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
| | - Cui-Ju Wen
- Guangdong Prevention and Treatment Center for Occupational Diseases, Guangzhou 510310, China
| |
Collapse
|
236
|
Lother A, Moser M, Bode C, Feldman RD, Hein L. Mineralocorticoids in the heart and vasculature: new insights for old hormones. Annu Rev Pharmacol Toxicol 2014; 55:289-312. [PMID: 25251996 DOI: 10.1146/annurev-pharmtox-010814-124302] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mineralocorticoid aldosterone is a key regulator of water and electrolyte homeostasis. Numerous recent developments have advanced the field of mineralocorticoid pharmacology—namely, clinical trials have shown the beneficial effects of aldosterone antagonists in chronic heart failure and post-myocardial infarction treatment. Experimental studies using cell type-specific gene targeting of the mineralocorticoid receptor (MR) gene in mice have revealed the importance of extrarenal aldosterone signaling in cardiac myocytes, endothelial cells, vascular smooth cells, and macrophages. In addition, several molecular pathways involving signal transduction via the classical MR as well as the G protein-coupled receptor GPER mediate the diverse spectrum of effects of aldosterone on cells. This knowledge has initiated the development of new pharmacological ligands to specifically interfere with targets on different levels of aldosterone signaling. For example, aldosterone synthase inhibitors such as LCI699 and the novel nonsteroidal MR antagonist BAY 94-8862 have been tested in clinical trials. Interference with the interaction between MR and its coregulators seems to be a promising strategy toward the development of selective MR modulators.
Collapse
Affiliation(s)
- Achim Lother
- Heart Center, Department of Cardiology and Angiology I, University of Freiburg, 79106 Freiburg, Germany;
| | | | | | | | | |
Collapse
|
237
|
Yu T, Liu M, Luo H, Wu C, Tang X, Tang S, Hu P, Yan Y, Wang Z, Tu G. GPER mediates enhanced cell viability and motility via non-genomic signaling induced by 17β-estradiol in triple-negative breast cancer cells. J Steroid Biochem Mol Biol 2014; 143:392-403. [PMID: 24874276 DOI: 10.1016/j.jsbmb.2014.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/08/2014] [Accepted: 05/11/2014] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer with a generally poor prognosis. Due to lack of specific targets for its treatment, an efficient therapy is needed. G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, has been reported to be expressed in TNBC tissues. In this study, we investigated the effects of blocking non-genomic signaling mediated by the estrogen/GPER pathway on cell viability and motility in the TNBC cells. GPER was strongly expressed in the TNBC cell lines MDA-MB-468 and MDA-MB-436, and the estrogen-mediated non-genomic ERK signaling activated by GPER was involved in cell viability and motility of TNBC cells. Treatment with 17β-estradiol (E2), the GPER-specific agonist G-1 and tamoxifen (TAM) led to rapid activation of p-ERK1/2, but not p-Akt. Moreover, estrogen/GPER/ERK signaling was involved in increasing cell growth, survival, and migration/invasion by upregulating expression of cyclinA, cyclinD1, Bcl-2, and c-fos associated with the cell cycle, proliferation, and apoptosis. Immunohistochemical analysis of TNBC specimens showed a significantly different staining of p-ERK1/2 between GPER-positive tissues (58/66, 87.9%) and GPER-negative tissues (13/30, 43.3%). The positivity of GPER and p-ERK1/2 displayed a strong association with large tumor size and poor clinical stage, indicating that GPER/ERK signaling might also contribute to tumor progression in TNBC patients which corresponded with in vitro experimental data. Our findings suggest that inhibition of estrogen/GPER/ERK signaling represents a novel targeted therapy in TNBC.
