201
|
Kim GH. Long-term adaptation of renal ion transporters to chronic diuretic treatment. Am J Nephrol 2004; 24:595-605. [PMID: 15564765 DOI: 10.1159/000082314] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 10/26/2004] [Indexed: 11/19/2022]
Abstract
Loop and thiazide diuretics are clinically useful to induce negative sodium balance. However, with chronic treatment, their effects tend to be blunted since the kidney adapts to diuretics. Molecular identification of the renal ion transporters has provided us with a new understanding of the mechanisms of intrarenal adaptation to diuretics at molecular levels. In the kidney, loop and thiazide diuretics are secreted from the proximal tubule via the organic anion transporter-1 (OAT1) and exert their diuretic action by binding to the Na-K-2Cl cotransporter type 2 (NKCC2) in the thick ascending limb and the Na-Cl cotransporter (NCC) in the distal convoluted tubule, respectively. Recent studies in animal models suggest that abundance of these ion transporters is affected by long-term diuretic administration. Downstream from the primary site of diuretic action, an increase in epithelial Na+ channel (ENaC) abundance is induced by chronic furosemide or hydrochlorothiazide treatment. This adaptation is consistent with previous reports showing cellular hypertrophy and increased Na+ absorption in distal tubular segments. The abundance of NKCC2 and NCC is increased by furosemide and hydrochlorothiazide, respectively. This compensatory upregulation suggests that either diuretic may activate the ion transporter within the primary site of action. In the proximal tubule, the abundance of OAT1 is increased by chronic treatment with furosemide or hydrochlorothiazide. This upregulation of OAT1 seems to be induced by substrate stimulation, lessening diuretic tolerance associated with long-term diuretic use.
Collapse
Affiliation(s)
- Gheun-Ho Kim
- Department of Internal Medicine and Institute of Biomedical Sciences, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
202
|
Meneton P, Loffing J, Warnock DG. Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol 2004; 287:F593-601. [PMID: 15345493 DOI: 10.1152/ajprenal.00454.2003] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sodium reabsorption and potassium secretion in the distal convoluted tubule and in the connecting tubule can maintain the homeostasis of the body, especially when dietary sodium intake is high and potassium intake is low. Under these conditions, a large proportion of the aldosterone-regulated sodium and potassium transport would occur in these nephron segments before the tubular fluid reaches the collecting duct. The differences between these two segments and the collecting duct would be more quantitative than qualitative. The collecting duct would come into play when the upstream segments are overloaded by a primary genetic defect that affects sodium and/or potassium transport or by a diet that is exceedingly poor in sodium and rich in potassium. It is likely that the homeostatic role of the distal convoluted and connecting tubules, which are technically difficult to study, has been underestimated, whereas the role of the more easily accessible collecting duct may have been overemphasized.
Collapse
Affiliation(s)
- Pierre Meneton
- Unité 367 de l'Institut National de la Santé et de la Recherche Médicale, 75005 Paris, France.
| | | | | |
Collapse
|
203
|
Thomas CP, Campbell JR, Wright PJ, Husted RF. cAMP-stimulated Na+transport in H441 distal lung epithelial cells: role of PKA, phosphatidylinositol 3-kinase, and sgk1. Am J Physiol Lung Cell Mol Physiol 2004; 287:L843-51. [PMID: 15208094 DOI: 10.1152/ajplung.00340.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
H441 cells, a bronchiolar epithelial cell line, develop a cAMP-regulated benzamil-sensitive Na+transport pathway on permeable supports (Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP. Am J Physiol Lung Cell Mol Physiol 282: L631–L641, 2002). To understand the molecular basis for the stimulation of Na+transport, we delineated the role of specific intracellular pathways and examined the effect of cAMP on αβγ-epithelial Na+channel (ENaC) and sgk1 expression. Na+transport increases within 5 min of cAMP stimulation and is sustained for >24 h. The sustained effect of cAMP on Na+transport is abolished by LY-294002, an inhibitor of phosphatidylinositol 3-kinase, by H89, an inhibitor of PKA, or by SB-202190, an inhibitor of p38 MAP kinase. The sustained effect of cAMP was associated with increases in α-ENaC mRNA and protein but without a detectable increase in βγ-ENaC and sgk1. The early effect of cAMP on Na+transport is brefeldin sensitive and is mediated via PKA. These results are consistent with a model where the early effect of cAMP is to increase trafficking of Na+channels to the apical cell surface whereas the sustained effect requires the synthesis of α-ENaC.
Collapse
Affiliation(s)
- Christie P Thomas
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
204
|
Abstract
Apical membrane K channels in the rat connecting tubule (CNT) were studied using the patch-clamp technique. Tubules were isolated from the cortical labyrinth of the kidney and split open to provide access to the apical membrane. Cell-attached patches were formed on presumed principal and/or connecting tubule cells. The major channel type observed had a single-channel conductance of 52 pS, high open probability and kinetics that were only weakly dependent on voltage. These correspond closely to the "SK"-type channels in the cortical collecting duct, identified with the ROMK (Kir1.1) gene product. A second channel type, which was less frequently observed, mediated larger currents and was strongly activated by depolarization of the apical membrane voltage. These were identified as BK or maxi-K channels. The density of active SK channels revealed a high degree of clustering. Although heterogeneity of tubules or of cell types within a tubule could not be excluded, the major factor underlying the distribution appeared to be the presence of channel clusters on the membrane of individual cells. The overall density of channels was higher than that previously found in the cortical collecting tubule (CCT). In contrast to results in the CCT, we did not detect an increase in the overall density of SK channels in the apical membrane after feeding the animals a high-K diet. However, the activity of amiloride-sensitive Na channels was undetectable under control conditions but was increased after both 1 day (90 +/- 24 pA/cell) or 7 days (385 +/- 82 pA/cell) of K loading. Thus one important factor leading to an increased K secretion in the CNT in response to increased dietary K is an increased apical Na conductance, leading to depolarization of the apical membrane voltage and an increased driving force for K movement out into the tubular lumen.
Collapse
Affiliation(s)
- Gustavo Frindt
- Dept. of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
205
|
Abstract
Renal sodium handling is an essential physiologic function in mammal for body fluid maintenance and blood pressure regulation. Recent advances in molecular biology have led to the identification of kidney-specific sodium transporters in the renal tubule, thereby supplying vast information for renal physiology as well as systemic physiology. Renal urinary concentration for body fluid maintenance is accomplished by counter current multiplication in the distal tubule. Sodium transport in the thick ascending limb of Henle (TAL) is the initial process of this system. We have demonstrated that renal urinary concentration is regulated in part by the expression of the Na(+)-K(+)-2Cl(-) co-transporter (BSC1) in TAL, by showing two mechanisms of BSC1 expression: pitressin vasopressin (AVP)-dependent and AVP-independent mechanisms. Two additional findings, namely, a lack of the ability to increase BSC1 expression leads to urinary concentrating defect and an enhanced BSC1 expression underlies the edema-forming condition, confirm the close association between sodium handling in TAL and body fluid accumulation. The lines of evidence from our genetic studies of the general Japanese population suggest the importance of mendelian hypertension genes in the genetic investigation of essential hypertension. Because those genes directly or indirectly regulate sodium transport by the Na-Cl co-transporter or the epithelial sodium channel in the distal convoluted tubule to the collecting duct (distal tubular segments after TAL), sodium handling in this part of the renal tubule may be, at least in part, involved in blood pressure regulation. The unveiling of such physiologic roles of sodium handling based on the sodium transporters or on the tubular segments may lead to a better understanding of systemic physiology as well as to the development of novel therapy for body fluid or blood pressure disorders.
Collapse
Affiliation(s)
- Mitsunobu Matsubara
- Department of Molecular Medicine and Gene Transfer Research, Tohoku University School of Medicine and Pharmaceutical Siences, Sendai, Japan.
| |
Collapse
|
206
|
Dave MH, Schulz N, Zecevic M, Wagner CA, Verrey F. Expression of heteromeric amino acid transporters along the murine intestine. J Physiol 2004; 558:597-610. [PMID: 15155792 PMCID: PMC1664976 DOI: 10.1113/jphysiol.2004.065037] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.
Collapse
Affiliation(s)
- Mital H Dave
- Institute of Physiology, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
207
|
Abstract
Genetic analysis has demonstrated that Na absorption in the aldosterone-sensitive distal nephron (ASDN) critically determines extracellular blood volume and blood pressure variations. The epithelial sodium channel (ENaC) represents the main transport pathway for Na+ absorption in the ASDN, in particular in the connecting tubule (CNT), which shows the highest capacity for ENaC-mediated Na+ absorption. Gain-of-function mutations of ENaC causing hypertension target an intracellular proline-rich sequence involved in the control of ENaC activity at the cell surface. In animal models, these ENaC mutations exacerbate Na+ transport in response to aldosterone, an effect that likely plays an important role in the development of volume expansion and hypertension. Recent studies of the functional consequences of mutations in genes controlling Na+ absorption in the ASDN provide a new understanding of the molecular and cellular mechanisms underlying the pathogenesis of salt-sensitive hypertension.
