201
|
Lee DH. Update of early phase clinical trials in cancer immunotherapy. BMB Rep 2021; 54:70-88. [PMID: 33407992 PMCID: PMC7851447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 09/20/2023] Open
Abstract
Immunotherapy has revolutionized the landscape of cancer treatment and become a standard pillar of the treatment. The two main drivers, immune checkpoint inhibitors and chimeric antigen receptor T cells, contributed to this unprecedented success. However, despite the striking clinical improvements, most patients still suffer from disease progression because of the evolution of primary or acquired resistance. This mini-review summarizes new treatment options including novel targets and interesting combinational approaches to increase our understanding of the mechanisms of the action of and resistance to immunotherapy, to expand our knowledge of advances in biomarker and therapeutics development, and to help to find the most appropriate option or a way of overcoming the resistance for cancer patients. [BMB Reports 2021; 54(1): 70-88].
Collapse
Affiliation(s)
- Dae Ho Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
202
|
CD137 (4-1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Leukemia 2021; 35:3482-3496. [PMID: 34021248 PMCID: PMC8632678 DOI: 10.1038/s41375-021-01287-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023]
Abstract
Immunotherapies have heralded a new era in the cancer treatment. In addition to checkpoint inhibitors, agonistic antibodies against co-stimulatory immune receptors hold the potential to invoke efficient antitumor immunity. Targeting CD137 has gained momentum based on its ability to drive NK- and T-cell-based responses. CD137-engaging mAbs have already entered clinical trials for different types of tumors showing promising results. Despite the efforts to translate CD137-mediated immunotherapy into clinical practice, little remains known regarding the role of CD137 in human monocytes/macrophages.We found CD137 being expressed on monocytes of healthy controls and at even higher levels in patients with multiple myeloma or CLL. CD137HI(GH) monocytes displayed a distinct phenotypic, transcriptomic, and metabolic profile. They possessed an increased phagocytic capacity enabling superior antibody-dependent phagocytosis (ADPC) of multiple myeloma and lymphoma cells that were treated with anti-CD38 or anti-CD20 mAbs. Triggering CD137 promoted both metabolic and tumoricidal activity in an extracellular signal-regulated kinase (ERK)-dependent fashion. In addition, we observed a phenotypic, transcriptomic, and functional skewing towards a M1-like phenotype.Overall, we introduce CD137 as a positive immune checkpoint on human monocytes/macrophages, which can have therapeutic implications especially in view of synergistic effects when combining CD137 agonists with tumor-targeting antibodies.
Collapse
|
203
|
The Landscape of Immunotherapy in Advanced NSCLC: Driving Beyond PD-1/PD-L1 Inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, Vaccines). Curr Oncol Rep 2021; 23:126. [PMID: 34453261 PMCID: PMC8397682 DOI: 10.1007/s11912-021-01124-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review, we analyzed the current landscape of non-PD-(L)1 targeting immunotherapy. RECENT FINDINGS The advent of immunotherapy has completely changed the standard approach toward advanced NSCLC. Inhibitors of the PD-1/PD-L1 axis have quickly taken place as first-line treatment for NSCLC patients without targetable "driver" mutations. However, a non-negligible portion of patients derive modest benefit from immune-checkpoint inhibitors, and valid second-line alternatives are lacking, pushing researchers to analyze other molecules and pathways as potentially viable targets in the struggle against NSCLC. Starting from the better characterized CTLA-4 inhibitors, we then critically collected the actual knowledge on NSCLC vaccines as well as on other emerging molecules, many of them in their early phase of testing, to provide to the reader a comprehensive overview of the state of the art of immunotherapy in NSCLC beyond PD-1/PD-L1 inhibitors.
Collapse
|
204
|
Zhang Y, Guan XY, Jiang P. Cytokine and Chemokine Signals of T-Cell Exclusion in Tumors. Front Immunol 2020; 11:594609. [PMID: 33381115 PMCID: PMC7768018 DOI: 10.3389/fimmu.2020.594609] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The success of cancer immunotherapy in solid tumors depends on a sufficient distribution of effector T cells into malignant lesions. However, immune-cold tumors utilize many T-cell exclusion mechanisms to resist immunotherapy. T cells have to go through three steps to fight against tumors: trafficking to the tumor core, surviving and expanding, and maintaining the memory phenotype for long-lasting responses. Cytokines and chemokines play critical roles in modulating the recruitment of T cells and the overall cellular compositions of the tumor microenvironment. Manipulating the cytokine or chemokine environment has brought success in preclinical models and early-stage clinical trials. However, depending on the immune context, the same cytokine or chemokine signals may exhibit either antitumor or protumor activities and induce unwanted side effects. Therefore, a comprehensive understanding of the cytokine and chemokine signals is the premise of overcoming T-cell exclusion for effective and innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| | - Xin-yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| | - Peng Jiang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
205
|
Choi BK, Lee HW. The Murine CD137/CD137 Ligand Signalosome: A Signal Platform Generating Signal Complexity. Front Immunol 2020; 11:553715. [PMID: 33362756 PMCID: PMC7758191 DOI: 10.3389/fimmu.2020.553715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
CD137, a member of the TNFR family, is a costimulatory receptor, and CD137L, a member of the TNF family, is its ligand. Studies using CD137- and CD137L-deficient mice and antibodies against CD137 and CD137L have revealed the diverse and paradoxical effects of these two proteins in various cancers, autoimmunity, infections, and inflammation. Both their cellular diversity and their spatiotemporal expression patterns indicate that they mediate complex immune responses. This intricacy is further enhanced by the bidirectional signal transduction events that occur when these two proteins interact in various types of immune cells. Here, we review the biology of murine CD137/CD137L, particularly, the complexity of their proximal signaling pathways, and speculate on their roles in immune responses.
Collapse
Affiliation(s)
- Beom K Choi
- Biomedicine Production Branch, Program for Immunotherapy Research, National Cancer Center, Goyang, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
206
|
Melero I, Berraondo P. 4-1BB (CD137) in anticancer chimeras. J Exp Med 2020; 217:e20201562. [PMID: 33147322 PMCID: PMC7549314 DOI: 10.1084/jem.20201562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
4-1BB (CD137, TNFRSF9) mediates costimulatory signals important for activation and persistence of cytotoxic T lymphocytes. In this issue of JEM, Oda et al. (https://doi.org/10.1084/jem.20191166) report on a chimeric construction encompassing extracellular Fas and intracellular 4-1BB to dramatically improve adoptive T cell therapy.
Collapse
Affiliation(s)
- Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| |
Collapse
|
207
|
Leem G, Park J, Jeon M, Kim ES, Kim SW, Lee YJ, Choi SJ, Choi B, Park S, Ju YS, Jung I, Kim S, Shin EC, Lee JY, Park SH. 4-1BB co-stimulation further enhances anti-PD-1-mediated reinvigoration of exhausted CD39 + CD8 T cells from primary and metastatic sites of epithelial ovarian cancers. J Immunother Cancer 2020; 8:e001650. [PMID: 33335029 PMCID: PMC7745695 DOI: 10.1136/jitc-2020-001650] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Responses to immunotherapy vary between different cancer types and sites. Here, we aimed to investigate features of exhaustion and activation in tumor-infiltrating CD8 T cells at both the primary and metastatic sites in epithelial ovarian cancer. METHODS Tumor tissues and peripheral blood were obtained from 65 patients with ovarian cancer. From these samples, we isolated tumor-infiltrating lymphocytes (TILs) and peripheral blood mononuclear cells. These cells were used for immunophenotype using multicolor flow cytometry, gene expression profile using RNA sequencing and ex vivo functional restoration assays. RESULTS We found that CD39+ CD8 TILs were enriched with tumor-specific CD8 TILs, and that the activation status of these cells was determined by the differential programmed cell death protein 1 (PD-1) expression level. CD39+ CD8 TILs with high PD-1 expression (PD-1high) exhibited features of highly tumor-reactive and terminally exhausted phenotypes. Notably, PD-1high CD39+ CD8 TILs showed similar characteristics in terms of T-cell exhaustion and activation between the primary and metastatic sites. Among co-stimulatory receptors, 4-1BB was exclusively overexpressed in CD39+ CD8 TILs, especially on PD-1high cells, and 4-1BB-expressing cells displayed immunophenotypes indicating higher degrees of T-cell activation and proliferation, and less exhaustion, compared with cells not expressing 4-1BB. Importantly, 4-1BB agonistic antibodies further enhanced the anti-PD-1-mediated reinvigoration of exhausted CD8 TILs from both primary and metastatic sites. CONCLUSION Severely exhausted PD-1high CD39+ CD8 TILs displayed a distinctly heterogeneous exhaustion and activation status determined by differential 4-1BB expression levels, providing rationale and evidence for immunotherapies targeting co-stimulatory receptor 4-1BB in ovarian cancers.
