201
|
Hewitson R, Dargan J, Collis D, Green A, Moorjani N, Ohri S, Townsend PA. Heart failure: The pivotal role of histone deacetylases. Int J Biochem Cell Biol 2013. [DOI: 10.1016/j.biocel.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
202
|
van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 2013; 123:37-45. [PMID: 23281408 DOI: 10.1172/jci62839] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease is the number one cause of mortality in the Western world. The heart responds to many cardiopathological conditions with hypertrophic growth by enlarging individual myocytes to augment cardiac pump function and decrease ventricular wall tension. Initially, such cardiac hypertrophic growth is often compensatory, but as time progresses these changes become maladaptive. Cardiac hypertrophy is the strongest predictor for the development of heart failure, arrhythmia, and sudden death. Here we discuss therapeutic avenues emerging from molecular and genetic studies of cardiovascular disease in animal models. The majority of these are based on intracellular signaling pathways considered central to pathologic cardiac remodeling and hypertrophy, which then leads to heart failure. We focus our discussion on selected therapeutic targets that have more recently emerged and have a tangible translational potential given the available pharmacologic agents that could be readily evaluated in human clinical trials.
Collapse
Affiliation(s)
- Jop H van Berlo
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
203
|
Katoch O, Dwarakanath BS, K Agrawala P. HDAC inhibitors: applications in oncology and beyond. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-0874-2-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
204
|
Mihaylova MM, Shaw RJ. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol Metab 2013; 24:48-57. [PMID: 23062770 PMCID: PMC3532556 DOI: 10.1016/j.tem.2012.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
Accumulating evidence suggests that protein acetylation plays a major regulatory role in many facets of transcriptional control of metabolism. The enzymes that catalyze the addition and removal of acetyl moieties are the histone acetyl transferases (HATs) and histone deacetylases (HDACs), respectively. Several recent studies have uncovered novel mechanisms and contexts in which different HDACs play crucial roles in metabolic control. Understanding the role of class I and II HDACs in different metabolic programs during development, as well as in the physiology and pathology of the adult organism, will lead to novel therapeutics for metabolic disease. Here, we review the current understanding of how class I and class II HDACs contribute to metabolic control.
Collapse
|
205
|
Shi H, Chen L, Wang H, Zhu S, Dong C, Webster KA, Wei J. Synergistic induction of miR-126 by hypoxia and HDAC inhibitors in cardiac myocytes. Biochem Biophys Res Commun 2012. [PMID: 23201405 DOI: 10.1016/j.bbrc.2012.11.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HDAC inhibitors are under clinical development for the treatment of hypertrophic cardiomyopathy and heart failure although the mechanisms of protection are incompletely understood. Micro-RNA 126, an endothelium-specific miR has been assigned essential developmental roles in the heart by activating survival kinases ERK1/2 and Akt and increasing pro-angiogenic signaling. Here we provide the first evidence that hypoxia and HDAC inhibitors selectively and synergistically stimulate expression of miR-126 in cardiac myocytes. MiR-126 expression was increased 1.7-fold (p<0.05) after 1h of hypoxic exposure and this was further enhanced to 3.0-fold (p<0.01) by simultaneously blocking HDAC with the pan-HDAC inhibitor Tricostatin A (TSA). TSA alone did not increase miR-126. In parallel, hypoxia and TSA synergistically increased p-ERK and p-Akt without effecting VEGF-A level. Knockdown of miR-126 with si-RNA eliminated inductions of p-ERK and p-Akt by hypoxia, whereas miR-126 overexpression mimicked hypoxia and amplified p-ERK and p-Akt in parallel with miR-126. The results suggest that miR-126 is a hypoxia-inducible target of HAT/HDAC and its activation in cardiac myocytes may contribute to cardioprotection by activating cell survival and pro-angiogenic pathways selectively during ischemia.
Collapse
Affiliation(s)
- Huaping Shi
- Hangzhou Red Cross Hospital, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
206
|
Zhang L, Chen B, Zhao Y, Dubielecka PM, Wei L, Qin GJ, Chin YE, Wang Y, Zhao TC. Inhibition of histone deacetylase-induced myocardial repair is mediated by c-kit in infarcted hearts. J Biol Chem 2012; 287:39338-48. [PMID: 23024362 DOI: 10.1074/jbc.m112.379115] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Histone deacetylases (HDACs) play a critical role in the regulation of gene transcription, cardiac development, and diseases. The aim of this study was to test whether inhibition of HDACs induces myocardial repair and cardiac function restoration through c-kit signaling in mouse myocardial infarction models. Myocardial infarction in wild type Kit(+/+) and Kit(W)/Kit(W-v) mice was created following thoracotomy by applying permanent ligation to the left anterior descending artery. The HDAC inhibitor, trichostatin A (TSA, 0.1 mg/kg), was intraperitoneally injected daily for a consecutive 8 weeks after myocardial infarction. 5-Bromo-2-deoxyuridine (BrdU, 50 mg/kg) was intraperitoneally delivered every other day to pulse-chase label in vivo endogenous cardiac replication. Eight weeks later, inhibition of HDACs in vivo resulted in an improvement in ventricular functional recovery and the prevention of myocardial remodeling in Kit(+/+) mice, which was eliminated in Kit(W)/Kit(W-v) mice. HDAC inhibition promoted cardiac repairs and neovascularization in the infarcted myocardium, which were absent in Kit(W)/Kit(W-v) mice. Re-introduction of TSA-treated wild type c-kit(+) CSCs into Kit(W)/Kit(W-v) myocardial infarction heart restored myocardial functional improvement and cardiac repair. To further validate that HDAC inhibition stimulates c-kit(+) cardiac stem cells (CSCs) to facilitate myocardial repair, GFP(+) c-kit(+) CSCs were preconditioned with TSA (50 nmol/liter) for 24 h and re-introduced into infarcted hearts for 2 weeks. Preconditioning of c-kit(+) CSCs via HDAC inhibition with trichostatin A significantly increased c-kit(+) CSC-derived myocytes and microvessels and enhanced functional recovery in myocardial infarction hearts in vivo. Our results provide evidence that HDAC inhibition promotes myocardial repair and prevents cardiac remodeling, which is dependent upon c-kit signaling.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, Rhode Island 02908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Otsuji TG, Kurose Y, Suemori H, Tada M, Nakatsuji N. Dynamic link between histone H3 acetylation and an increase in the functional characteristics of human ESC/iPSC-derived cardiomyocytes. PLoS One 2012; 7:e45010. [PMID: 22984602 PMCID: PMC3440326 DOI: 10.1371/journal.pone.0045010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/15/2012] [Indexed: 01/09/2023] Open
Abstract
Cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) are functionally heterogeneous, display insufficient biological efficacy and generally possess the electrophysiological properties seen in fetal CMs. However, a homogenous population of hESC/hiPSC-CMs, with properties similar to those of adult human ventricular cells, is required for use in drug cardiotoxicity screening. Unfortunately, despite the requirement for the functional characteristics of post-mitotic beating cell aggregates to mimic the behavior of mature cardiomyocytes in vitro, few technological improvements have been made in this field to date. Previously, we showed that culturing hESC-CMs under low-adhesion conditions with cyclic replating confers continuous contractility on the cells, leading to a functional increase in cardiac gene expression and electrophysiological properties over time. The current study reveals that culturing hESC/hiPSC-CMs under non-adhesive culture conditions enhances the electrophysiological properties of the CMs through an increase in the acetylation of histone H3 lysine residues, as confirmed by western blot analyses. Histone H3 acetylation was induced chemically by treating primitive hESC/hiPSC-CMs with Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, resulting in an immediate increase in global cardiac gene expression. In functional analyses using multi-electrode array (MEA) recordings, TSA-treated hESC/hiPSC-CM colonies showed appropriate responses to particular concentrations of known potassium ion channel inhibitors. Thus, the combination of a cell-autonomous functional increase in response to non-adhesive culture and short-term TSA treatment of hESC/hiPSC-CM colonies cultured on MEA electrodes will help to make cardiac toxicity tests more accurate and reproducible via genome-wide chromatin activation.