Collapse
Affiliation(s)
- L Schild
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland.
| |
Collapse
|
208
|
Fouladkou F, Alikhani-Koopaei R, Vogt B, Flores SY, Malbert-Colas L, Lecomte MC, Loffing J, Frey FJ, Frey BM, Staub O. A naturally occurring human Nedd4-2 variant displays impaired ENaC regulation in Xenopus laevis oocytes. Am J Physiol Renal Physiol 2004; 287:F550-61. [PMID: 15140763 DOI: 10.1152/ajprenal.00353.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is regulated by the ubiquitin-protein ligase Nedd4-2 via interaction with ENaC PY-motifs. These PY-motifs are mutated/deleted in Liddle's syndrome, resulting in elevated Na(+) reabsorption and hypertension explained partly by impaired ENaC-Nedd4-2 interaction. We hypothesized that Nedd4-2 is a susceptibility gene for hypertension and screened 856 renal patients and healthy controls for mutations in a subset of exons of the human Nedd4-2 gene that are relevant for ENaC regulation by PCR/single-strand conformational polymorphism. Several variants were identified, and one nonsynonymous mutation (Nedd4-2-P355L) was further characterized. This mutation next to the 3' donor site of exon 15 does not affect in vitro splicing of Nedd4-2 mRNA. However, in the Xenopus oocyte expression system, Nedd4-2-P355L-dependent ENaC inhibition was weaker compared with the wild type (Nedd4-2-WT), and this difference depended on the presence of intact PY-motifs on ENaC. This could not be explained by the amount of wild type or mutant Nedd4-2 coimmunoprecipitating with ENaC. When the phosphorylation level of human Nedd4-2 Ser(448) (known to be phosphorylated by the Sgk1 kinase) was determined with a specific anti-pSer(448) antibody, we observed stronger basal phosphorylation of Nedd4-2-P355L. Both the phosphorylation level and the accompanying amiloride-sensitive Na(+) currents could be further enhanced to approximately the same levels by coexpressing Sgk1. In addition, the role of the two other putative Sgk1 phosphorylation sites (S342 and T367) appears also to be affected by the P355L mutation. The differential phosphorylation status between wild-type and mutant Nedd4-2 provides an explanation for the different potential to inhibit ENaC activity.
Collapse
Affiliation(s)
- Fatemeh Fouladkou
- Division of Nephrology and Hypertension, Department of Clinical Research, University of Bern, CH-3010 Bern
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Kim SW, Wang W, Nielsen J, Praetorius J, Kwon TH, Knepper MA, Frøkiaer J, Nielsen S. Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats. Am J Physiol Renal Physiol 2004; 286:F922-35. [PMID: 15075188 DOI: 10.1152/ajprenal.00277.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nephrotic syndrome is often accompanied by sodium retention and generalized edema. However, the molecular basis for the decreased renal sodium excretion remains undefined. We hypothesized that epithelial Na channel (ENaC) subunit dysregulation may be responsible for the increased sodium retention. An experimental group of rats was treated with puromycin aminonucleoside (PAN; 180 mg/kg iv), whereas the control group received only vehicle. After 7 days, PAN treatment induced significant proteinuria, hypoalbuminemia, decreased urinary sodium excretion, and extensive ascites. The protein abundance of α-ENaC and β-ENaC was increased in the inner stripe of the outer medulla (ISOM) and in the inner medulla (IM) but was not altered in the cortex. γ-ENaC abundance was increased in the cortex, ISOM, and IM. Immunoperoxidase brightfield- and laser-scanning confocal fluorescence microscopy demonstrated increased targeting of α-ENaC, β-ENaC, and γ-ENaC subunits to the apical plasma membrane in the distal convoluted tubule (DCT2), connecting tubule, and cortical and medullary collecting duct segments. Immunoelectron microscopy further revealed an increased labeling of α-ENaC in the apical plasma membrane of cortical collecting duct principal cells of PAN-treated rats, indicating enhanced apical targeting of α-ENaC subunits. In contrast, the protein abundances of Na+/H+exchanger type 3 (NHE3), Na+-K+-2Cl-cotransporter (BSC-1), and thiazide-sensitive Na+-Cl-cotransporter (TSC) were decreased. Moreover, the abundance of the α1-subunit of the Na-K-ATPase was decreased in the cortex and ISOM, but it remained unchanged in the IM. In conclusion, the increased or sustained expression of ENaC subunits combined with increased apical targeting in the DCT2, connecting tubule, and collecting duct are likely to play a role in the sodium retention associated with PAN-induced nephrotic syndrome. The decreased abundance of NHE3, BSC-1, TSC, and Na-K-ATPase may play a compensatory role to promote sodium excretion.
Collapse
Affiliation(s)
- Soo Wan Kim
- The Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Bhargava A, Pearce D. Mechanisms of mineralocorticoid action: determinants of receptor specificity and actions of regulated gene products. Trends Endocrinol Metab 2004; 15:147-53. [PMID: 15109612 DOI: 10.1016/j.tem.2004.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mineralocorticoid receptor (MR) and its close cousin, the glucocorticoid receptor (GR), share considerable structural and functional similarity, including indistinguishable DNA binding properties, yet they mediate distinct physiological responses in some tissues. Specificity is determined by their distinct interactions with other protein factors and modification by peptides, including the small ubiquitin modifier SUMO1. Serum and glucocorticoid-regulated kinase 1 (sgk1) is one key target gene of both MR and GR, and encodes a serine-threonine kinase that stimulates the apical membrane localization of the epithelial sodium channel ENaC. Sgk1 exerts its effects, at least in part, by inhibiting an isoform of the ENaC inhibitory ubiquitin ligase Nedd4-2. This review briefly summarizes two areas of mineralocorticoid research: molecular determinants of MR specificity, and the role of Sgk1 in mediating the effects of aldosterone on epithelial Na(+) transport.
Collapse
Affiliation(s)
- Aditi Bhargava
- Departments of Medicine and Cellular and Molecular Pharmacology, Box 2140, N272C Genentach Hall, University of California, San Francisco, CA 94143-2140, USA
| | | |
Collapse
|
211
|
Coric T, Hernandez N, Alvarez de la Rosa D, Shao D, Wang T, Canessa CM. Expression of ENaC and serum- and glucocorticoid-induced kinase 1 in the rat intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2004; 286:G663-70. [PMID: 14630642 DOI: 10.1152/ajpgi.00364.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increase in epithelium sodium channel (ENaC) activity induced by aldosterone in the distal tubule of the kidney has been attributed to serum- and glucocorticoid-induced kinase 1 (sgk1). The distal colon constitutes another classical aldosterone-responsive epithelium that expresses both ENaC and sgk1 in an aldosterone-dependent manner. However, the site of expression and the temporal relationship of the aldosterone induction of these two proteins have not been investigated. Here, we examined the distribution and abundance of sgk1 in the rat intestine under basal conditions and after changes in the concentration of aldosterone and glucocorticoids. Results indicate that sgk1 is expressed in the distal colon and also in the ileum and jejunum. Abundance of sgk1 was high in control animals, and it did not change significantly after sodium depletion or after a single dose of aldosterone; however, it decreased after adrenalectomy. In contrast, the three subunits of ENaC were markedly induced in the distal colon by acute and chronic increases in aldosterone levels. Results indicate differential regulation of sgk and ENaC subunits by aldosterone in the distal colon. Distribution of sgk1 in the intestine beyond the aldosterone-responsive segments suggests that sgk1 may additionally regulate other sodium transporters in the intestinal epithelium.
Collapse
Affiliation(s)
- Tatjana Coric
- Department of Cellular and Molecular Psysiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA
| | | | | | | | | | | |
Collapse
|
212
|
Summa V, Camargo SMR, Bauch C, Zecevic M, Verrey F. Isoform specificity of human Na(+), K(+)-ATPase localization and aldosterone regulation in mouse kidney cells. J Physiol 2004; 555:355-64. [PMID: 14694143 PMCID: PMC1664841 DOI: 10.1113/jphysiol.2003.054270] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2003] [Accepted: 12/19/2003] [Indexed: 11/08/2022] Open
Abstract
Short-term aldosterone coordinately regulates the cell-surface expression of luminal epithelial sodium channels (ENaC) and of basolateral Na(+) pumps (Na(+), K(+)-ATPase alpha1-beta1) in aldosterone-sensitive distal nephron (ASDN) cells. To address the question of whether the subcellular localization of the Na(+), K(+)-ATPase and its regulation by aldosterone depend on subunit isoform-specific structures, we expressed the cardiotonic steroid-sensitive human alpha isoforms 1-3 by retroviral transduction in mouse collecting duct mpkCCD(c14) cells. Each of the three exogenous human isoforms could be detected by Western blotting. Immunofluorescence indicated that the exogenous alpha1 subunit to a large extent localizes to the basolateral membrane or close to it, whereas much of the alpha2 subunit remains intracellular. An ouabain-sensitive current carried by exogenous pumps could be detected in apically amphotericin B-permeabilized epithelia expressing human alpha1 and alpha2 subunits, but not the alpha3 subunit. This current displayed a higher apparent Na(+) affinity in pumps containing human alpha2 subunits (10 mM) than in pumps containing human alpha1 (33.2 mM) or endogenous (cardiotonic steroid-resistant) mouse alpha1 subunits (mean: 16.3 mM). A very low mRNA level of the Na(+), K(+)-ATPase gamma subunit (FXYD2) in mpkCCD(c14) cells suggested that this ancillary gene product is not responsible for the relatively low apparent Na(+) affinity measured for a1 subunit-containing pumps. Aldosterone increased the pump current carried by endogenous pumps and by pumps containing the human alpha1 subunit. In contrast, the current carried by pumps with a human alpha2 subunit was not stimulated by the same treatment. In summary, quantitative basolateral localization of the Na(+), K(+)-ATPase and its responsiveness to aldosterone require alpha1 subunit-specific sequences that differentiate this isoform from the alpha2 and alpha3 subunit isoforms.
