201
|
Venkataraman K, Khurana S, Tai TC. Oxidative stress in aging--matters of the heart and mind. Int J Mol Sci 2013; 14:17897-925. [PMID: 24002027 PMCID: PMC3794759 DOI: 10.3390/ijms140917897] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023] Open
Abstract
Oxidative damage is considered to be the primary cause of several aging associated disease pathologies. Cumulative oxidative damage tends to be pervasive among cellular macromolecules, impacting proteins, lipids, RNA and DNA of cells. At a systemic level, events subsequent to oxidative damage induce an inflammatory response to sites of oxidative damage, often contributing to additional oxidative stress. At a cellular level, oxidative damage to mitochondria results in acidification of the cytoplasm and release of cytochrome c, causing apoptosis. This review summarizes findings in the literature on oxidative stress and consequent damage on cells and tissues of the cardiovascular system and the central nervous system, with a focus on aging-related diseases that have well-documented evidence of oxidative damage in initiation and/or progression of the disease. The current understanding of the cellular mechanisms with a focus on macromolecular damage, impacted cellular pathways and gross morphological changes associated with oxidative damage is also reviewed. Additionally, the impact of calorific restriction with its profound impact on cardiovascular and neuronal aging is addressed.
Collapse
Affiliation(s)
- Krishnan Venkataraman
- Department of Gerontology, Huntington University, Sudbury, ON P3E 2C6, Canada; E-Mail:
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; E-Mail:
| | - T. C. Tai
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; E-Mail:
- Department of Biology, Department of Chemistry and Biochemistry, Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-705-662-7239; Fax: +1-705-675-4858
| |
Collapse
|
202
|
Phagocyte dysfunction, tissue aging and degeneration. Ageing Res Rev 2013; 12:1005-12. [PMID: 23748186 DOI: 10.1016/j.arr.2013.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Abstract
Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration.
Collapse
|
203
|
Lopes-Virella MF, Virella G. Pathogenic role of modified LDL antibodies and immune complexes in atherosclerosis. J Atheroscler Thromb 2013; 20:743-54. [PMID: 23965492 DOI: 10.5551/jat.19281] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
There is strong evidence supporting a key role of the adaptive immune response in atherosclerosis, given that both activated Th cells producing predominantly interferon-γ and oxidized LDL (oxLDL) and the corresponding antibodies have been isolated from atheromatous plaques. Studies carried out using immune complexes (IC) prepared with human LDL and rabbit antibodies have demonstrated proatherogenic and pro-inflammatory properties, mostly dependent on the engagement of Fcγ receptors Ⅰ and Ⅱ in macrophages and macrophage-like cell lines. Following the development of a methodology for isolating modified LDL (mLDL) antibodies from serum and isolated IC, it was confirmed that antibodies reacting with oxLDL and advanced glycation end product-modified LDL are predominantly IgG of subtypes 1 and 3 and that mLDL IC prepared with human reagents possesses pro-inflammatory and proatherogenic properties. In previous studies, LDL separated from isolated IC has been analyzed for its modifications, and the reactivity of antibodies isolated from the same IC with different LDL modifications has been tested. Recently, we obtained strong evidence suggesting that the effects of mLDL IC on phagocytic cells are modulated by the composition of the mLDL. Clinical studies have shown that the level of mLDL in circulating IC is a strong predictor of cardiovascular disease (CVD) and, in diabetic patients, other significant complications, such as nephropathy and retinopathy. In conclusion, there is convincing ex vivo and clinical data supporting the hypothesis that, in humans, the humoral immune response to mLDL is pathogenic rather than protective.
Collapse
|
204
|
Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals. Eur J Nutr 2013; 53:661-72. [DOI: 10.1007/s00394-013-0574-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
|
205
|
van Eupen MGA, Schram MT, Colhoun HM, Hanssen NMJ, Niessen HWM, Tarnow L, Parving HH, Rossing P, Stehouwer CDA, Schalkwijk CG. The methylglyoxal-derived AGE tetrahydropyrimidine is increased in plasma of individuals with type 1 diabetes mellitus and in atherosclerotic lesions and is associated with sVCAM-1. Diabetologia 2013; 56:1845-55. [PMID: 23620061 DOI: 10.1007/s00125-013-2919-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Methylglyoxal (MGO) is a major precursor for advanced glycation end-products (AGEs), which are thought to play a role in vascular complications in diabetes. Known MGO-arginine-derived AGEs are 5-hydro-5-methylimidazolone (MG-H1), argpyrimidine and tetrahydropyrimidine (THP). We studied THP in relation to type 1 diabetes, endothelial dysfunction, low-grade inflammation, vascular complications and atherosclerosis. METHODS We raised and characterised a monoclonal antibody against MGO-derived THP. We measured plasma THP with a competitive ELISA in two cohort studies: study A (198 individuals with type 1 diabetes and 197 controls); study B (individuals with type 1 diabetes, 175 with normoalbuminuria and 198 with macroalbuminuria [>300 mg/24 h]). We measured plasma markers of endothelial dysfunction and low-grade inflammation, and evaluated the presence of THP and N (ε)-(carboxymethyl)lysine (CML) in atherosclerotic arteries. RESULTS THP was higher in individuals with type 1 diabetes than in those without (median [interquartile range] 115.5 U/μl [102.4-133.2] and 109.8 U/μl [91.8-122.3], respectively; p = 0.03). THP was associated with plasma soluble vascular cell adhesion molecule 1 in both study A (standardised β = 0.48 [95% CI 0.38, 0.58]; p < 0.001) and study B (standardised β = 0.31 [95% CI 0.23, 0.40]; p < 0.001), and with secreted phospholipase A2 (standardised β = 0.26 [95% CI 0.17, 0.36]; p < 0.001) in study B. We found no association of THP with micro- or macro-vascular complications. Both THP and CML were detected in atherosclerotic arteries. CONCLUSIONS/INTERPRETATION Our results suggest that MGO-derived THP may reflect endothelial dysfunction among individuals with and without type 1 diabetes, and therefore may potentially play a role in the development of atherosclerosis and vascular disease.
Collapse
Affiliation(s)
- M G A van Eupen
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Calycosin entered HUVECs and ameliorated AGEs-promoted cell apoptosis via the Bcl-2 pathway. J Nat Med 2013; 68:163-72. [DOI: 10.1007/s11418-013-0787-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
|
207
|
Fleming TH, Theilen TM, Masania J, Wunderle M, Karimi J, Vittas S, Bernauer R, Bierhaus A, Rabbani N, Thornalley PJ, Kroll J, Tyedmers J, Nawrotzki R, Herzig S, Brownlee M, Nawroth PP. Aging-dependent reduction in glyoxalase 1 delays wound healing. Gerontology 2013; 59:427-37. [PMID: 23797271 DOI: 10.1159/000351628] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (≤12 weeks) and old (≥52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p < 0.0001). This was associated with decreases in GLO1 transcription, expression and activity. The importance of GLO1 was confirmed in mice by inhibition of GLO1. Direct application of MG to the wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p < 0.05) and 64% (40.4 ± 7.9 vs. 66.4 ± 5.2%; p < 0.05), respectively, by day 6. As a result of the aminoguanidine treatment, the overall rate of wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice.