Collapse
Affiliation(s)
- Galam Leem
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eui-Soon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Baekgyu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jung Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
208
|
Li Y, Wang Z, Jiang W, Zeng H, Liu Z, Lin Z, Qu Y, Xiong Y, Wang J, Chang Y, Bai Q, Wang Y, Liu L, Zhu Y, Xu L, Xia Y, Guo J, Xu J. Tumor-infiltrating TNFRSF9 + CD8 + T cells define different subsets of clear cell renal cell carcinoma with prognosis and immunotherapeutic response. Oncoimmunology 2020; 9:1838141. [PMID: 33178496 PMCID: PMC7595587 DOI: 10.1080/2162402x.2020.1838141] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives Tumor necrosis receptor super family (TNFRSF) plays an important role in regulating the function of CD8+ T cells. In this study, we explored the clinical significance and immune profile of TNFRSF9+ CD8+ T cells in clear cell renal cell carcinoma (ccRCC). Methods The infiltration of immune cells was determined by immunohistochemistry in ZS cohort from our hospital and their prognostic value was further determined by Cox regression. Functional status of CD8+ T cells in ccRCC was determined by flow cytometry in 29 fresh tumor samples. In silico analysis on a TCGA cohort and other datasets was performed to further demonstrate our findings. Results High TNFRSF9+ CD8+ T cells infiltration was associated with inferior overall survival in ZS cohort (p = .0016) and TCGA-KIRC cohort (p = .018). TNFRSF9+ CD8+ T cells expressed higher exhaustion markers (PD-1, TIM-3, CTLA-4, and TIGIT), and effector markers (IFN-γ, GZMB, CD107a, and Ki-67), than their TNFRSF9 negative counterparts. In silico analysis indicated the expression of TNFRSF9 was significantly correlated with IFNG, GZMK, MKI-67, PDCD1, HAVCR2, TIGIT, and CTLA-4 in CD8+ T cells. However, higher TNFRSF9 signature was correlated with larger tumor size shrinkage (p = .003) and better progression-free survival (p = .012) in patients treated with nivolumab but not everolimus. Conclusion TNFRSF9+ CD8+ T cells, which possessed both exhaustion and effector phenotype, were identified as an adverse prognosticator in ccRCC. These cells enrichment was associated with better immunotherapy response which indicated these cells potentially be crucial in immunotherapy.
Collapse
Affiliation(s)
- Yaohui Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenbin Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhiyuan Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
209
|
He S, Xu J, Wu J. The emerging role of co-stimulatory molecules and their agonistic mAb-based combination therapies in melanoma. Int Immunopharmacol 2020; 89:107097. [PMID: 33091814 DOI: 10.1016/j.intimp.2020.107097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
Although anti-PD-1/L1 and anti-CTLA-4 antibodies, the validated immune checkpoint blockades, can elicit durable long-lasting antitumor immunity and improve the clinical outcomes of melanoma treatment, there are still a fraction of patients who did not receive therapeutic benefits as expected. In addition to findings of blocking the co-inhibitory pathways, the preclinical and clinical evidence suggests that triggering the co-stimulatory pathways through agonists such as CD137, OX40, CD40, GITR and CD27 may be a rational next step for melanoma therapy. In this review, we discuss the progress of studies on these co-stimulatory molecules in terms of their promising therapeutic effects and underlying antitumor mechanisms, and provide a review of the possible combinations that orchestrate the interplay of co-stimulatory agonistic mAbs and other therapies for treating melanoma, including inhibitory immune checkpoint mAbs, adoptive T cell therapy, chemotherapy and radiotherapy. We also briefly present the limitations and challenges involved in these co-stimulatory agonistic mAb-based combination strategies for melanoma patients.
Collapse
Affiliation(s)
- Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
210
|
Innamarato P, Asby S, Morse J, Mackay A, Hall M, Kidd S, Nagle L, Sarnaik AA, Pilon-Thomas S. Intratumoral Activation of 41BB Costimulatory Signals Enhances CD8 T Cell Expansion and Modulates Tumor-Infiltrating Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2893-2904. [PMID: 33020146 DOI: 10.4049/jimmunol.2000759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
The activation of 41BB costimulatory signals by agonistic Abs enhances the expansion and function of tumor-infiltrating lymphocytes (TILs) for treating cancer patients with adoptive cell therapy. However, the impact of 41BB agonism is not limited to enhancing the activity of T cells, and the mechanism by which additional activation of this costimulatory axis in tumor-associated myeloid cells is poorly understood. In this study, we describe that the intratumoral administration of 41BB agonistic Abs led to increases in CD8 T cell infiltration followed by tumor regression in murine models. We found that granulocytes and monocytes rapidly replaced macrophages and dendritic cells in tumors following administration of anti-41BB Abs. Overall, myeloid cells from anti-41BB-treated tumors had an improved capacity to stimulate T cells in comparison with control-treated tumors. In human coculture systems, we demonstrated that the agonism of the 41BB-41BBL axis enhanced costimulatory signals and effector functions among APC and autologous TILs. Overall, these findings suggest that the effect of 41BB agonistic Abs are supported by additional costimulatory signals from tumor-associated myeloid cells,v leading to enhanced TIL expansion and function.
Collapse
Affiliation(s)
- Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620; and
| | - Sarah Asby
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jennifer Morse
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Amy Mackay
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - MacLean Hall
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620; and
| | - Scott Kidd
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Luz Nagle
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Amod A Sarnaik
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612.,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612;
| |
Collapse
|
211
|
Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell agonists in cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000966. [PMID: 33020242 PMCID: PMC7537335 DOI: 10.1136/jitc-2020-000966] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer cells can evade immune surveillance in the body. However, immune checkpoint inhibitors can interrupt this evasion and enhance the antitumor activity of T cells. Other mechanisms for promoting antitumor T-cell function are the targeting of costimulatory molecules expressed on the surface of T cells, such as 4-1BB, OX40, inducible T-cell costimulator and glucocorticoid-induced tumor necrosis factor receptor. In addition, CD40 targets the modulation of the activation of antigen-presenting cells, which ultimately leads to T-cell activation. Agonists of these costimulatory molecules have demonstrated promising results in preclinical and early-phase trials and are now being tested in ongoing clinical trials. In addition, researchers are conducting trials of combinations of such immune modulators with checkpoint blockade, radiotherapy and cytotoxic chemotherapeutic drugs in patients with advanced tumors. This review gives a comprehensive picture of the current knowledge of T-cell agonists based on their use in recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Yeonjoo Choi
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yaoyao Shi
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cara L Haymaker
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Joud Hajjar
- Section of Immunology, Department of Allergy & Rheumatology, Baylor College of Medicine, Texas and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
212
|
Teijeira A, Garasa S, Etxeberria I, Gato-Cañas M, Melero I, Delgoffe GM. Metabolic Consequences of T-cell Costimulation in Anticancer Immunity. Cancer Immunol Res 2020; 7:1564-1569. [PMID: 31575551 DOI: 10.1158/2326-6066.cir-19-0115] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cell functional behavior and performance are closely regulated by nutrient availability and the control of metabolism within the T cell. T cells have distinct energetic and anabolic needs when nascently activated, actively proliferating, in naïveté, or in a resting, memory state. As a consequence, bioenergetics are key for T cells to mount adequate immune responses in health and disease. Solid tumors are particularly hostile metabolic environments, characterized by low glucose concentration, hypoxia, and low pH. These metabolic conditions in the tumor are known to hinder antitumor immune responses of T cells by limiting nutrient availability and energetic efficiency. In such immunosuppressive environments, artificial modulation of glycolysis, mitochondrial respiratory capabilities, and fatty acid β-oxidation are known to enhance antitumor performance. Reportedly, costimulatory molecules, such as CD28 and CD137, are important regulators of metabolic routes in T cells. In this sense, different costimulatory signals and cytokines induce diverse metabolic changes that critically involve mitochondrial mass and function. For instance, the efficacy of chimeric antigen receptors (CAR) encompassing costimulatory domains, agonist antibodies to costimulatory receptors, and checkpoint inhibitors depends on the associated metabolic events in immune cells. Here, we review the metabolic changes that costimulatory receptors can promote in T cells and the potential consequences for cancer immunotherapy. Our focus is mostly on discoveries regarding the physiology and pharmacology of IL15, CD28, PD-1, and CD137 (4-1BB).
Collapse
Affiliation(s)
- Alvaro Teijeira
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain. .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Inaki Etxeberria
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Gato-Cañas
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
213
|
Waliany S, Lee D, Witteles RM, Neal JW, Nguyen P, Davis MM, Salem JE, Wu SM, Moslehi JJ, Zhu H. Immune Checkpoint Inhibitor Cardiotoxicity: Understanding Basic Mechanisms and Clinical Characteristics and Finding a Cure. Annu Rev Pharmacol Toxicol 2020; 61:113-134. [PMID: 32776859 DOI: 10.1146/annurev-pharmtox-010919-023451] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune checkpoint inhibitors (ICIs) attenuate mechanisms of self-tolerance in the immune system, enabling T cell responses to cancerous tissues and revolutionizing care for cancer patients. However, by loweringbarriers against self-reactivity, ICIs often result in varying degrees of autoimmunity. Cardiovascular complications, particularly myocarditis but also arrhythmias, pericarditis, and vasculitis, have emerged as significant complications associated with ICIs. In this review, we examine the clinical aspects and basic science principles that underlie ICI-associated myocarditis and other cardiovascular toxicities. In addition, we discuss current therapeutic approaches. We believe a better mechanistic understanding of ICI-associated toxicities can lead to improved patient outcomes by reducing treatment-related morbidity.
Collapse
Affiliation(s)
- Sarah Waliany
- Department of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA
| | - Ronald M Witteles
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joel W Neal
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Patricia Nguyen
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joe-Elie Salem
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, CLIP² Galilée, UNICO-GRECO Cardio-Oncology Program, and Department of Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France.,Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA; .,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Sean M Wu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Javid J Moslehi
- Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA; .,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Han Zhu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
214
|
Betts A, van der Graaf PH. Mechanistic Quantitative Pharmacology Strategies for the Early Clinical Development of Bispecific Antibodies in Oncology. Clin Pharmacol Ther 2020; 108:528-541. [PMID: 32579234 PMCID: PMC7484986 DOI: 10.1002/cpt.1961] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
Bispecific antibodies (bsAbs) have become an integral component of the therapeutic research strategy to treat cancer. In addition to clinically validated immune cell re‐targeting, bsAbs are being designed for tumor targeting and as dual immune modulators. Explorative preclinical and emerging clinical data indicate potential for enhanced efficacy and reduced systemic toxicity. However, bsAbs are a complex modality with challenges to overcome in early clinical trials, including selection of relevant starting doses using a minimal anticipated biological effect level approach, and predicting efficacious dose despite nonintuitive dose response relationships. Multiple factors can contribute to variability in the clinic, including differences in functional affinity due to avidity, receptor expression, effector to target cell ratio, and presence of soluble target. Mechanistic modeling approaches are a powerful integrative tool to understand the complexities and aid in clinical translation, trial design, and prediction of regimens and strategies to reduce dose limiting toxicities of bsAbs. In this tutorial, the use of mechanistic modeling to impact decision making for bsAbs is presented and illustrated using case study examples.