Collapse
Affiliation(s)
- Vanessa Summa
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
213
|
Zecevic M, Heitzmann D, Camargo SMR, Verrey F. SGK1 increases Na,K-ATP cell-surface expression and function in Xenopus laevis oocytes. Pflugers Arch 2004; 448:29-35. [PMID: 14716489 DOI: 10.1007/s00424-003-1222-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 11/27/2003] [Indexed: 10/26/2022]
Abstract
The Na(+)-retaining hormone aldosterone increases the cell-surface expression of the luminal epithelial sodium channel (ENaC) and the basolateral Na(+) pump (Na,K-ATPase) in aldosterone-sensitive distal nephron cells in a coordinated fashion. To address the question of whether aldosterone-induced serum and glucocorticoid-regulated kinase-1 (SGK1) might be involved in mediating this regulation of Na,K-ATPase subcellular localization, similar to that of the epithelial Na(+) channel (ENaC), we co-expressed the Na,K-ATPase (rat alpha 1- and Xenopus laevis beta 1-subunits) and Xenopus SGK1 in Xenopus oocytes. Measurements of the Na(+) pump current showed that wild-type SGK1 increases the function of exogenous Na,K-ATPase at the surface of Xenopus oocytes. This appeared to be secondary to an increase in Na,K-ATPase cell-surface expression as visualized by Western blotting of surface-biotinylated proteins. In contrast, the functional surface expression of two other exogenous transporters, the heterodimeric amino acid transporter LAT1-4F2hc and the Na(+)/phosphate cotransporter NaPi-IIa, was not increased by SGK1 co-expression. The total pool of exogenous Na,K-ATPase was increased by the co-expression of SGK1, and similarly also by ENaC co-expression. This latter effect depended on the [Na(+)] of the buffer and was not additive to that of SGK1. When the total Na,K-ATPase was increased by ENaC co-expression, SGK1 still increased Na,K-ATPase cell-surface expression. These observations in Xenopus oocytes suggest the possibility that SGK1 induction and/or activation could participate in the coordinated regulation of Na,K-ATPase and ENaC cell-surface expression in the aldosterone-sensitive distal nephron.
Collapse
Affiliation(s)
- Marija Zecevic
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
214
|
Abstract
PURPOSE OF REVIEW The kidney plays an essential role in maintaining sodium and water balance, thereby controlling the volume and osmolarity of the extracellular body fluids, the blood volume and the blood pressure. The final adjustment of sodium and water reabsorption in the kidney takes place in cells of the distal part of the nephron in which a set of apical and basolateral transporters participate in vectorial sodium and water transport from the tubular lumen to the interstitium and, finally, to the general circulation. According to a current model, the activity and/or cell-surface expression of these transporters is/are under the control of a gene network composed of the hormonally regulated, as well as constitutively expressed, genes. It is proposed that this gene network may include new candidate genes for salt- and water-losing syndromes and for salt-sensitive hypertension. A new generation of functional genomics techniques have recently been applied to the characterization of this gene network. The purpose of this review is to summarize these studies and to discuss the potential of the different techniques for characterization of the renal transcriptome. RECENT FINDINGS Recently, DNA microarrays and serial analysis of gene expression have been applied to characterize the kidney transcriptome in different in-vivo and in-vitro models. In these studies, a set of new interesting genes potentially involved in the regulation of sodium and water reabsorption by the kidney have been identified and are currently under detailed investigation. SUMMARY Characterization of the kidney transcriptome is greatly expanding our knowledge of the gene networks involved in multiple kidney functions, including the maintenance of sodium and water homeostasis.
Collapse
Affiliation(s)
- Dmitri Firsov
- Institute of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
215
|
Swift PA, Macgregor GA. Genetic variation in the epithelial sodium channel: a risk factor for hypertension in people of african origin. ACTA ACUST UNITED AC 2004; 11:76-86. [PMID: 14730541 DOI: 10.1053/j.arrt.2003.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High blood pressure occurs commonly in individuals of African origin, leading to an increased risk of cardiovascular and end-stage renal disease (ESRD). Black individuals frequently have low plasma renin activity, and their blood pressure responds well to salt reduction, suggesting that abnormalities in renal sodium handling may be important in the etiology of hypertension in this population. The epithelial sodium channel (ENaC) has a central role in sodium transport across membranes, and in the kidney it contributes to the regulation of blood pressure via changes in sodium balance and blood volume. Rare monogenetic disorders have been described in association with hypertension, such as Liddle's syndrome. In addition, other ENaC polymorphisms have also been described, some of which are more common in black individuals. The T594M polymorphism of ENaC occurs exclusively in black individuals and is associated with hypertension in a black South London population. There is preliminary evidence that amiloride is effective as monotherapy in hypertensives with the T594M polymorphism, and a further study is underway to determine whether this is indeed a safe and specific treatment. If so, then amiloride may provide an important new strategy for blood pressure control in affected black hypertensives.
Collapse
Affiliation(s)
- Pauline A Swift
- Blood Pressure Unit, St. George's Hospital Medical School, Cranmer Terrace, London, SW17 0RE, UK.
| | | |
Collapse
|
216
|
El-Haroun H, Bradbury D, Clayton A, Knox AJ. Interleukin-1beta, transforming growth factor-beta1, and bradykinin attenuate cyclic AMP production by human pulmonary artery smooth muscle cells in response to prostacyclin analogues and prostaglandin E2 by cyclooxygenase-2 induction and downregulation of adenylyl cyclase isoforms 1, 2, and 4. Circ Res 2003; 94:353-61. [PMID: 14670842 DOI: 10.1161/01.res.0000111801.48626.f4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased levels of inflammatory cytokines contribute to the pathophysiology of pulmonary hypertension. Prostacyclin (PGI2) analogues, which relax pulmonary vessels mainly through cAMP elevation, have a major therapeutic role. In this study, we show that prolonged incubation with bradykinin (BK), interleukin-1beta (IL-1beta), and transforming growth factor-beta1 (TGF-beta1) markedly impairs cAMP accumulation in human pulmonary artery smooth muscle cells in response to short-term incubation with prostaglandin E2 (PGE2) and the PGI2 analogues iloprost and carbaprostacyclin. A similar reduction in cAMP accumulation in response to a direct adenylyl cyclase activator, forskolin, suggested that the effect was attributable to downregulation of adenylyl cyclase. Reverse transcriptase-polymerase chain reaction studies showed downregulation of adenylyl cyclase isoforms 1, 2, and 4. The effect of IL-1beta, BK, and TGF-beta1 on cAMP levels was abrogated by the selective COX-2 inhibitor NS398. Furthermore, it was mimicked by prolonged incubation with the COX-2 product PGE2 and PGI2 analogues or the COX substrate arachidonic acid, suggesting that it was mediated by endogenous prostanoids produced by COX-2. Consistent with this, IL-1beta, BK, and TGF-beta1 all induced COX-2 and PGE2 release. These results show that BK, IL-1beta, and TGF-beta1 downregulate adenylyl cyclase in human pulmonary artery smooth muscle cells via COX-2 induction and prostanoid release. This suggests a novel mechanism whereby mediators and cytokines produced in pulmonary hypertension may impair the therapeutic effects of prostacyclin analogues such as iloprost and carbaprostacyclin.
Collapse
MESH Headings
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Adult
- Arachidonic Acid/pharmacology
- Bradykinin/pharmacology
- Cells, Cultured
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Cyclooxygenase 2
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Enzyme Induction/drug effects
- Epoprostenol/analogs & derivatives
- Epoprostenol/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Growth Substances/pharmacology
- Humans
- Interleukin-1/pharmacology
- Isoenzymes/biosynthesis
- Isoproterenol/pharmacology
- Membrane Proteins
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitrobenzenes/pharmacology
- Prostaglandin-Endoperoxide Synthases/biosynthesis
- Prostaglandins/pharmacology
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sulfonamides/pharmacology
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- H El-Haroun
- Division of Respiratory Medicine, University of Nottingham, City Hospital, Nottingham, UK
| | | | | | | |
Collapse
|
217
|
Abstract
Epithelial Na channels were investigated using patch-clamp techniques in connecting tubule (CNT) segments isolated from rat kidney. Cell-attached patches with Li+ in the patch pipette contained channels with conductances for inward currents of 13-16 pS and slow opening and closing kinetics, similar to properties of Na channels in the cortical collecting tubule (CCT). Macroscopic amiloride-sensitive currents (INa) were also observed under whole cell clamp conditions. These currents were undetectable in cells from control rats but were large when the animals were infused with aldosterone (1,380+/-340 pA/cell at a holding potential of -100 mV) or fed a high-K diet (670+/-260 pA/cell) for 1 wk. Under both of these conditions, currents in cells of the CNT were two- to fourfold larger than currents in cells of the CCT of the same animals. In aldosterone-treated animals, currents in cells of the initial collecting tubule (iCT) were intermediate, such that the relative magnitude of INa was as follows: CNT > iCT > CCT. Quantitative analysis of the results suggests that the maximal capacity of the aggregate population of CNTs to reabsorb Na could be as high as 18 micromol/min, or approximately 10% of the filtered load of Na. This capacity is approximately 10 times higher than that of the CCT.
Collapse
Affiliation(s)
- Gustavo Frindt
- Dept. of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10021, USA
| | | |
Collapse
|
218
|
Nielsen J, Kwon TH, Praetorius J, Kim YH, Frøkiaer J, Knepper MA, Nielsen S. Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 2003; 285:F1198-209. [PMID: 12928314 DOI: 10.1152/ajprenal.00118.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lithium-induced nephrogenic diabetes insipidus is associated with increased renal sodium excretion in addition to severe urinary concentrating defects. However, the molecular basis for this altered renal sodium excretion remains undefined. The amiloride-sensitive sodium channel (ENaC) is expressed in the renal connecting tubule and collecting duct and is essential in renal regulation of body sodium balance and blood pressure. We hypothesized that dysregulation of ENaC subunits may be responsible for the increased sodium excretion associated with lithium treatment. Lithium treatment for 28 days resulted in severe polyuria, increased fractional excretion of sodium, and increased plasma aldosterone concentration. Immunoblotting revealed that lithium treatment induced a marked decrease in the protein abundance of beta-ENaC and gamma-ENaC in the cortex and outer medulla. Moreover, immunohistochemistry and laser confocal microscopy demonstrated an almost complete absence of beta-ENaC and gamma-ENaC labeling in cortical and outer medullary collecting duct, which was not affected by dietary sodium intake. In contrast, immunohistochemistry showed increased apical labeling of all ENaC subunits in the connecting tubule and inner medullary collecting duct in rats on a fixed sodium intake but not in rats with free access to sodium. Except for a modest downregulation of the thiazide-sensitive Na-Cl cotransporter, the key renal sodium transporters upstream from the connecting tubule (including the alpha1-subunit of Na-K-ATPase, type 3 Na/H exchanger, and Na-K-2Cl cotransporter) were unchanged. These results identify a marked and highly segment-specific downregulation of beta-ENaC and gamma-ENaC in the cortical and outer medullary collecting duct, chief sites for collecting duct sodium reabsorption, in rats with a lithium-induced increase in fractional excretion of sodium.