Collapse
Affiliation(s)
- Thomas H Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Di Marco E, Gray SP, Jandeleit-Dahm K. Diabetes alters activation and repression of pro- and anti-inflammatory signaling pathways in the vasculature. Front Endocrinol (Lausanne) 2013; 4:68. [PMID: 23761786 PMCID: PMC3672854 DOI: 10.3389/fendo.2013.00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/21/2013] [Indexed: 01/11/2023] Open
Abstract
A central mechanism driving vascular disease in diabetes is immune cell-mediated inflammation. In diabetes, enhanced oxidation and glycation of macromolecules, such as lipoproteins, insults the endothelium, and activates both innate and adaptive arms of the immune system by generating new antigens for presentation to adaptive immune cells. Chronic inflammation of the endothelium in diabetes leads to continuous infiltration and accumulation of leukocytes at sites of endothelial cell injury. We will describe the central role of the macrophage as a source of signaling molecules and damaging by-products which activate infiltrating lymphocytes in the tissue and contribute to the pro-oxidant and pro-inflammatory microenvironment. An important aspect to be considered is the diabetes-associated defects in the immune system, such as fewer or dysfunctional athero-protective leukocyte subsets in the diabetic lesion compared to non-diabetic lesions. This review will discuss the key pro-inflammatory signaling pathways responsible for leukocyte recruitment and activation in the injured vessel, with particular focus on pro- and anti-inflammatory pathways aberrantly activated or repressed in diabetes. We aim to describe the interaction between advanced glycation end products and their principle receptor RAGE, angiotensin II, and the Ang II type 1 receptor, in addition to reactive oxygen species (ROS) production by NADPH-oxidase enzymes that are relevant to vascular and immune cell function in the context of diabetic vasculopathy. Furthermore, we will touch on recent advances in epigenetic medicine that have revealed high glucose-mediated changes in the transcription of genes with known pro-inflammatory downstream targets. Finally, novel anti-atherosclerosis strategies that target the vascular immune interface will be explored; such as vaccination against modified low-density lipoprotein and pharmacological inhibition of ROS-producing enzymes.
Collapse
Affiliation(s)
- Elyse Di Marco
- Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen P. Gray
- Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
209
|
Vinokur V, Berenshtein E, Bulvik B, Grinberg L, Eliashar R, Chevion M. The bitter fate of the sweet heart: impairment of iron homeostasis in diabetic heart leads to failure in myocardial protection by preconditioning. PLoS One 2013; 8:e62948. [PMID: 23690966 PMCID: PMC3655153 DOI: 10.1371/journal.pone.0062948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/26/2013] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular dysfunction is a major complication of diabetes. Examining mechanistic aspects underlying the incapacity of the diabetic heart to respond to ischemic preconditioning (IPC), we could show that the alterations in iron homeostasis can explain this phenomenon. Correlating the hemodynamic parameters with levels of ferritin, the main iron storage and detoxifying protein, without and with inhibitors of protein degradation, substantiated this explanation. Diabetic hearts were less sensitive to ischemia-reperfusion stress, as indicated by functional parameters and histology. Mechanistically, since ferritin has been shown to provide cellular protection against insults, including ischemia-reperfusion stress and as the basal ferritin level in diabetic heart was 2-fold higher than in controls, these are in accord with the greater resistance of the diabetic heart to ischemia-reperfusion. Additionally, during ischemia-reperfusion, preceded by IPC, a rapid and extensive loss in ferritin levels, during the prolonged ischemia, in diabetic heart but not in non-diabetic controls, provide additional substantiation to the explanation for loss of respond to IPC. Current research is shedding light on the mechanism behind ferritin degradation as well, suggesting a novel explanation for diabetes-induced loss of cardioprotection.
Collapse
Affiliation(s)
- Vladimir Vinokur
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Otolaryngology, Hadassah-University Hospital, Jerusalem, Israel
| | - Eduard Berenshtein
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Baruch Bulvik
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leonid Grinberg
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Eliashar
- Department of Otolaryngology, Hadassah-University Hospital, Jerusalem, Israel
| | - Mordechai Chevion
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
210
|
Advanced glycation end products and diabetic retinopathy. J Ocul Biol Dis Infor 2013; 5:63-9. [PMID: 24596941 DOI: 10.1007/s12177-013-9104-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 01/08/2023] Open
Abstract
Studies have established hyperglycemia as the most important factor in the progress of vascular complications. Formation of advanced glycation end products (AGEs) correlates with glycemic control. The AGE hypothesis proposes that hyperglycemia contributes to the pathogenesis of diabetic complications including retinopathy. However, their role in diabetic retinopathy remains largely unknown. This review discusses the chemistry of AGEs formation and their patho-biochemistry particularly in relation to diabetic retinopathy. AGEs exert deleterious effects by acting directly to induce cross-linking of long-lived proteins to promote vascular stiffness, altering vascular structure and function and interacting with receptor for AGE, to induce intracellular signaling leading to enhanced oxidative stress and elaboration of key proinflammatory and prosclerotic cytokines. Novel anti-AGE strategies are being developed hoping that in next few years, some of these promising therapies will be successfully evaluated in clinical context aiming to reduce the major economical and medical burden caused by diabetic retinopathy.
Collapse
|
211
|
Piarulli F, Sartore G, Lapolla A. Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update. Acta Diabetol 2013; 50:101-10. [PMID: 22763581 PMCID: PMC3634985 DOI: 10.1007/s00592-012-0412-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/05/2012] [Indexed: 12/18/2022]
Abstract
Diabetes is associated with a greatly increased risk of cardiovascular disease (CVD), which cannot be explained only by known risk factors, such as smoking, hypertension, and atherogenic dyslipidemia, so other factors, such as advanced glycation end-products (AGEs) and oxidative stress, may be involved. In this frame, hyperglycemia and an increased oxidative stress (AGE formation, increased polyol and hexosamine pathway flux, and protein kinase C activation) lead to tissue damage, thus contributing to the onset of cardiovascular complications. Several studies have identified in various cell systems, such as monocytes/macrophages and endothelial cells, specific cellular receptors (RAGE) that bind AGE proteins. The binding of AGEs on RAGE induces the production of cytokines and intracellular oxidative stress, thus leading to vascular damage. Soluble RAGE levels have been identified as hypothetical markers of CVD, but, in this regard, there are sparse and conflicting data in the literature. The purpose of this review was to examine all the available information on this issue with a view to clarifying or at least highlighting the points that are still weak, especially from the point of clinical view.
Collapse
Affiliation(s)
- Francesco Piarulli
- Department of Medicine - DIMED, University of Padova, Via dei Colli 4, 35143 Padua, Italy
| | - Giovanni Sartore
- Department of Medicine - DIMED, University of Padova, Via dei Colli 4, 35143 Padua, Italy
| | - Annunziata Lapolla
- Department of Medicine - DIMED, University of Padova, Via dei Colli 4, 35143 Padua, Italy
| |
Collapse
|
212
|
Katz LM, Bailey SR. A review of recent advances and current hypotheses on the pathogenesis of acute laminitis. Equine Vet J 2013; 44:752-61. [PMID: 23106629 DOI: 10.1111/j.2042-3306.2012.00664.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With the increasing number of studies being published on the different experimental models used to induce and study acute laminitis, the pathophysiological events associated with these various models (i.e. starch overload, oligofructose overload, black walnut extract and hyperinsulinaemia) can be compared more realistically. Within this review, the mechanisms for metabolic vs. inflammatory laminitis are discussed, and the question of how pasture laminitis may fit into any of the proposed mechanisms is addressed.