Collapse
Affiliation(s)
- Tenghua Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Haojun Luo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chengyi Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xi Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shifu Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ping Hu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yuzhao Yan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhiliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
238
|
Long N, Serey C, Sinchak K. 17β-estradiol rapidly facilitates lordosis through G protein-coupled estrogen receptor 1 (GPER) via deactivation of medial preoptic nucleus μ-opioid receptors in estradiol primed female rats. Horm Behav 2014; 66:663-6. [PMID: 25245158 PMCID: PMC4254307 DOI: 10.1016/j.yhbeh.2014.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/10/2023]
Abstract
In female rats sexual receptivity (lordosis) can be induced with either a single large dose of estradiol benzoate (EB), or a priming dose of EB that does not induce sexual receptivity followed by 17β-estradiol (E2). Estradiol priming initially inhibits lordosis through a multi-synaptic circuit originating in the arcuate nucleus of the hypothalamus (ARH) that activates and internalizes μ-opioid receptors (MOR) in medial preoptic nucleus (MPN) neurons. Lordosis is facilitated when MPN MOR are deactivated after the initial estradiol-induced activation. We tested the hypothesis that E2 given 47.5 h post EB acts rapidly through G protein-coupled estrogen receptor 1 (GPER) in the ARH to deactivate MPN MOR and facilitate lordosis. Ovariectomized Long Evans rats implanted with a third ventricle cannula were primed with 2 μg EB. DMSO control, E2, or G1 (GPER selective agonist) was infused 47.5 h later, and rats were tested for sexual receptivity. E2 and G1 infusions significantly increased levels of sexual receptivity compared to DMSO controls and pretreatment with G15 (GPER antagonist) blocked the facilitation of sexual receptivity. Brains were processed for MPN MOR immunohistochemistry to measure MPN MOR activation levels. E2 and G1 both significantly reduced MPN MOR activation compared to DMSO controls, while pretreatment with G15 blocked MPN MOR deactivation. In another group of EB treated ovariectomized rats, GPER immunofluorescence positive staining was observed throughout the ARH. Together these data indicate that in the 2 μg EB primed rat, E2 rapidly signals through GPER in the ARH to deactivate MPN MOR and facilitate lordosis.
Collapse
Affiliation(s)
- Nathan Long
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Chhorvann Serey
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States.
| |
Collapse
|
239
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. Hormonal regulation of c-KIT receptor and its ligand: implications for human infertility? ACTA ACUST UNITED AC 2014; 49:1-19. [DOI: 10.1016/j.proghi.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
240
|
Abstract
Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women.
Collapse
|
241
|
Sandner F, Welter H, Schwarzer JU, Köhn FM, Urbanski HF, Mayerhofer A. Expression of the oestrogen receptor GPER by testicular peritubular cells is linked to sexual maturation and male fertility. Andrology 2014; 2:695-701. [PMID: 25052196 DOI: 10.1111/j.2047-2927.2014.00243.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/08/2014] [Accepted: 06/02/2014] [Indexed: 12/01/2022]
Abstract
Besides the two nuclear oestrogen receptors (ESR1/ESR2), the G protein-coupled oestrogen receptor (GPER) was described in the human testis but little is known about testicular GPER during development or male infertility. We performed an immunohistochemical analysis using human and rhesus monkey testicular samples. The results obtained in adult primate testes showed GPER in interstitial and vascular cells as well as in smooth muscle-like peritubular cells, which build the wall of seminiferous tubules. Expression of GPER was also found in cultured human testicular peritubular cells (HPTCs) by Western blotting and RT-PCR/sequencing. Furthermore, as seen in time-lapse videos of cultured cells, addition of a specific GPER agonist (G1) significantly reduced the numbers of HTPCs within 24 h. A GPER antagonist (G15) prevented this action, implying a role for GPER related to the control of cell proliferation or cell death of peritubular cells. Peritubular cell functions and their phenotype change, for example, during post-natal development and in the cases of male infertility. The study of non-human primate samples revealed that GPER in peritubular cells was detectable only from the time of puberty onwards, while in samples from infantile and prepubertal monkeys only interstitial cells showed immunopositive staining. In testicular biopsies of men with mixed atrophy, a reduction or loss of immunoreactive GPER was found in peritubular cells surrounding those tubules, in which spermatogenesis was impaired. In other cases of impaired spermatogenesis, namely when the tubular wall was fibrotically remodelled, a complete loss of GPER was seen. Thus, the observed inverse relation between the state of fertility and GPER expression by peritubular cells implies that the regulation of primate testicular peritubular cells by oestrogens is mediated by GPER in both, health and disease.