Collapse
Affiliation(s)
- Jakob Nielsen
- The Water and Salt Research Center, Institute of Anatomy (Bldg. 233), University of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
219
|
Palmada M, Embark HM, Yun C, Böhmer C, Lang F. Molecular requirements for the regulation of the renal outer medullary K+ channel ROMK1 by the serum- and glucocorticoid-inducible kinase SGK1. Biochem Biophys Res Commun 2003; 311:629-34. [PMID: 14623317 DOI: 10.1016/j.bbrc.2003.10.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The serum- and glucocorticoid- inducible kinase SGK1 stimulates the renal outer medullary K(+) channel ROMK1 in the presence of the Na(+)/H(+) exchanger regulating factor NHERF2. SGK1/NHERF2 are effective through enhancement of ROMK1 abundance within the cell membrane. The present study aims to define the molecular requirements for the interaction of ROMK1 with SGK1/NHERF2. Pull down assays reveal that SGK1 interacts with NHERF2 through the second PDZ domain of NHERF2. According to chemiluminescence and electrophysiology, deletion of the second PDZ domain of NHERF2 or the putative PDZ binding motif on ROMK1 abrogates the stimulating effect of SGK1 on ROMK1 protein abundance in the plasma membrane and K(+) current.
Collapse
Affiliation(s)
- Monica Palmada
- Department of Physiology I, University of Tübingen, Gmelinstr 5, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
220
|
Abstract
The epithelial sodium channel (ENaC) is composed of the three homologous subunits α, β, and γ. The basic oligomerization process inferred from all studies in heterologous systems is preferential assembly of the three subunits into a single oligomeric form. However, there is also considerable evidence that channels composed of only α-, αβ-, or αγ-subunits can form under some circumstances and that individual subunits expressed in heterologous systems can traffic to the cell membrane. In cells that express endogenous ENaC, the three subunits are often synthesized in a differential fashion, with one or two subunits expressed constitutively while the other(s) are induced by different physiological stimuli in parallel with increased ENaC activity. This phenomenon, which we term noncoordinate regulation, has been observed for both whole cell and apical membrane ENaC subunit expression. Several other heteromeric membrane proteins have also been observed to have differential rates of either turnover or trafficking of individual subunits after biosynthesis and membrane localization. Here, we examine the possibility that noncoordinate regulation of ENaC subunits may represent another mechanism in the arsenal of physiological responses to diverse stimuli.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
221
|
Hong G, Lockhart A, Davis B, Rahmoune H, Baker S, Ye L, Thompson P, Shou Y, O'Shaughnessy K, Ronco P, Brown J. PPARgamma activation enhances cell surface ENaCalpha via up-regulation of SGK1 in human collecting duct cells. FASEB J 2003; 17:1966-8. [PMID: 12923071 DOI: 10.1096/fj.03-0181fje] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-dependent transcription factor that belongs to the nuclear receptor family that plays a critical role in adipocyte differentiation and lipid metabolism. Here we report for the first time that PPARgamma is expressed in human renal cortical collecting ducts (CCD), segments of the nephor involved in regulation of sodium and water homeostasis via action of the epithelial sodium channel (ENaC). ENaC activity is regulated by the hormones aldosterone and insulin, primarily through co-ordinate actions on serum and glucocorticoid regulated kinase 1 (SGK1). We show that SGK1 activity is stimulated by treatment of a human CCD cell line with PPARgamma agonists, paralleled by an increase in SGK1 mRNA that is abolished by pretreatment with a specific PPARgamma antagonist, and that this leads to increased levels of cell surface ENaCalpha. Electrophoretic mobility shift assays suggest that these effects are caused by binding of PPARgamma to a specific response element in the SGK1 promoter. Our results identify SGK1 as a target for PPARgamma and suggest a novel role for PPARgamma in regulation of sodium re-absorption in the CCD via stimulation of ENaC activity. This pathway may play a role in sodium retention caused by activation of PPARgamma in man.
Collapse
Affiliation(s)
- Guizhu Hong
- Translational Medicine and Technology, GlaxoSmithKline, ACCI, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2GG, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Gumz ML, Popp MP, Wingo CS, Cain BD. Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. Am J Physiol Renal Physiol 2003; 285:F664-73. [PMID: 12770840 DOI: 10.1152/ajprenal.00353.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mineralocorticoid aldosterone is a major regulator of Na+ and acid-base balance and control of blood pressure. Although the long-term effects of aldosterone have been extensively studied, the early aldosterone-responsive genes remain largely unknown. Using DNA array technology, we have characterized changes in gene expression after 1 h of exposure to aldosterone in a mouse inner medullary collecting duct cell line, mIMCD-3. Results from three independent microarray experiments revealed that the expression of many transcripts was affected by aldosterone treatment. Northern blot analysis confirmed the upregulation of four distinct transcripts identified by the microarray analysis, namely, the serum and glucose-regulated kinase sgk, connective tissue growth factor, period homolog, and preproendothelin. Immunoblot analysis for preproendothelin demonstrated increased protein expression. Following the levels of the four transcripts over time showed that each had a unique pattern of expression, suggesting that the cellular response to aldosterone is complex. The results presented here represent a novel list of early aldosterone-responsive transcripts and provide new avenues for elucidating the mechanism of acute aldosterone action in the kidney.
Collapse
Affiliation(s)
- Michelle L Gumz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | | | | | | |
Collapse
|
223
|
Alvarez de la Rosa D, Coric T, Todorovic N, Shao D, Wang T, Canessa CM. Distribution and regulation of expression of serum- and glucocorticoid-induced kinase-1 in the rat kidney. J Physiol 2003; 551:455-66. [PMID: 12816971 PMCID: PMC2343216 DOI: 10.1113/jphysiol.2003.042903] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2003] [Accepted: 06/12/2003] [Indexed: 01/03/2023] Open
Abstract
The serum- and glucocorticoid-induced kinase-1 (sgk1) increases the activity of a number of epithelial ion channels and transporters. The present study examines the distribution and subcellular localization of sgk1 protein in the rat kidney and the regulation of levels of expression induced by steroids. The results indicate that the kidney expresses predominantly the sgk1 isoform with a distribution restricted to the thick ascending limb of Henle, distal convoluted, connecting and cortical collecting tubules. Within cells, sgk1 strongly associates with the microsomal fraction of homogenates and it colocalizes with the Na+,K+-ATPase to the basolateral membrane. Analysis of the levels of expression of sgk1 by Western blotting and immunohistochemistry indicates constitutive high expression under basal conditions. Approximately half of the basal level is maintained by glucocorticoids whereas physiological fluctuations of aldosterone produce minor changes in sgk1 abundance in adrenal-intact animals. These results do not support the notion that physiological changes of aldosterone concentration turn the expression of sgk1 'on and off' in the mammalian kidney. Additionally, localization of sgk1 to the basolateral membrane indicates that the effects mediated by sgk1 do not require a direct interaction with the ion channels and transporters whose activity is modulated, since most of these proteins are located in the apical membrane of renal epithelial cells.
Collapse
MESH Headings
- Adrenalectomy
- Aldosterone/pharmacology
- Animals
- Antibodies/chemistry
- Antibody Specificity
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Electrophoresis, Polyacrylamide Gel
- Epithelial Cells/enzymology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Glucocorticoids/pharmacology
- Immediate-Early Proteins
- Immunoblotting
- In Vitro Techniques
- Isoenzymes/genetics
- Isoenzymes/immunology
- Isoenzymes/metabolism
- Kidney/enzymology
- Kidney Tubules/enzymology
- Microscopy, Fluorescence
- Nuclear Proteins
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/metabolism
- RNA/isolation & purification
- RNA/metabolism
- Rats
- Rats, Sprague-Dawley
- Subcellular Fractions/enzymology
- Transfection
Collapse
Affiliation(s)
- D Alvarez de la Rosa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | | | | | | | | | | |
Collapse
|
224
|
Lebowitz J, An B, Edinger RS, Zeidel ML, Johnson JP. Effect of altered Na+ entry on expression of apical and basolateral transport proteins in A6 epithelia. Am J Physiol Renal Physiol 2003; 285:F524-31. [PMID: 12746257 DOI: 10.1152/ajprenal.00366.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In several in vivo settings, prolonged alterations in the rate of apical Na+ entry into epithelial cells alter the ability of these cells to reabsorb Na+. We previously modeled this load dependence of transport in A6 cells by either decreasing Na+ entry via apical Na+ removal or amiloride or enhancing Na+ entry by chronic short-circuiting (Rokaw MD, Sarac E, Lechman E, West M, Angeski J, Johnson JP, and Zeidel ML. Am J Physiol Cell Physiol 270: C600-C607, 1996). Inhibition of Na+ entry by either method was associated with striking downregulation of transport rate as measured by short-circuit current (Isc), which recovered to basal levels of transport over a period of hours. Conversely, upregulation of Na+ entry by short-circuiting resulted in a sustained increase in transport rate that also returned to basal levels over a period of hours. The current studies were undertaken to determine whether these conditions were associated with alterations in either the whole cell content or apical membrane distribution of sodium channel (ENaC) subunits or on basolateral expression of either of the subunits of the Na+-K+-ATPase. We compared these effects to those achieved by chronic upregulation of Na+ transport by aldosterone. Whole cell levels of ENaC subunits were measured by immunoblot following 18-h inhibition of Na+ entry achieved by either tetramethylammonium replacement of Na+ or apical amiloride or after an 18-h increase in Na+ entry achieved by chronic short-circuiting. None of these maneuvers significantly altered the whole cell content of any of the ENaC subunits compared with control cells. We then examined the effects of these maneuvers on apical membrane ENaC expression using domain-specific biotinylation and immunoblot. Inhibition of Na+ entry by either method was associated with a profound decrease in apical membrane beta-ENaC without significant changes in apical membrane alpha-or gamma-ENaC amounts. Restoration of apical Na+ and/or removal of amiloride resulted in return of Isc to control levels over 2 h and coincided with return of apical beta-ENaC to control levels without change in apical alpha- or gamma-ENaC. Stimulation of Na+ transport by short-circuiting, in contrast, did not significantly alter apical membrane composition of any of the ENaC subunits. Basolateral expression of Na+-K+-ATPase was also measured by biotinylation and immunoblot and was unchanged under all conditions. Aldosterone increased basolateral expression of the alpha-subunit of Na+-K+-ATPase. These results suggest that chronic downregulation of transport is mediated, in part, by a selective decrease in apical membrane ENaC expression, consistent with our previous observations of noncoordinate regulation of ENaC expression under varying transport conditions in A6 cells. The chronic increase in the rate of Na+ entry is not associated with any of the changes in transporter density at either apical or basolateral membrane seen with aldosterone, suggesting that these two mechanisms of augmenting transport are completely distinct.
