201
|
Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor. Proc Natl Acad Sci U S A 2016; 113:E1898-906. [PMID: 26984496 DOI: 10.1073/pnas.1602397113] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capability. Water deprivation consistently elevated urinary sPRR excretion in mice and humans. A template-based algorithm for protein-protein interaction predicted the interaction between sPRR and frizzled-8 (FZD8), which subsequently was confirmed by coimmunoprecipitation. A recombinant histidine-tagged sPRR (sPRR-His) in the nanomolar range induced a remarkable increase in the abundance of renal aquaporin 2 (AQP2) protein in primary rat inner medullary collecting duct cells. The AQP2 up-regulation relied on sequential activation of FZD8-dependent β-catenin signaling and cAMP-PKA pathways. Inhibition of FZD8 or tankyrase in rats induced polyuria, polydipsia, and hyperosmotic urine. Administration of sPRR-His alleviated the symptoms of diabetes insipidus induced in mice by vasopressin 2 receptor antagonism. Administration of the LXR agonist TO901317 to C57/BL6 mice induced polyuria and suppressed renal AQP2 expression associated with reduced renal PRR expression and urinary sPRR excretion. Administration of sPRR-His reversed most of the effects of TO901317. In cultured collecting duct cells, TO901317 suppressed PRR protein expression, sPRR release, and PRR transcriptional activity. Overall we demonstrate, for the first time to our knowledge, that sPRR exerts antidiuretic action via FZD8-dependent stimulation of AQP2 expression and that inhibition of this pathway contributes to the pathogenesis of diabetes insipidus induced by LXR agonism.
Collapse
|
202
|
Daryadel A, Bourgeois S, Figueiredo MFL, Gomes Moreira A, Kampik NB, Oberli L, Mohebbi N, Lu X, Meima ME, Danser AHJ, Wagner CA. Colocalization of the (Pro)renin Receptor/Atp6ap2 with H+-ATPases in Mouse Kidney but Prorenin Does Not Acutely Regulate Intercalated Cell H+-ATPase Activity. PLoS One 2016; 11:e0147831. [PMID: 26824839 PMCID: PMC4732657 DOI: 10.1371/journal.pone.0147831] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022] Open
Abstract
The (Pro)renin receptor (P)RR/Atp6ap2 is a cell surface protein capable of binding and non-proteolytically activate prorenin. Additionally, (P)RR is associated with H+-ATPases and alternative functions in H+-ATPase regulation as well as in Wnt signalling have been reported. Kidneys express very high levels of H+-ATPases which are involved in multiple functions such as endocytosis, membrane protein recycling as well as urinary acidification, bicarbonate reabsorption, and salt absorption. Here, we wanted to localize the (P)RR/Atp6ap2 along the murine nephron, exmaine whether the (P)RR/Atp6ap2 is coregulated with other H+-ATPase subunits, and whether acute stimulation of the (P)RR/Atp6ap2 with prorenin regulates H+-ATPase activity in intercalated cells in freshly isolated collecting ducts. We localized (P)PR/Atp6ap2 along the murine nephron by qPCR and immunohistochemistry. (P)RR/Atp6ap2 mRNA was detected in all nephron segments with highest levels in the collecting system coinciding with H+-ATPases. Further experiments demonstrated expression at the brush border membrane of proximal tubules and in all types of intercalated cells colocalizing with H+-ATPases. In mice treated with NH4Cl, NaHCO3, KHCO3, NaCl, or the mineralocorticoid DOCA for 7 days, (P)RR/Atp6ap2 and H+-ATPase subunits were regulated but not co-regulated at protein and mRNA levels. Immunolocalization in kidneys from control, NH4Cl or NaHCO3 treated mice demonstrated always colocalization of PRR/Atp6ap2 with H+-ATPase subunits at the brush border membrane of proximal tubules, the apical pole of type A intercalated cells, and at basolateral and/or apical membranes of non-type A intercalated cells. Microperfusion of isolated cortical collecting ducts and luminal application of prorenin did not acutely stimulate H+-ATPase activity. However, incubation of isolated collecting ducts with prorenin non-significantly increased ERK1/2 phosphorylation. Our results suggest that the PRR/Atp6ap2 may form a complex with H+-ATPases in proximal tubule and intercalated cells but that prorenin has no acute effect on H+-ATPase activity in intercalated cells.
Collapse
MESH Headings
- Ammonium Chloride/pharmacology
- Animals
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Dogs
- Gene Expression Regulation
- Kidney Cortex/cytology
- Kidney Cortex/drug effects
- Kidney Cortex/metabolism
- Kidney Medulla/cytology
- Kidney Medulla/drug effects
- Kidney Medulla/metabolism
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Madin Darby Canine Kidney Cells
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Proton-Translocating ATPases/genetics
- Proton-Translocating ATPases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Renin/pharmacology
- Renin-Angiotensin System/drug effects
- Signal Transduction
- Sodium Bicarbonate/pharmacology
- Sodium Chloride/pharmacology
- Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
- Solute Carrier Family 12, Member 1/genetics
- Solute Carrier Family 12, Member 1/metabolism
- Solute Carrier Family 12, Member 3/genetics
- Solute Carrier Family 12, Member 3/metabolism
- Sulfate Transporters
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | | - Nicole B. Kampik
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Lisa Oberli
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Divison of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Xifeng Lu
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel E. Meima
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
203
|
Affiliation(s)
- Alanna Strong
- From the Department of Pediatrics, St Christopher's Hospital for Children, Philadelphia, PA (A.S.); Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (K.M.); and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (K.M.)
| | - Kiran Musunuru
- From the Department of Pediatrics, St Christopher's Hospital for Children, Philadelphia, PA (A.S.); Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (K.M.); and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (K.M.).
| |
Collapse
|
204
|
Kurlak LO, Mistry HD, Cindrova-Davies T, Burton GJ, Broughton Pipkin F. Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult. J Physiol 2016; 594:1327-40. [PMID: 26574162 DOI: 10.1113/jp271045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/24/2015] [Indexed: 12/11/2022] Open
Abstract
A functioning placental renin-angiotensin system (RAS) appears necessary for uncomplicated pregnancy and is present during placentation, which occurs under low oxygen tensions. Placental RAS is increased in pre-eclampsia (PE), characterised by placental dysfunction and elevated oxidative stress. We investigated the effect of high altitude hypoxia on the RAS and hypoxia-inducible factors (HIFs) by measuring mRNA and protein expression in term placentae from normotensive (NT) and PE women who delivered at sea level or above 3100 m, using an explant model of hypoxia-reoxygenation to assess the impact of acute oxidative stress on the RAS and HIFs. Protein levels of prorenin (P = 0.049), prorenin receptor (PRR; P = 0.0004), and angiotensin type 1 receptor (AT1R, P = 0.006) and type 2 receptor (AT2R, P = 0.002) were all significantly higher in placentae from NT women at altitude, despite mRNA expression being unaffected. However, mRNA expression of all RAS components was significantly lower in PE at altitude than at sea level, yet PRR, angiotensinogen (AGT) and AT1R proteins were all increased. The increase in transcript and protein expression of all the HIFs and NADPH oxidase 4 seen in PE compared to NT at sea level was blunted at high altitude. Experimentally induced oxidative stress stimulated AGT mRNA (P = 0.04) and protein (P = 0.025). AT1R (r = 0.77, P < 0.001) and AT2R (r = 0.81, P < 0.001) mRNA both significantly correlated with HIF-1β, whilst AT2R also correlated with HIF-1α (r = 0.512, P < 0.013). Our observations suggest that the placental RAS is responsive to changes in tissue oxygenation: this could be important in the interplay between reactive oxygen species as cell-signalling molecules for angiogenesis and hence placental development and function.
Collapse
Affiliation(s)
- Lesia O Kurlak
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK
| | - Hiten D Mistry
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK.,Division of Hypertension, Department of Nephrology, Hypertension and Clinical Pharmacology and Clinical Research, University of Bern, CH-3010, Berne, Switzerland
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Fiona Broughton Pipkin
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK
| |
Collapse
|
205
|
Kamp F, Winkler E, Trambauer J, Ebke A, Fluhrer R, Steiner H. Intramembrane proteolysis of β-amyloid precursor protein by γ-secretase is an unusually slow process. Biophys J 2016; 108:1229-37. [PMID: 25762334 DOI: 10.1016/j.bpj.2014.12.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 11/16/2022] Open
Abstract
Intramembrane proteolysis has emerged as a key mechanism required for membrane proteostasis and cellular signaling. One of the intramembrane-cleaving proteases (I-CLiPs), γ-secretase, is also intimately implicated in Alzheimer's disease, a major neurodegenerative disease and leading cause of dementia. High-resolution crystal structural analyses have revealed that I-CLiPs harbor their active sites buried deeply in the membrane bilayer. Surprisingly, however, the key kinetic constants of these proteases, turnover number kcat and catalytic efficiency kcat/KM, are largely unknown. By investigating the kinetics of intramembrane cleavage of the Alzheimer's disease-associated β-amyloid precursor protein in vitro and in human embryonic kidney cells, we show that γ-secretase is a very slow protease with a kcat value similar to those determined recently for rhomboid-type I-CLiPs. Our results indicate that low turnover numbers may be a general feature of I-CLiPs.
Collapse
Affiliation(s)
- Frits Kamp
- Metabolic Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Edith Winkler
- Metabolic Biochemistry, Ludwig-Maximilians-University, München, Germany
| | | | - Amelie Ebke
- Metabolic Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Regina Fluhrer
- Metabolic Biochemistry, Ludwig-Maximilians-University, München, Germany; DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
| | - Harald Steiner
- Metabolic Biochemistry, Ludwig-Maximilians-University, München, Germany; DZNE-German Center for Neurodegenerative Diseases, Munich, Germany.
| |
Collapse
|
206
|
Leung JCK, Chan LYY, Saleem MA, Mathieson PW, Tang SCW, Lai KN. Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells. Apoptosis 2016; 20:907-20. [PMID: 25808596 PMCID: PMC7101871 DOI: 10.1007/s10495-015-1117-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls. Conditioned media were prepared from growth arrested human mesangial cells (HMC) incubated with pIgA from patients with IgAN (IgA-HMC media) or healthy controls (Ctl-HMC media). A human podocyte cell line was used as a model to examine the regulation of the expression of AT1R, PRR, TNF-α and CTGF by IgA-HMC media. Podocytic nephrin expression, annexin V binding and caspase 3 activity were used as the functional readout of podocytic apoptosis. IgA-HMC media had no effect on AngII release by podocytes. IgA-HMC media significantly up-regulated the expression of AT1R and PRR, down-regulated nephrin expression and induced apoptosis in podocytes. Mono-blockade of AT1R, PRR, TNF-α or CTGF partially reduced podocytic apoptosis. IgA-HMC media activated NFκB, notch1 and HEY1 expression by podocytes and dual blockade of AT1R with PRR, or anti-TNF-α with anti-CTGF, effectively rescued the podocytic apoptosis induced by IgA-HMC media. Our data suggests that pIgA-activated HMC up-regulates the expression of AT1R and PRR expression by podocytes and the associated activation of NFκB and notch signalling pathways play an essential role in the podocytic apoptosis induced by glomerulo-podocytic communication in IgAN. Simultaneously targeting the AT1R and PRR could be a potential therapeutic option to reduce the podocytic injury in IgAN.