Collapse
Affiliation(s)
- L M Katz
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | | |
Collapse
|
213
|
Abstract
RAGE is a key molecule in the onset and sustainment of the inflammatory response. New studies indicate that RAGE might represent a new link between the innate and adaptive immune system. RAGE belongs to the superfamily of Ig cell-surface receptors and is expressed on all types of leukocytes promoting activation, migration, or maturation of the different cells. RAGE expression is prominent on the activated endothelium, where it mediates leukocyte adhesion and transmigration. Moreover, proinflammatory molecules released from the inflamed or injured vascular system induce migration and proliferation of SMCs. RAGE binds a large number of different ligands and is therefore considered as a PRR, recognizing a structural motif rather than a specific ligand. In this review, we summarize the current knowledge about the signaling pathways activated in the different cell types and discuss a potential activation mechanism of RAGE, as well as putative options for therapeutic intervention.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
214
|
Naser N, Januszewski AS, Brown BE, Jenkins AJ, Hill MA, Murphy TV. Advanced glycation end products acutely impair ca(2+) signaling in bovine aortic endothelial cells. Front Physiol 2013; 4:38. [PMID: 23483845 PMCID: PMC3593230 DOI: 10.3389/fphys.2013.00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/13/2013] [Indexed: 01/16/2023] Open
Abstract
Post-translational modification of proteins in diabetes, including formation of advanced glycation end products (AGEs) are believed to contribute to vascular dysfunction and disease. Impaired function of the endothelium is an early indicator of vascular dysfunction in diabetes and as many endothelial cell processes are dependent upon intracellular [Ca2+] and Ca2+ signaling, the aim of this study was to examine the acute effects of AGEs on Ca2+ signaling in bovine aortic endothelial cells (BAEC). Ca2+ signaling was studied using the fluorescent indicator dye Fura-2-AM. AGEs were generated by incubating bovine serum albumin with 0–250 mM glucose or glucose-6-phosphate for 0–120 days at 37°C. Under all conditions, the main AGE species generated was carboxymethyl lysine (CML) as assayed using both gas-liquid chromatograph-mass spectroscopy and high-performance liquid chromatography. In Ca2+-replete solution, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated the increase in intracellular [Ca2+] caused by ATP (100 μM). In the absence of extracellular Ca2+, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated subsequent intracellular Ca2+ release caused by ATP, thapsigargin (0.1 μM), and ionomycin (3 μM), but AGEs did not affect extracellular Ca2+ entry induced by the re-addition of Ca2+ to the bathing solution in the presence of any of these agents. The anti-oxidant α-lipoic acid (2 μM) and NAD(P)H oxidase inhibitors apocynin (500 μM) and diphenyleneiodonium (1 μM) abolished these effects of AGEs on BAECs, as did the IP3 receptor antagonist xestospongin C (1 μM). In summary, AGEs caused an acute depletion of Ca2+ from the intracellular store in BAECs, such that the Ca2+ signal stimulated by the subsequent application other agents acting upon this store is reduced. The mechanism may involve generation of reactive oxygen species from NAD(P)H oxidase and possible activation of the IP3 receptor.
Collapse
Affiliation(s)
- Nadim Naser
- Department of Physiology, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
215
|
Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? DERMATO-ENDOCRINOLOGY 2013; 4:259-70. [PMID: 23467327 PMCID: PMC3583887 DOI: 10.4161/derm.22028] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is the progressive accumulation of damage to an organism over time leading to disease and death. Aging research has been very intensive in the last years aiming at characterizing the pathophysiology of aging and finding possibilities to fight age-related diseases. Various theories of aging have been proposed. In the last years advanced glycation end products (AGEs) have received particular attention in this context. AGEs are formed in high amounts in diabetes but also in the physiological organism during aging. They have been etiologically implicated in numerous diabetes- and age-related diseases. Strategies inhibiting AGE accumulation and signaling seem to possess a therapeutic potential in these pathologies. However, still little is known on the precise role of AGEs during skin aging. In this review the existing literature on AGEs and skin aging will be reviewed. In addition, existing and potential anti-AGE strategies that may be beneficial on skin aging will be discussed.
Collapse
Affiliation(s)
- Paraskevi Gkogkolou
- Department of Dermatology; Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology; University of Münster; Münster, Germany
| | | |
Collapse
|
216
|
Abstract
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
217
|
Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int J Mol Sci 2013; 14:3265-84. [PMID: 23385234 PMCID: PMC3588043 DOI: 10.3390/ijms14023265] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 02/06/2023] Open
Abstract
The high prevalence of diabetes mellitus and its increasing incidence worldwide, coupled with several complications observed in its carriers, have become a public health issue of great relevance. Chronic hyperglycemia is the main feature of such a disease, being considered the responsible for the establishment of micro and macrovascular complications observed in diabetes. Several efforts have been directed in order to better comprehend the pathophysiological mechanisms involved in the course of this endocrine disease. Recently, numerous authors have suggested that excess generation of highly reactive oxygen and nitrogen species is a key component in the development of complications invoked by hyperglycemia. Overproduction and/or insufficient removal of these reactive species result in vascular dysfunction, damage to cellular proteins, membrane lipids and nucleic acids, leading different research groups to search for biomarkers which would be capable of a proper and accurate measurement of the oxidative stress (OS) in diabetic patients, especially in the presence of chronic complications. In the face of this scenario, the present review briefly addresses the role of hyperglycemia in OS, considering basic mechanisms and their effects in diabetes mellitus, describes some of the more commonly used biomarkers of oxidative/nitrosative damage and includes selected examples of studies which evaluated OS biomarkers in patients with diabetes, pointing to the relevance of such biological components in general oxidative stress status of diabetes mellitus carriers.
Collapse
|
218
|
Lopes-Virella MF, Virella G. The role of immunity and inflammation in the development of diabetic complications. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
219
|
Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater 2013; 9:4635-44. [PMID: 22902816 DOI: 10.1016/j.actbio.2012.08.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
Numerous studies have described the effects of matrix stiffening on cell behavior using two-dimensional synthetic surfaces; however, less is known about the effects of matrix stiffening on cells embedded in three-dimensional in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in three dimensions is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a threefold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation end products is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth.
Collapse
|
220
|
Mangalmurti NS, Friedman JL, Wang LC, Stolz D, Muthukumaran G, Siegel DL, Schmidt AM, Lee JS, Albelda SM. The receptor for advanced glycation end products mediates lung endothelial activation by RBCs. Am J Physiol Lung Cell Mol Physiol 2012; 304:L250-63. [PMID: 23275625 DOI: 10.1152/ajplung.00278.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a multiligand pattern recognition receptor implicated in multiple disease states. Although RAGE is expressed on systemic vascular endothelium, the expression and function of RAGE on lung endothelium has not been studied. Utilizing in vitro (human) and in vivo (mouse) models, we established the presence of RAGE on lung endothelium. Because RAGE ligands can induce the expression of RAGE and stored red blood cells express the RAGE ligand N(ε)-carboxymethyl lysine, we investigated whether red blood cell (RBC) transfusion would augment RAGE expression on endothelium utilizing a syngeneic model of RBC transfusion. RBC transfusion not only increased lung endothelial RAGE expression but enhanced lung inflammation and endothelial activation, since lung high mobility group box 1 and vascular cell adhesion molecule 1 expression was elevated following transfusion. These effects were mediated by RAGE, since endothelial activation was absent in RBC-transfused RAGE knockout mice. Thus, RAGE is inducibly expressed on lung endothelium, and one functional consequence of RBC transfusion is increased RAGE expression and endothelial activation.
Collapse
Affiliation(s)
- Nilam S Mangalmurti
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Delbin MA, Davel APC, Couto GK, de Araújo GG, Rossoni LV, Antunes E, Zanesco A. Interaction between advanced glycation end products formation and vascular responses in femoral and coronary arteries from exercised diabetic rats. PLoS One 2012; 7:e53318. [PMID: 23285277 PMCID: PMC3532341 DOI: 10.1371/journal.pone.0053318] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 11/29/2012] [Indexed: 01/28/2023] Open
Abstract
Background The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. Methodology/Principal Findings Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx−), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and Nε-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx− levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx− levels were partially restored. Conclusion Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Antioxidants/pharmacology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/physiopathology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/therapy
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium-Dependent Relaxing Factors/metabolism
- Endothelium-Dependent Relaxing Factors/pharmacology
- Femoral Artery/drug effects
- Femoral Artery/metabolism
- Femoral Artery/physiopathology
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/pharmacology
- Male
- Physical Conditioning, Animal
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Reactive Oxygen Species/pharmacology
- Streptozocin
Collapse
Affiliation(s)
- Maria A. Delbin
- Department of Physical Education, Institute of Bioscience, University of São Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Ana Paula C. Davel
- Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gisele Kruger Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Gustavo G. de Araújo
- Department of Physical Education, Institute of Bioscience, University of São Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Luciana Venturini Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Bioscience, University of São Paulo State (UNESP), Rio Claro, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
222
|
Receptor for advanced glycation end products (RAGE) and glyoxalase I gene polymorphisms in pathological pregnancy. Clin Biochem 2012; 45:1409-14. [DOI: 10.1016/j.clinbiochem.2012.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 12/27/2022]
|
223
|
Mahali SK, Manna SK. Beta-D-glucoside protects against advanced glycation end products (AGEs)-mediated diabetic responses by suppressing ERK and inducing PPAR gamma DNA binding. Biochem Pharmacol 2012; 84:1681-90. [PMID: 23058985 DOI: 10.1016/j.bcp.2012.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023]
Abstract
Accumulation of advanced glycation end products (AGEs), due to excessive amounts of 3- or 4-carbon sugars derived from glucose; cause multiple consequences in diabetic patients and older persons. The transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ), is down regulated in the diabetic condition. Drugs targeting PPARγ were developed for diabetes therapy. We found that AGE inhibited PPARγ activity in different cell types induced by PPARγ activators, like troglitazone, rosiglitazone, oleamide, and anandamide. AGE induced translocation of PPARγ from nucleus to cytoplasm, increased on activation of ERK in cells. Antioxidants that inhibit AGE-induced NF-κB activation by preventing ROI generation were unable to protect AGE-mediated decrease in PPARγ activity. Only mangiferin, a β-D-glucoside, prevented AGE-mediated decrease in PPARγ activity and inhibited phosphorylation of ERK and cytoplasmic translocation of PPARγ. Mangiferin interacts with PPARγ and enhanced its DNA binding activity as predicted by in silico and shown by in vitro DNA-binding activity. Overall, the data suggest that (i) mangiferin inhibited AGE-induced ERK activation thereby inhibited PPARγ phosphorylation and cytoplasmic translocation; (ii) mangiferin interacts with PPARγ and enhances its DNA-binding ability. With these dual effects, mangiferin can be a likely candidate for developing therapeutic drug against diabetes.