Collapse
Affiliation(s)
- Jonathan Lebowitz
- Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
225
|
Auberson M, Hoffmann-Pochon N, Vandewalle A, Kellenberger S, Schild L. Epithelial Na+ channel mutants causing Liddle's syndrome retain ability to respond to aldosterone and vasopressin. Am J Physiol Renal Physiol 2003; 285:F459-71. [PMID: 12759227 DOI: 10.1152/ajprenal.00071.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Liddle's syndrome is a monogenic form of hypertension caused by mutations in the PY motif of the COOH terminus of beta- and gamma-epithelial Na+ channel (ENaC) subunits. These mutations lead to retention of active channels at the cell surface. Because of the critical role of this PY motif in the stability of ENaCs at the cell surface, we have investigated its contribution to the ENaC response to aldosterone and vasopressin. Mutants of the PY motif in beta- and gamma-ENaC subunits (beta-Y618A, beta-P616L, beta-R564stop, and gamma-K570stop) were stably expressed by retroviral gene transfer in a renal cortical collecting duct cell line (mpkCCDcl4), and transepithelial Na+ transport was assessed by measurements of the benzamil-sensitive short-circuit current (Isc). Cells that express ENaC mutants of the PY motif showed a five- to sixfold higher basal Isc compared with control cells and responded to stimulation by aldosterone (10(-6) M) or vasopressin (10(-9) M) with a further increase in Isc. The rates of the initial increases in Isc after aldosterone or vasopressin stimulation were comparable in cells transduced with wild-type and mutant ENaCs, but reversal of the effects of aldosterone and vasopressin was slower in cells that expressed the ENaC mutants. The conserved sensitivity of ENaC mutants to stimulation by aldosterone and vasopressin together with the prolonged activity at the cell surface likely contribute to the increased Na+ absorption in the distal nephron of patients with Liddle's syndrome.
Collapse
Affiliation(s)
- Muriel Auberson
- Institut de Pharmacologie et Toxicologie, Université de Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
226
|
Rubera I, Loffing J, Palmer LG, Frindt G, Fowler-Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC. Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 2003; 112:554-65. [PMID: 12925696 PMCID: PMC171384 DOI: 10.1172/jci16956] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aldosterone controls the final sodium reabsorption and potassium secretion in the kidney by regulating the activity of the epithelial sodium channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN). ASDN consists of the last portion of the distal convoluted tubule (late DCT), the connecting tubule (CNT), and the collecting duct (CD) (i.e., the cortical CD [CCD] and the medullary CD [MCD]). It has been proposed that the control of sodium transport in the CCD is essential for achieving sodium and potassium balance. We have tested this hypothesis by inactivating the alpha subunit of ENaC in the CD but leaving ENaC expression in the late DCT and CNT intact. Under salt restriction or under aldosterone infusion, whole-cell voltage clamp of principal cells of CCD showed no detectable ENaC activity, whereas large amiloride-sensitive currents were observed in control littermates. The animals survive well and are able to maintain sodium and potassium balance, even when challenged by salt restriction, water deprivation, or potassium loading. We conclude that the expression of ENaC in the CD is not a prerequisite for achieving sodium and potassium balance in mice. This stresses the importance of more proximal nephron segments (late DCT/CNT) to achieve sodium and potassium balance.
Collapse
Affiliation(s)
- Isabelle Rubera
- Institut de Pharmacologie et de Toxicologie, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Palmada M, Embark HM, Wyatt AW, Böhmer C, Lang F. Negative charge at the consensus sequence for the serum- and glucocorticoid-inducible kinase, SGK1, determines pH sensitivity of the renal outer medullary K+ channel, ROMK1. Biochem Biophys Res Commun 2003; 307:967-72. [PMID: 12878206 DOI: 10.1016/s0006-291x(03)01301-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The renal outer medullary K(+)-channel ROMK1 is upregulated by the serum- and glucocorticoid-inducible kinase SGK1, an effect potentiated by Na(+)/H(+)-exchanger-regulating-factor NHERF2. SGK1 phosphorylates ROMK1 at serine44. To explore the role of SGK1 phosphorylation, serine44 was replaced by an alanine ([S44A]ROMK1) or an aspartate ([S44D]ROMK1). Wild type ROMK1, [S44A]ROMK1, and [S44D]ROMK1 were expressed in Xenopus oocytes with or without constitutively active [S422D]SGK1 and NHERF2, and K(+) current (I(KR)) determined. Cytosolic pH required for halfmaximal I(KR) (pK(a)) amounted to 7.05+/-0.01 for ROMK1, 7.07+/-0.02 for [S44A]ROMK1, and 6.83+/-0.05 for [S44D]ROMK1. Maximal I(KR) was [S44D]ROMK1>wild type ROMK1>[S44A]ROMK1. Coexpression of [S422D]SGK1 and NHERF2 enhanced the activity of ROMK1, [S44A]ROMK1 and [S44D]ROMK1, but led to a significant shift of pK(a) only in wild type ROMK1 (6.95+/-0.03). In conclusion, phosphorylation by SGK1 or introduction of a negative charge at serine44 shifts the pH sensitivity of the channel and contributes to the stimulation of maximal channel activity by the kinase.
Collapse
Affiliation(s)
- Monica Palmada
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
228
|
Abstract
Hypertension with hypokalemia, metabolic alkalosis, and suppressed plasma renin activity defines mineralocorticoid hypertension. Mineralocorticoid hypertension is the consequence of an overactivity of the epithelial sodium channel expressed at the apical membrane of renal cells in the distal nephron. This is usually the case when the mineralocorticoid receptor is activated by its physiologic substrate aldosterone. The best known form of mineralocorticoid hypertension is an aldosterone-producing adrenal tumor leading to primary aldosteronism. Primary aldosteronism can also be caused by unilateral or bilateral adrenal hyperplasia and rarely adrenal carcinoma. Interestingly, most of the inherited monogenic disorders associated with hypertension involve an excessive activation of the mineralocorticoid axis. In some of these disorders, mineralocorticoid hypertension results from activation of the mineralocorticoid receptor by other steroids (cortisol, deoxycorticosterone), by primary activation of the receptor itself, or by constitutive overactivity of the renal epithelial sodium channel. The present review addresses the physiology and significance of the key players of the mineralocorticoid axis, placing emphasis on the conditions leading to mineralocorticoid hypertension.
Collapse
Affiliation(s)
- Paolo Ferrari
- Division of Nephrology and Hypertension, Inselspital, University of Berne, 3010 Berne, Switzerland
| | | |
Collapse
|
229
|
Pearce D, Bhargava A, Cole TJ. Aldosterone: its receptor, target genes, and actions. VITAMINS AND HORMONES 2003; 66:29-76. [PMID: 12852252 DOI: 10.1016/s0083-6729(03)01002-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- David Pearce
- Department of Medicine, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
230
|
Muller OG, Parnova RG, Centeno G, Rossier BC, Firsov D, Horisberger JD. Mineralocorticoid effects in the kidney: correlation between alphaENaC, GILZ, and Sgk-1 mRNA expression and urinary excretion of Na+ and K+. J Am Soc Nephrol 2003; 14:1107-15. [PMID: 12707381 DOI: 10.1097/01.asn.0000061777.67332.77] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aldosterone exerts its effects through interactions with two types of binding sites, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors. Although both receptors are known to be involved in the anti-natriuretic response to aldosterone, the mechanisms of signal transduction leading to modulation of electrolyte transport are not yet fully understood. This study measured the Na(+) and K(+) urinary excretion and the mRNA levels of three known aldosterone-induced transcripts, the serum and glucocorticoid-induced kinase (Sgk-1), the alpha subunit of the epithelial Na(+) channel (alphaENaC), and the glucocorticoid-induced-leucine-zipper protein (GILZ) in the whole kidney and in isolated cortical collecting tubules of adrenalectomized rats treated with low doses of aldosterone and/or dexamethasone. The resulting plasma concentrations of both steroids were close to 1 nmol/L. Aldosterone, given with or without dexamethasone, induced anti-natriuresis and kaliuresis, whereas dexamethasone alone did not. GILZ and alphaENaC transcripts were higher after treatment with either or both hormones, whereas the mRNA abundance of Sgk-1 was increased in the cortical collecting tubule by aldosterone but not by dexamethasone. We conclude the increased expression of Sgk-1 in the cortical collecting tubules is a primary event in the early antinatriuretic and kaliuretic responses to physiologic concentrations of aldosterone. Induction of alphaENaC and/or GILZ mRNAs may play a permissive role in the enhancement of the early and/or late responses; these effects may be necessary for a full response but do not by themselves promote early changes in urinary Na(+) and K(+) excretion.