Collapse
Affiliation(s)
- Joseph C K Leung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 301, Professorial Block, 102 Pokfulam Road, Pokfulam, Hong Kong, China,
| | | | | | | | | | | |
Collapse
|
207
|
Bernardi S, Michelli A, Zuolo G, Candido R, Fabris B. Update on RAAS Modulation for the Treatment of Diabetic Cardiovascular Disease. J Diabetes Res 2016; 2016:8917578. [PMID: 27652272 PMCID: PMC5019930 DOI: 10.1155/2016/8917578] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Since the advent of insulin, the improvements in diabetes detection and the therapies to treat hyperglycemia have reduced the mortality of acute metabolic emergencies, such that today chronic complications are the major cause of morbidity and mortality among diabetic patients. More than half of the mortality that is seen in the diabetic population can be ascribed to cardiovascular disease (CVD), which includes not only myocardial infarction due to premature atherosclerosis but also diabetic cardiomyopathy. The importance of renin-angiotensin-aldosterone system (RAAS) antagonism in the prevention of diabetic CVD has demonstrated the key role that the RAAS plays in diabetic CVD onset and development. Today, ACE inhibitors and angiotensin II receptor blockers represent the first line therapy for primary and secondary CVD prevention in patients with diabetes. Recent research has uncovered new dimensions of the RAAS and, therefore, new potential therapeutic targets against diabetic CVD. Here we describe the timeline of paradigm shifts in RAAS understanding, how diabetes modifies the RAAS, and what new parts of the RAAS pathway could be targeted in order to achieve RAAS modulation against diabetic CVD.
Collapse
Affiliation(s)
- Stella Bernardi
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- Division of Medicina Clinica, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- *Stella Bernardi:
| | - Andrea Michelli
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| | - Giulia Zuolo
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| | - Riccardo Candido
- Diabetes Centre, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Via Puccini, 34100 Trieste, Italy
| | - Bruno Fabris
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- Division of Medicina Clinica, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| |
Collapse
|
208
|
Tojo A, Kinugasa S, Fujita T, Wilcox CS. A local renal renin-angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats. Diabetes Metab Syndr Obes 2016; 9:1-10. [PMID: 26848273 PMCID: PMC4723098 DOI: 10.2147/dmso.s91245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanism of activation of local renal renin-angiotensin system (RAS) has not been clarified in diabetes mellitus (DM). We hypothesized that the local renal RAS will be activated via increased glomerular filtration and tubular uptake of prorenin and angiotensinogen in diabetic kidney with microalbuminuria. Streptozotocin (STZ)-induced DM and control rats were injected with human prorenin and subsequently with human angiotensinogen. Human prorenin uptake was increased in podocytes, proximal tubules, macula densa, and cortical collecting ducts of DM rats where prorenin receptor (PRR) was expressed. Co-immunoprecipitation of kidney homogenates in DM rats revealed binding of human prorenin to the PRR and to megalin. The renal uptake of human angiotensinogen was increased in DM rats at the same nephron sites as prorenin. Angiotensin-converting enzyme was increased in podocytes, but decreased in the proximal tubules in DM rats, which may have contributed to unchanged renal levels of angiotensin despite increased angiotensinogen. The systolic blood pressure increased more after the injection of 20 μg of angiotensinogen in DM rats than in controls, accompanied by an increased uptake of human angiotensinogen in the vascular endothelium. In conclusion, endocytic uptake of prorenin and angiotensinogen in the kidney and vasculature in DM rats was contributed to increased tissue RAS and their pressor response to angiotensinogen.
Collapse
Affiliation(s)
- Akihiro Tojo
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
- Correspondence: Akihiro Tojo, Division of Nephrology and Endocrinology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Tel +81 3 3815 5411 ext 37219, Fax +81 3 3814 0021, Email
| | - Satoshi Kinugasa
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Center for Hypertension, Kidney and Vascular Research, Georgetown University, Washington, DC, USA
| |
Collapse
|
209
|
Gregorini M, Corradetti V, Rocca C, Pattonieri EF, Valsania T, Milanesi S, Serpieri N, Bedino G, Esposito P, Libetta C, Avanzini MA, Mantelli M, Ingo D, Peressini S, Albertini R, Dal Canton A, Rampino T. Mesenchymal Stromal Cells Prevent Renal Fibrosis in a Rat Model of Unilateral Ureteral Obstruction by Suppressing the Renin-Angiotensin System via HuR. PLoS One 2016; 11:e0148542. [PMID: 26866372 PMCID: PMC4750962 DOI: 10.1371/journal.pone.0148542] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
We studied Mesenchymal Stromal Cells (MSC) effects in experimental Unilateral Ureteral Obstruction (UUO), a fibrogenic renal disease. Rats were divided in 5 groups: sham, UUO, MSC treated-UUO, ACEi treated-UUO, MSC+ACEi treated- UUO. Data were collected at 1, 7, 21 days. UUO induced monocyte renal infiltration, tubular cell apoptosis, tubular atrophy, interstitial fibrosis and overexpression of TGFβ, Renin mRNA (RENmRNA), increase of Renin, Angiotensin II (AII) and aldosterone serum levels. Both lisinopril (ACEi) and MSC treatment prevented monocyte infiltration, reduced tubular cell apoptosis, renal fibrosis and TGFβ expression. Combined therapy provided a further suppression of monocyte infiltration and tubular injury. Lisinopril alone caused a rebound activation of Renin-Angiotensin System (RAS), while MSC suppressed RENmRNA and Renin synthesis and induced a decrease of AII and aldosterone serum levels. Furthermore, in in-vitro and in-vivo experiments, MSC inhibit Human antigen R (HuR) trascription, an enhancer of RENmRNA stability by IL10 release. In conclusion, we demonstrate that in UUO MSC prevent fibrosis, by decreasing HuR-dependent RENmRNA stability. Our findings give a clue to understand the molecular mechanism through which MSC may prevent fibrosis in a wide and heterogeneous number of diseases that share RAS activation as common upstream pathogenic mechanism.
Collapse
Affiliation(s)
- Marilena Gregorini
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Valeria Corradetti
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
- * E-mail:
| | - Chiara Rocca
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Eleonora Francesca Pattonieri
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Teresa Valsania
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Samantha Milanesi
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Nicoletta Serpieri
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giulia Bedino
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Pasquale Esposito
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Carmelo Libetta
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Melissa Mantelli
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Daniela Ingo
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Sabrina Peressini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Albertini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Dal Canton
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
210
|
Wallqvist A, Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Yu C, Hoover TA, Reifman J. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors. BMC Genomics 2015; 16:1106. [PMID: 26714771 PMCID: PMC4696196 DOI: 10.1186/s12864-015-2351-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. Results We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Conclusions Direct interactions with specific host proteins and the ability to influence interactions among host proteins are important components for F. tularensis to avoid host-cell defense mechanisms and successfully establish an infection. Although direct host-pathogen protein-protein binding is only one aspect of Francisella virulence, it is a critical component in directly manipulating and interfering with cellular processes in the host cell. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2351-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | | | | | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, MD, 20850, USA.
| | - Chenggang Yu
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Timothy A Hoover
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
211
|
Lu X, Wang F, Liu M, Yang KT, Nau A, Kohan DE, Reese V, Richardson RS, Yang T. Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: involvement of Nox4-derived hydrogen peroxide. Am J Physiol Renal Physiol 2015; 310:F1243-50. [PMID: 26697985 DOI: 10.1152/ajprenal.00492.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
The collecting duct (CD) has been recognized as an important source of prorenin/renin, and it also expresses (pro)renin receptor (PRR). The goal of this study was to examine the hypothesis that prorenin or renin via PRR regulates epithelial Na(+) channel (ENaC) activity in mpkCCD cells. Transepithelial Na(+) transport was measured by using a conventional epithelial volt-ohmmeter and was expressed as the calculated equivalent current (Ieq). Amiloride-inhibitable Ieq was used as a reflection of ENaC activity. Administration of prorenin in the nanomolar range induced a significant increase in Ieq that was detectable as early as 1 min, peaked at 5 min, and gradually returned to baseline within 15 min. These changes in Ieq were completely prevented by a newly developed PRR decoy inhibitor, PRO20. Prorenin-induced Ieq was inhibitable by amiloride. Compared with prorenin, renin was less effective in stimulating Ieq Prorenin-induced Ieq was attenuated by apocynin but enhanced by tempol, the latter effect being prevented by catalase. In response to prorenin treatment, the levels of total reactive oxygen species and H2O2 were both increased, as detected by spin-trap analysis and reactive oxygen species (ROS)-Glo H2O2 assay, respectively. Both siRNA-mediated Nox4 knockdown and the dual Nox1/4 inhibitor GKT137892 attenuated prorenin-induced Ieq Overall, our results demonstrate that activation of PRR by prorenin stimulates ENaC activity in CD cells via Nox4-derived H2O2.
Collapse
Affiliation(s)
- Xiaohan Lu
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Fei Wang
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Mi Liu
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Kevin T Yang
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Adam Nau
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Donald E Kohan
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Van Reese
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Russell S Richardson
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
212
|
Song R, Preston G, Kidd L, Bushnell D, Sims-Lucas S, Bates CM, Yosypiv IV. Prorenin receptor is critical for nephron progenitors. Dev Biol 2015; 409:382-91. [PMID: 26658320 DOI: 10.1016/j.ydbio.2015.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Deficient nephrogenesis is the major factor contributing to renal hypoplasia defined as abnormally small kidneys. Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H(+)-ATPase. Global loss of PRR is lethal in mice and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. To circumvent lethality of the ubiquitous PRR mutation in mice and to determine the potential role of the PRR in nephrogenesis, we generated a mouse model with a conditional deletion of the PRR in Six2(+) nephron progenitors and their epithelial derivatives (Six2(PRR-/-)). Targeted ablation of PRR in Six2(+) nephron progenitors caused a marked decrease in the number of developing nephrons, small cystic kidneys and podocyte foot process effacement at birth, and early postnatal death. Reduced congenital nephron endowment resulted from premature depletion of nephron progenitor cell population due to impaired progenitor cell proliferation and loss of normal molecular inductive response to canonical Wnt/β-catenin signaling within the metanephric mesenchyme. At 2 months of age, heterozygous Six2(PRR+/-) mice exhibited focal glomerulosclerosis, decreased kidney function and massive proteinuria. Collectively, these findings demonstrate a cell-autonomous requirement for the PRR within nephron progenitors for progenitor maintenance, progression of nephrogenesis, normal kidney development and function.