Collapse
Affiliation(s)
- Alison Betts
- Applied Biomath, Concord, Massachusetts, USA.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.,Certara, Canterbury, UK
| |
Collapse
|
215
|
Janssen E, Subtil B, de la Jara Ortiz F, Verheul HMW, Tauriello DVF. Combinatorial Immunotherapies for Metastatic Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12071875. [PMID: 32664619 PMCID: PMC7408881 DOI: 10.3390/cancers12071875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent and deadly forms of cancer. About half of patients are affected by metastasis, with the cancer spreading to e.g., liver, lungs or the peritoneum. The majority of these patients cannot be cured despite steady advances in treatment options. Immunotherapies are currently not widely applicable for this disease, yet show potential in preclinical models and clinical translation. The tumour microenvironment (TME) has emerged as a key factor in CRC metastasis, including by means of immune evasion-forming a major barrier to effective immuno-oncology. Several approaches are in development that aim to overcome the immunosuppressive environment and boost anti-tumour immunity. Among them are vaccination strategies, cellular transplantation therapies, and targeted treatments. Given the complexity of the system, we argue for rational design of combinatorial therapies and consider the implications of precision medicine in this context.
Collapse
Affiliation(s)
- Eline Janssen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Beatriz Subtil
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Fàtima de la Jara Ortiz
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Henk M. W. Verheul
- Department of Medical Oncology, Radboud University Medical Center, PO Box 9101, 6500 HBNijmegen, The Netherlands;
| | - Daniele V. F. Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
- Correspondence:
| |
Collapse
|
216
|
Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller C, Thommen D, Rothschield S, Savic Prince S, Mertz KD, Cathomas G, Rosenberg R, Heinzelmann-Schwarz V, Wiese M, Lardinois D, Umana P, Klein C, Laubli H, Kashyap AS, Zippelius A. Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. J Immunother Cancer 2020; 8:e000238. [PMID: 32616554 PMCID: PMC7333869 DOI: 10.1136/jitc-2019-000238] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The costimulatory receptor 4-1BB (CD137, TNFRSF9) plays an important role in sustaining effective T cell immune responses and is investigated as target for cancer therapy. Systemic 4-1BB directed therapies elicit toxicity or low efficacy, which significantly hampered advancement of 4-1BB-based immunotherapy. Therefore, targeted delivery of 4-1BB agonist to the tumor side is needed for eliciting antitumor efficacy while avoiding systemic toxicity. METHODS We analyzed the immunostimulatory properties of a fibroblast activation protein (FAP)-targeted 4-1BB agonist (FAP-4-1BBL) by assessing tumor-infiltrating lymphocytes' (TIL) activity from patients with non-small cell lung cancer and epithelial ovarian cancer. RESULTS Combination treatment with FAP-4-1BBL and T cell receptor stimulation by either anti-CD3 or T cell bispecific antibodies significantly enhanced TIL activation and effector functions, including T cell proliferation, secretion of proinflammatory cytokines and cytotoxicity. Notably, costimulation with FAP-4-1BBL led to de novo secretion of interleukin (IL)-13. This was associated with cytokine-mediated tumor cell apoptosis, which was partially dependent on IL-13 alpha 1/2 receptors and STAT6 phosphorylation. CONCLUSIONS Our study provides mechanistic insights into T cell stimulation induced by FAP-4-1BBL in primary human tumors and supports the investigation of FAP-4-1BBL compound in early clinical trials.
Collapse
Affiliation(s)
- Marta Trüb
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Franziska Uhlenbrock
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Petra Herzig
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Thelen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Marina Bacac
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Maria Amann
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | | | - Daniela Thommen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | - Robert Rosenberg
- Department of Surgery, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | | | - Mark Wiese
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Didier Lardinois
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Pablo Umana
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Heinz Laubli
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Abhishek S Kashyap
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
217
|
Claus C, Ferrara C, Xu W, Sam J, Lang S, Uhlenbrock F, Albrecht R, Herter S, Schlenker R, Hüsser T, Diggelmann S, Challier J, Mössner E, Hosse RJ, Hofer T, Brünker P, Joseph C, Benz J, Ringler P, Stahlberg H, Lauer M, Perro M, Chen S, Küttel C, Bhavani Mohan PL, Nicolini V, Birk MC, Ongaro A, Prince C, Gianotti R, Dugan G, Whitlow CT, Solingapuram Sai KK, Caudell DL, Burgos-Rodriguez AG, Cline JM, Hettich M, Ceppi M, Giusti AM, Crameri F, Driessen W, Morcos PN, Freimoser-Grundschober A, Levitsky V, Amann M, Grau-Richards S, von Hirschheydt T, Tournaviti S, Mølhøj M, Fauti T, Heinzelmann-Schwarz V, Teichgräber V, Colombetti S, Bacac M, Zippelius A, Klein C, Umaña P. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med 2020; 11:11/496/eaav5989. [PMID: 31189721 DOI: 10.1126/scitranslmed.aav5989] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/16/2019] [Indexed: 01/08/2023]
Abstract
Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen-mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP-4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer-bearing rhesus monkey. Combination of FAP-4-1BBL with tumor antigen-targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP- or CD19-4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+ T cells. FAP- and CD19-4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.
Collapse
Affiliation(s)
- Christina Claus
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Claudia Ferrara
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Wei Xu
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Johannes Sam
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sabine Lang
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Franziska Uhlenbrock
- University of Basel, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Rosmarie Albrecht
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sylvia Herter
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Ramona Schlenker
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Tamara Hüsser
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sarah Diggelmann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - John Challier
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Ralf J Hosse
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Thomas Hofer
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Peter Brünker
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Catherine Joseph
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philippe Ringler
- University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Henning Stahlberg
- University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Matthias Lauer
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mario Perro
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Stanford Chen
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Christine Küttel
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Preethi L Bhavani Mohan
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Valeria Nicolini
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Martina Carola Birk
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Amandine Ongaro
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Christophe Prince
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Reto Gianotti
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Gregory Dugan
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Christopher T Whitlow
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | - David L Caudell
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | - J Mark Cline
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Michael Hettich
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Maurizio Ceppi
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anna Maria Giusti
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Flavio Crameri
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Wouter Driessen
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Peter N Morcos
- Roche Innovation Center New York, pRED, 430 E 29th St, New York, NY 10016, USA
| | - Anne Freimoser-Grundschober
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Victor Levitsky
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sandra Grau-Richards
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | | | - Stella Tournaviti
- Roche Innovation Center Munich, pRED, Nonnenwald 2, 82377 Penzberg, Germany
| | - Michael Mølhøj
- Roche Innovation Center Munich, pRED, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tanja Fauti
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | | | - Volker Teichgräber
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sara Colombetti
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Alfred Zippelius
- University of Basel, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland.
| |
Collapse
|
218
|
Abstract
New treatment strategies in follicular lymphoma (FL) are driven by a deeper understanding of microenvironmental cues supporting lymphomagenesis, chemoresistance, and immuno-escape. These immune-mediated signaling pathways contribute to initial learnings and clinical successes with lenalidomide, the first, oral, non-chemotherapeutic immunomodulatory drug, combined with anti-CD20 antibodies. This combination of lenalidomide with rituximab showed similar efficacy to chemoimmunotherapy (CIT) in first-line patients requiring therapy, and is approved in relapsed/refractory FL. We review the biology supporting the rationale for adequate inhibitory receptor/ligand pathways targeting the tissue immune microenvironment of FL cells, and potential immunomodulating combinations to replace CIT in the near future.
Collapse
Affiliation(s)
- Loic Ysebaert
- Service d'Hematologie, Institut Universitaire du Cancer de Toulouse-Oncopole, Center for Cancer Research of Toulouse (CRCT), Inserm UMR1037, IUC-Toulouse-Oncopole, 1 Avenue Irene Joliot-Curie, Toulouse 31059, France
| | - Franck Morschhauser
- Univ. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche Sur les Formes Injectables et les Technologies Associees, Lille F-59000, France.
| |
Collapse
|
219
|
Yu X, Chan HTC, Fisher H, Penfold CA, Kim J, Inzhelevskaya T, Mockridge CI, French RR, Duriez PJ, Douglas LR, English V, Verbeek JS, White AL, Tews I, Glennie MJ, Cragg MS. Isotype Switching Converts Anti-CD40 Antagonism to Agonism to Elicit Potent Antitumor Activity. Cancer Cell 2020; 37:850-866.e7. [PMID: 32442402 PMCID: PMC7280789 DOI: 10.1016/j.ccell.2020.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Anti-CD40 monoclonal antibodies (mAbs) comprise agonists and antagonists, which display promising therapeutic activities in cancer and autoimmunity, respectively. We previously showed that epitope and isotype interact to deliver optimal agonistic anti-CD40 mAbs. The impact of Fc engineering on antagonists, however, remains largely unexplored. Here, we show that clinically relevant antagonists used for treating autoimmune conditions can be converted into potent FcγR-independent agonists with remarkable antitumor activity by isotype switching to hIgG2. One antagonist is converted to a super-agonist with greater potency than previously reported highly agonistic anti-CD40 mAbs. Such conversion is dependent on the unique disulfide bonding properties of the hIgG2 hinge. This investigation highlights the transformative capacity of the hIgG2 isotype for converting antagonists to agonists to treat cancer.