Collapse
Affiliation(s)
- F Sandner
- Anatomy III, Cell Biology, LMU München, München, Germany
| | | | | | | | | | | |
Collapse
|
242
|
Marjon NA, Hu C, Hathaway HJ, Prossnitz ER. G protein-coupled estrogen receptor regulates mammary tumorigenesis and metastasis. Mol Cancer Res 2014; 12:1644-1654. [PMID: 25030371 DOI: 10.1158/1541-7786.mcr-14-0128-t] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED The role of 17β-estradiol (E2) in breast cancer development and tumor growth has traditionally been attributed exclusively to the activation of estrogen receptor-α (ERα). Although targeted inhibition of ERα is a successful approach for patients with ERα(+) breast cancer, many patients fail to respond or become resistant to anti-estrogen therapy. The discovery of the G protein-coupled estrogen receptor (GPER) suggested an additional mechanism through which E2 could exert its effects in breast cancer. Studies have demonstrated clinical correlations between GPER expression in human breast tumor specimens and increased tumor size, distant metastasis, and recurrence, as well as established a proliferative role for GPER in vitro; however, direct in vivo evidence has been lacking. To this end, a GPER-null mutation [GPER knockout (KO)] was introduced, through interbreeding, into a widely used transgenic mouse model of mammary tumorigenesis [MMTV-PyMT (PyMT)]. Early tumor development, assessed by the extent of hyperplasia and proliferation, was not different between GPER wild-type/PyMT (WT/PyMT) and those mice harboring the GPER-null mutation (KO/PyMT). However, by 12 to 13 weeks of age, tumors from KO/PyMT mice were smaller with decreased proliferation compared with those from WT/PyMT mice. Furthermore, tumors from the KO/PyMT mice were of histologically lower grade compared with tumors from their WT counterparts, suggesting less aggressive tumors in the KO/PyMT mice. Finally, KO/PyMT mice displayed dramatically fewer lung metastases compared with WT/PyMT mice. Combined, these data provide the first in vivo evidence that GPER plays a critical role in breast tumor growth and distant metastasis. IMPLICATIONS This is the first description of a role for the novel estrogen receptor GPER in breast tumorigenesis and metastasis, demonstrating that it represents a new target in breast cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Nicole A Marjon
- Department of Cell Biology & Physiology, and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Chelin Hu
- Department of Cell Biology & Physiology, and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Eric R Prossnitz
- Department of Cell Biology & Physiology, and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
243
|
An G, Li W, Yan T, Li S. Estrogen rapidly enhances incisional pain of ovariectomized rats primarily through the G protein-coupled estrogen receptor. Int J Mol Sci 2014; 15:10479-91. [PMID: 24921706 PMCID: PMC4100163 DOI: 10.3390/ijms150610479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 01/24/2023] Open
Abstract
It has become increasingly apparent that the pain threshold of females and males varies in an estrogen dependent manner. To investigate the modulation of pain by estrogen and the molecular mechanisms involved in this process. A total of 48 rats were ovariectomized (OVX). At 14 and 20 days after OVX, rats were divided into eight groups: groups 1–4 were administered drugs intravenously (IV); groups 5–8 were administered through intrathecal (IT) catheter. Hind paw incision was made in all animals to determine incisional pain. Paw withdraw threshold (PWT) was tested prior to and 24 h after incision. The test drugs were applied 24 h after the incision. Rats were either IV or IT administered with: 17-β-estradiol (E2), G protein-coupled estrogen receptor (GPER)-selective agonist (G1), GPER-selective antagonist (G15) and E2 (G15 + E2), or solvent. Before and 30 min after IV drug administration and 20 min during the IT catheter administration, PWT was tested and recorded. 24 h after incisional surgery, the PWT of all rats significantly decreased. Both in the IV group and IT group: administration of E2 and G1 significantly decreased PWT. Neither administration of G15 + E2 nor solvent significantly changed PWT. Estrogen causes rapid reduction in the mechanical pain threshold of OVX rats via GPER.