Collapse
Affiliation(s)
- Renfang Song
- Department of Pediatrics, Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Graeme Preston
- Department of Pediatrics, Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Laura Kidd
- Department of Pediatrics, Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Daniel Bushnell
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Carlton M Bates
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Ihor V Yosypiv
- Department of Pediatrics, Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
213
|
Malik U, Raizada V. Some Aspects of the Renin-Angiotensin-System in Hemodialysis Patients. Kidney Blood Press Res 2015; 40:614-22. [PMID: 26618349 PMCID: PMC6133239 DOI: 10.1159/000368537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 12/25/2022] Open
Abstract
Understanding of the renin-angiotensin system (RAS) has changed remarkably over the past decade. Renin, angiotensin converting enzyme (ACE), angiotensin II (Ang II), and Ang II receptors are the main components of the RAS. Recent studies identified the ACE2/Ang 1–7/ Mas receptor axis, which counter-regulates the classical RAS. Many studies have examined the effects of the RAS on the progression of cardiovascular disease and chronic kidney disease (CKD). In addition, many studies have documented increased levels of ACE in hemodialysis (HD) patients, raising concerns about the negative effects of RAS activation on the progression of renal disease. Elevated ACE increases the level of Ang II, leading to vasoconstriction and cell proliferation. Ang II stimulation of the sympathetic system leads to renal and cardiovascular complications that are secondary to uncontrolled hypertension. This review provides an overview of the RAS, evaluates new research on the role of ACE2 in dialysis, and reviews the evidence for potentially better treatments for patients undergoing HD. Further understanding of the role of ACE and ACE2 in HD patients may aid the development of targeted therapies that slow the progression of CKD and cardiovascular disease.
Collapse
Affiliation(s)
- Umar Malik
- University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | |
Collapse
|
214
|
Lumbers ER, Wang Y, Delforce SJ, Corbisier de Meaultsart C, Logan PC, Mitchell MD, Pringle KG. Decidualisation of human endometrial stromal cells is associated with increased expression and secretion of prorenin. Reprod Biol Endocrinol 2015; 13:129. [PMID: 26608077 PMCID: PMC4658797 DOI: 10.1186/s12958-015-0127-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/19/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In pregnancy, the decidualised endometrium expresses high levels of prorenin and other genes of the renin-angiotensin system (RAS) pathway. In this study we aimed to determined if the RAS was present in endometrial stromal cells and if decidualisation upregulated the expression of prorenin, the prorenin receptor ((P)RR) and associated RAS pathways. Immortalised human endometrial stromal cells (HESCs) can be stimulated to decidualise by combined treatment with medroxyprogesterone acetate (MPA), 17β-estradiol (E2) and cAMP (MPA-mix) or with 5-aza-2'-deoxycytidine (AZA), a global demethylating agent. METHODS HESCs were incubated for 10 days with one of the following treatments: vehicle, MPA-mix, a combination of medroxyprogesterone acetate (MPA) and estradiol-17β alone, or AZA. Messenger RNA abundance and protein levels of prorenin (REN), the (P)RR (ATP6AP2), angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AGTR1), vascular endothelial growth factor (VEGF), and plasminogen activator inhibitor-1 (PAI-1) were measured by real-time PCR and ELISA's, respectively. Promyelocytic zinc finger (PLZF) and phospho-inositol-3 kinase (PIK3R1) mRNA abundances were also measured. RESULTS HESCs expressed the prorenin receptor (ATP6AP2), REN, AGT, ACE and low levels of AGTR1. MPA-mix and AZA stimulated expression of REN. Prorenin protein secretion was increased in MPA-mix treated HESCs. E2 + MPA had no effect on any RAS genes. MPA-mix treatment was associated with increased VEGF (VEGFA) and PAI-1 (SERPINE1) mRNA and VEGF protein. CONCLUSIONS An endometrial prorenin receptor/renin angiotensin system is activated by decidualisation. Since (P)RR is abundant, the increase in prorenin secretion could have stimulated VEGF A and SERPINE1 expression via Ang II, as both ACE and AGTR1 are present, or by Ang II independent pathways. Activation of the RAS in human endometrium with decidualisation, through stimulation of VEGF expression and secretion, could be critical in establishing an adequate blood supply to the developing maternal placental vascular bed.
Collapse
Affiliation(s)
- Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia and Mothers and Babies Research Centre, Hunter Medical Research Institute, Level 3 East, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Yu Wang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia and Mothers and Babies Research Centre, Hunter Medical Research Institute, Level 3 East, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia and Mothers and Babies Research Centre, Hunter Medical Research Institute, Level 3 East, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Celine Corbisier de Meaultsart
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia and Mothers and Babies Research Centre, Hunter Medical Research Institute, Level 3 East, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Philip C Logan
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- Present address: Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of California San Francisco, San Francisco, USA
| | - Murray D Mitchell
- University of Queensland Centre for Clinical Research, University of QLD, St Lucia, QLD, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia and Mothers and Babies Research Centre, Hunter Medical Research Institute, Level 3 East, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
215
|
Wang F, Lu X, Liu M, Feng Y, Zhou SF, Yang T. Renal medullary (pro)renin receptor contributes to angiotensin II-induced hypertension in rats via activation of the local renin-angiotensin system. BMC Med 2015; 13:278. [PMID: 26554902 PMCID: PMC4641338 DOI: 10.1186/s12916-015-0514-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/14/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND (Pro)renin receptor (PRR) is a new component of the renin-angiotensin system and regulates renin activity in vitro. Within the kidney, PRR is highly expressed in the renal medulla where its expression is induced by angiotensin II infusion. The objective of the present study was to test a potential role of renal medullary PRR during angiotensin II-induced hypertension. METHODS A rat AngII infusion model (100 ng/kg/min) combined with renal intramedullary infusion of PRO20, a specific inhibitor of PRR, was builded. And the intravenous PRO20 infusion serve as control. Mean arterial pressure was recorded by radiotelemetry for one week. Further analysis of kidney injury, inflammation, biochemical indices and protein localization were performed in vivo or in vitro. RESULTS Radiotelemetry demonstrated that AngII infusion elevated the mean arteria pressure from 108 ± 5.8 to 164.7 ± 6.2 mmHg. Mean arterial pressure decreased to 128.6 ± 5.8 mmHg (P < 0.05) after intramedullary infusion of PRO20, but was only modestly affected by intravenous PRO20 infusion. Indices of kidney injury, including proteinuria, glomerulosclerosis, and interstitial fibrosis, inflammation, and increased renal medullary and urinary renin activity following angiotensin II infusion were all remarkably attenuated by intramedullary PRO20 infusion. Following one week of angiotensin II infusion, increased PRR immunoreactivity was found in vascular smooth muscle cells. In cultured rat vascular smooth muscle cells, angiotensin II induced parallel increases in soluble PRR and renin activity, and the latter was significantly reduced by PRO20. CONCLUSION Renal medullary PRR mediates angiotensin II-induced hypertension, likely by amplifying the local renin response.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, #74 Zhongshan 2nd Road, Science and Technology Building, 6th Floor, Guangzhou, 510080, P. R. China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Xiaohan Lu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, #74 Zhongshan 2nd Road, Science and Technology Building, 6th Floor, Guangzhou, 510080, P. R. China
| | - Mi Liu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, #74 Zhongshan 2nd Road, Science and Technology Building, 6th Floor, Guangzhou, 510080, P. R. China
| | - Yumei Feng
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NE, USA
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, #74 Zhongshan 2nd Road, Science and Technology Building, 6th Floor, Guangzhou, 510080, P. R. China. .,Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| |
Collapse
|
216
|
Liu M, Shi P, Sumners C. Direct anti-inflammatory effects of angiotensin-(1-7) on microglia. J Neurochem 2015; 136:163-71. [PMID: 26448556 DOI: 10.1111/jnc.13386] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/18/2023]
Abstract
Much evidence indicates that pro-inflammatory effects of the renin-angiotensin system within the hypothalamus, including microglial activation and production of pro-inflammatory cytokines, play a role in chronic neurogenic hypertension. Our objective here was to examine whether angiotensin-(1-7) [Ang-(1-7)], a protective component of the renin-angiotensin system, exerts direct actions at microglia to counteract these pro-inflammatory effects. Mas, the Ang-(1-7) receptor, was shown to be present on cultured hypothalamic microglia. Treatment of these cells with Ang-(1-7) (100-1000 nM, 3-12 h) elicited significant decreases in basal levels of mRNAs for the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor-necrosis factor α (TNFα) and of the microglia-macrophage marker CD11b, and increases in basal levels of the anti-inflammatory cytokine interleukin-10. Incubation of microglial cultures with (pro)renin (PRO) (10-50 nM; 6 h) elicited significant increases in mRNAs for IL-1β, TNFα and CD11b. The effects of PRO (10 nM) on IL-1β and TNFα mRNAs, and TNFα protein, were significantly attenuated by co-treatment with Ang-(1-7) (100 nM). Lastly, these actions of Ang-(1-7) were abolished by the Mas antagonist A-779, and were associated with reductions in NF-κB subunit expression. Collectively, these data provide the first evidence that Ang-(1-7) can exert direct effects at microglia to lower baseline and counteract PRO-induced increases in pro-inflammatory cytokines. Renin-Angiotensin system mediated microglial activation and pro-inflammatory cytokine production within the hypothalamus are components of the chronic neuroinflammation associated with 'neurogenic' hypertension. We demonstrated that angiotension-(1-7) acting via its receptor Mas on hypothalamic microglia lessens baseline and (pro)renin-induced increases in pro-inflammatory cytokine production by these cells. This is the first evidence that angiotensin-(1-7) has direct anti-inflammatory effects via microglia.
Collapse
Affiliation(s)
- Meng Liu
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Peng Shi
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
217
|
Simeoni M, Nicotera R, Colao M, Citraro ML, Pelagi E, Cerantonio A, Comi N, Coppolino G, Fuiano G. Direct inhibition of plasmatic renin activity with aliskiren: a promising but under-investigated therapeutic option for non-diabetic glomerulonephritis. Int Urol Nephrol 2015; 48:229-37. [PMID: 26438325 DOI: 10.1007/s11255-015-1128-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
Non-diabetic glomerulonephritis is a frequent cause of end-stage renal disease. The use of renin-angiotensin-aldosterone system blockers is a fundamental therapeutic approach. However, converting enzyme inhibitors (ACE-is) and angiotensin receptor blockers do not always achieve the desired target of proteinuria. The induction of the prorenin and renin up-regulation is a possible explanation. Aliskiren is the first drug acting as direct inhibitor of plasmatic renin activity, also able to interfere with the prorenin and renin profibrotic escape. We aimed at reviewing the literature for the assessment of potential efficacy and safety of aliskiren in the treatment of non-diabetic glomerulonephritis. The data on this topic are limited; however, we concluded for a possible usefulness of aliskiren. The renal safety profile appears potentially acceptable in non-diabetic patients although extreme carefulness, particularly with respect to long-term renal and cardiovascular tolerability, is recommended.