Collapse
Affiliation(s)
- Xiaojie Yu
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK.
| | - H T Claude Chan
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Hayden Fisher
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK; Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Jinny Kim
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Ruth R French
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Patrick J Duriez
- CRUK Protein Core Facility, University of Southampton Faculty of Medicine, Southampton, UK
| | - Leon R Douglas
- CRUK Protein Core Facility, University of Southampton Faculty of Medicine, Southampton, UK
| | - Vikki English
- Pre-clinical Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ann L White
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Ivo Tews
- Institute for Life Sciences, University of Southampton, Southampton, UK; Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
220
|
Influence of antigen density and immunosuppressive factors on tumor-targeted costimulation with antibody-fusion proteins and bispecific antibody-mediated T cell response. Cancer Immunol Immunother 2020; 69:2291-2303. [PMID: 32504247 PMCID: PMC7568714 DOI: 10.1007/s00262-020-02624-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Target expression heterogeneity and the presence of an immunosuppressive microenvironment can hamper severely the efficiency of immunotherapeutic approaches. We have analyzed the potential to encounter and overcome such conditions by a combinatory two-target approach involving a bispecific antibody retargeting T cells to tumor cells and tumor-directed antibody-fusion proteins with costimulatory members of the B7 and TNF superfamily. Targeting the tumor-associated antigens EpCAM and EGFR with the bispecific antibody and costimulatory fusion proteins, respectively, we analyzed the impact of target expression and the influence of the immunosuppressive factors IDO, IL-10, TGF-β, PD-1 and CTLA-4 on the targeting-mediated stimulation of T cells. Here, suboptimal activity of the bispecific antibody at diverse EpCAM expression levels could be effectively enhanced by targeting-mediated costimulation by B7.1, 4-1BBL and OX40L in a broad range of EGFR expression levels. Furthermore, the benefit of combined costimulation by B7.1/4-1BBL and 4-1BBL/OX40L was demonstrated. In addition, the expression of immunosuppressive factors was shown in all co-culture settings, where blocking of prominent factors led to synergistic effects with combined costimulation. Thus, targeting-mediated costimulation showed general promise for a broad application covering diverse target expression levels, with the option for further selective enhancement by the identification and blockade of main immunosuppressive factors of the particular tumor environment.
Collapse
|
221
|
Recombinant Costimulatory Fusion Proteins as Functional Immunomodulators Enhance Antitumor Activity in Murine B16F10 Melanoma. Vaccines (Basel) 2020; 8:vaccines8020223. [PMID: 32423130 PMCID: PMC7349950 DOI: 10.3390/vaccines8020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
Blocking inhibitory signaling and engaging stimulatory signaling have emerged as important therapeutic modalities for cancer immunotherapy. This study aimed to investigate immunomodulatory features of three recombinant costimulatory ligand proteins in a mouse model, which are extracellular domains of OX40-ligand (OX40L), 4-1BB-ligand (4-1BBL), or two domains in tandem, fused with the transmembrane domain of diphtheria toxin (DTT), named DTT-COS1, DTT-COS2, and DTT-COS12, respectively. In vitro study showed that DTT-COS1 and DTT-COS12 had immunological activity increasing the ratio of CD8/CD4 T cells. Treatments with DTT-COS1 and DTT-COS12 dramatically generated immune protection against the B16F10 tumor challenge in both prophylactic and therapeutic efficacy. Furthermore, regarding tumor microenvironment (TME) immunomodulation, DTT-COS1 treatment increased the proportion of CD4+ effector T cells (Teff) and decreased the expression of a suppressive cytokine. Meanwhile, DTT-COS12 reduced regulatory T cells (Treg) and improved the level of stimulatory cytokines. In addition, endogenous antibodies against OX40L/4-1BBL were generated, which may help with antitumor responses. Unexpectedly, DTT-COS2 lacked antitumor effects in vitro and in vivo. Importantly, serum analysis of liver-function associated factors and pro-inflammatory cytokines demonstrated that treatments were safe formulations in mice without signs of systemic toxicity. Remarkably, DTT-COS1 and DTT-COS12 are functional immunomodulators for mouse B16F10 melanoma, creating practical preclinical value in cancer immunotherapy.
Collapse
|
222
|
Griessinger CM, Olafsen T, Mascioni A, Jiang ZK, Zamilpa C, Jia F, Torgov M, Romero JM, Marchioni F, Satpayev D, Lee C, Zhang G, Nayak TK, Pincha M, Amann M, Mohan PLB, Richard M, Nicolini VG, Sam J, Claus C, Ferrara C, Brünker P, Bacac M, Umana P, Rüttinger D, Wilson IA, Gudas J, Klein C, Tessier JJL. The PET-Tracer 89Zr-Df-IAB22M2C Enables Monitoring of Intratumoral CD8 T-cell Infiltrates in Tumor-Bearing Humanized Mice after T-cell Bispecific Antibody Treatment. Cancer Res 2020; 80:2903-2913. [PMID: 32409308 DOI: 10.1158/0008-5472.can-19-3269] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022]
Abstract
CD8-expressing T cells are the main effector cells in cancer immunotherapy. Treatment-induced changes in intratumoral CD8+ T cells may represent a biomarker to identify patients responding to cancer immunotherapy. Here, we have used a 89Zr-radiolabeled human CD8-specific minibody (89Zr-Df-IAB22M2C) to monitor CD8+ T-cell tumor infiltrates by PET. The ability of this tracer to quantify CD8+ T-cell tumor infiltrates was evaluated in preclinical studies following single-agent treatment with FOLR1-T-cell bispecific (TCB) antibody and combination therapy of CEA-TCB (RG7802) and CEA-targeted 4-1BB agonist CEA-4-1BBL. In vitro cytotoxicity assays with peripheral blood mononuclear cells and CEA-expressing MKN-45 gastric or FOLR1-expressing HeLa cervical cancer cells confirmed noninterference of the anti-CD8-PET-tracer with the mode of action of CEA-TCB/CEA-4-1BBL and FOLR1-TCB at relevant doses. In vivo, the extent of tumor regression induced by combination treatment with CEA-TCB/CEA-4-1BBL in MKN-45 tumor-bearing humanized mice correlated with intratumoral CD8+ T-cell infiltration. This was detectable by 89Zr-IAB22M2C-PET and γ-counting. Similarly, single-agent treatment with FOLR1-TCB induced strong CD8+ T-cell infiltration in HeLa tumors, where 89Zr-Df-IAB22M2C again was able to detect CD8 tumor infiltrates. CD8-IHC confirmed the PET imaging results. Taken together, the anti-CD8-minibody 89Zr-Df-IAB22M2C revealed a high sensitivity for the detection of intratumoral CD8+ T-cell infiltrates upon either single or combination treatment with TCB antibody-based fusion proteins. These results provide further evidence that the anti-CD8 tracer, which is currently in clinical phase II, is a promising monitoring tool for intratumoral CD8+ T cells in patients treated with cancer immunotherapy. SIGNIFICANCE: Monitoring the pharmacodynamic activity of cancer immunotherapy with novel molecular imaging tools such as 89Zr-Df-IAB22M2C for PET imaging is of prime importance to identify patients responding early to cancer immunotherapy.
Collapse
Affiliation(s)
- Christoph M Griessinger
- Early Clinical Development Oncology, Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | | | | | | | | | - Fang Jia
- ImaginAb Inc., Inglewood, California
| | | | | | | | | | | | | | - Tapan K Nayak
- Early Clinical Development Oncology, Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Mudita Pincha
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Maria Amann
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Preethi L B Mohan
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marine Richard
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Valeria G Nicolini
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Johannes Sam
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christina Claus
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Claudia Ferrara
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Peter Brünker
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umana
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Dominik Rüttinger
- Early Clinical Development, Roche Pharmaceutical Research & Early Development, Roche Innovation Center Munich, Penzberg, Switzerland
| | | | | | - Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Jean J L Tessier
- Early Clinical Development Oncology, Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
223
|
Lejeune M, Köse MC, Duray E, Einsele H, Beguin Y, Caers J. Bispecific, T-Cell-Recruiting Antibodies in B-Cell Malignancies. Front Immunol 2020; 11:762. [PMID: 32457743 PMCID: PMC7221185 DOI: 10.3389/fimmu.2020.00762] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (BsAbs) are designed to recognize and bind to two different antigens or epitopes. In the last few decades, BsAbs have been developed within the context of cancer therapies and in particular for the treatment of hematologic B-cell malignancies. To date, more than one hundred different BsAb formats exist, including bispecific T-cell engagers (BiTEs), and new constructs are constantly emerging. Advances in protein engineering have enabled the creation of BsAbs with specific mechanisms of action and clinical applications. Moreover, a better understanding of resistance and evasion mechanisms, as well as advances in the protein engineering and in immunology, will help generating a greater variety of BsAbs to treat various cancer types. This review focuses on T-cell-engaging BsAbs and more precisely on the various BsAb formats currently being studied in the context of B-cell malignancies, on ongoing clinical trials and on the clinical concerns to be taken into account in the development of new BsAbs.