Collapse
Affiliation(s)
- Tomomi G. Otsuji
- Stem Cell and Drug Discovery Institute, Kyoto, Japan
- Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Ushinomiya-cho, Yoshida, Sakyo-ku, Kyoto, Japan
| | - Yuko Kurose
- Stem Cell and Drug Discovery Institute, Kyoto, Japan
| | - Hirofumi Suemori
- Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Masako Tada
- Stem Cell and Drug Discovery Institute, Kyoto, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- * E-mail:
| | - Norio Nakatsuji
- Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Ushinomiya-cho, Yoshida, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
208
|
Abstract
Epigenetics refers to changes in phenotype and gene expression that occur without alterations in DNA sequence. Epigenetic modifications of the genome can be acquired de novo and are potentially heritable. This review focuses on the emerging recognition of a role for epigenetics in the development of pulmonary arterial hypertension (PAH). Lessons learned from the epigenetics in cancer and neurodevelopmental diseases, such as Prader-Willi syndrome, can be applied to PAH. These syndromes suggest that there is substantial genetic and epigenetic cross-talk such that a single phenotype can result from a genetic cause, an epigenetic cause, or a combined abnormality. There are three major mechanisms of epigenetic regulation, including methylation of CpG islands, mediated by DNA methyltransferases, modification of histone proteins, and microRNAs. There is substantial interaction between these epigenetic mechanisms. Recently, it was discovered that there may be an epigenetic component to PAH. In PAH there is downregulation of superoxide dismutase 2 (SOD2) and normoxic activation of hypoxia inducible factor (HIF-1α). This decrease in SOD2 results from methylation of CpG islands in SOD2 by lung DNA methyltransferases. The partial silencing of SOD2 alters redox signaling, activates HIF-1α) and leads to excessive cell proliferation. The same hyperproliferative epigenetic abnormality occurs in cancer. These epigenetic abnormalities can be therapeutically reversed. Epigenetic mechanisms may mediate gene-environment interactions in PAH and explain the great variability in susceptibility to stimuli such as anorexigens, virus, and shunts. Epigenetics may be relevant to the female predisposition to PAH and the incomplete penetrance of BMPR2 mutations in familial PAH.
Collapse
Affiliation(s)
- Gene H Kim
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
209
|
Licciardi PV, Kwa FAA, Ververis K, Di Costanzo N, Balcerczyk A, Tang ML, El-Osta A, Karagiannis TC. Influence of natural and synthetic histone deacetylase inhibitors on chromatin. Antioxid Redox Signal 2012; 17:340-54. [PMID: 22229817 DOI: 10.1089/ars.2011.4480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Histone deacetylase inhibitors (HDACIs) have emerged as a new class of anticancer therapeutics. The hydroxamic acid, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™), and the cyclic peptide, depsipeptide (Romidepsin, Istodax™), were approved by the U.S. Food and Drug Administration (FDA) for the treatment of cutaneous T-cell lymphoma in 2006 and 2009, respectively. At least 15 HDACIs are currently undergoing clinical trials either alone or in combination with other therapeutic modalities for the treatment of numerous hematological and solid malignancies. RECENT ADVANCES The potential utility of HDACIs has been extended to nononcologic applications, including autoimmune disorders, inflammation, diseases of the central nervous system, and malaria. CRITICAL ISSUES Given the promise of HDACIs, there is growing interest in the potential of dietary compounds that possess HDAC inhibition activity. This review is focused on the identification of and recent findings with HDACIs from dietary, medicinal plant, and microbial sources. We discuss the mechanisms of action and clinical potential of natural HDACIs. FUTURE DIRECTIONS Apart from identification of further HDACI compounds from dietary sources, further research will be aimed at understanding the effects on gene regulation on lifetime exposure to these compounds. Another important issue that requires clarification.
Collapse
Affiliation(s)
- Paul V Licciardi
- Allergy and Immune Disorders, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Kalozoumi G, Tzimas C, Sanoudou D. The expanding role of epigenetics. Glob Cardiol Sci Pract 2012; 2012:7. [PMID: 25610838 PMCID: PMC4239821 DOI: 10.5339/gcsp.2012.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/20/2012] [Indexed: 12/13/2022] Open
Affiliation(s)
- Georgia Kalozoumi
- Department of Pharmacology, Medical School, University of Athens, Greece
| | - Christos Tzimas
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Despina Sanoudou
- Department of Pharmacology, Medical School, University of Athens, Greece ; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
211
|
Tang Y, Boucher JM, Liaw L. Histone deacetylase activity selectively regulates notch-mediated smooth muscle differentiation in human vascular cells. J Am Heart Assoc 2012; 1:e000901. [PMID: 23130137 PMCID: PMC3487326 DOI: 10.1161/jaha.112.000901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/16/2012] [Indexed: 12/17/2022]
Abstract
Background Histone deacetylases (HDACs) modify smooth muscle cell (SMC) proliferation and affect neointimal lesion formation by regulating cell cycle progression. HDACs might also regulate SMC differentiation, although this is not as well characterized. Methods and Results Notch signaling activates SMC contractile markers and the differentiated phenotype in human aortic SMCs. Using this model, we found that HDAC inhibition antagonized the ability of Notch to increase levels of smooth muscle α-actin, calponin1, smooth muscle 22α, and smooth muscle myosin heavy chain. However, inhibition of HDAC activity did not suppress Notch activation of the HRT target genes. In fact, HDAC inhibition increased activation of the canonical C-promoter binding factor-1 (CBF-1)–mediated Notch pathway, which activates HRT transcription. Although CBF-1–mediated Notch signaling was increased by HDAC inhibition in human SMCs and in a C3H10T1/2 model, SMC differentiation was inhibited in both cases. Further characterization of downstream Notch signaling pathways showed activation of the c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and PI3K/Akt pathways. The activation of these pathways was sensitive to HDAC inhibition and was positively correlated with the differentiated phenotype. Conclusions Our studies define novel signaling pathways downstream of Notch signaling in human SMCs. In addition to the canonical CBF-1 pathway, Notch stimulates c-Jun N-terminal kinase, mitogen-activated protein kinase, and PI3K cascades. Both canonical and noncanonical pathways downstream of Notch promote a differentiated, contractile phenotype in SMCs. Although CBF-1–mediated Notch signaling is not suppressed by HDAC inhibition, HDAC activity is required for Notch differentiation signals through mitogen-activated protein kinase and PI3K pathways in SMCs. (J Am Heart Assoc. 2012;1:e000901 doi: 10.1161/JAHA.112.000901)
Collapse
Affiliation(s)
- Yuefeng Tang
- Center for Molecular Medicine, Maine Medical Center Research Institute Scarborough, ME
| | | | | |
Collapse
|
212
|
Chung CL, Sheu JR, Chen WL, Chou YC, Hsiao CJ, Hsiao SH, Hsu MJ, Cheng YW, Hsiao G. Histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide attenuates plasminogen activator inhibitor-1 expression in human pleural mesothelial cells. Am J Respir Cell Mol Biol 2012; 46:437-45. [PMID: 22033265 DOI: 10.1165/rcmb.2011-0118oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), primarily up-regulated by transforming growth factor (TGF)-β, is essential in the development of fibrosis. Histone deacetylase (HDAC) was shown to modulate gene expression and fibrogenesis in various tissues. However, the implications of HDAC in terms of PAI-1 expression and pleural fibrosis remain unclear. In this study, we examined the effects of m-carboxycinnamic acid bis-hydroxamide (CBHA), a hybrid-polar HDAC inhibitor, on the TGF-β1-induced expression of PAI-1 in a human pleural mesothelial cell line (MeT-5A). MeT-5A cells were treated with TGF-β1 in the presence or absence of CBHA. We assayed the expression and stability of PAI-1 mRNA and protein, PAI-1 promoter activity, the activation of Smad signaling, the protein-protein interactions of Smads with transcriptional cofactors Sp1 and coactivator p300, and the expression of the mRNA-stabilizing protein nucleolin. The results indicate that CBHA significantly inhibited TGF-β1-induced PAI-1 mRNA and protein expression, and attenuated PAI-1 promoter activity in MeT-5A cells. CBHA abrogated TGF-β1-induced Smad4 nuclear translocation, but not Smad2/3 activation. Furthermore, the association of Smad4 with p300, but not with Sp1, was disrupted by CBHA. Alternatively, CBHA suppressed TGF-β1-induced nucleolin expression, and thereby destabilized PAI-1 mRNA and decreased PAI-1 protein concentrations. These findings suggest that the inhibition of HDAC activity by CBHA may attenuate PAI-1 expression through the modulation of cellular signaling at multiple levels. Given the down-regulating effect of CBHA on PAI-1 expression, HDAC inhibitors should be tested further in animal models as potential therapeutic agents for pleural fibrosis.