Collapse
Affiliation(s)
- Olivier G Muller
- Institute of Pharmacology and Toxicology, University of Lausanne, Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
231
|
Knepper MA, Kim GH, Masilamani S. Renal tubule sodium transporter abundance profiling in rat kidney: response to aldosterone and variations in NaCl intake. Ann N Y Acad Sci 2003; 986:562-9. [PMID: 12763890 DOI: 10.1111/j.1749-6632.2003.tb07254.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Based on extensive physiological study of sodium transport mechanisms along the renal tubule, complementary DNAs for all of the major transporters and channels responsible for renal tubular sodium reabsorption have been cloned over the past decade. There is now a comprehensive set of cDNA and antibody probes that can be used to investigate physiological mechanisms on a molecular level. Using rabbit polyclonal antibodies to all of the major renal Na transport proteins, we have developed profiling methods allowing comprehensive, integrated analysis of sodium transporter protein abundance changes along the renal tubule in response to physiological and pathophysiological perturbations. Here, we review some of our recent findings with this approach, focusing on renal responses to aldosterone and to variations in NaCl intake.
Collapse
Affiliation(s)
- Mark A Knepper
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA.
| | | | | |
Collapse
|
232
|
Verrey F, Summa V, Heitzmann D, Mordasini D, Vandewalle A, Féraille E, Zecevic M. Short-term aldosterone action on Na,K-ATPase surface expression: role of aldosterone-induced SGK1? Ann N Y Acad Sci 2003; 986:554-61. [PMID: 12763889 DOI: 10.1111/j.1749-6632.2003.tb07253.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aldosterone controls extracellular volume and blood pressure by regulating Na(+) reabsorption across epithelial cells of the aldosterone-sensitive distal nephron (ASDN). This effect is mediated by a coordinate action on the luminal channel ENaC (generally rate limiting) and the basolateral Na,K-ATPase. Long-term effects of aldosterone (starting within 3 to 6 hours and increasing over days) are mediated by the direct and indirect induction of stable elements of the Na(+) transport machinery (e.g., Na,K-ATPase alpha subunit), whereas short-term effects appear to be mediated by the upregulation of short-lived elements of the machinery (e.g., ENaC alpha subunit) and of regulatory proteins, such as the serum- and glucocorticoid-regulated kinase SGK1. We have recently shown that in cortical collecting duct (CCD) from adrenalectomized (ADX) rats, the increase in Na,K-ATPase activity (approximately threefold in 3 h), induced by a single aldosterone injection, can be fully accounted for by the increase in Na,K-ATPase cell-surface expression. Using the model cell line mpkCCD(cl4), we showed that the parallel increase in Na,K-ATPase function [assessed by Na(+) pump current (I(p)) measurements] and cell-surface expression depends on transcription and translation, and that it is not secondary to a change in apical Na(+) influx. As a first approach to address the question whether the aldosterone-induced regulatory protein SGK1 might play a role in mediating Na,K-ATPase translocation, we have used the Xenopus laevis expression system. SGK1 coexpression indeed increased both the Na(+) pump current and the surface expression of pumps containing the rat alpha1 subunits. In summary, aldosterone controls Na(+) reabsorption in the short term not only by regulating the apical cell-surface expression of ENaC but also by coordinately acting on the basolateral cell-surface expression of the Na,K-ATPase. Results obtained in the Xenopus oocyte expression system suggest the possibility that this effect could be mediated in part by the aldosterone-induced kinase SGK1.
Collapse
|
233
|
Takada M, Kasai M. Prolactin increases open-channel density of epithelial Na+ channel in adult frog skin. J Exp Biol 2003; 206:1319-23. [PMID: 12624167 DOI: 10.1242/jeb.00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The short-term effect of prolactin on the skin of the adult tree frog Hyla arborea japonica was investigated using current-fluctuation analysis. Basolateral application of ovine prolactin (10 microg ml(-1)) (1) increased the amiloride-blockable short-circuit current (SCC) across the skin 2.6+/-0.4-fold and (2) increased the open-channel density (M) of the epithelial Na(+) channel 6.1+/-1.2-fold but decreased the single-channel current i to 0.4+/-0.1 times the control value (N=9). The increase in SCC induced by prolactin was thus due to an increase in M, not i. Apparently, in amphibians prolactin has not only a counteracting effect on metamorphosis but also a stimulatory effect on the development of adult-type features, such as this amiloride-blockable SCC.
Collapse
Affiliation(s)
- Makoto Takada
- Department of Physiology, Saitama Medical School, Moroyama, Iruma-gun, Saitama, 3500495 Japan.
| | | |
Collapse
|
234
|
Loffing J, Kaissling B. Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Renal Physiol 2003; 284:F628-43. [PMID: 12620920 DOI: 10.1152/ajprenal.00217.2002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The final adjustment of renal sodium and calcium excretion is achieved by the distal nephron, in which transepithelial ion transport is under control of various hormones, tubular fluid composition, and flow rate. Acquired or inherited diseases leading to deranged renal sodium and calcium balance have been linked to dysfunction of the distal nephron. Diuretic drugs elicit their effects on sodium balance by specifically inhibiting sodium transport proteins in the apical plasma membrane of distal nephron segments. The identification of the major apical sodium transport proteins allows study of their precise distribution pattern along the distal nephron and helps address their cellular and molecular regulation under various physiological and pathophysiological settings. This review focuses on the topological arrangement of sodium and calcium transport proteins along the cortical distal nephron and on some aspects of their functional regulation. The availability of data on the distribution of transporters in various species points to the strengths, as well as to the limitations, of animal models for the extrapolation to humans.
Collapse
Affiliation(s)
- Johannes Loffing
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
235
|
Embark HM, Böhmer C, Vallon V, Luft F, Lang F. Regulation of KCNE1-dependent K(+) current by the serum and glucocorticoid-inducible kinase (SGK) isoforms. Pflugers Arch 2003; 445:601-6. [PMID: 12634932 DOI: 10.1007/s00424-002-0982-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 10/22/2002] [Indexed: 01/09/2023]
Abstract
The slowly activating K(+) channel subunit KCNE1 is expressed in a variety of tissues including proximal renal tubules, cardiac myocytes and stria vascularis of inner ear. The present study has been performed to explore whether the serum- and glucocorticoid-inducible kinase family members SGK1, SGK2, or SGK3 and/or protein kinase B (PKB) influence K(+) channel activity in Xenopus oocytes expressing KCNE1. cRNA encoding KCNE1 was injected with or without cRNA encoding wild-type SGK1, constitutively active (S422D)SGK1, inactive (K127 N)SGK1, wild-type SGK2, wild-type SGK3 or constitutively active (T308D,S473D)PKB. In oocytes injected with KCNE1 cRNA but not in water-injected oocytes a depolarization from -80 mV to -10 mV led to the appearance of a slowly activating K(+) current. Coexpression of SGK1,( S422D)SGK1, SGK2, SGK3 or (T308D,S473D)PKB but not (K127 N)SGK1 significantly stimulated KCNE1-induced current. The effect did not depend on Na(+)/K(+)-ATPase activity. KCNE1-induced current was markedly upregulated by coexpression of KCNQ1 and further increased by additional expression of (S422D)SGK1, SGK2, SGK3 or (T308D,S473D)PKB. In conclusion, all three members of the SGK family of kinases SGK1-3 and protein kinase B stimulate the slowly activating K(+) channel KCNE1/KCNQ1. The kinases may thus participate in the regulation of KCNE1-dependent transport and excitability.
Collapse
Affiliation(s)
- Hamdy M Embark
- Department of Physiology, University of Tübingen, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
236
|
Alvarez de la Rosa D, Canessa CM. Role of SGK in hormonal regulation of epithelial sodium channel in A6 cells. Am J Physiol Cell Physiol 2003; 284:C404-14. [PMID: 12388075 DOI: 10.1152/ajpcell.00398.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the role of the serum- and glucocorticoid-induced kinase (SGK) in the activation of the epithelial sodium channel (ENaC) by aldosterone, arginine vasopressin (AVP), and insulin. We used a tetracycline-inducible system to control the expression of wild-type (SGK(wt)(T)), constitutively active (S425D mutation; SGK(S425D)(T)), or inactive (K130M mutation; SGK(K130M)(T)) SGK in A6 cells independently of hormonal stimulation. The effect of SGK expression on ENaC activity was monitored by measuring transepithelial amiloride-sensitive short-circuit current (I(sc)) of transfected A6 cell lines. Expression of SGK(wt)(T) or SGK(S425D)(T) and aldosterone stimulation have additive effects on I(sc). Although SGK could play some role in the aldosterone response, our results suggest that other mechanisms take place. SGK(S425D)(T) abrogates the responses to AVP and insulin; hence, in the signaling pathways of these hormones there is a shared step that is stimulated by SGK. Because AVP and insulin induce fusion of vesicles to the apical membrane, our results support the notion that SGK promotes incorporation of channels in the apical membrane.