Collapse
Affiliation(s)
- Margaux Lejeune
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
| | - Murat Cem Köse
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
| | - Elodie Duray
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
| | - Hermann Einsele
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Yves Beguin
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium.,Department of Hematology, CHU de Liège, Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium.,Department of Hematology, CHU de Liège, Liège, Belgium
| |
Collapse
|
224
|
Yu J, Song Y, Tian W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol 2020; 13:45. [PMID: 32370812 PMCID: PMC7201658 DOI: 10.1186/s13045-020-00876-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
The intact antibody of human immunoglobulin (IgG) is composed of the fragment for antigen binding (Fab) and the crystallizable fragment (Fc) for binding of Fcγ receptors. Among the four subclasses of human IgG (IgG1, IgG2, IgG3, IgG4), which differ in their constant regions, particularly in their hinges and CH2 domains, IgG1 has the highest FcγR-binding affinity, followed by IgG3, IgG2, and IgG4. As a result, different subclasses have different effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Fcγ receptors include six subtypes (FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, FcγRIIIB) which differ in cellular distribution, binding affinity to Fc, and the resulting biological activity. Therefore, when developing anti-tumor therapeutic antibodies, including single-targeted antibodies, bi-specific antibodies (BsAbs), and antibody-drug conjugates (ADCs), many factors, such as target biology, cellular distribution of the targets, the environments of particular tumor types, as well as the proposed mechanism of action (MOA), must be taken into consideration. This review outlines fundamental strategies that are required to select IgG subclasses in developing anti-tumor therapeutic antibodies.
Collapse
Affiliation(s)
- Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Academy of Medical and Pharmaceutical Sciences of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201203, China.
| |
Collapse
|
225
|
Luu K, Shao Z, Schwarz H. The relevance of soluble CD137 in the regulation of immune responses and for immunotherapeutic intervention. J Leukoc Biol 2020; 107:731-738. [PMID: 32052477 DOI: 10.1002/jlb.2mr1119-224r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/10/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
CD137 is a potent costimulatory receptor. Several agonistic anti-CD137 antibodies are currently in clinical trials for tumor immunotherapy. Soluble forms of CD137 (sCD137) are generated by differential splicing and antagonize the activities of membrane-bound CD137 (mCD137) and of therapeutic CD137 agonists. sCD137 is found in sera of patients suffering from autoimmune diseases where it is a natural regulator of immune responses, and which has therapeutic potential for immune-mediated diseases. This review summarizes the current knowledge on sCD137, highlights its potential role in immunotherapy against cancer and in autoimmune diseases, and presents important issues to be addressed by future research.
Collapse
Affiliation(s)
- Khang Luu
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
| | - Zhe Shao
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
226
|
Timmerman J, Herbaux C, Ribrag V, Zelenetz AD, Houot R, Neelapu SS, Logan T, Lossos IS, Urba W, Salles G, Ramchandren R, Jacobson C, Godwin J, Carpio C, Lathers D, Liu Y, Neely J, Suryawanshi S, Koguchi Y, Levy R. Urelumab alone or in combination with rituximab in patients with relapsed or refractory B-cell lymphoma. Am J Hematol 2020; 95:510-520. [PMID: 32052473 PMCID: PMC7383599 DOI: 10.1002/ajh.25757] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
Urelumab, a fully human, non-ligand binding, CD137 agonist IgG4 monoclonal antibody, enhances T-cell and natural killer-cell antitumor activity in preclinical models, and may enhance cytotoxic activity of rituximab. Here we report results in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and other B-cell lymphomas, in phase 1 studies evaluating urelumab alone (NCT01471210) or combined with rituximab (NCT01775631). Sixty patients received urelumab (0.3 mg/kg IV Q3W, 8 mg IV Q3W, or 8 mg IV Q6W); 46 received urelumab (0.1 mg/kg, 0.3 mg/kg, or 8 mg IV Q3W) plus rituximab 375 mg/m2 IV QW. The maximum tolerated dose (MTD) of urelumab was determined to be 0.1 mg/kg or 8 mg Q3W after a single event of potential drug-induced liver injury occurred with urelumab 0.3 mg/kg. Treatment-related AEs were reported in 52% (urelumab: grade 3/4, 15%) and 72% (urelumab + rituximab: grade 3/4, 28%); three led to discontinuation (grade 3 increased AST, grade 4 acute hepatitis [urelumab]; one death from sepsis syndrome [urelumab plus rituximab]). Objective response rates/disease control rates were 6%/19% (DLBCL, n = 31), 12%/35% (FL, n = 17), and 17%/42% (other B-cell lymphomas, n = 12) with urelumab and 10%/24% (DLBCL, n = 29) and 35%/71% (FL, n = 17) with urelumab plus rituximab. Durable remissions in heavily pretreated patients were achieved; however, many were observed at doses exceeding the MTD. These data show that urelumab alone or in combination with rituximab demonstrated manageable safety in B-cell lymphoma, but the combination did not enhance clinical activity relative to rituximab alone or other current standard of care.
Collapse
Affiliation(s)
| | - Charles Herbaux
- Centre Hospitalier Régional Universitaire de LilleLilleFrance
| | | | | | - Roch Houot
- CHU Rennes, Service Hématologie CliniqueRennesFrance
- INSERMUnité dʼInvestigation CliniqueRennesFrance
| | | | - Theodore Logan
- Simon Cancer CenterIndiana UniversityIndianapolisIndiana
| | - Izidore S. Lossos
- University of Miami Miller School of MedicineSylvester Comprehensive Cancer CenterMiamiFlorida
| | - Walter Urba
- Earle A. Chiles Research InstituteProvidence Cancer CenterPortlandOregon
| | | | | | - Caron Jacobson
- Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusetts
| | - John Godwin
- Earle A. Chiles Research InstituteProvidence Cancer CenterPortlandOregon
| | - Cecilia Carpio
- Hospital Universitari Vall dʼHebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Yali Liu
- Bristol‐Myers SquibbPrincetonNew Jersey
| | | | | | - Yoshinobu Koguchi
- Earle A. Chiles Research InstituteProvidence Cancer CenterPortlandOregon
| | - Ronald Levy
- Stanford University School of MedicineStanfordCalifornia
| |
Collapse
|
227
|
Lakins MA, Koers A, Giambalvo R, Munoz-Olaya J, Hughes R, Goodman E, Marshall S, Wollerton F, Batey S, Gliddon D, Tuna M, Brewis N. FS222, a CD137/PD-L1 Tetravalent Bispecific Antibody, Exhibits Low Toxicity and Antitumor Activity in Colorectal Cancer Models. Clin Cancer Res 2020; 26:4154-4167. [PMID: 32345647 DOI: 10.1158/1078-0432.ccr-19-2958] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/07/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE With the increased prevalence in checkpoint therapy resistance, there remains a significant unmet need for additional therapies for patients with relapsing or refractory cancer. We have developed FS222, a bispecific tetravalent antibody targeting CD137 and PD-L1, to induce T-cell activation to eradicate tumors without the current toxicity and efficacy limitations seen in the clinic. EXPERIMENTAL DESIGN A bispecific antibody (FS222) was developed by engineering CD137 antigen-binding sites into the Fc region of a PD-L1 IgG1 mAb. T-cell activation by FS222 was investigated using multiple in vitro assays. The antitumor efficacy, survival benefit, pharmacodynamics, and liver pharmacology of a murine surrogate molecule were assessed in syngeneic mouse tumor models. Toxicology and the pharmacokinetic/pharmacodynamic profile of FS222 were investigated in a non-human primate dose-range finding study. RESULTS We demonstrated simultaneous binding of CD137 and PD-L1 and showed potent T-cell activation across CD8+ T-cell activation assays in a PD-L1-dependent manner with a CD137/PD-L1 bispecific antibody, FS222. FS222 also activated T cells in a human primary mixed lymphocyte reaction assay, with greater potency than the monospecific mAb combination. FS222 showed no signs of liver toxicity up to 30 mg/kg in a non-human primate dose-range finding study. A surrogate molecule caused significant tumor growth inhibition and survival benefit, concomitant with CD8+ T-cell activation, in CT26 and MC38 syngeneic mouse tumor models. CONCLUSIONS By targeting CD137 agonism to areas of PD-L1 expression, predominantly found in the tumor microenvironment, FS222 has the potential to leverage a focused, potent, and safe immune response augmenting the PD-(L)1 axis blockade.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma Goodman
- F-star Therapeutics Ltd., Cambridge, United Kingdom
| | | | | | - Sarah Batey
- F-star Therapeutics Ltd., Cambridge, United Kingdom
| | | | | | - Neil Brewis
- F-star Therapeutics Ltd., Cambridge, United Kingdom
| |
Collapse
|
228
|
Discovery of New Immune Checkpoints: Family Grows Up. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:61-82. [PMID: 32185707 DOI: 10.1007/978-981-15-3266-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first generation of immune checkpoint inhibitors (ICIs) including anti-CTLA-4 and anti-PD-1/anti-PD-L1 has achieved profound and great success. Till 2019 Q1, there are nine ICIs landing the oncology market: Ipilimumab (anti-CTLA-4, Bristol-Myers Squibb), Nivolumab (anti-PD-1, Bristol-Myers Squibb), Pembrolizumab (anti-PD-1, Merck), Atezolizumab (anti-PD-L1, Roche/Genentech), Durvalumab (anti-PD-L1, Astra Zeneca), Tremelimumab (anti-CTLA-4, Astra Zeneca), Cemiplimab (anti-PD-1, Sanofi/Regeneron), Toripalimab (anti-PD-1, Junshi), and Sintilimab (anti-PD-1, Innovent), which have covered the majority of hematologic and solid malignancies' indication. Beyond the considerable benefits for the patients, frustrated boundary still exists: limited response rate in monotherapy in late-stage population, poor effectiveness in neoplasms with immune desert and immune excluded types, and immune-related toxicities, some are life-threatened and with higher incidence in I-O combination regiment. Moreover, clinicians observed some cases switching to progression after achieving partial or complete response, indicating treatment failure or drug resistance. So people begin looking for the next generation of immune checkpoint members.