Collapse
Affiliation(s)
- Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Musumeci M, Maccari S, Sestili P, Signore M, Molinari P, Ambrosio C, Stati T, Colledge WH, Grace AA, Catalano L, Marano G. Propranolol enhances cell cycle-related gene expression in pressure overloaded hearts. Br J Pharmacol 2012; 164:1917-28. [PMID: 21615725 DOI: 10.1111/j.1476-5381.2011.01504.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cell cycle regulators are regarded as essential for cardiomyocyte hypertrophic growth. Given that the β-adrenoceptor antagonist propranolol blunts cardiomyocyte hypertrophic growth, we determined whether propranolol alters the expression of cell cycle-related genes in mouse hearts subjected to pressure overload. EXPERIMENTAL APPROACH Pressure overload was induced by transverse aortic constriction (TAC), whereas the expression levels of 84 cell cycle-related genes were assayed by real-time PCR. Propranolol (80 mg·kg(-1) ·day(-1) ) was administered in drinking water for 14 days. KEY RESULTS Two weeks after surgery, TAC caused a 46% increase in the left ventricular weight-to-body weight (LVW/BW) ratio but no significant changes in cell cycle gene expression. Propranolol, at plasma concentrations ranging from 10 to 140 ng·mL(-1) , blunted the LVW/BW ratio increase in TAC mice, while significantly increasing expression of 10 cell cycle genes including mitotic cyclins and proliferative markers such as Ki67. This increase in cell cycle gene expression was paralleled by a significant increase in the number of Ki67-positive non-cardiomyocyte cells as revealed by immunohistochemistry and confocal microscopy. β-Adrenoceptor signalling was critical for cell cycle gene expression changes, as genetic deletion of β-adrenoceptors also caused a significant increase in cyclins and Ki67 in pressure overloaded hearts. Finally, we found that metoprolol, a β(1) -adrenoceptor antagonist, failed to enhance cell cycle gene expression in TAC mice. CONCLUSIONS AND IMPLICATIONS Propranolol treatment enhances cell cycle-related gene expression in pressure overloaded hearts by increasing the number of cycling non-cardiomyocyte cells. These changes seem to occur via β(2) -adrenoceptor-mediated mechanisms.
Collapse
Affiliation(s)
- Marco Musumeci
- Department of Pharmacology, National Institute of Health, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Chen HP, Denicola M, Qin X, Zhao Y, Zhang L, Long XL, Zhuang S, Liu PY, Zhao TC. HDAC inhibition promotes cardiogenesis and the survival of embryonic stem cells through proteasome-dependent pathway. J Cell Biochem 2012; 112:3246-55. [PMID: 21751234 DOI: 10.1002/jcb.23251] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylase (HDAC) inhibition plays a crucial role in mediating cardiogenesis and myocardial protection, whereas HDAC degradation has recently attracted attention in mediating the biological function of HDACs. However, it remains unknown whether HDAC inhibition modulates cardiogenesis and embryonic stem cell (ESC) survival through the proteasome pathway. Using the well-established mouse ESC culture, we demonstrated that HDAC inhibitors, both trichostatin A (TSA,50 nmol/L) and sodium butyrate (NaB, 200 µmol/L) that causes the pronounced reduction of HDAC4 activity, decreased cell death and increased viability of ESCs in response to oxidant stress. HDAC inhibition reduced the cleaved caspases 3, 6, 9, PARP, and TUNEL positive ESCs, which were abrogated with MG132 (0.5 µmol/L), a specific proteasome inhibitor. Furthermore, HDAC inhibition stimulates the growth of embryoid bodies (EB), which are associated with a faster spontaneous rhythmic contraction. HDAC inhibition increases the up-regulation of GATA4, MEF2C, Nkx2.5, cardiac actin, and α-SMA mRNA and protein levels that were abrogated by MG132. TSA and NaB resulted in a significant increase in cardiac lineage commitments that were blocked by the proteasome inhibition. Notably, HDAC inhibitors led to noticeable HDAC4 degradation, which was effectively prevented by MG132. Luciferase assay demonstrates an activation of MEF2 cardiac transcriptional factor by HDAC inhibition, which was repressed by MG132, revealing that the degradation of HDAC4 allows for the activation of MEF2. Taken together, our study is the first to demonstrate that HDAC inhibition through proteasome pathway forms a novel signaling to determine the cardiac lineage commitment and elicits the survival pathway.
Collapse
Affiliation(s)
- Hong P Chen
- Department of Surgery, Roger William Medical Center, Boston University Medical School, Providence, Rhode Island 02908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Tarasenko N, Cutts SM, Phillips DR, Inbal A, Nudelman A, Kessler-Icekson G, Rephaeli A. Disparate impact of butyroyloxymethyl diethylphosphate (AN-7), a histone deacetylase inhibitor, and doxorubicin in mice bearing a mammary tumor. PLoS One 2012; 7:e31393. [PMID: 22384017 PMCID: PMC3285631 DOI: 10.1371/journal.pone.0031393] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 01/06/2012] [Indexed: 02/01/2023] Open
Abstract
The histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) synergizes the cytotoxic effect of doxorubicin (Dox) and anti-HER2 on mammary carcinoma cells while protecting normal cells against their insults. This study investigated the concomitant changes occurring in heart tissue and tumors of mice bearing a subcutaneous 4T1 mammary tumor following treatment with AN-7, Dox, or their combination. Dox or AN-7 alone led to inhibition of both tumor growth and lung metastases, whereas their combination significantly increased their anticancer efficacy and attenuated Dox- toxicity. Molecular analysis revealed that treatment with Dox, AN-7, and to a greater degree, AN-7 together with Dox increased tumor levels of γH2AX, the marker for DNA double-strand breaks and decreased the expression of Rad51, a protein needed for DNA repair. These events culminated in increased apoptosis, manifested by the appearance of cytochrome-c in the cytosol. In the myocardium, Dox-induced cardiomyopathy was associated with an increase in γH2AX expression and a reduction in Rad51 and MRE11 expression and increased apoptosis. The addition of AN-7 to the Dox treatment protected the heart from Dox insults as was manifested by a decrease in γH2AX levels, an increase in Rad51 and MRE11 expression, and a diminution of cytochrome-c release. Tumor fibrosis was high in untreated mice but diminished in Dox- and AN-7-treated mice and was almost abrogated in AN-7+Dox-treated mice. By contrast, in the myocardium, Dox alone induced a dramatic increase in fibrosis, and AN7+Dox attenuated it. The high expression levels of c-Kit, Ki-67, c-Myc, lo-FGF, and VEGF in 4T1 tumors were significantly reduced by Dox or AN-7 and further attenuated by AN-7+Dox. In the myocardium, Dox suppressed these markers, whereas AN-7+Dox restored their expression. In conclusion, the combination of AN-7 and Dox results in two beneficial effects, improved anticancer efficacy and cardioprotection.
Collapse
Affiliation(s)
- Nataly Tarasenko
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Beilinson Campus, Petach-Tikva, Israel
- Thrombosis and Hemostasis Unit, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel
| | - Suzanne M. Cutts
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Don R. Phillips
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Aida Inbal
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Beilinson Campus, Petach-Tikva, Israel
- Thrombosis and Hemostasis Unit, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel
| | | | - Gania Kessler-Icekson
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Beilinson Campus, Petach-Tikva, Israel
| | - Ada Rephaeli
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Beilinson Campus, Petach-Tikva, Israel
- * E-mail:
| |
Collapse
|
216
|
Karagiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2012; 2:PBA-2-14980. [PMID: 22953035 PMCID: PMC3417541 DOI: 10.3402/pba.v2i0.14980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/18/2012] [Accepted: 01/26/2012] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.
Collapse
Affiliation(s)
- Tom C Karagiannis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | |
Collapse
|
217
|
Affiliation(s)
- Timothy A. McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, Colorado 80045-0508;
| |
Collapse
|
218
|
Ververis K, Karagiannis TC. Overview of the Classical Histone Deacetylase Enzymes and Histone Deacetylase Inhibitors. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/130360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The important role of histone deacetylase enzymes in regulating gene expression, cellular proliferation, and survival has made them attractive targets for the development of histone deacetylase inhibitors as anticancer drugs. Suberoylanilide hydroxamic acid (Vorinostat, Zolinza), a structural analogue of the prototypical Trichostatin A, was approved by the US Food and Drug Administration for the treatment of advanced cutaneous T-cell lymphoma in 2006. This was followed by approval of the cyclic peptide, depsipeptide (Romidepsin, Istodax) for the same disease in
2009. Currently numerous histone deacetylase inhibitors are undergoing preclinical and clinical trials for the treatment of hematological and solid malignancies. Most of these studies are focused on combinations of histone deacetylase inhibitors with other therapeutic modalities, particularly conventional chemotherapeutics and radiotherapy. The aim of this paper is to provide an overview of the classical histone deacetylase enzymes and histone deacetylase inhibitors with an emphasis on potential combination therapies.