Collapse
Affiliation(s)
- Sidhartha K Mahali
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Nampally, Hyderabad 500001, India
| | | |
Collapse
|
224
|
Rangasamy S, McGuire PG, Das A. Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr J Ophthalmol 2012; 19:52-9. [PMID: 22346115 PMCID: PMC3277025 DOI: 10.4103/0974-9233.92116] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most anti-vascular endothelial growth factor (VEGF) therapies in diabetic macular edema are not as robust as in proliferative diabetic retinopathy. Although the VEGF appears to be a good target in diabetic macular edema, the anti-VEGF therapies appear to be of transient benefit as the edema recurs within a few weeks, and repeated injections are necessary. There is new evidence that indicates 'retinal inflammation' as an important player in the pathogenesis of diabetic retinopathy. There are common sets of inflammatory cytokines that are upregulated in both the serum and vitreous and aqueous samples, in subjects with diabetic retinopathy, and these cytokines can have multiple interactions to impact the pathogenesis of the disease. The key inflammatory events involved in the blood retinal barrier (BRB) alteration appear to be: (1) Increased expression of endothelial adhesion molecules such as ICAM1, VCAM1, PECAM-1, and P-selectin, (2) adhesion of leukocytes to the endothelium, (3) release of inflammatory chemokines, cytokines, and vascular permeability factors, (4) alteration of adherens and tight junctional proteins between the endothelial cells, and (5) infiltration of leukocytes into the neuro-retina, resulting in the alteration of the blood retinal barrier (diapedesis). VEGF inhibition itself may not achieve neutralization of other inflammatory molecules involved in the inflammatory cascade of the breakdown of the BRB. It is possible that the novel selective inhibitors of the inflammatory cascade (like angiopoietin-2, TNFα, and chemokines) may be useful therapeutic agents in the treatment of diabetic macular edema (DME), either alone or in combination with the anti-VEGF drugs.
Collapse
Affiliation(s)
- Sampathkumar Rangasamy
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | | | | |
Collapse
|
225
|
Abstract
Cardiovascular dysfunction is common in severe sepsis or septic shock. Although functional alterations are often described, the elevated serum levels of cardiac proteins and autopsy findings of myocardial immune cell infiltration, edema, and damaged mitochondria suggest that structural changes to the heart during severe sepsis and septic shock may occur and may contribute to cardiac dysfunction. We explored the available literature on structural (versus functional) cardiac alterations during experimental and human endotoxemia and/or sepsis. Limited data suggest that the structural changes could be prevented, and myocardial function improved by (pre-)treatment with platelet-activating factor, cyclosporin A, glutamine, caffeine, simvastatin, or caspase inhibitors.
Collapse
|
226
|
Receptor for advanced glycation end products (RAGE) and implications for the pathophysiology of heart failure. Curr Heart Fail Rep 2012; 9:107-16. [PMID: 22457230 DOI: 10.1007/s11897-012-0089-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is expressed in the heart in cardiomyocytes, vascular cells, fibroblasts, and in infiltrating inflammatory cells. Experiments in murine, rat, and swine models of injury suggest that RAGE and the ligands of RAGE are upregulated in key injuries to the heart, including ischemia/reperfusion injury, diabetes, and inflammation. Pharmacological antagonism of RAGE or genetic deletion of the receptor in mice is strikingly protective in models of these stresses. Data emerging from human studies suggest that measurement of levels of RAGE ligands or soluble RAGEs in plasma or serum may correlate with the degree of heart failure. Taken together, the ligand-RAGE axis is implicated in heart failure and we predict that therapeutic antagonism of RAGE might be a unique target for therapeutic intervention in this disorder.
Collapse
|
227
|
Tissue plasminogen activator treatment of stroke in type-1 diabetes rats. Neuroscience 2012; 222:326-32. [PMID: 22820263 DOI: 10.1016/j.neuroscience.2012.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/29/2012] [Accepted: 07/07/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus (DM) is a major stroke risk factor and is associated with poor recovery compared with nondiabetic stroke patients. In the present study, we investigated the effects of tissue plasminogen activator (tPA) treatment of stroke in diabetic and non-diabetic rats. METHODS Type-1 diabetes (T1DM) was induced by injection of streptozotocin. Non-T1DM and T1DM rats were subjected to embolic middle cerebral artery occlusion (MCAo) and treated with or without tPA 2h after MCAo. Functional outcomes and immunostaining for advanced glycation endproducts receptor (RAGE), matrix metalloproteinase-9 (MMP-9) and toll-like receptor 4 (TLR4) and Western blotting were performed. RESULTS tPA treatment of WT-MCAo rats significantly improved the functional outcome and reduced the lesion volume compared with non-treatment WT-MCAo rats (p<0.05). There was no significant difference between treatment with or without tPA in the WT-MCAo group in brain hemorrhage, BBB leakage and expression of inflammatory mediators, RAGE, MMP-9 and TLR4. However, tPA treatment in T1DM-MCAo rats (T1DM-MCAo+tPA) significantly enlarged brain hemorrhage, augmented BBB leakage, and failed to decrease lesion volume and improve functional outcome after stroke compared to T1DM-MCAo control. tPA treatment also significantly increased the expression of RAGE, MMP-9 and TLR4 in the ischemic brain in T1DM-MCAo rats compared with T1DM-MCAo control rats (p<0.05). Brain hemorrhage was significantly correlated with functional deficit and RAGE and TLR4 expression, respectively. CONCLUSIONS Treatment of stroke with tPA increased brain hemorrhage, BBB leakage and failed to improve functional outcome in T1DM rats. The increased inflammatory response may contribute to the failed neuroprotective effects of tPA treatment in T1DM rats.