Collapse
|
229
|
Gaspar M, Pravin J, Rodrigues L, Uhlenbroich S, Everett KL, Wollerton F, Morrow M, Tuna M, Brewis N. CD137/OX40 Bispecific Antibody Induces Potent Antitumor Activity that Is Dependent on Target Coengagement. Cancer Immunol Res 2020; 8:781-793. [PMID: 32273279 DOI: 10.1158/2326-6066.cir-19-0798] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
Following the success of immune checkpoint blockade therapy against cancer, agonistic antibodies targeting T-cell costimulatory pathways are in clinical trials. The TNF superfamily of receptors (TNFRSF) members CD137 and OX40 are costimulatory receptors that stimulate T-cell proliferation and activation upon interaction with their cognate ligands. Activating CD137 and OX40 with agonistic mAbs stimulates the immune system due to their broad expression on CD4+ and CD8+ T cells and natural killer cells and has antitumor effects in preclinical models. Most TNFRSF agonist antibodies require crosslinking via Fcγ receptors (FcγR), which can limit their clinical activity. FS120 mAb2, a dual agonist bispecific antibody targeting CD137 and OX40, activated both CD4+ and CD8+ T cells in an FcγR-independent mechanism, dependent on concurrent binding. A mouse surrogate version of the bispecific antibody displayed antitumor activity in syngeneic tumor models, independent of T regulatory cell depletion and of FcγR interaction, but associated with peripheral T-cell activation and proliferation. When compared with a crosslink-independent CD137 agonist mAb, the FS120 surrogate induced lower liver T-cell infiltration. These data support initiation of clinical development of FS120, a first-in-class dual agonist bispecific antibody for the treatment of human cancer.
Collapse
Affiliation(s)
| | - John Pravin
- F-star Therapeutics Ltd., Cambridge, United Kingdom
| | | | | | | | | | | | | | - Neil Brewis
- F-star Therapeutics Ltd., Cambridge, United Kingdom.
| |
Collapse
|
230
|
Gough MJ, Sharon S, Crittenden MR, Young KH. Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Semin Radiat Oncol 2020; 30:158-172. [PMID: 32381295 PMCID: PMC7213059 DOI: 10.1016/j.semradonc.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapies are rapidly entering the clinic as approved treatments for diverse cancer pathologies. Radiation therapy is an integral partner in cancer therapy, commonly as part of complicated multimodality approaches that optimize patient outcomes. Preclinical studies have demonstrated that the success of radiation therapy in tumor control is due in part to immune mechanisms, and that outcomes following radiation therapy can be improved through combination with a range of immunotherapies. However, preclinical models of cancer are very different from patient tumors, and the way these preclinical tumors are treated is often very different from standard of care treatment of patients. This review examines the preclinical and clinical data for the role of the immune system in radiation therapy outcomes, and how to integrate preclinical findings into clinical trials, using ongoing studies as examples.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR.
| | - Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, ISRAEL
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| |
Collapse
|
231
|
Abstract
The years since 2009 have seen tremendous progress in unlocking the curative potential of the immune system for the treatment of cancer. Much of that revolution in immuno-oncology has been fueled by the clinical success of immune checkpoint inhibitors, particularly those targeting the PD-1 axis. Unfortunately, many patients still fail to benefit from checkpoint blockade or other immunotherapies. An inability to fully activate antitumour T cells contributes in part to the failure of those therapies. Here, we review the basic biology of T cell activation, with particular emphasis on the essential role of the dendritic cell and the innate immune system in T cell activation. The current understanding of the multiple factors that govern T cell activation and how they impinge on tumour immunotherapy are also discussed. Lastly, treatment strategies to potentially overcome barriers to T cell activation and to enhance the efficacy of immunotherapy are addressed.
Collapse
Affiliation(s)
- S D Saibil
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON.,Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON
| | - P S Ohashi
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON.,Department of Immunology, University of Toronto, Toronto, ON
| |
Collapse
|
232
|
Eskiocak U, Guzman W, Wolf B, Cummings C, Milling L, Wu HJ, Ophir M, Lambden C, Bakhru P, Gilmore DC, Ottinger S, Liu L, McConaughy WK, He SQ, Wang C, Leung CL, Lajoie J, Carson WF, Zizlsperger N, Schmidt MM, Anderson AC, Bobrowicz P, Schuetz TJ, Tighe R. Differentiated agonistic antibody targeting CD137 eradicates large tumors without hepatotoxicity. JCI Insight 2020; 5:133647. [PMID: 32161196 DOI: 10.1172/jci.insight.133647] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
CD137 (4-1BB) is a member of the TNFR superfamily that represents a promising target for cancer immunotherapy. Recent insights into the function of TNFR agonist antibodies implicate epitope, affinity, and IgG subclass as critical features, and these observations help explain the limited activity and toxicity seen with clinically tested CD137 agonists. Here, we describe the preclinical characterization of CTX-471, a fully human IgG4 agonist of CD137 that engages a unique epitope that is shared by human, cynomolgus monkey, and mouse and is associated with a differentiated pharmacology and toxicology profile. In vitro, CTX-471 increased IFN-γ production by human T cells in an Fcγ receptor-dependent (FcγR-dependent) manner, displaying an intermediate level of activity between 2 clinical-stage anti-CD137 antibodies. In mice, CTX-471 exhibited curative monotherapy activity in various syngeneic tumor models and showed a unique ability to cure mice of very large (~500 mm3) tumors compared with validated antibodies against checkpoints and TNFR superfamily members. Extremely high doses of CTX-471 were well tolerated, with no signs of hepatic toxicity. Collectively, these data demonstrate that CTX-471 is a unique CD137 agonist that displays an excellent safety profile and an unprecedented level of monotherapy efficacy against very large tumors.
Collapse
Affiliation(s)
| | | | | | | | - Lauren Milling
- Compass Therapeutics, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Hsin-Jung Wu
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | | | - Conner Lambden
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pearl Bakhru
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | | | | | - Lucy Liu
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | | | - Sunny Q He
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Jason Lajoie
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | | | | | | | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Robert Tighe
- Compass Therapeutics, Cambridge, Massachusetts, USA
| |
Collapse
|
233
|
Kim H, Park S, Jeong S, Lee YJ, Lee H, Kim CG, Kim KH, Hong S, Lee J, Kim S, Kim HK, Min BS, Chang JH, Ju YS, Shin E, Song G, Hwang S, Park S. 4-1BB Delineates Distinct Activation Status of Exhausted Tumor-Infiltrating CD8 + T Cells in Hepatocellular Carcinoma. Hepatology 2020; 71:955-971. [PMID: 31353502 PMCID: PMC7154753 DOI: 10.1002/hep.30881] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Targeting costimulatory receptors with agonistic antibodies is a promising cancer immunotherapy option. We aimed to investigate costimulatory receptor expression, particularly 4-1BB (CD137 or tumor necrosis factor receptor superfamily member 9), on tumor-infiltrating CD8+ T cells (CD8+ tumor-infiltrating lymphocytes [TILs]) and its association with distinct T-cell activation features among exhausted CD8+ TILs in hepatocellular carcinoma (HCC). APPROACH AND RESULTS Tumor tissues, adjacent nontumor tissues, and peripheral blood were collected from HCC patients undergoing surgical resection (n = 79). Lymphocytes were isolated and used for multicolor flow cytometry, RNA-sequencing, and in vitro functional restoration assays. Among the examined costimulatory receptors, 4-1BB was most prominently expressed on CD8+ TILs. 4-1BB expression was almost exclusively detected on CD8+ T cells in the tumor-especially on programmed death 1 (PD-1)high cells and not PD-1int and PD-1neg cells. Compared to PD-1int and 4-1BBneg PD-1high CD8+ TILs, 4-1BBpos PD-1high CD8+ TILs exhibited higher levels of tumor reactivity and T-cell activation markers and significant enrichment for T-cell activation gene signatures. Per-patient analysis revealed positive correlations between percentages of 4-1BBpos cells among CD8+ TILs and levels of parameters of tumor reactivity and T-cell activation. Among highly exhausted PD-1high CD8+ TILs, 4-1BBpos cells harbored higher proportions of cells with proliferative and reinvigoration potential. Our 4-1BB-related gene signature predicted survival outcomes of HCC patients in the The Cancer Genome Atlas cohort. 4-1BB agonistic antibodies enhanced the function of CD8+ TILs and further enhanced the anti-PD-1-mediated reinvigoration of CD8+ TILs, especially in cases showing high levels of T-cell activation. CONCLUSION 4-1BB expression on CD8+ TILs represents a distinct activation state among highly exhausted CD8+ T cells in HCC. 4-1BB costimulation with agonistic antibodies may be a promising strategy for treating HCCs exhibiting prominent T-cell activation.