Collapse
Affiliation(s)
- Guanghui An
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai 200080, China.
| | - Wenhui Li
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China.
| | - Tao Yan
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai 200080, China.
| | - Shitong Li
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai 200080, China.
| |
Collapse
|
244
|
Zhang W, Yang F, Luo J, Chen F, Gu J, Guan X. A novel GPR30 rs10235056 A>G polymorphism associated with post-transcriptional regulation in lymphoblastoid cell lines. Biomarkers 2014; 19:417-23. [DOI: 10.3109/1354750x.2014.924996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | | | | | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
NanjingChina
| | | |
Collapse
|
245
|
Petrone AB, Gatson JW, Simpkins JW, Reed MN. Non-feminizing estrogens: a novel neuroprotective therapy. Mol Cell Endocrinol 2014; 389:40-7. [PMID: 24424441 PMCID: PMC4040321 DOI: 10.1016/j.mce.2013.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/16/2022]
Abstract
While the conflict between basic science evidence for estrogen neuroprotection and the lack of effectiveness in clinical trials is only now being resolved, it is clear that strategies for estrogen neuroprotection that avoid activation of ERs have the potential for clinical application. Herein we review the evidence from both in vitro and in vivo studies that describe high potency neuroprotection with non-feminizing estrogens. We have characterized many of the essential chemical features of non-feminizing estrogens that eliminate or reduce ER binding while maintaining or enhancing neuroprotection. Additionally, we provide evidence that these non-feminizing estrogens have efficacy in protecting the brain from AD neuropathology and traumatic brain injury. In conclusion, it appears that the non-feminizing estrogen strategy for neuroprotection is a viable option to achieve the beneficial neuroprotective effects of estrogens while eliminating the toxic off-target effects of chronic estrogen administration.
Collapse
Affiliation(s)
- Ashley B Petrone
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, United States; Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| | - Joshua W Gatson
- Department of Emergency Medicine, University of Texas Southwestern Medical School, Dallas, TX, United States
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, United States; Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| | - Miranda N Reed
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States; Department of Psychology, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
246
|
Prossnitz ER, Barton M. Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 2014; 389:71-83. [PMID: 24530924 PMCID: PMC4040308 DOI: 10.1016/j.mce.2014.02.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/16/2022]
Abstract
Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen's rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and the activity of clinically used drugs, such as SERMs and SERDs, in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology and Physiology, UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| |
Collapse
|
247
|
Oliveira PF, Alves MG, Martins AD, Correia S, Bernardino RL, Silva J, Barros A, Sousa M, Cavaco JE, Socorro S. Expression pattern of G protein-coupled receptor 30 in human seminiferous tubular cells. Gen Comp Endocrinol 2014; 201:16-20. [PMID: 24681226 DOI: 10.1016/j.ygcen.2014.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 12/30/2022]
Abstract
The role of estrogens in male reproductive physiology has been intensively studied over the last few years. Yet, the involvement of their specific receptors has long been a matter of debate. The selective testicular expression of the classic nuclear estrogen receptors (ERα and ERβ) argues in favor of ER-specific functions in the spermatogenic event. Recently, the existence of a G protein-coupled estrogen receptor (GPR30) mediating non-genomic effects of estrogens has also been described. However, little is known about the specific testicular expression pattern of GPR30, as well as on its participation in the control of male reproductive function. Herein, by means of immunohistochemical and molecular biology techniques (RT-PCR and Western blot), we aimed to present the first exhaustive evaluation of GPR30 expression in non-neoplastic human testicular cells. Indeed, we were able to demonstrate that GPR30 was expressed in human testicular tissue and that the staining pattern was consistent with its cytoplasmic localization. Additionally, by using cultured human Sertoli cells (SCs) and isolated haploid and diploid germ cells fractions, we confirmed that GPR30 is expressed in SCs and diploid germ cells but not in haploid germ cells. This specific expression pattern suggests a role for GPR30 in spermatogenesis.