Collapse
Affiliation(s)
- Katherine Ververis
- Epigenomic Medicine, Baker IDI Heart & Diabetes Institute, Alfred Medical Research and Education Precinct, Melbourne, VIC 8008, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine, Baker IDI Heart & Diabetes Institute, Alfred Medical Research and Education Precinct, Melbourne, VIC 8008, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
219
|
Zhang L, Qin X, Zhao Y, Fast L, Zhuang S, Liu P, Cheng G, Zhao TC. Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J Pharmacol Exp Ther 2012; 341:285-93. [PMID: 22271820 DOI: 10.1124/jpet.111.189910] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that the inhibition of histone deacetylases (HDACs) protects the heart against acute myocardial ischemia and reperfusion injury. We also demonstrated that HDAC inhibition stimulates myogenesis and angiogenesis in a cultured embryonic stem cell model. We investigate whether in vivo inhibition of HDAC preserves cardiac performance and prevents cardiac remodeling in mouse myocardial infarction (MI) through the stimulation of endogenous regeneration. MI was created by ligation of the left descending artery. Animals were divided into three groups: 1) sham group, animals that underwent thoracotomy without MI; 2) MI, animals that underwent MI; and 3) MI + trichostatin A (TSA), MI animals that received a daily intraperitoneal injection of TSA. In addition, infarcted mice received a daily intraperitoneal injection of TSA (0.1 mg/kg), a selective HDAC inhibitor. 5-Bromo-2-deoxyuridine (50 mg/kg) was delivered every other day to pulse-chase label in vivo endogenous cardiac replication. Eight weeks later, the MI hearts showed a reduction in ventricular contractility. HDAC inhibition increased the improvement of myocardial functional recovery after MI, which was associated with the prevention of myocardial remodeling and reduction of myocardial and serum tumor necrosis factor α. HDAC inhibition enhanced the formation of new myocytes and microvessels, which was consistent with the robust increase in proliferation and cytokinesis in the MI hearts. An increase in angiogenic response was demonstrated in MI hearts receiving TSA treatment. It is noteworthy that TSA treatment significantly inhibited HDAC activity and increased phosphorylation of Akt-1, but decreased active caspase 3. Taken together, our results indicate that HDAC inhibition preserves cardiac performance and mitigates myocardial remodeling through stimulating cardiac endogenous regeneration.
Collapse
Affiliation(s)
- Ling Zhang
- Cardiovascular Laboratories, Department of Surgery, Boston University Medical School, Roger William Medical Center, 50 Maude Street, Providence, RI 02908, USA
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
OBJECTIVE The aim of this article is to provide an overview of the classical histone deacetylase (HDAC) enzymes and HDAC inhibitors. The discussion is focused on the potential anti-asthmatic effects of this group of compounds. METHODS Medline was used with the search terms, "asthma and HDAC," "asthma and Trichostatin A," "asthma and valproic acid," "allergic airways disease and HDAC," "allergic airways disease and Trichostatin A," and "allergic airways disease and valproic acid." Manuscripts from the past decade were accessed. Historical literature dating from the 1960s was accessed for the use of anti-epileptics in the treatment of asthma. RESULTS Preliminary clinical trials with anti-epileptic drugs including the well-known HDAC inhibitor, valproic acid, have shown long-lasting anti-asthmatic effects providing the basis for the evaluation of this class of compounds in asthma. Studies using the prototypical HDAC inhibitor, Trichostatin A, in well-established murine models of allergic airways disease have also indicated beneficial effects. CONCLUSION Although the precise mechanisms are still controversial, inhibition of airway hyperresponsiveness and agonist-induced contraction as well as anti-inflammatory effects have been described for HDAC inhibitors in asthma.
Collapse
Affiliation(s)
- Simon G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | |
Collapse
|
221
|
A histone deacetylase inhibitory prodrug - butyroyloxymethyl diethyl phosphate - protects the heart and cardiomyocytes against ischemia injury. Eur J Pharm Sci 2012; 45:592-9. [PMID: 22234377 DOI: 10.1016/j.ejps.2011.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/01/2011] [Accepted: 12/22/2011] [Indexed: 11/22/2022]
Abstract
Butyroyloxymethyl diethylphosphate (AN-7) is a prodrug of butyric acid effective in reducing cardiotoxicity caused by chemotherapy. In this study, we tested whether AN-7 protects the heart and cardiomyocytes against ischemia injury. A single oral dose of AN-7 was given to mice or rats. Animals were sacrificed 1.5 or 24 h later and the hearts were subjected to ischemia and reperfusion ex-vivo (Langendorff). The mechanical performance was recorded throughout and the infarct size was measured at the end of reperfusion. Neonatal rat cardiomyocytes were subjected to 24-48 h hypoxia (1% O(2)) in the absence or presence of AN-7 and mitochondria damage and cell death were assessed. Proteins were analyzed by Western immunoblotting. In the two rodents, a single dose of AN-7 given in vivo preconditioned the hearts for improved functional recovery from ischemia and reperfusion performed ex-vivo. Both 1.5 h and 24 h treatments improved the pressure-related parameters whereas the coronary flow was ameliorated in the 24 h treatment only. Infarct size was smaller in the AN-7 treated hearts. In cardiomyocytes, AN-7 diminished the hypoxia induced dissipation of mitochondria membrane potential and cell death. Compared with untreated controls, AN-7-treated hearts recovering from global ischemia and cardiomyocytes undergoing hypoxia, displayed significantly higher levels of the cytoprotective heme oxygenase-1. Our findings indicate that AN-7 imparts cardioprotection against ischemia both in vivo and in vitro and emerges as a potential treatment modality for cardiac injury.
Collapse
|
222
|
Becker JR, Robinson TY, Sachidanandan C, Kelly AE, Coy S, Peterson RT, MacRae CA. In vivo natriuretic peptide reporter assay identifies chemical modifiers of hypertrophic cardiomyopathy signalling. Cardiovasc Res 2011; 93:463-70. [PMID: 22198505 DOI: 10.1093/cvr/cvr350] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Despite increased understanding of the fundamental biology regulating cardiomyocyte hypertrophy and heart failure, it has been challenging to find novel chemical or genetic modifiers of these pathways. Traditional cell-based methods do not model the complexity of an intact cardiovascular system and mammalian models are not readily adaptable to chemical or genetic screens. Our objective was to create an in vivo model suitable for chemical and genetic screens for hypertrophy and heart failure modifiers. METHODS AND RESULTS Using the developing zebrafish, we established that the cardiac natriuretic peptide genes (nppa and nppb), known markers of cardiomyocyte hypertrophy and heart failure, were induced in the embryonic heart by pathological cardiac stimuli. This pathological induction was distinct from the developmental regulation of these genes. We created a luciferase-based transgenic reporter line that accurately modelled the pathological induction patterns of the zebrafish nppb gene. Utilizing this reporter line, we were able to show remarkable conservation of pharmacological responses between the larval zebrafish heart and adult mammalian models. CONCLUSION By performing a focused screen of chemical agents, we were able to show a distinct response of a genetic model of hypertrophic cardiomyopathy to the histone deacetylase inhibitor, Trichostatin A, and the mitogen-activated protein kinase kinase 1/2 inhibitor, U0126. We believe this in vivo reporter line will offer a unique approach to the identification of novel chemical or genetic regulators of myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jason R Becker
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 340 PRB, Nashville, TN 37232-6300, USA.
| | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
The heart responds to stresses such as chronic hypertension and myocardial infarction by undergoing a remodeling process that is associated with myocyte hypertrophy, myocyte death, inflammation and fibrosis, often resulting in impaired cardiac function and heart failure. Recent studies have revealed key roles for histone deacetylases (HDACs) as both positive and negative regulators of pathological cardiac remodeling, and small molecule HDAC inhibitors have demonstrated efficacy in animal models of heart failure. This chapter reviews the functions of individual HDAC isoforms in the heart and highlights issues that need to be addressed to enable development of novel HDAC-directed therapies for cardiovascular indications.
Collapse
Affiliation(s)
- Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045-0508, USA.
| |
Collapse
|
224
|
Ververis K, Karagiannis TC. Potential non-oncological applications of histone deacetylase inhibitors. Am J Transl Res 2011; 3:454-467. [PMID: 22046487 PMCID: PMC3204892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/02/2011] [Indexed: 05/31/2023]
Abstract
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma.
Collapse
|
225
|
Majumdar G, Rooney RJ, Johnson IM, Raghow R. Panhistone deacetylase inhibitors inhibit proinflammatory signaling pathways to ameliorate interleukin-18-induced cardiac hypertrophy. Physiol Genomics 2011; 43:1319-33. [PMID: 21954451 DOI: 10.1152/physiolgenomics.00048.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We investigated the genome-wide consequences of pan-histone deacetylase inhibitors (HDACIs) trichostatin A (TSA) and m-carboxycinnamic acid bis-hydroxamide (CBHA) in the hearts of BALB/c mice eliciting hypertrophy in response to interleukin-18 (IL-18). Both TSA and CBHA profoundly altered cardiac chromatin structure that occurred concomitantly with normalization of IL-18-induced gene expression and amelioration of cardiac hypertrophy. The hearts of mice exposed to IL-18+/-TSA or CBHA elicited distinct gene expression profiles. Of 184 genes that were differentially regulated by IL-18 and TSA, 33 were regulated in an opposite manner. The hearts of mice treated with IL-18 and/or CBHA elicited 147 differentially expressed genes (DEGs), a third of which were oppositely regulated by IL-18 and CBHA. Ingenuity Pathways and Kyoto Encyclopedia of Genes and Genomes analyses of DEGs showed that IL-18 impinged on TNF-α- and IFNγ-specific gene networks relegated to controlling immunity and inflammation, cardiac metabolism and energetics, and cell proliferation and apoptosis. These TNF-α- and IFNγ-specific gene networks, extensively connected with PI3K, MAPK, and NF-κB signaling pathways, were oppositely regulated by IL-18 and pan-HDACIs. Evidently, both TSA and CBHA caused a two- to fourfold induction of phosphatase and tensin homolog expression to counteract IL-18-induced proinflammatory signaling and cardiac hypertrophy.