Collapse
Affiliation(s)
- Diego Alvarez de la Rosa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA
| | | |
Collapse
|
237
|
Yun CC. Concerted roles of SGK1 and the Na+/H+ exchanger regulatory factor 2 (NHERF2) in regulation of NHE3. Cell Physiol Biochem 2003; 13:29-40. [PMID: 12649600 PMCID: PMC1474050 DOI: 10.1159/000070247] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2002] [Indexed: 01/01/2023] Open
Abstract
Na+/H+ exchanger regulatory factors, NHERF1 and NHERF2, are structurally related proteins and highly expressed in epithelial cells. These proteins are initially identified as accessory proteins in the regulation of Na+/H+ exchanger isoform 3, NHE3. In addition to regulation of NHE3, recent studies demonstrate the importance of NHERF1 and NHERF2 in recycling and localization of membrane receptors, ion channels and transporters. Recent studies show that serum- and glucocorticoid-induced kinase 1 (SGK1) specifically interacts with NHERF2 but not with NHERF1, adding to the growing number of differences between the two proteins. The association of SGK1 with NHERF2 is necessary for stimulation of NHE3 activity by glucocorticoids. In addition, SGK1 together with NHERF2 stimulates the K+ channel ROMK1, suggesting a broader role of SGK1 in regulation of ion transport.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Disease, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
238
|
Na KY, Oh YK, Han JS, Joo KW, Lee JS, Earm JH, Knepper MA, Kim GH. Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. Am J Physiol Renal Physiol 2003; 284:F133-43. [PMID: 12388392 DOI: 10.1152/ajprenal.00227.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Furosemide and hydrochlorothiazide (HCTZ) exert their diuretic actions by binding to apical Na(+) transporters, viz., the Na(+)-K(+)-2Cl(-) cotransporter in the thick ascending limb and the Na(+)-Cl(-) cotransporter in the distal convoluted tubule, respectively. We carried out semiquantitative immunoblotting and immunohistochemistry of rat kidneys to investigate whether chronic administration of furosemide or HCTZ is associated with compensatory changes in the abundance of Na(+) transporters downstream from the primary site of action. Osmotic minipumps were implanted into Sprague-Dawley rats to deliver furosemide (12 mg/day) or HCTZ (3.75 mg/day) for 7 days. To prevent volume depletion, all animals were offered tap water and a solution containing 0.8% NaCl and 0.1% KCl as drinking fluid. The diuretic/natriuretic response was quantified in response to both agents by using quantitative urine collections. Semiquantitative immunoblotting revealed that the abundances of thick ascending limb Na(+)-K(+)-2Cl(-) cotransporter and all three subunits of the epithelial Na(+) channel (ENaC) were increased by furosemide infusion. HCTZ infusion increased the abundances of thiazide-sensitive Na(+)-Cl(-) cotransporter and beta-ENaC in the cortex and beta- and gamma-ENaC in the outer medulla. Consistent with these results, beta-ENaC immunohistochemistry showed a remarkable increase in immunoreactivity in the principal cells of collecting ducts with either diuretic treatment. These increases in the abundance of Na(+) transporters in response to chronic diuretic treatment may account for the generation of diuretic tolerance associated with long-term diuretic use.
Collapse
Affiliation(s)
- Ki Young Na
- Department of Internal Medicine, Seoul National University, Clinical Research Institute of Seoul National University Hospital, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Conti M. Specificity of the cyclic adenosine 3',5'-monophosphate signal in granulosa cell function. Biol Reprod 2002; 67:1653-61. [PMID: 12444038 DOI: 10.1095/biolreprod.102.004952] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cyclic AMP signaling is involved in most aspects of differentiation and maturation of the granulosa cells in the ovarian follicle. As the genetic programs activated at different stages of follicle growth maturation are being elucidated, it is becoming increasingly difficult to reconcile the simplicity of the cAMP cascade with the complexity and the divergent patterns of gene expression activated in these cells. To account for these divergent outcomes of the cAMP signal, three aspects of this signaling cascade in granulosa cells will be reviewed. We will discuss the evidence for gonadotropin receptors coupling to different G proteins and effectors. Next, we will explore the possibility that the temporal and spatial dimensions of the cAMP signal itself may contribute to the diverse outcomes. Finally, we will summarize available data showing that the cAMP signal is distributed through several cascades of kinase activation. It is hoped this compendium will provide a framework with which to understand how the initial signals activated by gonadotropins control the complex patterns of gene expression that are required for follicle maturation and ovulation.
Collapse
Affiliation(s)
- Marco Conti
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, California 94305, USA.
| |
Collapse
|
240
|
Farman N, Boulkroun S, Courtois-Coutry N. Sgk: an old enzyme revisited. J Clin Invest 2002; 110:1233-4. [PMID: 12417559 PMCID: PMC151623 DOI: 10.1172/jci17064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Nicolette Farman
- Institut National de la Santé et de la Recherche Médicale U478, Institut Fédératif de Recherche 02,Université Paris 7, Faculté de Médecine Xaviér Bichat, Paris, France.
| | | | | |
Collapse
|
241
|
Nielsen J, Kwon TH, Masilamani S, Beutler K, Hager H, Nielsen S, Knepper MA. Sodium transporter abundance profiling in kidney: effect of spironolactone. Am J Physiol Renal Physiol 2002; 283:F923-33. [PMID: 12372767 DOI: 10.1152/ajprenal.00015.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal tubule profiling studies were carried out to investigate the long-term effects of administration of spironolactone, a mineralocorticoid receptor antagonist, on abundances of the major Na transporter and Na channel proteins along the rat renal tubule. Oral administration of spironolactone for 7 days to NaCl-restricted rats did not significantly alter abundances of Na transporters expressed proximal to the macula densa, while substantially decreasing the abundances of the thiazide-sensitive Na-Cl cotransporter (NCC), the alpha-subunit of the amiloride-sensitive epithelial Na channel (ENaC), and the 70-kDa form of the gamma-subunit of ENaC. A dependency of NCC expression on aldosterone was confirmed by showing increased NCC expression in response to aldosterone infusion in adrenalectomized rats. Immunoperoxidase labeling of ENaC in renal cortex confirmed that dietary NaCl restriction causes a redistribution of ENaC to the apical domain of connecting tubule cells and showed that high-dose spironolactone administration does not block this apical redistribution. In contrast, spironolactone completely blocked the increase in alpha-ENaC abundance in response to dietary NaCl restriction. We conclude that the protein abundances of NCC, alpha-ENaC, and the 70-kDa form of gamma-ENaC are regulated via the classical mineralocorticoid receptor, but the subcellular redistribution of ENaC in response to dietary NaCl restriction is not prevented by blockade of the mineralocorticoid receptor.
Collapse
Affiliation(s)
- Jakob Nielsen
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Wulff P, Vallon V, Huang DY, Völkl H, Yu F, Richter K, Jansen M, Schlünz M, Klingel K, Loffing J, Kauselmann G, Bösl MR, Lang F, Kuhl D. Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest 2002; 110:1263-8. [PMID: 12417564 PMCID: PMC151609 DOI: 10.1172/jci15696] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The serum- and glucocorticoid-regulated kinase (sgk1) is induced by mineralocorticoids and, in turn, upregulates heterologously expressed renal epithelial Na(+) channel (ENaC) activity in Xenopus oocytes. Accordingly, Sgk1 is considered to mediate the mineralocorticoid stimulation of renal ENaC activity and antinatriuresis. Here we show that at standard NaCl intake, renal water and electrolyte excretion is indistinguishable in sgk1-knockout (sgk1(-/-)) mice and wild-type (sgk1(+/+)) mice. In contrast, dietary NaCl restriction reveals an impaired ability of sgk1(-/-) mice to adequately decrease Na(+) excretion despite increases in plasma aldosterone levels and proximal-tubular Na(+) and fluid reabsorption, as well as decreases in blood pressure and glomerular filtration rate.
Collapse
Affiliation(s)
- Peer Wulff
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Itani OA, Liu KZ, Cornish KL, Campbell JR, Thomas CP. Glucocorticoids stimulate human sgk1 gene expression by activation of a GRE in its 5'-flanking region. Am J Physiol Endocrinol Metab 2002; 283:E971-9. [PMID: 12376324 DOI: 10.1152/ajpendo.00021.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In lung and collecting duct epithelia, glucocorticoid (GC)-stimulated Na+ transport is preceded by an increase in the protein kinase sgk1, which in turn regulates the activity of the epithelial Na+ channel (ENaC). We investigated the mechanism for GC-regulated human sgk1 expression in lung and renal epithelia. sgk1 mRNA was increased in these epithelia by GCs, and this was inhibited by actinomycin D and superinduced by cycloheximide, consistent with a transcriptional effect that did not require protein synthesis. To understand the basis for transcriptional regulation, the transcription initiation site was mapped and the 5'-flanking region cloned by PCR. A 3-kb fragment of the upstream region was coupled to luciferase and transfected into A549 cells. By deletion analysis, an imperfect GC response element (GRE) was identified that was necessary and sufficient for GC responsiveness. When tested with cell extracts, a specific protein recognized by an anti-GC receptor (GR) antibody bound the GRE in gel mobility shift assays. We conclude that GCs stimulate sgk1 expression in human epithelial cells via activation of a GRE in the 5'-flanking region of sgk1.
Collapse
Affiliation(s)
- Omar A Itani
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52246, USA
| | | | | | | | | |
Collapse
|
244
|
Chun J, Kwon T, Lee E, Suh PG, Choi EJ, Sun Kang S. The Na(+)/H(+) exchanger regulatory factor 2 mediates phosphorylation of serum- and glucocorticoid-induced protein kinase 1 by 3-phosphoinositide-dependent protein kinase 1. Biochem Biophys Res Commun 2002; 298:207-15. [PMID: 12387817 DOI: 10.1016/s0006-291x(02)02428-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Na(+)/H(+) exchanger regulatory factor 2 (NHERF2/TKA-1/E3KARP) contains two PSD-95/Dlg/ZO-1 (PDZ) domains which interact with the PDZ docking motif (X-(S/T)-X-(V/L)) of proteins to mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. One of the PDZ domains of NHERF2 interacts specifically with the DSLL, DSFL, and DTRL motifs present at the carboxy-termini of the 2-adrenergic receptor, the platelet-derived growth factor receptor, and the cystic fibrosis transmembrane conductance regulator, respectively. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) also carries a putative PDZ-binding motif (D-S-F-L) at its carboxy tail, implicated in the specific interaction with NHERF2. There is a 3-phosphoinositide-dependent protein kinase 1 (PDK1) interacting fragment (PIF) in the tail of NHERF2. Using pull-down assays and co-transfection experiments, we demonstrated that the DSFL tail of SGK1 interacts with the first PDZ domain of NHERF2 and the PIF of NHERF2 binds to the PIF-binding pocket of PDK1 to form an SGK1-NHERF2-PDK1 complex. Formation of the protein complex promoted the phosphorylation and activation of SGK1 by PDK1. Thus, it was suggested that NHERF2 mediates the activation and phosphorylation of SGK1 by PDK1 through its first PDZ domain and PIF motif, as a novel SGK1 activation mechanism.