Collapse
|
228
|
Del Turco S, Basta G. An update on advanced glycation endproducts and atherosclerosis. Biofactors 2012; 38:266-74. [PMID: 22488968 DOI: 10.1002/biof.1018] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/14/2012] [Indexed: 01/24/2023]
Abstract
Advanced glycation endproducts (AGEs) are a group of modified molecular species formed by nonenzymatic reactions between the aldehydic group of reducing sugars with proteins, lipids, or nucleic acids. Formation and accumulation of AGEs are related to the aging process and are accelerated in diabetes. AGEs are generated in hyperglycemia, but their production also occurs in settings characterized by oxidative stress and inflammation. These species promote vascular damage and acceleration of atherosclerotic plaque progression mainly through two mechanisms: directly, altering the functional properties of vessel wall extracellular matrix molecules, or indirectly, through activation of cell receptor-dependent signaling. Interaction between AGEs and the key receptor for AGEs (RAGE), a transmembrane signaling receptor which is present in all cells relevant to atherosclerosis, alters cellular function, promotes gene expression, and enhances the release of proinflammatory molecules. The importance of the AGE-RAGE interaction and downstream pathways, leading to vessel wall injury and plaque development, has been amply established in animal studies. Moreover, the deleterious link of AGEs with diabetic vascular complications has been suggested in many human studies. Blocking the vicious cycle of AGE-RAGE axis signaling may be essential in controlling and preventing cardiovascular complications. In this article, we review the pathogenetic role of AGEs in the development, progression and instability of atherosclerosis, and the potential targets of this biological system for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Serena Del Turco
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | |
Collapse
|
229
|
Starkey JM, Tilton RG. Proteomics and systems biology for understanding diabetic nephropathy. J Cardiovasc Transl Res 2012; 5:479-90. [PMID: 22581264 DOI: 10.1007/s12265-012-9372-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/01/2012] [Indexed: 01/07/2023]
Abstract
Like many diseases, diabetic nephropathy is defined in a histopathological context and studied using reductionist approaches that attempt to ameliorate structural changes. Novel technologies in mass spectrometry-based proteomics have the ability to provide a deeper understanding of the disease beyond classical histopathology, redefine the characteristics of the disease state, and identify novel approaches to reduce renal failure. The goal is to translate these new definitions into improved patient outcomes through diagnostic, prognostic, and therapeutic tools. Here, we review progress made in studying the proteomics of diabetic nephropathy and provide an introduction to the informatics tools used in the analysis of systems biology data, while pointing out statistical issues for consideration. Novel bioinformatics methods may increase biomarker identification, and other tools, including selective reaction monitoring, may hasten clinical validation.
Collapse
Affiliation(s)
- Jonathan M Starkey
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-1060, USA
| | | |
Collapse
|
230
|
Sato E, Nagaoka T, Yokota H, Takahashi A, Yoshida A. Correlation between plasma pentosidine concentrations and retinal hemodynamics in patients with type 2 diabetes. Am J Ophthalmol 2012; 153:903-909.e1. [PMID: 22265156 DOI: 10.1016/j.ajo.2011.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate whether plasma pentosidine, a well-defined advanced glycation end product, is associated with retinal hemodynamic abnormalities in patients with type 2 diabetes. DESIGN Prospective cross-sectional study. METHODS Forty-two eyes with type 2 diabetes mellitus were evaluated. The type 2 diabetic eyes were divided into 2 groups: 22 eyes (22 patients; mean age, 61 years) with nondiabetic retinopathy (NDR) and 20 eyes (20 patients; mean age, 61 years) with mild nonproliferative diabetic retinopathy (NPDR). We used a retinal laser Doppler system to measure the arterial diameter, velocity, and blood flow in the major temporal retinal arteries. The pulsatility ratio, a resistive index expressed as the peak systolic to the end diastolic velocity ratio, was calculated from the blood velocity traces. Plasma pentosidine was measured in 42 patients with diabetes using a commercially available competitive enzyme-linked immunosorbent assay. RESULTS The pulsatility ratio significantly increased in patients with NPDR (4.8 ± 1.5) compared with patients with NDR (3.7 ± 0.8) (P = .0061). No differences in velocity, diameter, or blood flow were seen between the 2 groups. Plasma pentosidine levels also increased significantly (P = .0085) in patients with NPDR (0.057 ± 0.015) compared to patients with NDR (0.047 ± 0.012). The pulsatility ratio was correlated positively with the plasma pentosidine levels in patients with NPDR (Pearson correlation, r = 0.45, P = .044). Multiple regression analysis showed that the plasma pentosidine level was significantly associated with the pulsatility ratio (standardized coefficient, 0.62; P = .009). CONCLUSIONS The vascular rigidity of the retinal arteries may increase with increasing plasma pentosidine in patients with type 2 diabetes with retinopathy.
Collapse
|
231
|
Akirav EM, Preston-Hurlburt P, Garyu J, Henegariu O, Clynes R, Schmidt AM, Herold KC. RAGE expression in human T cells: a link between environmental factors and adaptive immune responses. PLoS One 2012; 7:e34698. [PMID: 22509345 PMCID: PMC3324532 DOI: 10.1371/journal.pone.0034698] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/08/2012] [Indexed: 12/18/2022] Open
Abstract
The Receptor for Advanced Glycation Endproducts (RAGE) is a scavenger ligand that binds glycated endproducts as well as molecules released during cell death such as S100b and HMGB1. RAGE is expressed on antigen presenting cells where it may participate in activation of innate immune responses but its role in adaptive human immune responses has not been described. We have found that RAGE is expressed intracellularly in human T cells following TCR activation but constitutively on T cells from patients with diabetes. The levels of RAGE on T cells from patients with diabetes are not related to the level of glucose control. It co-localizes to the endosomes. Its expression increases in activated T cells from healthy control subjects but bystander cells also express RAGE after stimulation of the antigen specific T cells. RAGE ligands enhance RAGE expression. In patients with T1D, the level of RAGE expression decreases with T cell activation. RAGE+ T cells express higher levels of IL-17A, CD107a, and IL-5 than RAGE− cells from the same individual with T1D. Our studies have identified the expression of RAGE on adaptive immune cells and a role for this receptor and its ligands in modulating human immune responses.
Collapse
Affiliation(s)
- Eitan M. Akirav
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Paula Preston-Hurlburt
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Justin Garyu
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Octavian Henegariu
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Raphael Clynes
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Ann Marie Schmidt
- Department of Medicine, New York University, New York, New York, United States of America
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
232
|
Bastek JA, Brown AG, Foreman MN, McShea MA, Anglim LM, Adamczak JE, Elovitz MA. The soluble receptor for advanced glycation end products can prospectively identify patients at greatest risk for preterm birth. J Matern Fetal Neonatal Med 2012; 25:1762-8. [DOI: 10.3109/14767058.2012.663825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
233
|
The role of glucosamine-induced ER stress in diabetic atherogenesis. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:187018. [PMID: 22474416 PMCID: PMC3296270 DOI: 10.1155/2012/187018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/27/2011] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is the major cause of mortality in individuals with diabetes mellitus. However the molecular and cellular mechanisms that predispose individuals with diabetes to the development and progression of atherosclerosis, the underlying cause of most CVD, are not understood. This paper summarizes the current state of our knowledge of pathways and mechanisms that may link diabetes and hyperglycemia to atherogenesis. We highlight recent work from our lab, and others', that supports a role for ER stress in these processes. The continued investigation of existing pathways, linking hyperglycemia and diabetes mellitus to atherosclerosis, and the identification of novel mechanisms and targets will be important to the development of new and effective antiatherosclerotic therapies tailored to individuals with diabetes.
Collapse
|
234
|
Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 2012; 1243:88-102. [PMID: 22211895 DOI: 10.1111/j.1749-6632.2011.06320.x] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The receptor for advanced glycation endproducts (RAGE) was first described as a signal transduction receptor for advanced glycation endproducts (AGEs), the products of nonenzymatic glycation and oxidation of proteins and lipids that accumulate in diabetes and in inflammatory foci. The discovery that RAGE was a receptor for inflammatory S100/calgranulins and high mobility group box 1 (HMGB1) set the stage for linking RAGE to both the consequences and causes of types 1 and 2 diabetes. Recent discoveries regarding the structure of RAGE as well as novel intracellular binding partner interactions advance our understanding of the mechanisms by which RAGE evokes pathological consequences and underscore strategies by which antagonism of RAGE in the clinic may be realized. Finally, recent data tracking RAGE in the clinic suggest that levels of soluble RAGEs and polymorphisms in the gene encoding RAGE may hold promise for the identification of patients who are vulnerable to the complications of diabetes and/or are receptive to therapeutic interventions designed to prevent and reverse the damage inflicted by chronic hyperglycemia, irrespective of its etiology.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
235
|
Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med 2012; 2012:569654. [PMID: 22489274 PMCID: PMC3303762 DOI: 10.1155/2012/569654] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/27/2011] [Indexed: 12/18/2022] Open
Abstract
A clear relationship between diabetes and cardiovascular disease has been established for decades. Despite this, the mechanisms by which diabetes contributes to plaque formation remain in question. Some of this confusion derives from studies in type 2 diabetics where multiple components of metabolic syndrome show proatherosclerotic effects independent of underlying diabetes. However, the hyperglycemia that defines the diabetic condition independently affects atherogenesis in cell culture systems, animal models, and human patients. Endothelial cell biology plays a central role in atherosclerotic plaque formation regulating vessel permeability, inflammation, and thrombosis. The current paper highlights the mechanisms by which hyperglycemia affects endothelial cell biology to promote plaque formation.