Collapse
Affiliation(s)
- Gipsy Majumdar
- Department of Veterans Affairs Medical Center, University of Tennessee Health Science Center, Memphis, TN 38104, USA
| | | | | | | |
Collapse
|
226
|
Abstract
PURPOSE OF REVIEW Despite maximum medical and mechanical support therapy, heart failure remains a relentlessly progressive disorder with substantial morbidity and mortality. Autophagy, an evolutionarily conserved process of cellular cannibalization, has been implicated in virtually all forms of cardiovascular disease. Indeed, its role is context dependent, antagonizing or promoting disease depending on the circumstance. Here, we review current understanding of the role of autophagy in the pathogenesis of heart failure and explore this pathway as a target of therapeutic intervention. RECENT FINDINGS In preclinical models of heart disease, cardiomyocyte autophagic flux is activated; indeed, its role in disease pathogenesis is the subject of intense investigation to define mechanism. Similarly, in failing human heart of a variety of etiologies, cardiomyocyte autophagic activity is upregulated, and therapy, such as with mechanical support systems, elicits declines in autophagy activity. However, when suppression of autophagy is complete, rapid and catastrophic cell death occurs, consistent with a model in which basal autophagic flux is required for proteostasis. Thus, a narrow zone of 'optimal' autophagy seems to exist. The challenge moving forward is to tune the stress-triggered autophagic response within that 'sweet spot' range for therapeutic benefit. SUMMARY Whereas we have known for some years of the participation of lysosomal mechanisms in heart disease, it is only recently that upstream mechanisms (autophagy) are being explored. The challenge for the future is to dissect the underlying circuitry and titrate the response into an optimal, proteostasis-promoting range in hopes of mitigating the ever-expanding epidemic of heart failure.
Collapse
|
227
|
Nemchenko A, Chiong M, Turer A, Lavandero S, Hill JA. Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 2011; 51:584-93. [PMID: 21723289 DOI: 10.1016/j.yjmcc.2011.06.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/25/2011] [Accepted: 06/15/2011] [Indexed: 12/27/2022]
Abstract
The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels - or perhaps distinct forms of autophagic flux - contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- Andriy Nemchenko
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
228
|
Wythe JD, Jurynec MJ, Urness LD, Jones CA, Sabeh MK, Werdich AA, Sato M, Yost HJ, Grunwald DJ, Macrae CA, Li DY. Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish. Dis Model Mech 2011; 4:607-21. [PMID: 21628396 PMCID: PMC3180224 DOI: 10.1242/dmm.002204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The vertebrate heart is one of the first organs to form, and its early function and morphogenesis are crucial for continued embryonic development. Here we analyze the effects of loss of Heart adaptor protein 1 (Hadp1), which we show is required for normal function and morphogenesis of the embryonic zebrafish heart. Hadp1 is a pleckstrin homology (PH)-domain-containing protein whose expression is enriched in embryonic cardiomyocytes. Knockdown of hadp1 in zebrafish embryos reduced cardiac contractility and altered late myocyte differentiation. By using optical mapping and submaximal levels of hadp1 knockdown, we observed profound effects on Ca2+ handling and on action potential duration in the absence of morphological defects, suggesting that Hadp1 plays a major role in the regulation of intracellular Ca2+ handling in the heart. Hadp1 interacts with phosphatidylinositol 4-phosphate [PI4P; also known as PtdIns(4)P] derivatives via its PH domain, and its subcellular localization is dependent upon this motif. Pharmacological blockade of the synthesis of PI4P derivatives in vivo phenocopied the loss of hadp1 in zebrafish. Collectively, these results demonstrate that hadp1 is required for normal cardiac function and morphogenesis during embryogenesis, and suggest that hadp1 modulates Ca2+ handling in the heart through its interaction with phosphatidylinositols.
Collapse
Affiliation(s)
- Joshua D Wythe
- Department of Oncological Sciences and Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Breitwieser FP, Müller A, Dayon L, Köcher T, Hainard A, Pichler P, Schmidt-Erfurth U, Superti-Furga G, Sanchez JC, Mechtler K, Bennett KL, Colinge J. General statistical modeling of data from protein relative expression isobaric tags. J Proteome Res 2011; 10:2758-66. [PMID: 21526793 DOI: 10.1021/pr1012784] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitative comparison of the protein content of biological samples is a fundamental tool of research. The TMT and iTRAQ isobaric labeling technologies allow the comparison of 2, 4, 6, or 8 samples in one mass spectrometric analysis. Sound statistical models that scale with the most advanced mass spectrometry (MS) instruments are essential for their efficient use. Through the application of robust statistical methods, we developed models that capture variability from individual spectra to biological samples. Classical experimental designs with a distinct sample in each channel as well as the use of replicates in multiple channels are integrated into a single statistical framework. We have prepared complex test samples including controlled ratios ranging from 100:1 to 1:100 to characterize the performance of our method. We demonstrate its application to actual biological data sets originating from three different laboratories and MS platforms. Finally, test data and an R package, named isobar, which can read Mascot, Phenyx, and mzIdentML files, are made available. The isobar package can also be used as an independent software that requires very little or no R programming skills.
Collapse
Affiliation(s)
- Florian P Breitwieser
- CeMM , Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling. J Mol Cell Cardiol 2011; 51:156-67. [PMID: 21586293 DOI: 10.1016/j.yjmcc.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 12/14/2022]
Abstract
Cardiac hypertrophy is considered an early hallmark during the clinical course of heart failure and an important risk factor for cardiac morbidity and mortality. Although hypertrophy of individual cardiomyocytes in response to pathological stimuli has traditionally been considered as an adaptive response required to sustain cardiac output, accumulating evidence from studies in patients and animal models suggests that in most instances hypertrophy of the heart also harbors maladaptive aspects. Major strides have been made in our understanding of the pathways that convey pro-hypertrophic signals from the outside of the cell to the nucleus. In recent years it also has become increasingly evident that the heart possesses a variety of endogenous feedback mechanisms to counterbalance this growth response. These repressive mechanisms are of particular interest since they may provide valuable therapeutic options. In this review we summarize currently known endogenous repressors of pathological cardiac growth as they have been studied by gene targeting in mice. Many of the repressors that function in signal transduction appear to regulate calcineurin (e.g. PICOT, calsarcin, RCAN) and JNK signaling (e.g. CDC42, MKP-1) and some will be described in greater detail in this review. In addition, we will focus on factors such as Kruppel-like factors (KLF4, KLF15 and KLF10) and histone deacetylases (HDACs), which constitute a relevant group of nuclear proteins that repress transcription of the hypertrophic gene program in cardiomyocytes.
Collapse
|
231
|
Risk scores versus natriuretic peptides for identifying prevalent stage B heart failure. Am Heart J 2011; 161:923-930.e2. [PMID: 21570524 DOI: 10.1016/j.ahj.2011.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 01/03/2011] [Indexed: 01/19/2023]
Abstract
BACKGROUND Identifying asymptomatic individuals with American Heart Association/American College of Cardiology stage B heart failure (HF) in the population is an important step to prevent the development of symptomatic HF. The comparative utility of 2 screening strategies (biomarkers vs risk scores) in identifying prevalent stage B HF is unknown. METHODS Participants 30 to 65 years old without symptomatic HF in the Dallas Heart Study who had a cardiac magnetic resonance imaging were included (n = 2,277). Stage B HF (n = 284) was defined by left ventricular (LV) hypertrophy, reduced LV ejection fraction, or prior myocardial infarction. We compared the utility of 2 risk scores (Health Aging and Body Composition HF risk score and the Framingham Heart Failure risk score) with B-type natriuretic peptide (BNP) and N-terminal pro-BNP in identifying stage B HF using logistic regression. RESULTS Depending upon the method of indexing LV mass (body surface area, fat-free mass, or height(2.7)), the c-statistic for the Health Aging and Body Composition HF risk score (0.73, 0.75, and 0.64, respectively) was greater than that for BNP (0.62, 0.70, and 0.57, respectively) and N-terminal pro-BNP (0.62, 0.69, and 0.56, respectively) (P < .01 for all). These findings were similar for the Framingham Heart Failure risk score except when LV mass was indexed to fat-free mass. Addition of natriuretic peptide levels to the risk scores resulted in a modest but significant improvement in discrimination of stage B HF (Δ c-statistic, 0.01-0.03, P < .05 for all). CONCLUSIONS Screening for stage B HF in the population is enhanced when natriuretic peptides are measured in addition to, rather than in place of, traditional risk scores.