Collapse
Affiliation(s)
- Pedro F Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Marco G Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana D Martins
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sara Correia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Raquel L Bernardino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Alberto Barros, 4100-009 Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, 4100-009 Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Mário Sousa
- Centre for Reproductive Genetics Alberto Barros, 4100-009 Porto, Portugal; Department of Microscopy, Laboratory of Cell Biology and Biomedical Research Multidisciplinary Unit (UMIB-FCT), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4099-003 Porto, Portugal
| | - José E Cavaco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
248
|
Zhang Y, Wang Q, Ji Y, Zhang Q, Wu H, Xie J, Zhao J. Identification and mRNA expression of two 17β-hydroxysteroid dehydrogenase genes in the marine mussel Mytilus galloprovincialis following exposure to endocrine disrupting chemicals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1243-1255. [PMID: 24835553 DOI: 10.1016/j.etap.2014.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are multifunctional enzymes involved in the metabolism of steroids, fatty acids, retinoids and bile acid. In this study, two novel types of 17β-HSDs (named as MgHsd17b10 and MgHsd17b12) were cloned from Mytilus galloprovincialis by using rapid amplification of cDNA ends (RACE) approaches. Sequence analysis showed that MgHsd17b10 and MgHsd17b12 encoded a polypeptide of 259 and 325 amino acids, respectively. Phylogenetic analysis revealed that MgHsd17b10 and MgHsd17b12 were evolutionarily clustered with other invertebrate 17β-HSD type 10 and 17β-HSD type 12 homologues. The MgHsd17b10 and MgHsd17b12 transcripts could be detected in all examined tissues with higher expression levels in digestive glands and gonad. After exposed to endocrine disrupting chemicals (Bisphenol A or 2,2',4,4'-tetrabromodiphenyl ether), the expression of MgHsd17b10 and MgHsd17b12 transcripts was both down-regulated in digestive glands. These findings suggest that MgHsd17b10 and MgHsd17b12 perhaps play an important role in the endocrine regulation of M. galloprovincialis.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yinglu Ji
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Qian Zhang
- China Agriculture University (Yantai), Yantai 264670, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Jia Xie
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
249
|
Activation of GPER-1 estradiol receptor downregulates production of testosterone in isolated rat Leydig cells and adult human testis. PLoS One 2014; 9:e92425. [PMID: 24736568 PMCID: PMC3987996 DOI: 10.1371/journal.pone.0092425] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/21/2014] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis. MATERIALS AND METHODS Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. RESULTS GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20-30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs. CONCLUSIONS Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men.
Collapse
|
250
|
Qin B, Dong L, Guo X, Jiang J, He Y, Wang X, Li L, Zhao J. Expression of G protein-coupled estrogen receptor in irritable bowel syndrome and its clinical significance. Asian Pac J Cancer Prev 2014; 15:4733-8. [PMID: 24966932 DOI: 10.7314/apjcp.2014.15.11.4733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Estrogen is suggested to participate in pathogenesis of irritable bowel syndrome (IBS), but expression of G protein-coupled estrogen receptor (GPER) in the colon of IBS patients has never been investigated. The aim of this study was to investigate the expression of GPER and classical estrogen receptors in the colon of IBS patients and healthy controls. METHODS Colonic biopsies were obtained by endoscopy from patients with IBS (n=46) and healthy subjects (n=13). Expression of GPER, estrogen receptor α (ERα) and estrogen receptor β (ERβ) in mast cells were measured by double-labelling immunofluorescence. Quantification of mRNA expression was performed for GPER, ERα and ERβ by real-time polymerase chain reaction. RESULTS Differential distribution of GPER, ERα and ERβ were detected in human colonic mucosa. The expression of GPER in the cytoplasm of mast cells and GPER-positive cells was significantly higher in diarrhea-predominant IBS (D-IBS) patients than that in constipation-predominant IBS (C-IBS, P<0.001) patients and healthy subjects (P=0.005). ERα and ERβ were not detected in majority of mast cells in colonic mucosa and no difference of immunostaining results for ERα and ERβ was found among these three groups. A positive correlation (r=0.451, P=0.011) between GPER-positive cell counts and abdominal pain severity was observed in D-IBS group. Relative mRNA expression of GPER in D-IBS was also higher than that in C-IBS (P=0.018) and healthy subjects (P=0.011). CONCLUSIONS The present study, for the first time, demonstrated the expression of GPER in human colonic mucosa and its correlation with abdominal pain severity.
Collapse
Affiliation(s)
- Bin Qin
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Lei Dong
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Xiaoyan Guo
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Jiong Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Yangxin He
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Lu Li
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Juhui Zhao
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| |
Collapse
|