Collapse
Affiliation(s)
- Mariadelina Simeoni
- Nephrology and Dialysis Unit, University-Hospital "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Ramona Nicotera
- Nephrology and Dialysis Unit, University-Hospital "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Colao
- Nephrology and Dialysis Unit, University-Hospital "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Lucia Citraro
- Nephrology and Dialysis Unit, University-Hospital "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elena Pelagi
- Nephrology and Dialysis Unit, University-Hospital "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Annamaria Cerantonio
- Nephrology and Dialysis Unit, University-Hospital "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Nicola Comi
- Nephrology and Dialysis Unit, University-Hospital "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giuseppe Coppolino
- Nephrology and Dialysis Unit, University-Hospital "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgio Fuiano
- Nephrology and Dialysis Unit, University-Hospital "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
218
|
Dubos A, Castells-Nobau A, Meziane H, Oortveld MAW, Houbaert X, Iacono G, Martin C, Mittelhaeuser C, Lalanne V, Kramer JM, Bhukel A, Quentin C, Slabbert J, Verstreken P, Sigrist SJ, Messaddeq N, Birling MC, Selloum M, Stunnenberg HG, Humeau Y, Schenck A, Herault Y. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Hum Mol Genet 2015; 24:6736-55. [PMID: 26376863 PMCID: PMC4634377 DOI: 10.1093/hmg/ddv380] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2Camk2aCre/0 mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2Camk2aCre/0 mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2Camk2aCre/0 mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2Camk2aCre/0 mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.
Collapse
Affiliation(s)
- Aline Dubos
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France and Université de Strasbourg, Illkirch, France
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hamid Meziane
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Merel A W Oortveld
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Xander Houbaert
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| | - Christophe Mittelhaeuser
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Valérie Lalanne
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Jamie M Kramer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anuradha Bhukel
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Christine Quentin
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany, NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Slabbert
- VIB, Center for the Biology of Disease, Leuven, Belgium, KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease (LIND), Leuven, Belgium
| | - Patrik Verstreken
- VIB, Center for the Biology of Disease, Leuven, Belgium, KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease (LIND), Leuven, Belgium
| | - Stefan J Sigrist
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany, NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France and Université de Strasbourg, Illkirch, France
| | - Marie-Christine Birling
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands,
| | - Yann Herault
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France and Université de Strasbourg, Illkirch, France
| |
Collapse
|
219
|
Young CN, Davisson RL. Angiotensin-II, the Brain, and Hypertension: An Update. Hypertension 2015; 66:920-6. [PMID: 26324508 DOI: 10.1161/hypertensionaha.115.03624] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Colin N Young
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.).
| | - Robin L Davisson
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| |
Collapse
|
220
|
Rahgozar S, Amirian T, Qi M, Shahshahan Z, Entezar-E-Ghaem M, Ghasemi Tehrani H, Miroliaei M, Krilis SA, Giannakopoulos B. Improved Assay for Quantifying a Redox Form of Angiotensinogen as a Biomarker for Pre-Eclampsia: A Case-Control Study. PLoS One 2015; 10:e0135905. [PMID: 26312482 PMCID: PMC4552422 DOI: 10.1371/journal.pone.0135905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/28/2015] [Indexed: 01/13/2023] Open
Abstract
Objective Angiotensinogen exists in two distinct redox forms in plasma, the oxidized sulfhydryl-bridge form and the reduced, unbridged, free thiol form. The oxidized form of angiotensinogen compared to the free thiol form preferentially interacts with renin resulting in increased generation of angiotensin. The predictive potential of the ratio of free-thiol to oxidized angiotensinogen in the plasma for pre-eclampsia was first suggested by the Read group in ref 10. We propose an improved method for determining the ratio and validate the method in a larger cohort of pregnant women. Methods Plasma samples from 115 individuals with pre-eclampsia and from 55 healthy pregnant control subjects were collected sequentially over a 2 year period. Using two distinct enzyme-linked immunosorbent assays (ELISAs) the plasma levels of total and free thiol angiotensinogen were quantified. The oxidized angiotensinogen plasma level is derived by subtracting the level of free thiol, reduced angiotensinogen from the total angiotensinogen levels in the plasma. Results The relative proportion of free thiol angiotensinogen, expressed as a percentage of that observed with an in-house standard, is significantly decreased in pre-eclamptic patients (70.85% ± 29.49%) (mean ± SD) as compared to healthy pregnant controls (92.98 ± 24.93%) (mean ± SD) p ≤ 0.0001. The levels of total angiotensinogen did not differ between the two groups. Conclusion Patients with pre-eclampsia had substantially lower levels of free thiol angiotensinogen compared to healthy pregnant controls, whilst maintaining similar total angiotensinogen levels in the plasma. Hence, elevated levels of plasma oxidized angiotensinogen may be a contributing factor to hypertension in the setting of pre-eclampsia.
Collapse
Affiliation(s)
- Soheila Rahgozar
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Tayebeh Amirian
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Miao Qi
- Department of Infectious Diseases, Immunology and Sexual Health and Department of Medicine, St George Hospital, University of New South Wales, Sydney, Australia
| | - Zahra Shahshahan
- Department of Obstetrics and Gynaecology, Shahid Beheshti Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hatav Ghasemi Tehrani
- Department of Obstetrics and Gynaecology, Shahid Beheshti Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Miroliaei
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Steven A. Krilis
- Department of Infectious Diseases, Immunology and Sexual Health and Department of Medicine, St George Hospital, University of New South Wales, Sydney, Australia
| | - Bill Giannakopoulos
- Department of Infectious Diseases, Immunology and Sexual Health and Department of Medicine, St George Hospital, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
221
|
Gonzalez AA, Prieto MC. Renin and the (pro)renin receptor in the renal collecting duct: Role in the pathogenesis of hypertension. Clin Exp Pharmacol Physiol 2015; 42:14-21. [PMID: 25371190 DOI: 10.1111/1440-1681.12319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 12/14/2022]
Abstract
The intrarenal renin-angiotensin system (RAS) plays a critical role in the pathogenesis and progression of hypertension and kidney disease. In angiotensin (Ang) II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by the AngII type I receptor (AT1 R), independent of blood pressure. Although the regulation of JG renin has been extensively studied, the mechanisms by which renin is regulated in the collecting duct remain unclear. The augmentation of renin synthesis and activity in the collecting duct may provide a pathway for additional generation of intrarenal and intratubular AngII formation due to the presence of angiotensinogen substrate and angiotensin-converting enzyme in the nephron. The recently described (pro)renin receptor ((P)RR) binds renin or prorenin, enhancing renin activity and fully activating the biologically inactive prorenin peptide. Stimulation of (P)RR also activates intracellular pathways related to fibrosis. Renin and the (P)RR are augmented in renal tissues of AngII-dependent hypertensive rats. However, the functional contribution of the (P)RR to enhanced renin activity in the collecting duct and its contribution to the development of hypertension and kidney disease have not been well elucidated. This review focuses on recent evidence demonstrating the mechanism of renin regulation in the collecting ducts and its interaction with the (P)RR. The data suggest that renin-(P)RR interactions may induce stimulation of intracellular pathways associated with the development of hypertension and kidney disease.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
222
|
Holappa M, Vapaatalo H, Vaajanen A. Ocular renin-angiotensin system with special reference in the anterior part of the eye. World J Ophthalmol 2015; 5:110-124. [DOI: 10.5318/wjo.v5.i3.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) regulates blood pressure (BP) homeostasis, systemic fluid volume and electrolyte balance. The RAS cascade includes over twenty peptidases, close to twenty angiotensin peptides and at least six receptors. Out of these, angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (AngII-ACE1-AT1R) together with angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (Ang(1-7)-ACE2-MasR) are regarded as the main components of RAS. In addition to circulating RAS, local RA-system exists in various organs. Local RA-systems are regarded as tissue-specific regulatory systems accounting for local effects and long term changes in different organs. Many of the central components such as the two main axes of RAS: AngII-ACE1-AT1R and Ang(1-7)-ACE2-MasR, have been identified in the human eye. Furthermore, it has been shown that systemic antihypertensive RAS- inhibiting medications lower intraocular pressure (IOP). These findings suggest the crucial role of RAS not only in the regulation of BP but also in the regulation of IOP, and RAS potentially plays a role in the development of glaucoma and antiglaucomatous drugs.
Collapse
|
223
|
Li C, Siragy HM. (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. Am J Physiol Endocrinol Metab 2015; 309:E302-10. [PMID: 26081285 PMCID: PMC4525115 DOI: 10.1152/ajpendo.00603.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
Abstract
High glucose reduces autophagy and enhances apoptosis of podocytes. Previously, we reported that high glucose induced podocyte injury through upregulation of the (pro)renin receptor (PRR). We hypothesized that increasing PRR reduces autophagy and increases apoptosis of mouse podocytes exposed to high glucose via activation of the PI3K/Akt/mTOR signaling pathway. Mouse podocytes were cultured in normal (5 mmol/l) or high (25 mmol/l) d-glucose for 48 h. High glucose significantly increased mRNA and protein levels of PRR, phosphorylation of PI3K/Akt/mTOR, and p62. In contrast, high glucose decreased activation of UNC-51-like kinase-1 (ULK1) by phosphorylating Ser⁷⁵⁷ and protein levels of microtubule-associated protein-1 light chain 3B (LC3B)-II and Lamp-2. Bafilomycin A1 increased LC3BII and p62 accumulation in high-glucose-treated cells. High glucose reduced the autophagic flux. Confocal microscopy studies showed significant reduction in the protein level of LC3B in response to high glucose. Cyto-ID autophagy staining showed a significant decrease in autophagosome formation with high glucose. In the absence of PRR, activation of Akt with sc-79 or mTOR with MHY-1485 increased p62 accumulation. Caspase-3/7 activity and apoptosis monitored by TUNEL assay were significantly increased in podocytes treated with high glucose. PRR siRNA significantly reversed the effects of high glucose. Based on these data, we conclude that high glucose decreases autophagy and increases apoptosis in mouse podocytes through the PRR/PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
224
|
Gonzalez AA, Prieto MC. Roles of collecting duct renin and (pro)renin receptor in hypertension: mini review. Ther Adv Cardiovasc Dis 2015; 9:191-200. [PMID: 25780059 PMCID: PMC4560657 DOI: 10.1177/1753944715574817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In angiotensin (Ang)-II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by Ang II type 1 (AT1) receptor independent of blood pressure. Although the regulation of JG renin is known, the mechanisms by which renin is regulated in the collecting duct are not completely understood. The presence of renin activity in the collecting duct may provide a pathway for intratubular Ang II formation since angiotensinogen substrate and angiotensin converting enzyme are present in the distal nephron. The recently named new member of the renin-angiotensin system (RAS), the (pro)renin receptor [(P)RR], is able to bind renin and the inactive prorenin, thus enhancing renin activity and fully activating prorenin. We have demonstrated that renin and (P)RR are augmented in renal tissues from rats infused with Ang II and during sodium depletion, suggesting a physiological role in intrarenal RAS activation. Importantly, (P)RR activation also causes activation of intracellular pathways associated with increased cyclooxygenase 2 expression and induction of profibrotic genes. In addition, renin and (P)RR are upregulated by Ang II in collecting duct cells. Although the mechanisms involved in their regulation are still under study, they seem to be dependent on the intrarenal RAS activation. The complexities of the mechanisms of stimulation also depend on cyclooxygenase 2 and sodium depletion. Our data suggest that renin and (P)RR can interact to increase intratubular Ang II formation and the activation of profibrotic genes in renal collecting duct cells. Both pathways may have a critical role in the development of hypertension and renal disease.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Minolfa C Prieto
- Department of Physiology, Rm 4061, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
225
|
Feng Y. ANG II-independent prorenin/(pro)renin receptor signaling pathways in the central nervous system. Am J Physiol Heart Circ Physiol 2015. [PMID: 26209058 DOI: 10.1152/ajpheart.00526.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yumei Feng
- Departments of Pharmacology, and Physiology and Cell Biology, Cardiovascular Research Center, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
226
|
Yoshida G, Kawasaki M, Murata I, Hayakawa Y, Aoyama T, Miyazaki N, Yamada Y, Nishigaki K, Arai Y, Suzuki F, Minatoguchi S. Higher plasma prorenin concentration plays a role in the development of coronary artery disease. Biomark Res 2015; 3:18. [PMID: 26167285 PMCID: PMC4499175 DOI: 10.1186/s40364-015-0044-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Prorenin and renin are both involved in atherosclerosis. However, the role of plasma prorenin and renin in the development and progression of coronary artery disease (CAD) is still not clear. Thus, we aimed to examine the relationships among plasma prorenin concentration, CAD and clinical parameters. METHODS We measured plasma prorenin and renin concentrations and other parameters in 85 patients who underwent coronary angiography. Patients were divided into a CAD group (≥75 % stenosis in one or more coronary arteries) and a non-CAD group. RESULTS There was a weak correlation between prorenin and plasma renin concentration (r =0.35, p =0.001), and plasma renin activity (r =0.34, p =0.001). There was no significant difference in the plasma prorenin concentration between the CAD group and non-CAD group. However, patients with a high plasma prorenin concentration frequently suffered CAD. Receiver-operating-characteristic curve analysis showed that the optimal cutoff value of plasma prorenin concentration to detect CAD was 1,100 pg/ml, with a positive predictive value of 94 % and a negative predictive value of 36 %. CONCLUSION The plasma prorenin concentration increases with increases in plasma renin concentration. Higher plasma prorenin concentration (>1,100 pg/ml) plays a role in the development of CAD.