Collapse
|
232
|
Lemon DD, Horn TR, Cavasin MA, Jeong MY, Haubold KW, Long CS, Irwin DC, McCune SA, Chung E, Leinwand LA, McKinsey TA. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J Mol Cell Cardiol 2011; 51:41-50. [PMID: 21539845 DOI: 10.1016/j.yjmcc.2011.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 02/07/2023]
Abstract
Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models of heart failure. The efficacious compounds target class I, class IIb and, to a lesser extent, class IIa HDACs. It is hypothesized that a selective inhibitor of a specific HDAC class (or an isoform within that class) will provide a favorable therapeutic window for the treatment of heart failure, although the optimal selectivity profile for such a compound remains unknown. Genetic studies have suggested that class I HDACs promote pathological cardiac remodeling, while class IIa HDACs are protective. In contrast, nothing is known about the function or regulation of class IIb HDACs in the heart. We developed assays to quantify catalytic activity of distinct HDAC classes in left and right ventricular cardiac tissue from animal models of hypertensive heart disease. Class I and IIa HDAC activity was elevated in some but not all diseased tissues. In contrast, catalytic activity of the class IIb HDAC, HDAC6, was consistently increased in stressed myocardium, but not in a model of physiologic hypertrophy. HDAC6 catalytic activity was also induced by diverse extracellular stimuli in cultured cardiac myocytes and fibroblasts. These findings suggest an unforeseen role for HDAC6 in the heart, and highlight the need for pre-clinical evaluation of HDAC6-selective inhibitors to determine whether this HDAC isoform is pathological or protective in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Douglas D Lemon
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Abstract
Chromatin regulation provides an important means for controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease.
Collapse
Affiliation(s)
- Pei Han
- CCSR Building, Room 3115-C, 269 Campus Dr, Stanford, CA 94305-5169, USA
| | | | | | | |
Collapse
|
234
|
Three 4-letter words of hypertension-related cardiac hypertrophy: TRPC, mTOR, and HDAC. J Mol Cell Cardiol 2011; 50:964-71. [PMID: 21320507 DOI: 10.1016/j.yjmcc.2011.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/26/2011] [Accepted: 02/02/2011] [Indexed: 12/12/2022]
Abstract
Left ventricular hypertrophy due to hypertension represents a major risk factor for adverse cardiovascular events and death. In recent years, the prevalence of cardiac hypertrophy has increased due to obesity and an aging population. Notably, a significant number of individuals have persistent cardiac hypertrophy in the face of blood pressure that is normalized by drug treatment. Thus, a better understanding of the processes underlying the cardiac remodeling events that are set into play by hypertension is needed. At the level of the cardiac myocytes, hypertrophic growth is often described as physiological, as occurs with exercise, or pathological, as seen with hypertension. Here we discuss recent developments in three areas that are fundamental to pathological hypertrophic growth of cardiac myocytes. These areas are the transient receptor potential canonical (TRPC) channels, mammalian target of rapamycin (mTOR) complexes, and histone deacetylase (HDAC) enzymes. In the last several years, studies in each of these areas have yielded new and exciting discoveries into the genesis of pathological growth of cardiac myocytes. The phosphoinositide 3-kinase-Akt signaling network may be the common denominator that links these areas together. Defining the interrelationship among TRPC channels, mTOR signaling, and HDAC enzymes is a promising, but challenging area of research. Such knowledge will undoubtedly lead to new drugs that better prevent or reverse left ventricular hypertension.
Collapse
|
235
|
Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A 2011; 108:4123-8. [PMID: 21367693 DOI: 10.1073/pnas.1015081108] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylases (HDACs) regulate cardiac plasticity; however, their molecular targets are unknown. As autophagy contributes to pathological cardiac remodeling, we hypothesized that HDAC inhibitors target autophagy. The prototypical HDAC inhibitor (HDACi), trichostatin A (TSA), attenuated both load- and agonist-induced hypertrophic growth and abolished the associated activation of autophagy. Phenylephrine (PE)-triggered hypertrophy and autophagy in cultured cardiomyocytes were each blocked by a panel of structurally distinct HDAC inhibitors. RNAi-mediated knockdown of either Atg5 or Beclin 1, two essential autophagy effectors, was similarly capable of suppressing ligand-induced autophagy and myocyte growth. RNAi experiments uncovered the class I isoforms HDAC1 and HDAC2 as required for the autophagic response. To test the functional requirement of autophagic activation, we studied mice that overexpress Beclin 1 in cardiomyocytes. In these animals with a fourfold amplified autophagic response to TAC, TSA abolished TAC-induced increases in autophagy and blunted load-induced hypertrophy. Finally, we subjected animals with preexisting hypertrophy to HDACi, finding that ventricular mass reverted to near-normal levels and ventricular function normalized completely. Together, these data implicate autophagy as an obligatory element in pathological cardiac remodeling and point to HDAC1/2 as required effectors. Also, these data reveal autophagy as a previously unknown target of HDAC inhibitor therapy.
Collapse
|
236
|
Massare J, Berry JM, Luo X, Rob F, Johnstone JL, Shelton JM, Bassel-Duby R, Hill JA, Naseem RH. Diminished cardiac fibrosis in heart failure is associated with altered ventricular arrhythmia phenotype. J Cardiovasc Electrophysiol 2011; 21:1031-7. [PMID: 20233273 DOI: 10.1111/j.1540-8167.2010.01736.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES We sought to define the role of interstitial fibrosis in the proarrhythmic phenotype of failing ventricular myocardium. BACKGROUND Multiple cellular events that occur during pathological remodeling of the failing ventricle are implicated in the genesis of ventricular tachycardia (VT), including interstitial fibrosis. Recent studies suggest that ventricular fibrosis is reversible, and current anti-remodeling therapies attenuate ventricular fibrosis. However, the role of interstitial fibrosis in the proarrhythmic phenotype of failing ventricular myocardium is currently not well defined. METHODS Class II histone deacetylases (HDACs) have been implicated in promoting collagen biosynthesis. As these enzymes are inhibited by protein kinase D1 (PKD1), we studied mice with cardiomyocyte-specific transgenic over-expression of a constitutively active mutant of PKD1 (caPKD). caPKD mice were compared with animals in which cardiomyopathy was induced by severe thoracic aortic banding (sTAB). Hearts were analyzed by echocardiographic and electrocardiographic means. Interstitial fibrosis was assessed by histology and quantified biochemically. Ventricular arrhythmias were induced by closed-chest, intracardiac pacing. RESULTS Similar degrees of hypertrophic growth, systolic dysfunction and mortality were observed in the two models. In sTAB mice, robust ventricular fibrosis was readily detected, but myocardial collagen content was significantly reduced in caPKD mice. As expected, VT was readily inducible by programmed stimulation in sTAB mice and VT was less inducible in caPKD mice. Surprisingly, episodes of VT manifested longer cycle lengths and longer duration in caPKD mice. CONCLUSION Attenuated ventricular fibrosis is associated with reduced VT inducibility, increased VT duration, and significantly longer arrhythmia cycle length.
Collapse
Affiliation(s)
- Jorge Massare
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Bogaard HJ, Mizuno S, Hussaini AAA, Toldo S, Abbate A, Kraskauskas D, Kasper M, Natarajan R, Voelkel NF. Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med 2011; 183:1402-10. [PMID: 21297075 DOI: 10.1164/rccm.201007-1106oc] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Inhibitors of histone deacetylases (HDACs) reduce pressure-overload-induced left ventricular hypertrophy and dysfunction, but their effects on right ventricular (RV) adaptation to pressure overload are unknown. OBJECTIVES Determine the effect of the broad-spectrum HDAC inhibitors trichostatin A (TSA) and valproic acid (VPA) on RV function and remodeling after pulmonary artery banding (PAB) in rats. METHODS Chronic progressive RV pressure-overload was induced in rats by PAB. After establishment of adaptive RV hypertrophy 4 weeks after surgery, rats were treated for 2 weeks with vehicle, TSA, or VPA. RV function and remodeling were determined using echocardiography, invasive hemodynamic measurements, immunohistochemistry, and molecular analyses after 2 weeks of HDAC inhibition. The effects of TSA were determined on the expression of proangiogenic and prohypertrophic genes in human myocardial fibroblasts and microvascular endothelial cells. MEASUREMENTS AND MAIN RESULTS TSA treatment did not prevent the development of RV hypertrophy and was associated with RV dysfunction, capillary rarefaction, fibrosis, and increased rates of myocardial cell death. Similar results were obtained with the structurally unrelated HDAC inhibitor VPA. With TSA treatment, a reduction was found in expression of vascular endothelial growth factor and angiopoietin-1, which proteins are involved in vascular adaptation to pressure-overload. TSA dose-dependently suppressed vascular endothelial growth factor, endothelial nitric oxide synthase, and angiopoietin-1 expression in cultured myocardial endothelial cells, which effects were mimicked by selective gene silencing of several class I and II HDACs. CONCLUSIONS HDAC inhibition is associated with dysfunction and worsened remodeling of the pressure-overloaded RV. The detrimental effects of HDAC inhibition on the pressure-overloaded RV may come about via antiangiogenic or proapoptotic effects.