Collapse
Affiliation(s)
- Hyung‐Don Kim
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seongyeol Park
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seongju Jeong
- Biomedical Science and Engineering Interdisciplinary ProgramKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Yong Joon Lee
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Hoyoung Lee
- Biomedical Science and Engineering Interdisciplinary ProgramKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Chang Gon Kim
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Kyung Hwan Kim
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seung‐Mo Hong
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Jung‐Yun Lee
- Department of Obstetrics and GynecologySeverance Hospital, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and GynecologySeverance Hospital, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular SurgerySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Byung Soh Min
- Department of SurgerySeverance Hospital, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance HospitalYonsei University College of MedicineSeoulRepublic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea,Biomedical Science and Engineering Interdisciplinary ProgramKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Eui‐Cheol Shin
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea,Biomedical Science and Engineering Interdisciplinary ProgramKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Gi‐Won Song
- Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Shin Hwang
- Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Su‐Hyung Park
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea,Biomedical Science and Engineering Interdisciplinary ProgramKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
234
|
Ho SK, Xu Z, Thakur A, Fox M, Tan SS, DiGiammarino E, Zhou L, Sho M, Cairns B, Zhao V, Xiong M, Samayoa J, Forsyth CM, Powers DB, Chao DT, Hollenbaugh D, Alvarez HM, Akamatsu Y. Epitope and Fc-Mediated Cross-linking, but Not High Affinity, Are Critical for Antitumor Activity of CD137 Agonist Antibody with Reduced Liver Toxicity. Mol Cancer Ther 2020; 19:1040-1051. [PMID: 31974274 DOI: 10.1158/1535-7163.mct-19-0608] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/15/2019] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
Abstract
CD137 (TNFRSF9, 4-1BB) agonist antibodies (mAb) have demonstrated potent antitumor activity with memory response while causing hepatotoxicity in mouse models. In clinical trials, the degrees of liver toxicity of anti-CD137 vary from grade 4 transaminitis (urelumab) to nonexistent (utomilumab). To exploit the antitumor potential of CD137 signaling, we identified a new class of CD137 agonist mAbs with strong antitumor potency without significant transaminitis in vivo compared with CD137 agonists previously reported. These mAbs are cross-reactive to mouse and cynomolgus monkey and showed cross-linking-dependent T-cell costimulation activity in vitro Antitumor efficacy was maintained in Fc gamma receptor (FcγR) III-deficient mice but diminished in FcγRIIB-deficient mice, suggesting the critical role for FcγRIIB to provide cross-linking in vivo Interestingly, a single dose of an affinity-reduced variant was sufficient to control tumor growth, but a higher affinity variant did not improve efficacy. These observations suggest that binding epitope and FcγR interaction, but not necessarily high affinity, are important for antitumor efficacy and reduced liver toxicity of CD137 mAb. Our study suggests the possibility of CD137 agonist therapy with improved safety profile in humans.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Apoptosis
- Cell Proliferation
- Chemical and Drug Induced Liver Injury/prevention & control
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Cross-Linking Reagents/chemistry
- Cross-Linking Reagents/metabolism
- Epitopes/immunology
- Female
- Humans
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, IgG/physiology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Sun K Ho
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Zhenghai Xu
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | - Melvin Fox
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Siu Sze Tan
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | - Li Zhou
- AbbVie Bioresearch Center, Worcester, Massachusetts
| | - Mien Sho
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | - Vivian Zhao
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Mengli Xiong
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Josue Samayoa
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | | | - Debra T Chao
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | | | | |
Collapse
|
235
|
Wei T, Zhong W, Li Q. Role of heterogeneous regulatory T cells in the tumor microenvironment. Pharmacol Res 2020; 153:104659. [PMID: 31982490 DOI: 10.1016/j.phrs.2020.104659] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Regulatory T cells (Tregs) modulate ongoing immune responses to prevent autoimmunity in healthy bodies and inhibit effective anti-tumor immunity responses in tumor patients, leading to tumor progression. The function of Tregs in tumor immunity suggests that elimination of Tregs in the host may enhance the anti-tumor immune response. Despite the success of strategies for depleting Tregs in tumor-bearing patients, the overall clinical efficacy is limited and accompanied by undesirable side effects. The present review describes the diverse anti-tumor roles and differentiation mechanisms of heterogeneous Tregs and proposes methods for modulating them in the tumor microenvironment. This information is critical for improving clinical outcomes and preventing adverse effects in cancer patients receiving immunotherapy targeting Tregs.
Collapse
Affiliation(s)
- Ting Wei
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology Ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong, China.
| | - Qingshan Li
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
236
|
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020; 19:200-218. [PMID: 31907401 DOI: 10.1038/s41573-019-0052-1] [Citation(s) in RCA: 789] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells can swiftly kill multiple adjacent cells if these show surface markers associated with oncogenic transformation. This property, which is unique among immune cells, and their capacity to enhance antibody and T cell responses support a role for NK cells as anticancer agents. Although tumours may develop several mechanisms to resist attacks from endogenous NK cells, ex vivo activation, expansion and genetic modification of NK cells can greatly increase their antitumour activity and equip them to overcome resistance. Some of these methods have been translated into clinical-grade platforms and support clinical trials of NK cell infusions in patients with haematological malignancies or solid tumours, which have yielded encouraging results so far. The next generation of NK cell products will be engineered to enhance activating signals and proliferation, suppress inhibitory signals and promote their homing to tumours. These modifications promise to significantly increase their clinical activity. Finally, there is emerging evidence of increased NK cell-mediated tumour cell killing in the context of molecularly targeted therapies. These observations, in addition to the capacity of NK cells to magnify immune responses, suggest that NK cells are poised to become key components of multipronged therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Noriko Shimasaki
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amit Jain
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
237
|
Abstract
Passive antibody therapies have a long history of use. In the 19th century, antibodies from xenographic sources of polyclonal antibodies were used to treat infections (diphtheria). They were used often as protection from infectious agents and toxins. Complications related to their use involved development of immune complexes and severe allergic reactions. As a result, human source plasma for polyclonal antibodies became the preferential source for antibodies. They are used to treat infection, remove toxins, prevent hemolytic disease of the newborn, modify inflammatory reactions, and control autoimmune diseases. Continued improvements in processing decreased the transfusion/infusion transmission of infections. In the late 20th century (∼1986), monoclonal antibodies were developed. The first monoclonal antibodies were of xenographic source and were wrought with problems of immunogenicity. These forms of antibodies did not gain favor until chimerization took pace in the mid-1990s and in 1998 two monoclonal antibodies were approved one to treat respiratory syncytial virus and the other for breast cancers. Further development of humanized and then fully human monoclonal antibodies has led to an evolution of therapies with these agents. Monoclonal antibodies are being researched or approved to treat a multitude of diseases to include oncologic, inflammatory, autoimmune, cardiovascular, respiratory, neurologic, allergic, benign hematologic, infections, orthopedic, coagulopathy, metabolic and to decrease morbidity of disease (diminution of pain), modify disease progression, and potentially anatomic development. In this chapter, we will review the history of use of these passive antibody therapies, their mechanism of action, pharmacologic-therapeutic classification, particular medical indication, adverse reactions, and potential future use of these medications.
Collapse
|
238
|
Human Anti-tumor Immunity: Insights from Immunotherapy Clinical Trials. Immunity 2020; 52:36-54. [DOI: 10.1016/j.immuni.2019.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/08/2019] [Accepted: 12/14/2019] [Indexed: 12/15/2022]
|
239
|
Overview of Basic Immunology and Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:1-36. [PMID: 32301008 DOI: 10.1007/978-3-030-41008-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells are found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and cross-talk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Collapse
|
240
|
Etxeberria I, Bolaños E, Quetglas JI, Gros A, Villanueva A, Palomero J, Sánchez-Paulete AR, Piulats JM, Matias-Guiu X, Olivera I, Ochoa MC, Labiano S, Garasa S, Rodriguez I, Vidal A, Mancheño U, Hervás-Stubbs S, Azpilikueta A, Otano I, Aznar MA, Sanmamed MF, Inogés S, Berraondo P, Teijeira Á, Melero I. Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8 + T Cells. Cancer Cell 2019; 36:613-629.e7. [PMID: 31761658 DOI: 10.1016/j.ccell.2019.10.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/12/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Abstract
Retroviral gene transfer of interleukin-12 (IL-12) into T cells markedly enhances antitumor efficacy upon adoptive transfer but has clinically shown unacceptable severe side effects. To overcome the toxicity, we engineered tumor-specific CD8+ T cells to transiently express IL-12. Engineered T cells injected intratumorally, but not intravenously, led to complete rejections not only of the injected lesion but also of distant concomitant tumors. Efficacy was further enhanced by co-injection with agonist anti-CD137 mAb or by transient co-expression of CD137 ligand. This treatment induced epitope spreading of the endogenous CD8+ T cell immune response in a manner dependent on cDC1 dendritic cells. Mouse and human tumor-infiltrating T lymphocyte cultures can be transiently IL-12 engineered to attain marked immunotherapeutic effects.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose I Quetglas
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alena Gros
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - Alberto Villanueva
- Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, L'hospitalet del Llobregat, Barcelona, Spain
| | - Jara Palomero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - Alfonso R Sánchez-Paulete
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Jose María Piulats
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, L'hospitalet del Llobregat, Barcelona, Spain; Department of Medical Oncology, IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Matias-Guiu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Pathology Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Lleida, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Labiano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Inmaculada Rodriguez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - August Vidal
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Uxua Mancheño
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Otano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - M Angela Aznar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Susana Inogés
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
241
|
Zhao Z, Zheng L, Chen W, Weng W, Song J, Ji J. Delivery strategies of cancer immunotherapy: recent advances and future perspectives. J Hematol Oncol 2019; 12:126. [PMID: 31779642 PMCID: PMC6883629 DOI: 10.1186/s13045-019-0817-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy has become an emerging strategy for the treatment of cancer. Immunotherapeutic drugs have been increasing for clinical treatment. Despite significant advances in immunotherapy, the clinical application of immunotherapy for cancer patients has some challenges associated with safety and efficacy, including autoimmune reactions, cytokine release syndrome, and vascular leak syndrome. Novel strategies, particularly improved delivery strategies, including nanoparticles, scaffolds, and hydrogels, are able to effectively target tumors and/or immune cells of interest, increase the accumulation of immunotherapies within the lesion, and reduce off-target effects. Here, we briefly describe five major types of cancer immunotherapy, including their clinical status, strengths, and weaknesses. Then, we introduce novel delivery strategies, such as nanoparticle-based delivery of immunotherapy, implantable scaffolds, injectable biomaterials for immunotherapy, and matrix-binding molecular conjugates, which can improve the efficacy and safety of immunotherapies. Also, the limitations of novel delivery strategies and challenges of clinical translation are discussed.