Collapse
Affiliation(s)
- Gakuro Yoshida
- />Department of Nephrology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Kawasaki
- />Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194 Japan
| | - Ichijiro Murata
- />Department of Nephrology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuka Hayakawa
- />Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194 Japan
| | - Takuma Aoyama
- />Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194 Japan
| | - Nagisa Miyazaki
- />Department of Nephrology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshihisa Yamada
- />Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194 Japan
| | - Kazuhiko Nishigaki
- />Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194 Japan
| | - Yoshie Arai
- />Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Fumiaki Suzuki
- />Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shinya Minatoguchi
- />Department of Cardiology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194 Japan
| |
Collapse
|
227
|
Huber MJ, Basu R, Cecchettini C, Cuadra AE, Chen QH, Shan Z. Activation of the (pro)renin receptor in the paraventricular nucleus increases sympathetic outflow in anesthetized rats. Am J Physiol Heart Circ Physiol 2015; 309:H880-7. [PMID: 26116710 DOI: 10.1152/ajpheart.00095.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/24/2015] [Indexed: 02/07/2023]
Abstract
Previous studies have indicated that hyperactivity of brain prorenin receptors (PRR) is implicated in neurogenic hypertension. However, the role of brain PRR in regulating arterial blood pressure (ABP) is not well understood. Here, we test the hypothesis that PRR activation in the hypothalamic paraventricular nucleus (PVN) contributes to increased sympathetic nerve activity (SNA). In anaesthetized adult Sprague-Dawley (SD) rats, bilateral PVN microinjection of human prorenin (2 pmol/side) significantly increased splanchnic SNA (SSNA; 71 ± 15%, n = 7). Preinjection of either prorenin handle region peptide, the PRR binding blocker (PRRB), or tiron (2 nmol/side), the scavenger of reactive oxygen species (ROS), significantly attenuated the increase in SSNA (PRRB: 32 ± 5% vs. control, n = 6; tiron: 8 ± 10% vs. control, n = 5; P < 0.05) evoked by prorenin injection. We further investigated the effects of PRR activation on ROS production as well as downstream gene expression using cultured hypothalamus neurons from newborn SD rats. Incubation of brain neurons with human prorenin (100 nM) dramatically enhanced ROS production and induced a time-dependent increase in mRNA levels of inducible nitric oxide synthase (iNOS), NAPDH oxidase 2 subunit cybb, and FOS-like antigen 1 (fosl1), a marker for neuronal activation and a component of transcription factor activator protein-1 (AP-1). The maximum mRNA increase in these genes occurred 6 h following incubation (iNOS: 201-fold; cybb: 2 -fold; Ffosl1: 11-fold). The increases in iNOS and cybb mRNA were not attenuated by the AT1 receptor antagonist losartan but abolished by the AP-1 blocker curcumin. Our results suggest that PVN PRR activation induces sympathoexcitation possibly through stimulation of an ANG II-independent, ROS-AP-1-iNOS signaling pathway.
Collapse
Affiliation(s)
- Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Rupsa Basu
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Cassie Cecchettini
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Adolfo E Cuadra
- Department of Biology, University of Massachusetts, Amherst, Massachusetts; and
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan; Biotech Research Center, Michigan Technological University, Houghton, Michigan
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan; Biotech Research Center, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
228
|
de Kloet AD, Liu M, Rodríguez V, Krause EG, Sumners C. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J Physiol Regul Integr Comp Physiol 2015; 309:R444-58. [PMID: 26084692 DOI: 10.1152/ajpregu.00078.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Meng Liu
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Vermalí Rodríguez
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| |
Collapse
|
229
|
Regulation of growth hormone secretion by (pro)renin receptor. Sci Rep 2015; 5:10878. [PMID: 26039928 PMCID: PMC4454151 DOI: 10.1038/srep10878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/07/2015] [Indexed: 11/25/2022] Open
Abstract
(Pro)renin receptor (PRR) has a single transmembrane domain that co-purifies with the vacuolar H+-ATPase (V-ATPase). In addition to its role in cellular acidification, V-ATPase has been implicated in membrane fusion and exocytosis via its Vo domain. Results from the present study show that PRR is expressed in pituitary adenoma cells and regulates growth hormone (GH) release via V-ATPase-induced cellular acidification. Positive PRR immunoreactivity was detected more often in surgically resected, growth hormone-producing adenomas (GHomas) than in nonfunctional pituitary adenomas. GHomas strongly expressing PRR showed excess GH secretion, as evidenced by distinctly high plasma GH and insulin-like growth factor-1 levels, as well as an elevated nadir GH in response to the oral glucose tolerance test. Suppression of PRR expression in rat GHoma-derived GH3 cells using PRR siRNA resulted in reduced GH secretion and significantly enhanced intracellular GH accumulation. GH3 treatment with bafilomycin A1, a V-ATPase inhibitor, also blocked GH release, indicating mediation via impaired cellular acidification of V-ATPase. PRR knockdown decreased Atp6l, a subunit of the Vo domain that destabilizes V-ATPase assembly, increased intracellular GH, and decreased GH release. To our knowledge, this is the first report demonstrating a pivotal role for PRR in a pituitary hormone release mechanism.
Collapse
|
230
|
Ramkumar N, Stuart D, Calquin M, Quadri S, Wang S, Van Hoek AN, Siragy HM, Ichihara A, Kohan DE. Nephron-specific deletion of the prorenin receptor causes a urine concentration defect. Am J Physiol Renal Physiol 2015; 309:F48-56. [PMID: 25995108 DOI: 10.1152/ajprenal.00126.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/11/2015] [Indexed: 01/27/2023] Open
Abstract
The prorenin receptor (PRR), a recently discovered component of the renin-angiotensin system, is expressed in the nephron in general and the collecting duct in particular. However, the physiological significance of nephron PRR remains unclear, partly due to developmental abnormalities associated with global or renal-specific PRR gene knockout (KO). Therefore, we developed mice with inducible nephron-wide PRR deletion using Pax8-reverse tetracycline transactivator and LC-1 transgenes and loxP flanked PRR alleles such that ablation of PRR occurs in adulthood, after induction with doxycycline. Nephron-specific PRR KO mice have normal survival to ∼1 yr of age and no renal histological defects. Compared with control mice, PRR KO mice had 65% lower medullary PRR mRNA and protein levels and markedly diminished renal PRR immunofluorescence. During both normal water intake and mild water restriction, PRR KO mice had significantly lower urine osmolality, higher water intake, and higher urine volume compared with control mice. No differences were seen in urine vasopressin excretion, urine Na(+) and K(+) excretion, plasma Na(+), or plasma osmolality between the two groups. However, PRR KO mice had reduced medullary aquaporin-2 levels and arginine vasopressin-stimulated cAMP accumulation in the isolated renal medulla compared with control mice. Taken together, these results suggest nephron PRR can potentially modulate renal water excretion.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah;
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matias Calquin
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Syed Quadri
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; and
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Alfred N Van Hoek
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Helmy M Siragy
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; and
| | - Atsuhiro Ichihara
- Department of Medicine II, Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
231
|
Prokop JW, Petri V, Shimoyama ME, Watanabe IKM, Casarini DE, Leeper TC, Bilinovich SM, Jacob HJ, Santos RAS, Martins AS, Araujo FC, Reis FM, Milsted A. Structural libraries of protein models for multiple species to understand evolution of the renin-angiotensin system. Gen Comp Endocrinol 2015; 215:106-16. [PMID: 25260253 PMCID: PMC4375088 DOI: 10.1016/j.ygcen.2014.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/04/2014] [Accepted: 09/16/2014] [Indexed: 11/28/2022]
Abstract
The details of protein pathways at a structural level provides a bridge between genetics/molecular biology and physiology. The renin-angiotensin system is involved in many physiological pathways with informative structural details in multiple components. Few studies have been performed assessing structural knowledge across the system. This assessment allows use of bioinformatics tools to fill in missing structural voids. In this paper we detail known structures of the renin-angiotensin system and use computational approaches to estimate and model components that do not have their protein structures defined. With the subsequent large library of protein structures, we then created a species specific protein library for human, mouse, rat, bovine, zebrafish, and chicken for the system. The rat structural system allowed for rapid screening of genetic variants from 51 commonly used rat strains, identifying amino acid variants in angiotensinogen, ACE2, and AT1b that are in contact positions with other macromolecules. We believe the structural map will be of value for other researchers to understand their experimental data in the context of an environment for multiple proteins, providing pdb files of proteins for the renin-angiotensin system in six species. With detailed structural descriptions of each protein, it is easier to assess a species for use in translating human diseases with animal models. Additionally, as whole genome sequencing continues to decrease in cost, tools such as molecular modeling will gain use as an initial step in designing efficient hypothesis driven research, addressing potential functional outcomes of genetic variants with precompiled protein libraries aiding in rapid characterizations.