Collapse
|
236
|
Kassab A, Piwowar A. Cell oxidant stress delivery and cell dysfunction onset in type 2 diabetes. Biochimie 2012; 94:1837-48. [PMID: 22333037 DOI: 10.1016/j.biochi.2012.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Most known pathways of diabetic complications involve oxidative stress. The mitochondria electron transport chain is a significant source of reactive oxygen species (ROS) in insulin secretory cells, insulin peripheral sensitive cells and endothelial cells. Elevated intracellular glucose level induces tricarboxylic acid cycle electron donor overproduction and mitochondrial proton gradient increase leading to an increase in electron transporter lifetime. Subsequently, the electrons leaked combine with respiratory oxygen (O(2)) resulting in superoxide anion ((•)O(2)(-)) production. Advanced glycation end products derive ROS via interaction with their receptors. Elevated diacylglycerol and ROS activate the protein kinase C pathway which, in turn, activates NADPH oxidases. A vicious circle of pathway derived ROS installs. Pathologic pathways induced ROS are activated and persistent though glycemia returns to normal due to hyperglycemia memory. Endothelial nitric oxide synthase may produce both superoxide anion ((•)O(2)(-)) and nitric oxide (NO) leading to peroxynitrite ((•)ONOO(-)) generation. Homocysteine is also implicated in oxidative stress pathogenesis. In this paper we have highlighted the pathologic mechanisms of ROS on atherosclerosis, renal dysfunction, retina dysfunction and nerve dysfunction in type 2 diabetes. Cell oxidant stress delivery have pivotal role in cell dysfunction onset and progression of angiopathies but an early introduction of good glycemic control may protect cells more efficiently than antioxidants.
Collapse
Affiliation(s)
- Asma Kassab
- Biochemistry Laboratory, CHU Farhat Hached, Sousse, Tunisia.
| | | |
Collapse
|
237
|
Rhee H, Song SH, Kwak IS, Kim IY, Seong EY, Lee DW, Lee SB. An explorative analysis of secretory receptor for advanced glycation endproducts in primary focal segmental glomerulosclerosis. Clin Exp Nephrol 2012; 16:589-95. [PMID: 22302086 DOI: 10.1007/s10157-012-0599-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/15/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Despite remarkable medical progress, the main pathogenetic mechanisms of focal segmental glomerulosclerosis (FSGS) have not been fully delineated and its prognosis is poor at present. Recently, it was revealed that the receptor for advanced glycation endproducts (RAGE) was highly expressed at the base of podocytes with an up-regulation mainly in diabetic nephropathy. However, there is no report about the association between glomerulonephritis and RAGE. The aims of the current study were to explore the relationships between several clinical parameters and circulating soluble RAGE in primary FSGS and compare serum levels in primary FSGS with immunoglobulin A nephropathy (IgAN) and controls. METHODS A total of 35 subjects aged >18 years were enrolled. Thirty-five subjects consisted of three groups: primary FSGS (N = 15), IgAN (N = 10), and normal controls (N = 10). Laboratory measurements of serum carboxymethyl-lysin (CML), soluble RAGE (sRAGE), and endogenous secretory RAGE (esRAGE) were performed. RESULTS Serum esRAGE level in the FSGS group was higher than that in the IgAN group (0.55 ± 0.32 ng/mL vs. 0.27 ± 0.11 ng/mL, p = 0.013). There was no statistical difference between sRAGE and CML among the three groups. Within the FSGS group, esRAGE, but not sRAGE, was positively correlated with 24-h urinary protein (r = 0.553, p = 0.033) and negatively correlated with body mass index (r = -0.623, p = 0.013). In stepwise multiple regression analysis, body mass index and 24-h urinary protein were significant contributors to esRAGE within the FSGS group. CONCLUSION This study showed that only the serum level of esRAGE, not sRAGE, was higher in the FSGS group than in the IgAN and control groups. The amount of 24-h proteinuria was also related to the serum level of esRAGE in the FSGS group.
Collapse
Affiliation(s)
- Harin Rhee
- Division of Nephrology, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 602-739, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
238
|
Weikel KA, Fitzgerald P, Shang F, Caceres MA, Bian Q, Handa JT, Stitt AW, Taylor A. Natural history of age-related retinal lesions that precede AMD in mice fed high or low glycemic index diets. Invest Ophthalmol Vis Sci 2012; 53:622-32. [PMID: 22205601 DOI: 10.1167/iovs.11-8545] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Epidemiologic data indicate that people who consume low glycemic index (GI) diets are at reduced risk for the onset and progression of age-related macular degeneration (AMD). The authors sought corroboration of this observation in an animal model. METHODS Five- and 16-month-old C57BL/6 mice were fed high or low GI diets until they were 17 and 23.5 months of age, respectively. Retinal lesions were evaluated by transmission electron microscopy, and advanced glycation end products (AGEs) were evaluated by immunohistochemistry. RESULTS Retinal lesions including basal laminar deposits, loss of basal infoldings, and vacuoles in the retinal pigment epithelium were more prevalent in the 23.5- than in the 17-month-old mice. Within each age group, consumption of a high GI diet increased the risk for lesions and the risk for photoreceptor abnormalities and accumulation of AGEs. CONCLUSIONS Consuming high GI diets accelerates the appearance of age-related retinal lesions that precede AMD in mice, perhaps by increasing the deposition of toxic AGEs in the retina. The data support the hypothesis that consuming lower GI diets, or simulation of their effects with nutraceuticals or drugs, may protect against AMD. The high GI-fed C57BL/6 mouse is a new model of age-related retinal lesions that precede AMD and mimic the early stages of disease and may be useful for drug discovery.
Collapse
Affiliation(s)
- Karen A Weikel
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Nemoto S, Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Aminoguanidine normalizes ET-1-induced aortic contraction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats by suppressing Jab1-mediated increase in ET(A)-receptor expression. Peptides 2012; 33:109-19. [PMID: 22154739 DOI: 10.1016/j.peptides.2011.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 01/08/2023]
Abstract
Circulating levels of endothelin (ET)-1 are increased in the diabetic state, as is endogenous ET(A)-receptor-mediated vasoconstriction. However, the responsible mechanisms remain unknown. We hypothesized that ET-1-induced vasoconstriction is augmented in type 2 diabetes with hyperglycemia through an increment in advanced glycation end-products (AGEs). So, we investigated whether treatment with aminoguanidine (AG), an inhibitor of AGEs, would normalize the ET-1-induced contraction induced by ET-1 in strips of thoracic aortas isolated from OLETF rats at the chronic stage of diabetes. In such aortas (vs. those from age-matched genetic control LETO rats): (1) the ET-1-induced contraction was enhanced, (2) the levels of HIF1α/ECE1/plasma ET-1 and plasma CML-AGEs were increased, (3) the ET-1-stimulated ERK phosphorylation mediated by ET(A)-R was increased, (4) the expression level of Jab1-modified ET(A)-R protein was reduced, and (5) the expression level of O-GlcNAcylated ET(A)-R protein was increased. Aortas isolated from such OLETF rats that had been treated with AG (50mg/kg/day for 10 weeks) exhibited reduced ET-1-induced contraction, suppressed ET-1-stimulated ERK phosphorylation accompanied by down-regulation of ET(A)-R, and increased modification of ET(A)-R by Jab1. Such AG-treated rats exhibited normalized plasma ET-1 and CML-AGE levels, and their aortas exhibited decreased HIF1α/ECE1 expression. However, such AG treatment did not alter the elevated levels of plasma glucose or insulin, or systolic blood pressure seen in OLETF rats. These data from the OLETF model suggest that within the timescale studied here, AG normalizes ET-1-induced aortic contraction by suppressing ET(A)-R/ERK activities and/or by normalizing the imbalance between Jab1 and O-GlcNAc in type 2 diabetes.