Collapse
Affiliation(s)
- Jaesun Chun
- School of Science Education, Chungbuk National University, Gaeshin-dong, Heungdok-gu, Chongju 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
245
|
Busjahn A, Aydin A, Uhlmann R, Krasko C, Bähring S, Szelestei T, Feng Y, Dahm S, Sharma AM, Luft FC, Lang F. Serum- and glucocorticoid-regulated kinase (SGK1) gene and blood pressure. Hypertension 2002; 40:256-60. [PMID: 12215463 DOI: 10.1161/01.hyp.0000030153.19366.26] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serum- and glucose-regulated kinase (SGK1) gene has recently been identified as an important aldosterone-induced protein kinase that mediates trafficking of the renal epithelial Na(+) channel (ENaC) to the cell membrane. Thus, SGK1 is an appealing candidate for blood pressure regulation and possibly essential hypertension. To test this hypothesis, we recruited monozygotic (126 pairs) and dizygotic (70 pairs) normotensive twin subjects and parents of dizygotic twins. Blood pressure was measured in a controlled fashion: recumbent, sitting, and upright. We documented genetic variance on blood pressure in all positions. We then relied on microsatellite markers at the SGK1 gene locus (D6S472, D6S1038, and D6S270) and 2 single nucleotide polymorphisms within the SGK1 gene. We found significant linkage of the SGK1 gene locus to diastolic blood pressure (P<0.0002) and suggestive evidence for linkage for systolic blood pressure (P<0.04), documenting the locus as a quantitative trait locus for blood pressure. We next performed association, using all dizygotic twins and a monozygotic member from each pair. We found significant associations between both single nucleotide polymorphism variants and blood pressure, as well as a significant interaction between the single nucleotide polymorphisms enhancing the effect. This combined effect of the polymorphisms was confirmed in an independent sample of 260 young normotensive men. We conclude that the SGK1 gene is relevant to blood pressure regulation and probably to hypertension in man.
Collapse
Affiliation(s)
- Andreas Busjahn
- Franz Volhard Clinic, HELIOS Kliniken-Berlin and Max Delbrück Center for Molecular Medicine, Medical Faculty of the Charité, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Kamynina E, Staub O. Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na(+) transport. Am J Physiol Renal Physiol 2002; 283:F377-87. [PMID: 12167587 DOI: 10.1152/ajprenal.00143.2002] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The epithelial Na(+) channel (ENaC), located in the apical membrane of renal aldosterone-responsive epithelia, plays an essential role in controlling the Na(+) balance of extracellular fluids and hence blood pressure. As of now, ENaC is the only Na(+) transport protein for which genetic evidence exists for its involvement in the genesis of both hypertension (Liddle's syndrome) and hypotension (pseudohypoaldosteronism type 1). The regulation of ENaC involves a variety of hormonal signals (aldosterone, vasopressin, insulin), but the molecular mechanisms behind this regulation are mostly unknown. Two regulatory proteins have gained interest in recent years: the ubiquitin-protein ligase neural precursor cell-expressed, developmentally downregulated gene 4 isoform Nedd4-2, which negatively controls ENaC cell surface expression, and serum glucocorticoid-inducible kinase 1 (Sgk1), which is an aldosterone- and insulin-dependent, positive regulator of ENaC density at the plasma membrane. Here, we summarize present ideas about Sgk1 and Nedd4-2 and the lines of experimental evidence, suggesting that they act sequentially in the regulatory pathways governed by aldosterone and insulin and regulate ENaC number at the plasma membrane.
Collapse
Affiliation(s)
- Elena Kamynina
- Institute of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
247
|
Schafer JA. Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am J Physiol Renal Physiol 2002; 283:F221-35. [PMID: 12110505 DOI: 10.1152/ajprenal.00068.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the aldosterone-responsive segments of the nephron together reabsorb <10% of the filtered Na+, certain single-gene defects that affect the epithelial Na+ channel (ENaC) in the luminal membrane of the collecting duct (CD) or its regulation by aldosterone cause severe hypertension, whereas others cause salt wasting and hypotension. These rare defects illustrate the key role of the distal nephron in maintaining normal extracellular volume and blood pressure. Genetic defects that increase the Cl- conductance of the junctional complexes may also lead to salt retention and hypertension. Less dramatic alterations in regulatory actions of other hormones such as vasopressin (VP), either alone or with other genetic variations, diet, or environmental factors, may also produce Na+ retention or loss. Although VP acts primarily to regulate water balance, it is also an antinatriuretic hormone. Elevated basal plasma VP levels, and/or augmented VP release with increased Na+ intake, have been linked to essential hypertension in humans and in animal models of congestive heart failure and cirrhosis. Norepinephrine, dopamine, and prostaglandin E2 can inhibit the antinatriuretic effects of VP, and changes in the actions of these autocrine and paracrine regulators may also be involved in abnormal regulation of Na+ reabsorption.
Collapse
Affiliation(s)
- James A Schafer
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|
248
|
Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC. Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus Oocytes. J Gen Physiol 2002; 120:191-201. [PMID: 12149280 PMCID: PMC2234457 DOI: 10.1085/jgp.20028598] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sodium balance is maintained by the precise regulation of the activity of the epithelial sodium channel (ENaC) in the kidney. We have recently reported an extracellular activation of ENaC-mediated sodium transport (I(Na)) by a GPI-anchored serine protease (mouse channel-activating protein, mCAP1) that was isolated from a cortical collecting duct cell line derived from mouse kidney. In the present study, we have identified two additional membrane-bound serine proteases (mCAP2 and mCAP3) that are expressed in the same cell line. We show that each of these proteases is able to increase I(Na) 6-10-fold in the Xenopus oocyte expression system. I(Na) and the number (N) of channels expressed at the cell surface (measured by binding of a FLAG monoclonal I(125)-radioiodinated antibody) were measured in the same oocyte. Using this assay, we show that mCAP1 increases I(Na) 10-fold (P < 0.001) but N remained unchanged (P = 0.9), indicating that mCAP1 regulates ENaC activity by increasing its average open probability of the whole cell (wcP(o)). The serum- and glucocorticoid-regulated kinase (Sgk1) involved in the aldosterone-dependent signaling cascade enhances I(Na) by 2.5-fold (P < 0.001) and N by 1.6-fold (P < 0.001), indicating a dual effect on N and wcP(o). Compared with Sgk1 alone, coexpression of Sgk1 with mCAP1 leads to a ninefold increase in I(Na) (P < 0.001) and 1.3-fold in N (P < 0.02). Similar results were observed for mCAP2 and mCAP3. The synergism between CAPs and Sgk1 on I(Na) was always more than additive, indicating a true potentiation. The synergistic effect of the two activation pathways allows a large dynamic range for ENaC-mediated sodium regulation crucial for a tight control of sodium homeostasis.
Collapse
Affiliation(s)
- Grégoire Vuagniaux
- Institut de Pharmacologie et de Toxicologie, Université de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
249
|
Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82:569-600. [PMID: 12087129 DOI: 10.1152/physrev.00003.2002] [Citation(s) in RCA: 490] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of mechanisms that regulate salt and water transport by the alveolar and distal airway epithelium of the lung has generated new insights into the regulation of lung fluid balance under both normal and pathological conditions. There is convincing evidence that active sodium and chloride transporters are expressed in the distal lung epithelium and are responsible for the ability of the lung to remove alveolar fluid at the time of birth as well as in the mature lung when pathological conditions lead to the development of pulmonary edema. Currently, the best described molecular transporters are the epithelial sodium channel, the cystic fibrosis transmembrane conductance regulator, Na+-K+-ATPase, and several aquaporin water channels. Both catecholamine-dependent and -independent mechanisms can upregulate isosmolar fluid transport across the distal lung epithelium. Experimental and clinical studies have made it possible to examine the role of these transporters in the resolution of pulmonary edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, California 94143-0624, USA.
| | | | | |
Collapse
|
250
|
Rozansky DJ, Wang J, Doan N, Purdy T, Faulk T, Bhargava A, Dawson K, Pearce D. Hypotonic induction of SGK1 and Na+ transport in A6 cells. Am J Physiol Renal Physiol 2002; 283:F105-13. [PMID: 12060592 DOI: 10.1152/ajprenal.00176.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serum and glucocorticoid-regulated kinase-1 (SGK1) is a serine-threonine kinase that is regulated at the transcriptional level by numerous regulatory inputs, including mineralocorticoids, glucocorticoids, follicle-stimulating hormone, and osmotic stress. In the distal nephron, SGK1 is induced by aldosterone and regulates epithelial Na+ channel-mediated transepithelial Na+ transport. In other tissues, including liver and shark rectal gland, SGK1 is regulated by hypertonic stress and is thought to modulate epithelial Na+ channel- and Na+-K+-2Cl- cotransporter-mediated Na+ transport. In this report, we examined the regulation of SGK1 mRNA and protein expression and Na+ currents in response to osmotic stress in A6 cells, a cultured cell line derived from Xenopus laevis distal nephron. We found that in contrast to hepatocytes and rectal gland cells, hypotonic conditions stimulated SGK1 expression and Na+ transport in A6 cells. Moreover, a correlation was found between SGK1 induction and the later phase of activation of Na+ transport in response to hypotonic treatment. When A6 cells were pretreated with an inhibitor of phosphatidylinositol 3-kinase (PI3K), Na+ transport was blunted and only inactive forms of SGK1 were expressed. Surprisingly, these results demonstrate that both hypertonic and hypotonic stimuli can induce SGK1 gene expression in a cell type-dependent fashion. Moreover, these data lend support to the view that SGK1 contributes to the defense of extracellular fluid volume and tonicity in amphibia by mediating a component of the hypotonic induction of distal nephron Na+ transport.
Collapse
Affiliation(s)
- David J Rozansky
- Division of Nephrology, Department of Pediatrics, University of California, San Francisco, California 94143-0532, USA
| | | | | | | | | | | | | | | |
Collapse
|