Collapse
Affiliation(s)
- Jeremy W Prokop
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Victoria Petri
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary E Shimoyama
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ingrid K M Watanabe
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Dulce E Casarini
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thomas C Leeper
- Department of Chemistry, The University of Akron, Akron, OH, USA
| | | | - Howard J Jacob
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robson A S Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Almir S Martins
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiano C Araujo
- National Institute of Science and Technology in Molecular Medicine - Department of Obstetrics and Gynecology, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando M Reis
- National Institute of Science and Technology in Molecular Medicine - Department of Obstetrics and Gynecology, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Amy Milsted
- Department of Biology, The University of Akron, Akron, OH, USA
| |
Collapse
|
232
|
Pringle KG, Wang Y, Lumbers ER. The synthesis, secretion and uptake of prorenin in human amnion. Physiol Rep 2015; 3:3/4/e12313. [PMID: 25902786 PMCID: PMC4425950 DOI: 10.14814/phy2.12313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Very high concentrations of prorenin protein occur in human amniotic fluid and amnion. The source of amniotic fluid prorenin is likely the decidua, as it has the highest levels of prorenin mRNA (REN). Conversely, REN mRNA levels in amnion and chorion are very low. This study aimed to investigate whether decidual prorenin could cross the amnion and accumulate in amniotic fluid. Late gestation amnion was incubated for 24 h in the presence or absence of recombinant human (rh)prorenin. REN mRNA abundance was determined by qPCR and prorenin protein levels in the supernatant and tissue were measured by an ELISA. Prior to incubation only 3/11 amnion samples had REN mRNA but measurable levels of prorenin protein were found (1.4 ng/mg total protein). After 24 h incubation, REN mRNA was found in all explants and levels were significantly increased (P = 0.03) but prorenin protein levels in amnion were unchanged. Prorenin protein levels in the supernatant were, however, increased (P = 0.048). Incubation with (rh)prorenin significantly increased amnion tissue prorenin levels (2.8 ng/mg total protein, P = 0.001); REN mRNA levels were unchanged. Therefore, amnion explants express small amounts of REN and secrete prorenin protein. Prorenin is also taken up by amnion. We postulate that the amniotic renin angiotensin system (RAS) alters pregnancy outcome through effects on gestation length and amniotic fluid volume. Since human amnion can take up and secrete prorenin protein, the activity of both amnion and amniotic fluid RASs can be amplified by prorenin produced by other intrauterine tissues.
Collapse
Affiliation(s)
- Kirsty G Pringle
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital & School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Yu Wang
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital & School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Eugenie R Lumbers
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital & School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
233
|
Lv LL, Liu BC. Role of non-classical renin-angiotensin system axis in renal fibrosis. Front Physiol 2015; 6:117. [PMID: 25954204 PMCID: PMC4404823 DOI: 10.3389/fphys.2015.00117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/27/2015] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) is a major regulator of renal fibrosis. Besides the classical renin/Angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/AT1 and AT2 axis, multiple new axes have been recently described. The new members have added new dimensions to RAS, including the ACE2/Ang(1–7)/Mas receptor axis, the prorenin/(pro)renin receptor(PRR)/intracelluar pathway axis, and the Angiotensin A (Ang A), alamandine-Mas-related G protein coupled receptor D(MrgD) axis. This review summarized recent studies regarding role of the non-classical RAS axis in renal fibrosis, and its possible implications to the intervention of progression of chronic kidney disease.
Collapse
Affiliation(s)
- Lin-Li Lv
- Institute of Nephrology, Department of Affiliated Zhongda Hospital, Southeast University Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Department of Affiliated Zhongda Hospital, Southeast University Nanjing, China
| |
Collapse
|
234
|
Abstract
Diabetic kidney disease (DKD) is a progressive proteinuric renal disorder in patients with type 1 or type 2 diabetes mellitus. It is a common cause of end-stage kidney disease worldwide, particularly in developed countries. Therapeutic targeting of the renin-angiotensin system (RAS) is the most validated clinical strategy for slowing disease progression. DKD is paradoxically a low systematic renin state with an increased intrarenal RAS activity implicated in its pathogenesis. Angiotensin II (AngII), the main peptide of RAS, is not only a vasoactive peptide but functions as a growth factor, activating interstitial fibroblasts and mesangial and tubular cells, while promoting the synthesis of extracellular matrix proteins. AngII also promotes podocyte injury through increased calcium influx and the generation of reactive oxygen species. Blockade of the RAS using either angiotensin converting enzyme inhibitors, or angiotensin receptor blockers can attenuate progressive glomerulosclerosis in animal models, and slows disease progression in humans with DKD. In this review, we summarize the role of intrarenal RAS activation in the pathogenesis and progression of DKD and the rationale for RAS inhibition in this population.
Collapse
Affiliation(s)
- Rabi Yacoub
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
235
|
Wu YX, Sun RQ, Yin GS, Xu DC, Wang P, Lin K, Lin CJ, Lin SD. Different effect of handle region peptide on β-cell function in different sexes of rats neonatally treated with sodium L-glutamate. Med Sci Monit Basic Res 2015; 21:33-40. [PMID: 25783768 PMCID: PMC4428315 DOI: 10.12659/msmbr.893183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/02/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The (pro)renin receptor ((P)RR) was reported to be expressed in various tissues including the pancreas, and handle region peptide (HRP) is believed to block the function of (P)RR. This study aimed to investigate the effect of HRP on the glucose tolerance status and β-cell function of female rats, neonatally treated with sodium L-glutamate (MSG) and to compare with the previously reported HRP effect on male rats. MATERIAL AND METHODS Female MSG rats aged 8 weeks were divided into MSG control group and HRP treated group and the normal SD rats served as control. The MSG rats were treated with HRP by osmotic minipumps with dose of 1 mg/kg per day for total 28 days. Glucose tolerance status was evaluated at the end of the study. Islets α-cell and β-cell were marked with insulin antibody and glucagon antibody respectively. The proliferation of islet cells and expression of subunit of NADPH oxidase P22phox were marked by PCNA and P22phox antibody. Picrosirius red staining was performed for evaluating fibrosis of islets. RESULTS HRP improved the glucose status tolerance with decreasing α-cell mass, islets PCNA-positive cells, expression of P22phox and picrosirius red stained areas, and increasing β-cell mass in female MSG rats. The indexes with obviously interacted effect of sexes and HRP for the MSG rats were the AUC of blood glucose concentration (P<0.01), α-cell mass (P<0.05), proliferation of islet cells (P<0.01) and area of picrosirius red staining (P<0.01). CONCLUSIONS HRP improved the glucose tolerance status in the females although it was previously reported to worsen the glucose tolerance in male MSG rats. Different levels of sex hormones may partly account for the disparate effects observed for HRP in different sexes.
Collapse
Affiliation(s)
- Yi-xi Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ru-qiong Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Endocrinology and Metabolism, Tongxiang First People Hospital, Tongxiang, Zhejiang, China
| | - Guo-shu Yin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Dong-chuan Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ping Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kun Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chu-jia Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shao-da Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
236
|
(Pro)renin receptor is crucial for Wnt/β-catenin-dependent genesis of pancreatic ductal adenocarcinoma. Sci Rep 2015; 5:8854. [PMID: 25747895 PMCID: PMC4352858 DOI: 10.1038/srep08854] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/13/2015] [Indexed: 01/05/2023] Open
Abstract
Although Wnt/β-catenin signaling is known to be aberrantly activated in PDAC, mutations of CTNNB1, APC or other pathway components are rare in this tumor type, suggesting alternative mechanisms for Wnt/β-catenin activation. Recent studies have implicated the (pro)renin receptor ((P)RR) is related to the Wnt/β-catenin signaling pathway. We therefore investigated the possible role of (P)RR in pancreatic carcinogenesis. Plasma s(P)RR levels were significantly (P < 0.0001) higher in patients with PDAC than in healthy matched controls. We also identified aberrant expression of (P)RR in premalignant PanIN and PDAC lesions and all the PDAC cell lines examined. Inhibiting (P)RR with an siRNA attenuated activation of Wnt/β-catenin signaling pathway and reduced the proliferative ability of PDAC cells in vitro and the growth of engrafted tumors in vivo. Loss of (P)RR induced apoptosis of human PDAC cells. This is the first demonstration that (P)RR may be profoundly involved in ductal tumorigenesis in the pancreas.
Collapse
|
237
|
Kanda A, Noda K, Ishida S. ATP6AP2/(pro)renin receptor contributes to glucose metabolism via stabilizing the pyruvate dehydrogenase E1 β subunit. J Biol Chem 2015; 290:9690-700. [PMID: 25720494 DOI: 10.1074/jbc.m114.626713] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Indexed: 12/27/2022] Open
Abstract
Aerobic glucose metabolism is indispensable for metabolically active cells; however, the regulatory mechanism of efficient energy generation in the highly evolved mammalian retina remains incompletely understood. Here, we revealed an unsuspected role for (pro)renin receptor, also known as ATP6AP2, in energy metabolism. Immunoprecipitation and mass spectrometry analyses identified the pyruvate dehydrogenase (PDH) complex as Atp6ap2-interacting proteins in the mouse retina. Yeast two-hybrid assays demonstrated direct molecular binding between ATP6AP2 and the PDH E1 β subunit (PDHB). Pdhb immunoreactivity co-localized with Atp6ap2 in multiple retinal layers including the retinal pigment epithelium (RPE). ATP6AP2 knockdown in RPE cells reduced PDH activity, showing a predilection to anaerobic glycolysis. ATP6AP2 protected PDHB from phosphorylation, thus controlling its protein stability. Down-regulated PDH activity due to ATP6AP2 knockdown inhibited glucose-stimulated oxidative stress in RPE cells. Our present data unraveled the novel function of ATP6AP2/(P)RR as a PDHB stabilizer, contributing to aerobic glucose metabolism together with oxidative stress.