Collapse
Affiliation(s)
- Shingo Nemoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
240
|
Virella G, Lopes-Virella MF. The Pathogenic Role of the Adaptive Immune Response to Modified LDL in Diabetes. Front Endocrinol (Lausanne) 2012; 3:76. [PMID: 22715334 PMCID: PMC3375400 DOI: 10.3389/fendo.2012.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/28/2012] [Indexed: 01/12/2023] Open
Abstract
The main causes of morbidity and mortality in diabetes are macro and microvascular complications, including atherosclerosis, nephropathy, and retinopathy. As the definition of atherosclerosis as a chronic inflammatory disease became widely accepted, it became important to define the triggers of vascular inflammation. Oxidative and other modifications of lipids and lipoproteins emerged as major pathogenic factors in atherosclerosis. Modified forms of LDL (mLDL) are pro-inflammatory by themselves, but, in addition, mLDLs including oxidized, malondialdehyde (MDA)-modified, and advanced glycation end (AGE)-product-modified LDL induce autoimmune responses in humans. The autoimmune response involves T cells in the arterial wall and synthesis of IgG antibodies. The IgG auto-antibodies that react with mLDLs generate immune complexes (IC) both intra and extravascularly, and those IC activate the complement system as well as phagocytic cells via the ligation of Fcγ receptors. In vitro studies proved that the pro-inflammatory activity of IC containing mLDL (mLDL-IC) is several-fold higher than that of the modified LDL molecules. Clinical studies support the pathogenic role of mLDL-IC in the development of macrovascular disease patients with diabetes. In type 1 diabetes, high levels of oxidized and AGE-LDL in IC were associated with internal carotid intima-media thickening and coronary calcification. In type 2 diabetes, high levels of MDA-LDL in IC predicted the occurrence of myocardial infarction. There is also evidence that mLDL-IC are involved in the pathogenesis of diabetic nephropathy and retinopathy. The pathogenic role of mLDL-IC is not unique to diabetic patients, because those IC are also detected in non-diabetic individuals. But mLDL-IC are likely to reach higher concentrations and have a more prominent pathogenic role in diabetes due to increased antigenic load secondary to high oxidative stress and to enhanced autoimmune responses in type 1 diabetes.
Collapse
Affiliation(s)
- Gabriel Virella
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
- *Correspondence: Gabriel Virella, Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, MSC 504, Charleston, SC 29425-5040, USA. e-mail:
| | - Maria F. Lopes-Virella
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
- Ralph E. Johnson VA Medical CenterCharleston, SC, USA
| |
Collapse
|
241
|
Li G, Tang J, Du Y, Lee CA, Kern TS. Beneficial effects of a novel RAGE inhibitor on early diabetic retinopathy and tactile allodynia. Mol Vis 2011; 17:3156-65. [PMID: 22171162 PMCID: PMC3235538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/01/2011] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The receptor for advanced glycation end products (RAGE) has been implicated in the pathogenesis of numerous complications of diabetes. We assessed the effect of a novel RAGE fusion protein inhibitor on retinal histopathology and nerve function, and on retinal inflammation and oxidative stress. METHODS C57BL/6J mice were made diabetic with streptozotocin, and some were given a RAGE fusion protein (10, 100, or 300 µg per mouse 3 times per week). Mice were sacrificed at 2 months and 10 months into the study to assess retinal vascular histopathology, accumulation of albumin in the neural retina, cell loss in the ganglion cell layer, and biochemical and physiologic abnormalities in the retina. Tactile allodynia (light touch) was measured on a paw of each animal at 2 months. RESULTS Leukostasis, expression of the intercellular adhesion molecule-1 (ICAM-1), accumulation of albumin in the neural retina, and nitration of retinal proteins were significantly increased in the retinas of mice diabetic for 2 months. The number of degenerate retinal capillaries was significantly increased in mice diabetic for 10 months, compared to the nondiabetic controls. Diabetes also enhanced sensitivity of peripheral nerves to tactile allodynia. All three doses of the RAGE fusion protein inhibited capillary degeneration, accumulation of albumin in the neural retina, nitration of retinal proteins, and tactile allodynia, demonstrating that biologically meaningful levels of the drug reached the retina. RAGE inhibition did tend to inhibit diabetes-induced retinal leukostasis and ICAM-1 expression (previously postulated to be important in the pathogenesis of retinopathy), but these effects were not statistically significant for the use of the lower doses of the drug that normalized the vascular histopathology. CONCLUSIONS Inhibition of RAGE blocked the development of important lesions of diabetic retinopathy, but these beneficial effects seemed not to be mediated via leukostasis. RAGE inhibition also blocked the development of sensory allodynia in diabetes. RAGE is an important therapeutic target to inhibit the development of vascular and neural complications of diabetes.
Collapse
Affiliation(s)
- Guangyuan Li
- Case Western Reserve University, Cleveland, OH,The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jie Tang
- Case Western Reserve University, Cleveland, OH
| | - Yunpeng Du
- Case Western Reserve University, Cleveland, OH
| | | | - Timothy S. Kern
- Case Western Reserve University, Cleveland, OH,Cleveland VAMC Research Service 151, Cleveland, OH
| |
Collapse
|
242
|
Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 2011. [PMID: 22211895 DOI: 10.1111/j.1749-6632.2011.06320.x.receptor] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The receptor for advanced glycation endproducts (RAGE) was first described as a signal transduction receptor for advanced glycation endproducts (AGEs), the products of nonenzymatic glycation and oxidation of proteins and lipids that accumulate in diabetes and in inflammatory foci. The discovery that RAGE was a receptor for inflammatory S100/calgranulins and high mobility group box 1 (HMGB1) set the stage for linking RAGE to both the consequences and causes of types 1 and 2 diabetes. Recent discoveries regarding the structure of RAGE as well as novel intracellular binding partner interactions advance our understanding of the mechanisms by which RAGE evokes pathological consequences and underscore strategies by which antagonism of RAGE in the clinic may be realized. Finally, recent data tracking RAGE in the clinic suggest that levels of soluble RAGEs and polymorphisms in the gene encoding RAGE may hold promise for the identification of patients who are vulnerable to the complications of diabetes and/or are receptive to therapeutic interventions designed to prevent and reverse the damage inflicted by chronic hyperglycemia, irrespective of its etiology.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
243
|
Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res 2011; 30:343-58. [PMID: 21635964 PMCID: PMC3433044 DOI: 10.1016/j.preteyeres.2011.05.002] [Citation(s) in RCA: 841] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 12/14/2022]
Abstract
Diabetes causes a number of metabolic and physiologic abnormalities in the retina, but which of these abnormalities contribute to recognized features of diabetic retinopathy (DR) is less clear. Many of the molecular and physiologic abnormalities that have been found to develop in the retina in diabetes are consistent with inflammation. Moreover, a number of anti-inflammatory therapies have been found to significantly inhibit development of different aspects of DR in animal models. Herein, we review the inflammatory mediators and their relationship to early and late DR, and discuss the potential of anti-inflammatory approaches to inhibit development of different stages of the retinopathy. We focus primarily on information derived from in vivo studies, supplementing with information from in vitro studies were important.