Collapse
Affiliation(s)
- Harm J Bogaard
- Division of Pulmonary and Critical Care, Department of Medicine and Victoria Johnson Center for Lung Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Abel ED, Doenst T. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc Res 2011; 90:234-42. [PMID: 21257612 DOI: 10.1093/cvr/cvr015] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is a stereotypic response of the heart to increased workload. The nature of the workload increase may vary depending on the stimulus (repetitive, chronic, pressure, or volume overload). If the heart fully adapts to the new loading condition, the hypertrophic response is considered physiological. If the hypertrophic response is associated with the ultimate development of contractile dysfunction and heart failure, the response is considered pathological. Although divergent signalling mechanisms may lead to these distinct patterns of hypertrophy, there is some overlap. Given the close relationship between workload and energy demand, any form of cardiac hypertrophy will impact the energy generation by mitochondria, which are the key organelles for cellular ATP production. Significant changes in the expression of nuclear and mitochondrially encoded transcripts that impact mitochondrial function as well as altered mitochondrial proteome composition and mitochondrial energetics have been described in various forms of cardiac hypertrophy. Here, we review mitochondrial alterations in pathological and physiological hypertrophy. We suggest that mitochondrial adaptations to pathological and physiological hypertrophy are distinct, and we shall review potential mechanisms that might account for these differences.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, 15 North 2030 East, Bldg. 533, Rm. 3110B, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
239
|
McKinsey TA. Targeting inflammation in heart failure with histone deacetylase inhibitors. Mol Med 2011; 17:434-41. [PMID: 21267510 DOI: 10.2119/molmed.2011.00022] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular insults such as myocardial infarction and chronic hypertension can trigger the heart to undergo a remodeling process characterized by myocyte hypertrophy, myocyte death and fibrosis, often resulting in impaired cardiac function and heart failure. Pathological cardiac remodeling is associated with inflammation, and therapeutic approaches targeting inflammatory cascades have shown promise in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models, suggesting unforeseen potential for this class of compounds for the treatment of heart failure. In addition to their beneficial effects on myocardial cells, HDAC inhibitors have potent antiinflammatory actions. This review highlights the roles of HDACs in the heart and the potential for using HDAC inhibitors as broad-based immunomodulators for the treatment of human heart failure.
Collapse
Affiliation(s)
- Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, Colorado 80045-0508, USA.
| |
Collapse
|
240
|
Findeisen HM, Gizard F, Zhao Y, Qing H, Heywood EB, Jones KL, Cohn D, Bruemmer D. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol 2011; 31:851-60. [PMID: 21233448 DOI: 10.1161/atvbaha.110.221952] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. METHODS AND RESULTS In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2, and 3 in SMC. Short interfering RNA-mediated knockdown of either HDAC 1, 2, or 3 and pharmacological inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G(1) phase of the cell cycle that is due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip). Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. CONCLUSIONS These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis.
Collapse
Affiliation(s)
- Hannes M Findeisen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Kee HJ, Kook H. Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy. J Biomed Biotechnol 2011; 2011:928326. [PMID: 21151616 PMCID: PMC2997602 DOI: 10.1155/2011/928326] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/27/2010] [Indexed: 11/17/2022] Open
Abstract
Cardiac hypertrophy occurs in association with heart diseases and ultimately results in cardiac dysfunction and heart failure. Histone deacetylases (HDACs) are post-translational modifying enzymes that can deacetylate histones and non-histone proteins. Research with HDAC inhibitors has provided evidence that the class I HDACs are pro-hypertrophic. Among the class I HDACs, HDAC2 is activated by hypertrophic stresses in association with the induction of heat shock protein 70. Activated HDAC2 triggers hypertrophy by inhibiting the signal cascades of either Krüppel like factor 4 (KLF4) or inositol polyphosphate-5-phosphatase f (Inpp5f). Thus, modulators of HDAC2 enzymes, such as selective HDAC inhibitors, are considered to be an important target for heart diseases, especially for preventing cardiac hypertrophy. In contrast, class IIa HDACs have been shown to repress cardiac hypertrophy by inhibiting cardiac-specific transcription factors such as myocyte enhancer factor 2 (MEF2), GATA4, and NFAT in the heart. Studies of class IIa HDACs have shown that the underlying mechanism is regulated by nucleo-cytoplasm shuttling in response to a variety of stress signals. In this review, we focus on the class I and IIa HDACs that play critical roles in mediating cardiac hypertrophy and discuss the non-histone targets of HDACs in heart disease.
Collapse
Affiliation(s)
- Hae Jin Kee
- 1Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
- 2Heart Research Center, Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
| | - Hyun Kook
- 1Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
- 2Heart Research Center, Chonnam National University Hospital, Gwangju 501-757, Republic of Korea
- *Hyun Kook:
| |
Collapse
|
242
|
Isoform-selective HDAC inhibitors: closing in on translational medicine for the heart. J Mol Cell Cardiol 2010; 51:491-6. [PMID: 21108947 DOI: 10.1016/j.yjmcc.2010.11.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 01/19/2023]
Abstract
Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models, suggesting unforeseen potential for this class of compounds for the treatment of heart failure. However, since broad-spectrum, "pan" HDAC inhibition is associated with toxicities such as thrombocytopenia, nausea and fatigue, many in the field remain skeptical of the prospects of translating these findings to the heart failure clinic. Robust medicinal chemistry efforts in industry and academics have led to the discovery of small molecules that selectively inhibit one or a small subset of the 18 human HDACs, and many of these compounds appear to exhibit improved safety profiles. This work has set the stage for identification of the HDAC isoform(s) that promote pathological cardiac remodeling, and advancement of safer HDAC inhibitors into clinical trials for heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure".
Collapse
|
243
|
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology and the Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
244
|
Krystof V, Chamrád I, Jorda R, Kohoutek J. Pharmacological targeting of CDK9 in cardiac hypertrophy. Med Res Rev 2010; 30:646-66. [PMID: 19757441 DOI: 10.1002/med.20172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy.
Collapse
Affiliation(s)
- Vladimír Krystof
- Faculty of Science, Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany AS CR, Slechtitelů 11, Olomouc 783 71, Czech Republic.
| | | | | | | |
Collapse
|
245
|
Kaimori A, Potter JJ, Choti M, Ding Z, Mezey E, Koteish AA. Histone deacetylase inhibition suppresses the transforming growth factor beta1-induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology 2010; 52:1033-45. [PMID: 20564330 DOI: 10.1002/hep.23765] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED Transforming growth factor beta1 (TGFbeta1) plays a crucial role in the induction of the epithelial-to-mesenchymal transition (EMT) in hepatocytes, which contributes to the pathogenesis of liver fibrosis. The inhibition of the TGFbeta1 cascade suppresses EMT and the resultant fibrosis. In this study, we focus on EMT-induced fibrosis in hepatocytes and the epigenetic regulation of the type I collagen gene. Histone acetylation is an important, major epigenetic mechanism that modulates gene transcription. We evaluated the epigenetic regulation of type I collagen in alpha mouse liver 12 hepatocytes (an untransformed mouse cell line) that had undergone EMT after treatment with TGFbeta1. The histone deacetylase inhibitor trichostatin A (TSA) inhibited EMT; this was reflected by the preservation of epithelial markers and function (E-cadherin and albumin). Fibrosis, the ultimate outcome of EMT, was abolished by TSA; this was indicated by the inhibition of type I collagen deposition. TSA exerted its anti-EMT effects by deactivating the mothers against decapentaplegic homolog 3 (Smad3)/Smad4 transcription complex and by interfering with p300, a coactivator of the type I collagen promoter, and preventing its binding to Smad3. TSA also restored Friend leukemia virus integration 1, an inhibitor of the type I collagen gene. TGFbeta1-induced EMT and its inhibition by TSA were replicated in human primary hepatocytes. CONCLUSION Histone deacetylase inhibition abrogates TGFbeta1-induced EMT in hepatocytes and reverses EMT-induced fibrosis by epigenetic modulation of type I collagen.
Collapse
Affiliation(s)
- Aki Kaimori
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
246
|
Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 2010; 466:62-7. [PMID: 20596014 PMCID: PMC2898892 DOI: 10.1038/nature09130] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 04/26/2010] [Indexed: 01/07/2023]
Abstract
Cardiac hypertrophy and failure are characterized by transcriptional reprogramming of gene expression. Adult cardiomyocytes in mice primarily express alpha-myosin heavy chain (alpha-MHC, also known as Myh6), whereas embryonic cardiomyocytes express beta-MHC (also known as Myh7). Cardiac stress triggers adult hearts to undergo hypertrophy and a shift from alpha-MHC to fetal beta-MHC expression. Here we show that Brg1, a chromatin-remodelling protein, has a critical role in regulating cardiac growth, differentiation and gene expression. In embryos, Brg1 promotes myocyte proliferation by maintaining Bmp10 and suppressing p57(kip2) expression. It preserves fetal cardiac differentiation by interacting with histone deacetylase (HDAC) and poly (ADP ribose) polymerase (PARP) to repress alpha-MHC and activate beta-MHC. In adults, Brg1 (also known as Smarca4) is turned off in cardiomyocytes. It is reactivated by cardiac stresses and forms a complex with its embryonic partners, HDAC and PARP, to induce a pathological alpha-MHC to beta-MHC shift. Preventing Brg1 re-expression decreases hypertrophy and reverses this MHC switch. BRG1 is activated in certain patients with hypertrophic cardiomyopathy, its level correlating with disease severity and MHC changes. Our studies show that Brg1 maintains cardiomyocytes in an embryonic state, and demonstrate an epigenetic mechanism by which three classes of chromatin-modifying factors-Brg1, HDAC and PARP-cooperate to control developmental and pathological gene expression.