Collapse
Affiliation(s)
- Atsuhiro Kanda
- From the Department of Ophthalmology, Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kousuke Noda
- From the Department of Ophthalmology, Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Susumu Ishida
- From the Department of Ophthalmology, Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
238
|
Liu Y, Zhang S, Su D, Liu J, Cheng Y, Zou L, Li W, Jiang Y. Inhibiting (pro)renin receptor-mediated p38 MAPK signaling decreases hypoxia/reoxygenation-induced apoptosis in H9c2 cells. Mol Cell Biochem 2015; 403:267-76. [PMID: 25711402 DOI: 10.1007/s11010-015-2356-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/14/2015] [Indexed: 11/24/2022]
Abstract
The (pro)renin receptor is a new molecular member of the renin-angiotensin system and participates in regulating many physiological and pathological processes. However, the role of (pro)renin receptor-mediated signaling pathways in myocardial ischemic/reperfusion injury remains unclear. In this study, we hypothesized that p38 mitogen-activated protein kinase (MAPK) signaling pathway activation by the (pro)renin receptor had effects on myocardial apoptosis induced by ischemia/reperfusion. This analysis was performed using a hypoxia/reoxygenation model in H9c2 cells to mimic ischemia/reperfusion injury. The H9c2 rat cardiomyocyte cell line was subjected to 2 h of hypoxia followed by 6 h of reoxygenation. The (pro)renin receptor, caspase 3, and phosphorylated p38 MAPK protein expression levels were analyzed by Western blot. After 2 h of hypoxia followed by 6 h of reoxygenation, apoptosis increased in H9c2 cells; the (pro)renin receptor, caspase 3, and phosphorylated p38 MAPK protein expressions were upregulated. siRNA silencing of the (pro)renin receptor significantly decreased p38 MAPK phosphorylation. siRNA silencing of the (pro)renin receptor and treatment with the p38MAPK inhibitor SB203580 significantly decreased the hypoxia/reoxygenation-induced apoptosis and caspase 3 protein expression in H9c2 cells. Furthermore, we found that the role of the (pro)renin receptor was independent of angiotensin II (Ang II). Thus, we concluded that (pro)renin receptor activation could trigger hypoxia/reoxygenation-induced apoptosis in H9c2 cells, partially through the p38 MAPK/caspase 3 signaling pathway, independent of Ang II. Therefore, this study may provide new therapeutic targets for myocardial ischemic/reperfusion injury prevention, and further in vivo studies are needed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, The 1st Affiliated Hospital of Dalian Medical University, Lianhe Road No. 193, Shahekou District, Dalian, Liaoning, China
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Wu C, Xu Y, Lu H, Howatt DA, Balakrishnan A, Moorleghen JJ, Vander Kooi CW, Cassis LA, Wang JA, Daugherty A. Cys18-Cys137 disulfide bond in mouse angiotensinogen does not affect AngII-dependent functions in vivo. Hypertension 2015; 65:800-5. [PMID: 25691624 DOI: 10.1161/hypertensionaha.115.05166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Renin cleavage of angiotensinogen (AGT) releases angiotensin I (AngI) in the initial step of producing all angiotensin peptides. It has been suggested recently that redox regulation of a disulfide bond in AGT involving Cys18-Cys137 may be important to its renin cleavage efficiency in vivo. The purpose of this study was to test this prediction in a mouse model by comparing AngII production and AngII-dependent functions in mice expressing wild-type AGT versus a mutated form of AGT lacking the disulfide bond. Wild-type (hepAGT+/+) and hepatocyte-specific AGT-deficient (hepAGT-/-) littermates were developed in an low-density lipoprotein receptor -/- background. hepAGT+/+ mice were injected intraperitoneally with adeno-associated viral (AAV) vector containing a null insert. hepAGT-/- mice were injected with AAV containing a null insert, wild-type AGT or Cys18Ser and Cys137Ser mutated AGT. Two weeks after AAV injection, mice were fed a Western diet for 12 weeks. Administration of AAV containing either form of AGT led to similar plasma AGT concentrations in hepAGT-/- mice. High plasma renin concentrations in hepAGT-/- mice were suppressed equally by both forms of AGT, which were accompanied by comparable increases of plasma AngII concentrations similar to hepAGT+/+ mice. AAV-driven expression of both forms of AGT led to equivalent increases of systolic blood pressure and augmentation of atherosclerotic lesion size in hepAGT-/- mice. These measurements were comparable to systolic blood pressure and atherosclerotic lesions in hepAGT+/+ mice. These data indicate that the Cys18-Cys137 disulfide bond in AGT is dispensable for AngII production and AngII-dependent functions in mice.
Collapse
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.)
| | - Yinchuan Xu
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.)
| | - Hong Lu
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.)
| | - Deborah A Howatt
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.)
| | - Anju Balakrishnan
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.)
| | - Jessica J Moorleghen
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.)
| | - Craig W Vander Kooi
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.)
| | - Lisa A Cassis
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.)
| | - Jian-an Wang
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.).
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., Y.X., H.L., D.A.H., A.B., J.J.M., A.D.), Department of Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Department of Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; and The Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.X., J.-a.W.).
| |
Collapse
|
240
|
Yang T. Crosstalk between (Pro)renin receptor and COX-2 in the renal medulla during angiotensin II-induced hypertension. Curr Opin Pharmacol 2015; 21:89-94. [PMID: 25681793 DOI: 10.1016/j.coph.2014.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/16/2014] [Accepted: 12/21/2014] [Indexed: 01/13/2023]
Abstract
Angiotensin II (AngII) is an octapeptide hormone that plays a central role in regulation of sodium balance, plasma volume, and blood pressure. Its role in the pathogenesis of hypertension is highlighted by the wide use of inhibitors of the renin-angiotensin system (RAS) as the first-line antihypertensive therapy. However, despite intensive investigation, the mechanism of AngII-induced hypertension is still incompletely understood. Although diverse pathways are likely involved, increasing evidence suggests that the activation of intrarenal RAS may represent a dominant mechanism of AngII-induced hypertension. (Pro)renin receptor (PRR), a potential regulator of intrarenal RAS, is expressed in the intercalated cells of the collecting duct (CD) and induced by AngII, in parallel with increased renin in the principal cells of the CD. Activation of PRR elevated PGE2 release and COX-2 expression in renal inner medullary cells whereas COX-2-derived PGE2via the EP4 receptor mediates the upregulation of PRR during AngII infusion, thus forming a vicious cycle. The mutually stimulatory relationship between PRR and COX-2 in the distal nephron may play an important role in mediating AngII-induced hypertension.
Collapse
Affiliation(s)
- Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, United States.
| |
Collapse
|
241
|
AVP-induced increase in AQP2 and p-AQP2 is blunted in heart failure during cardiac remodeling and is associated with decreased AT1R abundance in rat kidney. PLoS One 2015; 10:e0116501. [PMID: 25658446 PMCID: PMC4319737 DOI: 10.1371/journal.pone.0116501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 12/10/2014] [Indexed: 01/02/2023] Open
Abstract
AIM The objective was to examine the renal effects of long-term increased angiotensin II and vasopressin plasma levels in early-stage heart failure (HF). We investigated the regulations of the V2 vasopressin receptor, the type 1A angiotensin II receptor, the (pro)renin receptor, and the water channels AQP2, AQP1, AQP3, and AQP4 in the inner medulla of rat kidney. METHODS HF was induced by coronary artery ligation. Sixty-eight rats were allocated to six groups: Sham (N = 11), HF (N = 11), sodium restricted sham (N = 11), sodium restricted HF (N = 11), sodium restricted sham + DDAVP (N = 12), and sodium restricted HF + DDAVP (N = 12). 1-desamino-8-D-arginine vasopressin (0.5 ng h-1 for 7 days) or vehicle was administered. Pre- and post-treatment echocardiographic evaluation was performed. The rats were sacrificed at day 17 after surgery, before cardiac remodeling in rat is known to be completed. RESULTS HF rats on standard sodium diet and sodium restriction displayed biochemical markers of HF. These rats developed hyponatremia, hypo-osmolality, and decreased fractional excretion of sodium. Increase of AQP2 and p(Ser256)-AQP2 abundance in all HF groups was blunted compared with control groups even when infused with DDAVP and despite increased vasopressin V2 receptor and Gsα abundance. This was associated with decreased protein abundance of the AT1A receptor in HF groups vs. controls. CONCLUSION Early-stage HF is associated with blunted increase in AQP2 and p(Ser256)-AQP2 despite of hyponatremia, hypo-osmolality, and increased inner medullary vasopressin V2 receptor expression. Decreased type 1A angiotensin II receptor abundance likely plays a role in the transduction of these effects.
Collapse
|
242
|
Roy A, Al-bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 2015; 10:305-24. [PMID: 25632105 DOI: 10.2215/cjn.08880914] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule.
Collapse
Affiliation(s)
- Ankita Roy
- Renal-Electrolyte Division, Department of Medicine; and
| | | | - Núria M Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine; and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania A.R. and M.M.A. contributed equally to this work.
| |
Collapse
|
243
|
Angiotensin II increases the expression of (pro)renin receptor during low-salt conditions. Am J Med Sci 2015; 348:416-22. [PMID: 25250989 DOI: 10.1097/maj.0000000000000335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence indicates that chronic angiotensin II (AngII) infusion increases (pro)renin receptor ((P)RR) expression in renal inner medullary collecting duct (IMCD) cells. Recently, it has been shown that renal (P)RR expression is augmented during a low-salt (LS) diet. However, the role of AngII in mediating the stimulation of (P)RR during LS conditions is unknown. We hypothesized that AngII mediates the increased expression of (P)RR during low-salt conditions in IMCDs. METHODS (P)RR expression and AngII levels were evaluated in Sprague-Dawley rats fed a LS diet (0.03% NaCl) and normal salt (NS; 0.4% NaCl) for 7 days. We examined the effects of sodium reduction (130 mM NaCl) and AngII on (P)RR expression in IMCDs isolated in hypertonic conditions (640 mOsmol/L with 280 mM NaCl). RESULTS Plasma renin activity in LS rats was significantly higher than rats fed with NS (28.1 ± 2.2 versus 6.7 ± 1.1 ng AngI·mL⁻¹·hr⁻¹; P < 0.05), as well as renin content in renal cortex and medulla. The (P)RR mRNA and protein levels were higher in medullary tissues from LS rats but did not change in the cortex. Intrarenal AngII was augmented in LS compared with NS rats (cortex: 710 ± 113 versus 277 ± 86 fmol/g, P < 0.05; medulla: 2093 ± 125 versus 1426 ± 126 fmol/g, P < 0.05). In cultured IMCDs, (P)RR expression was increased in response to LS or AngII treatment and potentiated by both treatments (both at 640 mOsmol/L). CONCLUSIONS These data indicate that (P)RR is augmented in medullary collecting ducts in response to LS and that this effect is further enhanced by the increased intrarenal AngII content.
Collapse
|
244
|
Sykes SD, Mitchell C, Pringle KG, Wang Y, Zakar T, Lumbers ER. Methylation of promoter regions of genes of the human intrauterine Renin Angiotensin system and their expression. Int J Endocrinol 2015; 2015:459818. [PMID: 25918528 PMCID: PMC4396557 DOI: 10.1155/2015/459818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023] Open
Abstract
The intrauterine renin angiotensin system (RAS) is implicated in placentation and labour onset. Here we investigate whether promoter methylation of RAS genes changes with gestation or labour and if it affects gene expression. Early gestation amnion and placenta were studied, as were term amnion, decidua, and placenta collected before labour (at elective caesarean section) or after spontaneous labour and delivery. The expression and degree of methylation of the prorenin receptor (ATP6AP2), angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AGTR1), and two proteases that can activate prorenin (kallikrein, KLK1, and cathepsin D, CTSD) were measured by qPCR and a DNA methylation array. There was no effect of gestation or labour on the methylation of RAS genes and CTSD. Amnion and decidua displayed strong correlations between the percent hypermethylation of RAS genes and CTSD, suggestive of global methylation. There were no correlations between the degree of methylation and mRNA abundance of any genes studied. KLK1 was the most methylated gene and the proportion of hypermethylated KLK1 alleles was lower in placenta than decidua. The presence of intermediate methylated alleles of KLK1 in early gestation placenta and in amnion after labour suggests that KLK1 methylation is uniquely dynamic in these tissues.