Collapse
Affiliation(s)
- Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Wei Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China. .,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China. .,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.
| |
Collapse
|
242
|
Li Y, Tan S, Zhang C, Chai Y, He M, Zhang CWH, Wang Q, Tong Z, Liu K, Lei Y, Liu WJ, Liu Y, Tian Z, Cao X, Yan J, Qi J, Tien P, Gao S, Gao GF. Limited Cross-Linking of 4-1BB by 4-1BB Ligand and the Agonist Monoclonal Antibody Utomilumab. Cell Rep 2019; 25:909-920.e4. [PMID: 30355497 DOI: 10.1016/j.celrep.2018.09.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022] Open
Abstract
Monoclonal antibodies (mAbs) targeting the co-stimulatory molecule 4-1BB are of interest for tumor immunotherapy. We determined the complex structures of human 4-1BB with 4-1BB ligand (4-1BBL) or utomilumab to elucidate the structural basis of 4-1BB activation. The 4-1BB/4-1BBL complex displays a typical TNF/TNFR family binding mode. The structure of utomilumab/4-1BB complex shows that utomilumab binds to dimeric 4-1BB with a distinct but partially overlapping binding area with 4-1BBL. Competitive binding analysis demonstrates that utomilumab blocks the 4-1BB/4-1BBL interaction, indicating the interruption of ligand-mediated signaling. The binding profiles of 4-1BBL and utomilumab to monomeric or dimeric 4-1BB indicate limited cross-linking of 4-1BB molecules. These findings provide mechanistic insight into the binding of 4-1BB with its ligand and its agonist mAb, which may facilitate the future development of anti-4-1BB biologics for tumor immunotherapy.
Collapse
Affiliation(s)
- Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Chang Zhang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengnan He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qihui Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhou Tong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Kefang Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yifan Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Xuetao Cao
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jinghua Yan
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Po Tien
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
243
|
|
244
|
Immunomodulatory Drugs Encoded by Oncolytic Viruses: Is the Whole Greater Than the Sum? Mol Ther 2019; 27:1874-1877. [PMID: 31586519 DOI: 10.1016/j.ymthe.2019.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
245
|
Christofi T, Baritaki S, Falzone L, Libra M, Zaravinos A. Current Perspectives in Cancer Immunotherapy. Cancers (Basel) 2019; 11:1472. [PMID: 31575023 PMCID: PMC6826426 DOI: 10.3390/cancers11101472] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Different immunotherapeutic approaches have proved to be of significant clinical value to many patients with different types of advanced cancer. However, we need more precise immunotherapies and predictive biomarkers to increase the successful response rates. The advent of next generation sequencing technologies and their applications in immuno-oncology has helped us tremendously towards this aim. We are now moving towards the realization of personalized medicine, thus, significantly increasing our expectations for a more successful management of the disease. Here, we discuss the current immunotherapeutic approaches against cancer, including immune checkpoint blockade with an emphasis on anti-PD-L1 and anti-CTLA-4 monoclonal antibodies. We also analyze a growing list of other co-inhibitory and co-stimulatory markers and emphasize the mechanism of action of the principal pathway for each of these, as well as on drugs that either have been FDA-approved or are under clinical investigation. We further discuss recent advances in other immunotherapies, including cytokine therapy, adoptive cell transfer therapy and therapeutic vaccines. We finally discuss the modulation of gut microbiota composition and response to immunotherapy, as well as how tumor-intrinsic factors and immunological processes influence the mutational and epigenetic landscape of progressing tumors and response to immunotherapy but also how immunotherapeutic intervention influences the landscape of cancer neoepitopes and tumor immunoediting.
Collapse
Affiliation(s)
- Theodoulakis Christofi
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus.
| | - Stavroula Baritaki
- Division of Surgery, School of Medicine, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete, Greece.
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
246
|
Weiss SA, Wolchok JD, Sznol M. Immunotherapy of Melanoma: Facts and Hopes. Clin Cancer Res 2019; 25:5191-5201. [PMID: 30923036 PMCID: PMC6726509 DOI: 10.1158/1078-0432.ccr-18-1550] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Melanoma is among the most sensitive of malignancies to immune modulation. Although multiple trials conducted over decades with vaccines, cytokines, and cell therapies demonstrated meaningful responses in a small subset of patients with metastatic disease, a true increase in overall survival (OS) within a randomized phase III trial was not observed until the development of anti-CTLA-4 (ipilimumab). Further improvements in OS for metastatic disease were observed with the anti-PD-1-based therapies (nivolumab, pembrolizumab) as single agents or combined with ipilimumab. A lower bound for expected 5-year survival for metastatic melanoma is currently approximately 35% and could be as high as 50% for the nivolumab/ipilimumab combination among patients who would meet criteria for clinical trials. Moreover, a substantial fraction of long-term survivors will likely remain progression-free without continued treatment. The hope and major challenge for the future is to understand the immunobiology of tumors with primary or acquired resistance to anti-PD-1 or anti-PD-1/anti-CTLA-4 and to develop effective immune therapies tailored to individual patient subsets not achieving long-term clinical benefit. Additional goals include optimal integration of immune therapy with nonimmune therapies, the development and validation of predictive biomarkers in the metastatic setting, improved prognostic and predictive biomarkers for the adjuvant setting, understanding mechanisms of and decreasing toxicity, and optimizing the duration of therapy.
Collapse
Affiliation(s)
- Sarah A Weiss
- Yale University School of Medicine, New Haven, Connecticut.
| | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mario Sznol
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
247
|
Zhang Y, Zhang H, Wei M, Mou T, Shi T, Ma Y, Cai X, Li Y, Dong J, Wei J. Recombinant Adenovirus Expressing a Soluble Fusion Protein PD-1/CD137L Subverts the Suppression of CD8 + T Cells in HCC. Mol Ther 2019; 27:1906-1918. [PMID: 31466933 DOI: 10.1016/j.ymthe.2019.07.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
Oncolytic viruses are an excellent platform for developing effective strategies in cancer immunotherapy. Several challenges remain in the use of viro-immunotherapy for cancer, such as the lack of costimulatory signals and negative regulation of immune checkpoints. In this study, we designed a novel adenovirus expressing a soluble fusion protein, programmed cell death protein 1 (PD-1)/CD137L, which contains the extracellular domains of PD-1 and CD137L at each terminus (Ad5-PC). Ad5-PC preserved the costimulatory activity of CD137L and facilitated the persistence of activated CD8+ T cells. Ad5-PC induced strikingly increased antitumor activity in both ascitic and subcutaneous hepatocellular carcinoma (HCC) tumor models, with 70% and 60% long-term cure rates, respectively. The improved antitumor effect of Ad5-PC was attributed to the sustained high-level lymphocyte activation and interferon (IFN)-γ production in the tumor microenvironment, and was essentially dependent on CD8+ T cells rather than natural killer (NK) cells. Moreover, Ad5-huPC-expressing human soluble PD-1/CD137L fusion protein was effective in suppressing tumor growth and improving survival in a humanized mouse model. We confirmed that Ad5-PC induced tumor-specific and systematic protection against tumor rechallenges at both in situ and distant sites. Thus, Ad5-PC harnesses several distinct functions to efficiently overcome several major hurdles of viro-immunotherapy.
Collapse
Affiliation(s)
- Yonghui Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China; Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, Henan 450003, China
| | - Hailin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Mei Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Tao Mou
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Tao Shi
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Yanyu Ma
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Xinyu Cai
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Yunzheng Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Jie Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
248
|
Henriksen A, Dyhl-Polk A, Chen I, Nielsen D. Checkpoint inhibitors in pancreatic cancer. Cancer Treat Rev 2019; 78:17-30. [DOI: 10.1016/j.ctrv.2019.06.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022]
|
249
|
Mazzarella L, Duso BA, Trapani D, Belli C, D'Amico P, Ferraro E, Viale G, Curigliano G. The evolving landscape of ‘next-generation’ immune checkpoint inhibitors: A review. Eur J Cancer 2019; 117:14-31. [DOI: 10.1016/j.ejca.2019.04.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
|
250
|
Guillerey C, Nakamura K, Pichler AC, Barkauskas D, Krumeich S, Stannard K, Miles K, Harjunpää H, Yu Y, Casey M, Doban AI, Lazar M, Hartel G, Smith D, Vuckovic S, Teng MW, Bergsagel PL, Chesi M, Hill GR, Martinet L, Smyth MJ. Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight 2019; 5:125932. [PMID: 31194697 DOI: 10.1172/jci.insight.125932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy holds promise for multiple myeloma (MM) patients but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than three weeks after Vk*MYC tumor cell challenge. The quality of CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells over MM cells (CD8/MM) accounts for the loss of anti-CD137 mAb efficacy. We established serum M-protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg-depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Altogether, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea C Pichler
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Deborah Barkauskas
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sophie Krumeich
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kim Miles
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Heidi Harjunpää
- School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Yuan Yu
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mika Casey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Mircea Lazar
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | | - Slavica Vuckovic
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Michele Wl Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - P Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ludovic Martinet
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|