Collapse
Affiliation(s)
- Johnny Tang
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
244
|
Influence of obesity and metabolic dysfunction on the endothelial control in the coronary circulation. J Mol Cell Cardiol 2011; 52:840-7. [PMID: 21889942 DOI: 10.1016/j.yjmcc.2011.08.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 02/07/2023]
Abstract
Diseases of the coronary circulation remain the leading cause of death in Western society despite impressive advances in diagnosis, pharmacotherapy and post-event management. Part of this statistic likely stems from a parallel increase in the prevalence of obesity and metabolic dysfunction, both significant risk factors for coronary disease. Obesity and diabetes pose unique challenges for the heart and their impact on the coronary vasculature remains incompletely understood. The vascular endothelium is a major interface between arterial function and the physical and chemical components of blood flow. Proper function of the endothelium is necessary to preserve hemostasis, maintain vascular tone and limit the extent of vascular diseases such as atherosclerosis. Given its central role in vascular health, endothelial dysfunction has been the source of considerable research interest in diabetes and obesity. In the current review, we will examine the pathologic impact of obesity and diabetes on coronary function and the extent to which these two factors impact endothelial function. This article is part of a Special Issue entitled "Coronary Blood Flow".
Collapse
|
245
|
Mahali S, Raviprakash N, Raghavendra PB, Manna SK. Advanced glycation end products (AGEs) induce apoptosis via a novel pathway: involvement of Ca2+ mediated by interleukin-8 protein. J Biol Chem 2011; 286:34903-13. [PMID: 21862577 DOI: 10.1074/jbc.m111.279190] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Advanced glycation end products (AGEs) accumulate in diabetic patients due to high blood glucose levels and cause multiple deleterious effects. In this study, we provide evidence that the AGE increased cell death, one such deleterious effect. Methyl glyoxal-coupled human serum albumin (AGE-HSA) induced transcription factors such as NF-κB, NF-AT, and AP-1. AGE acts through its cell surface receptor, RAGE, and degranulates vesicular contents including interleukin-8 (IL-8). The number of RAGEs, as well as the amount of NF-κB activation, is low, but the cell death is higher in neuronal cells upon AGE treatment. Degranulated IL-8 acts through its receptors, IL-8Rs, and induces sequential events in cells: increase in intracellular Ca(2+), activation of calcineurin, dephosphorylation of cytoplasmic NF-AT, nuclear translocation of NF-AT, and expression of FasL. Expressed FasL increases activity of caspases and induces cell death. Although AGE increases the amount of reactive oxygen intermediate, accompanying cell death is not dependent upon reactive oxygen intermediate. AGE induces autophagy, which partially protects cells from cell death. A novel mechanism of AGE-mediated cell death in different cell types, especially in neuronal cells where it is an early event, is provided here. Thus, this study may be important in several age-related neuronal diseases where AGE-induced apoptosis is observed because of high amounts of AGE.
Collapse
Affiliation(s)
- Sidharth Mahali
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500 001, India
| | | | | | | |
Collapse
|
246
|
Park SH, Do JY, Kim YH, Lee HY, Kim BS, Shin SK, Kim HC, Chang YK, Yang JO, Chung HC, Kim CD, Lee WK, Kim JY, Kim YL. Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1-year follow-up study. Nephrol Dial Transplant 2011; 27:1191-9. [DOI: 10.1093/ndt/gfr451] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
247
|
Ito Y, Bhawal UK, Sasahira T, Toyama T, Sato T, Matsuda D, Nishikiori H, Kobayashi M, Sugiyama M, Hamada N, Arakawa H, Kuniyasu H. Involvement of HMGB1 and RAGE in IL-1β-induced gingival inflammation. Arch Oral Biol 2011; 57:73-80. [PMID: 21861984 DOI: 10.1016/j.archoralbio.2011.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 08/01/2011] [Accepted: 08/02/2011] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Extracellularly released high mobility group box 1 (HMGB1) protein behaves as a cytokine, promotes inflammation and participates in the pathogenesis of several disorders in peripheral organs. The role of HMGB1 and receptor for advanced glycation end products (RAGE) expressed in gingival inflammatory tissues was explored. METHODS Real time PCR was applied to assay HMGB1 and RAGE mRNA expression in gingival epithelial and fibroblast cells induced by interleukin-1β (IL-1β). A highly selective inhibitor of inducible nitric oxide (iNOS) was employed. ELISA was done for measurement of HMGB1 concentrations in cell culture media of gingival epithelial and fibroblast cells. Immunohistochemistry was performed to analyse the expression and sub-cellular localization of HMGB1, together with RAGE, in specimens obtained from patients with chronic inflammation. RESULTS A time-dependent response of HMGB1 and RAGE expression in gingival cells to IL-1β induction was observed. IL-1β promotes HMGB1 production in human gingival epithelial cells in a nitric oxide-dependent manner. HMGB1 and RAGE appeared highly expressed in gingival inflammatory tissues. CONCLUSION These results demonstrate that HMGB1 and RAGE are abundantly expressed in gingiva and promptly released during gingival inflammation. We suggest a role for HMGB1/RAGE/iNOS signalling on inflamed gingival epithelial cells.
Collapse
Affiliation(s)
- Yumi Ito
- Department of Comprehensive Dentistry, Kanagawa Dental College, Yokosuka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Krzywanski DM, Moellering DR, Fetterman JL, Dunham-Snary KJ, Sammy MJ, Ballinger SW. The mitochondrial paradigm for cardiovascular disease susceptibility and cellular function: a complementary concept to Mendelian genetics. J Transl Med 2011; 91:1122-35. [PMID: 21647091 PMCID: PMC3654682 DOI: 10.1038/labinvest.2011.95] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial-nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success.
Collapse
Affiliation(s)
- David M Krzywanski
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
249
|
Abstract
The prevalence of diabetic polyneuropathy (DPN) can approach 50% in subjects with longer-duration diabetes. The most common neuropathies are generalized symmetrical chronic sensorimotor polyneuropathy and autonomic neuropathy. It is important to recognize that 50% of subjects with DPN may have no symptoms and only careful clinical examination may reveal the diagnosis. DPN, especially painful diabetic peripheral neuropathy, is associated with poor quality of life. Although there is a better understanding of the pathophysiology of DPN and the mechanisms of pain, treatment remains challenging and is limited by variable efficacy and side effects of therapies. Intensification of glycemic control remains the cornerstone for the prevention or delay of DPN but optimization of other traditional cardiovascular risk factors may also be of benefit. The management of DPN relies on its early recognition and needs to be individually based on comorbidities and tolerability to medications. To date, most pharmacological strategies focus upon symptom control. In the management of pain, tricyclic antidepressants, selective serotonin noradrenaline reuptake inhibitors, and anticonvulsants alone or in combination are current first-line therapies followed by use of opiates. Topical agents may offer symptomatic relief in some patients. Disease-modifying agents are still in development and to date, antioxidant α-lipoic acid has shown the most promising effect. Further development and testing of therapies based upon improved understanding of the complex pathophysiology of this common and disabling complication is urgently required.
Collapse
Affiliation(s)
| | - Martin J Stevens
- Heart of England NHS Foundation Trust, Birmingham, UK
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| |
Collapse
|
250
|
Fang RC, Galiano RD. A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics 2011; 2:1-12. [PMID: 19707423 PMCID: PMC2727777 DOI: 10.2147/btt.s1338] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic neuropathic foot ulcers represent a serious health care burden to patients and to society. While the management of chronic diabetic foot ulcers has improved in recent years, it remains a frustrating problem for a variety of clinicians. This review examines the scientific underpinnings supporting the use of becaplermin (Regranex((R)); Ortho-McNeil Pharmaceutical, Raritan, NJ), or recombinant human platelet-derived growth factor (rhPDGF-BB), in diabetic forefoot wounds. An emphasis is placed upon proper medical and surgical care of diabetic foot wounds, as multiple studies have demonstrated that the success of this growth factor in accelerating healing is ultimately dependent on proper ulcer care. A focus on the cost-effectiveness of this form of therapy in the treatment of diabetic foot ulcers is also outlined.
Collapse
Affiliation(s)
- Robert C Fang
- Division of Plastic and Reconstructive Surgery and Wound Healing Research Laboratory, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|