Collapse
Affiliation(s)
- Shane D. Sykes
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Carolyn Mitchell
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Kirsty G. Pringle
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Yu Wang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
- Department of Obstetrics and Gynaecology, John Hunter Hospital, Newcastle, NSW 2308, Australia
| | - Eugenie R. Lumbers
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
- *Eugenie R. Lumbers:
| |
Collapse
|
245
|
Wang S, Li B, Li C, Cui W, Miao L. Potential Renoprotective Agents through Inhibiting CTGF/CCN2 in Diabetic Nephropathy. J Diabetes Res 2015; 2015:962383. [PMID: 26421309 PMCID: PMC4572424 DOI: 10.1155/2015/962383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/28/2015] [Accepted: 03/25/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The development and progression of DN might involve multiple factors. Connective tissue growth factor (CCN2, originally known as CTGF) is the one which plays a pivotal role. Therefore, increasing attention is being paid to CCN2 as a potential therapeutic target for DN. Up to date, there are also many drugs or agents which have been shown for their protective effects against DN via different mechanisms. In this review, we only focus on the potential renoprotective therapeutic agents which can specifically abolish CCN2 expression or nonspecifically inhibit CCN2 expression for retarding the development and progression of DN.
Collapse
Affiliation(s)
- Songyan Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- Department of Nephrology, Jilin Province People's Hospital, Changchun 130021, China
| | - Bing Li
- Department of Nephrology, Jilin Province People's Hospital, Changchun 130021, China
| | - Chunguang Li
- Department of Urology, The 2nd Hospital of Changchun, Changchun 130061, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Lining Miao:
| |
Collapse
|
246
|
Wang Y, Lumbers ER, Sykes SD, Pringle KG. Regulation of the Renin-Angiotensin System Pathways in the Human Decidua. Reprod Sci 2014; 22:865-72. [PMID: 25544673 DOI: 10.1177/1933719114565029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pregnancy outcome is influenced, in part, by the sex of the fetus. Decidual renin messenger RNA (REN) abundance is greater in women carrying a female fetus than a male fetus. Here, we explore whether the sex of the fetus also influences the regulation of decidual RAS expression with a known stimulator of renal renin and cyclic adenosine monophosphate (cAMP). Cyclic adenosine monophosphate had no affect on decidual REN expression, since REN abundance was still greater in decidual explants from women carrying a female fetus than a male fetus after cAMP treatment. Cyclic adenosine monophosphate decreased prorenin levels in the supernatant if the fetus was female (ie, prorenin levels were no longer sexually dimorphic) and altered the fetal sex-specific differences in other RAS genes seen in vitro. Therefore, fetal sex influences the decidual renin-angiotensin system response to cAMP. This may be related to the presence of fetal cells in the maternal decidua.
Collapse
Affiliation(s)
- Yu Wang
- School of Biomedical Sciences & Pharmacy, Mothers & Babies Research Centre, University of Newcastle, Hunter Medical Research Institute & John Hunter Hospital, Newcastle, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences & Pharmacy, Mothers & Babies Research Centre, University of Newcastle, Hunter Medical Research Institute & John Hunter Hospital, Newcastle, Australia
| | - Shane D Sykes
- School of Biomedical Sciences & Pharmacy, Mothers & Babies Research Centre, University of Newcastle, Hunter Medical Research Institute & John Hunter Hospital, Newcastle, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences & Pharmacy, Mothers & Babies Research Centre, University of Newcastle, Hunter Medical Research Institute & John Hunter Hospital, Newcastle, Australia
| |
Collapse
|
247
|
Bokuda K, Ichihara A. Possible contribution of (pro)renin receptor to development of gestational diabetes mellitus. World J Diabetes 2014; 5:912-916. [PMID: 25512796 PMCID: PMC4265880 DOI: 10.4239/wjd.v5.i6.912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/21/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
(Pro)renin receptor [(P)RR], a receptor for renin and prorenin, was first cloned in 2002. Since then, the pathophysiological roles of (P)RR have been growing concerns. (P)RR binds renin and prorenin, with two important consequences, nonproteolytic activation of prorenin, leading to the tissue renin-angiotensin system activation and the intracellular signalings. It is now also known to play an important role as vacuolar H+-ATPase associated protein, involving in Wnt signaling, main component of embryonic development. Extracellular domain of full-length (P)RR is cleaved in golgi-complex forming soluble (P)RR [s(P)RR]. The s(P)RR is now possible to be measured in human blood and urine. It is now measured in different pathophysiological states, and recent study showed that elevated plasma s(P)RR levels in the early stage of pregnancies are associated with higher incidence of gestational diabetes mellitus later in the pregnancies. Plasma s(P)RR levels of neonates are known to be higher than that of adults. It was also shown that, increased s(P)RR concentrations in cord blood, associated with a lower small for gestational age birth likelihood. These data suggests the involvement of (P)RR in embryo’s growth. In this review article, we attempt to figure out the possible pathophysiological roles of the (P)RR in maternal glucose intolerance and embryo’s growth, through reviewing previous studies.
Collapse
|
248
|
Pringle KG, Conquest A, Mitchell C, Zakar T, Lumbers ER. Effects of Fetal Sex on Expression of the (Pro)renin Receptor and Genes Influenced by its Interaction With Prorenin in Human Amnion. Reprod Sci 2014; 22:750-7. [PMID: 25491485 DOI: 10.1177/1933719114561555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Males are more likely to be born preterm than females. The causes are unknown, but it is suggested that intrauterine tissues regulate fetal growth and survival in a sex-specific manner. We postulated that prorenin binding to its prorenin/renin receptor receptor (ATP6AP2) would act in a fetal sex-specific manner in human amnion to regulate the expression of promyelocytic zinc finger, a negative regulator of ATP6AP2 expression as well as 2 pathways that might influence the onset of labor, namely transforming growth factor β1 (TGFB1) and prostaglandin endoperoxide synthase 2 (PTGS2). Our findings demonstrate that there are strong interactions between prorenin, ATP6AP2, and TGFB1 and that this system has a greater capacity in female amnion to stimulate profibrotic pathways, thus maintaining the integrity of the fetal membranes. In contrast, glucocorticoids or other factors independent of the prorenin/prorenin receptor pathway may be important regulators of PTGS2 in human pregnancy.
Collapse
Affiliation(s)
- Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Alison Conquest
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Carolyn Mitchell
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
249
|
Slany A, Meshcheryakova A, Beer A, Ankersmit HJ, Paulitschke V, Gerner C. Plasticity of fibroblasts demonstrated by tissue-specific and function-related proteome profiling. Clin Proteomics 2014; 11:41. [PMID: 26029019 PMCID: PMC4448269 DOI: 10.1186/1559-0275-11-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/17/2014] [Indexed: 01/15/2023] Open
Abstract
Background Fibroblasts are mesenchymal stromal cells which occur in all tissue types. While their main function is related to ECM production and physical support, they are also important players in wound healing, and have further been recognized to be able to modulate inflammatory processes and support tumor growth. Fibroblasts can display distinct phenotypes, depending on their tissue origin, as well as on their functional state. Results In order to contribute to the proteomic characterization of fibroblasts, we have isolated primary human fibroblasts from human skin, lung and bone marrow and generated proteome profiles of these cells by LC-MS/MS. Comparative proteome profiling revealed characteristic differences therein, which seemed to be related to the cell’s tissue origin. Furthermore, the cells were treated in vitro with the pro-inflammatory cytokine IL-1beta. While all fibroblasts induced the secretion of Interleukins IL-6 and IL-8 and the chemokine GRO-alpha, other inflammation-related proteins were up-regulated in an apparently tissue-dependent manner. Investigating fibroblasts from tumorous tissues of skin, lung and bone marrow with respect to such inflammation-related proteins revealed hardly any conformity but rather individual and tumor type-related variations. However, apparent up-regulation of IGF-II, PAI-1 and PLOD2 was observed in melanoma-, lung adenocarcinoma- and multiple myeloma-associated fibroblasts, as well as in hepatocellular carcinoma-associated fibroblasts. Conclusions Inflammation-related proteome alterations of primary human fibroblasts were determined by the analysis of IL-1beta treated cells. Tumor-associated fibroblasts from different tissue types hardly showed signs of acute inflammation but displayed characteristic functional aberrations potentially related to chronic inflammation. The present data suggest that the state of the tumor microenvironment is relevant for tumor progression and targeted treatment of tumor-associated fibroblasts may support anti-cancer strategies. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-11-41) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Astrid Slany
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Anastasia Meshcheryakova
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| | - Agnes Beer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| | - Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Vienna, Austria ; Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| |
Collapse
|
250
|
Zhang J, Lu A, Kong L, Zhang Q, Ling E. Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J Biol Chem 2014; 289:35891-906. [PMID: 25368323 DOI: 10.1074/jbc.m114.599597] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Molting fluid accumulates between the old and new cuticles during periodical ecdysis in Ecdysozoa. Natural defects in insect ecdysis are frequently associated with melanization (an immunity response) occurring primarily in molting fluids, suggesting that molting fluid may impact immunity as well as affect ecdysis. To address this hypothesis, proteomic analysis of molting fluids from Bombyx mori during three different types of ecdysis was performed. Many proteins were newly identified, including immunity-related proteins, in each molting fluid. Molting fluids inhibited the growth of bacteria in vitro. The entomopathogenic fungi Beauveria bassiana, which can escape immune responses in feeding larvae, is quickly recognized by larvae during ecdysis, followed by melanization in molting fluid and old cuticle. Fungal conidia germination was delayed, and no hyphae were detected in the hemocoels of pharate instar insects. Molting fluids protect the delicate pharate instar insects with extremely thin cuticles against microorganisms. To explore the function of molting fluids in ecdysis regulation, based on protein similarity, 32 genes were selected for analysis in ecdysis regulation through RNAi in Tribolium castaneum, a model commonly used to study integument development because RNAi is difficult to achieve in B. mori. We identified 24 molting proteins that affected ecdysis after knockdown, with different physiological functions, including old cuticle protein recycling, molting fluid pressure balance, detoxification, and signal detection and transfer of molting fluids. We report that insects secrete molting fluid for protection and regulation of ecdysis, which indicates a way to develop new pesticides through interrupting insect ecdysis in the future.
Collapse
Affiliation(s)
- Jie Zhang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China and
| | - Anrui Lu
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China and
| | - Lulu Kong
- the College of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiaoli Zhang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China and
| | - Erjun Ling
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China and
| |
Collapse
|