Collapse
Affiliation(s)
- Calvin T Hang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Cardinale JP, Sriramula S, Pariaut R, Guggilam A, Mariappan N, Elks CM, Francis J. HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension 2010; 56:437-44. [PMID: 20679181 DOI: 10.1161/hypertensionaha.110.154567] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species and proinflammatory cytokines contribute to cardiovascular diseases. Inhibition of downstream transcription factors and gene modifiers of these components are key mediators of hypertensive response. Histone acetylases/deacetylases can modulate the gene expression of these hypertrophic and hypertensive components. Therefore, we hypothesized that long-term inhibition of histone deacetylase with valproic acid might attenuate hypertrophic and hypertensive responses by modulating reactive oxygen species and proinflammatory cytokines in SHR rats. Seven-week-old SHR and WKY rats were used in this study. Following baseline blood pressure measurement, rats were administered valproic acid in drinking water (0.71% wt/vol) or vehicle, with pressure measured weekly thereafter. Another set of rats were treated with hydralazine (25 mg/kg per day orally) to determine the pressure-independent effects of HDAC inhibition on hypertension. Following 20 weeks of treatment, heart function was measured using echocardiography, rats were euthanized, and heart tissue was collected for measurement of total reactive oxygen species, as well as proinflammatory cytokine, cardiac hypertrophic, and oxidative stress gene and protein expressions. Blood pressure, proinflammatory cytokines, hypertrophic markers, and reactive oxygen species were increased in SHR versus WKY rats. These changes were decreased in valproic acid-treated SHR rats, whereas hydralazine treatment only reduced blood pressure. These data indicate that long-term histone deacetylase inhibition, independent of the blood pressure response, reduces hypertrophic, proinflammatory, and hypertensive responses by decreasing reactive oxygen species and angiotensin II type1 receptor expression in the heart, demonstrating the importance of uncontrolled histone deacetylase activity in hypertension.
Collapse
Affiliation(s)
- Jeffrey P Cardinale
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | |
Collapse
|
248
|
Leenders JJ, Wijnen WJ, Hiller M, van der Made I, Lentink V, van Leeuwen REW, Herias V, Pokharel S, Heymans S, de Windt LJ, Høydal MA, Pinto YM, Creemers EE. Regulation of cardiac gene expression by KLF15, a repressor of myocardin activity. J Biol Chem 2010; 285:27449-27456. [PMID: 20566642 DOI: 10.1074/jbc.m110.107292] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathological forms of left ventricular hypertrophy (LVH) often progress to heart failure. Specific transcription factors have been identified that activate the gene program to induce pathological forms of LVH. It is likely that apart from activating transcriptional inducers of LVH, constitutive transcriptional repressors need to be removed during the development of cardiac hypertrophy. Here, we report that the constitutive presence of Krüppel-like factor 15 (KLF15) is lost in pathological hypertrophy and that this loss precedes progression toward heart failure. We show that transforming growth factor-beta-mediated activation of p38 MAPK is necessary and sufficient to decrease KLF15 expression. We further show that KLF15 robustly inhibits myocardin, a potent transcriptional activator. Loss of KLF15 during pathological LVH relieves the inhibitory effects on myocardin and stimulates the expression of serum response factor target genes, such as atrial natriuretic factor. This uncovers a novel mechanism where activated p38 MAPK decreases KLF15, an important constitutive transcriptional repressor whose removal seems a vital step to allow the induction of pathological LVH.
Collapse
Affiliation(s)
- Joost J Leenders
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Wino J Wijnen
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Monika Hiller
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Viola Lentink
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Rick E W van Leeuwen
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Veronica Herias
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Stephane Heymans
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Leon J de Windt
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Yigal M Pinto
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Esther E Creemers
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
249
|
Zhao TC, Zhang LX, Cheng G, Liu JT. gp-91 mediates histone deacetylase inhibition-induced cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:872-80. [PMID: 20433879 DOI: 10.1016/j.bbamcr.2010.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 04/01/2010] [Accepted: 04/19/2010] [Indexed: 01/05/2023]
Abstract
We have recently shown that the inhibition of histone deacetylases (HDAC) protects the heart against ischemia and reperfusion (I/R) injury. The mechanism by which HDAC inhibition induces cardioprotection remains unknown. We sought to investigate whether the genetic disruption of gp-91, a subunit of NADPH-oxidase, would mitigate cardioprotection of HDAC inhibition. Wild-type and gp-91(-)(/-) mice were treated with a potent inhibitor of HDACs, trichostatin A (TSA, 0.1 mg/kg, i.p.). Twenty-four hours later, the perfused hearts were subjected to 30 min of ischemia and 30 min of reperfusion. HDAC inhibition in wild-type mice produced marked improvements in ventricular functional recovery and the reduction of infarct size. TSA-induced cardioprotection was eliminated with genetic deletion of gp91. Notably, Western blot and immunostaining displayed a significant increase in gp-91 in myocardium following HDAC inhibition, which resulted in a mildly subsequent increase in the production of reactive oxygen species (ROS). The pre-treatment of H9c2 cardiomyoblasts with TSA (50 nmol/l) decreased cell necrosis and increased viability in response to simulated ischemia (SI), which was abrogated by the transfection of cells with gp-91 siRNA, but not by scrambled siRNA. Furthermore, treatment of PLB-985 gp91(+/+) cells with TSA increased the resistance to SI, which also diminished with genetic disruption of gp91 in gp91(phox)-deficient PLB-985 cells. TSA treatment inhibited the increased active caspase-3 in H9c2 cardiomyoblasts and PLB-985 gp91(+/+) cells exposed to SI, which were prevented by knockdown of gp-91 by siRNA. These results suggest that a cascade consisting of gp-91 and HDAC inhibition plays an essential role in orchestrating the cardioprotective effect.
Collapse
Affiliation(s)
- Ting C Zhao
- Department of Surgery, Roger William Medical Center, Boston University Medical School, Providence, RI 02908, USA.
| | | | | | | |
Collapse
|
250
|
Zhang LX, Zhao Y, Cheng G, Guo TL, Chin YE, Liu PY, Zhao TC. Targeted deletion of NF-kappaB p50 diminishes the cardioprotection of histone deacetylase inhibition. Am J Physiol Heart Circ Physiol 2010; 298:H2154-63. [PMID: 20382965 DOI: 10.1152/ajpheart.01015.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have recently demonstrated that the inhibition of histone deacetylases (HDAC) protects the heart against ischemia-reperfusion (I/R) injury. The mechanism by which HDAC inhibition confers myocardial protection remains unknown. The purpose of this study is to investigate whether the disruption of NF-kappaB p50 would eliminate the protective effects of HDAC inhibition. Wild-type and NF-kappaB p50-deficient mice were treated with trichostatin A (TSA; 0.1 mg/kg ip), a potent inhibitor of HDACs. Twenty-four hours later, the hearts were perfused in Langendorff model and subjected to 30 min of ischemia and 30 min of reperfusion. Inhibition of HDACs by TSA in wild-type mice produced marked improvements in left ventricular end-diastolic pressure, left ventricular rate pressure product, and the reduction of infarct size compared with non-TSA-treated group. TSA-induced cardioprotection in wild-type animals was absent with genetic deletion of NF-kappaB p50 subunit. Notably, Western blot displayed a significant increase in nuclear NF-kappaB p50 and the immunoprecipitation demonstrated a remarkable acetylation of NF-kappaB p50 at lysine residues following HDAC inhibition. EMSA exhibited a subsequent increase in NF-kappaB DNA binding activity. Luciferase assay demonstrated an activation of NF-kappaB by HDAC inhibition. The pretreatment of H9c2 cardiomyoblasts with TSA (50 nmol/l) decreased cell necrosis and increased in cell viability in simulated ischemia. The resistance of H9c2 cardiomyoblasts to simulated ischemia by HDAC inhibition was eliminated by genetic knockdown of NF-kappaB p50 with transfection of NF-kappaB p50 short interfering RNA but not scrambled short interfering RNA. These results suggest that NF-kappaB p50 acetylation and activation play a pivotal role in HDAC inhibition-induced cardioprotection.
Collapse
Affiliation(s)
- L X Zhang
- Department of Medicine, Brown Medical School, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | | | |
Collapse
|