201
|
Saks V, Schlattner U, Tokarska-Schlattner M, Wallimann T, Bagur R, Zorman S, Pelosse M, Santos PD, Boucher F, Kaambre T, Guzun R. Systems Level Regulation of Cardiac Energy Fluxes Via Metabolic Cycles: Role of Creatine, Phosphotransfer Pathways, and AMPK Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
202
|
Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. FRONTIERS IN PLANT SCIENCE 2014; 5:190. [PMID: 24904600 PMCID: PMC4033248 DOI: 10.3389/fpls.2014.00190] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Collapse
Affiliation(s)
| | | | | | - Américo Rodrigues
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- Escola Superior de Turismo e Tecnologia do Mar de Peniche, Instituto Politécnico de LeiriaPeniche, Portugal
| | | | | | | | - Elena Baena-González
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
203
|
Carcamo WC, Calise SJ, von Mühlen CA, Satoh M, Chan EKL. Molecular cell biology and immunobiology of mammalian rod/ring structures. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:35-74. [PMID: 24411169 DOI: 10.1016/b978-0-12-800097-7.00002-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleotide biosynthesis is a highly regulated process necessary for cell growth and replication. Cytoplasmic structures in mammalian cells, provisionally described as rods and rings (RR), were identified by human autoantibodies and recently shown to include two key enzymes of the CTP/GTP biosynthetic pathways, cytidine triphosphate synthetase (CTPS) and inosine monophosphate dehydrogenase (IMPDH). Several studies have described CTPS filaments in mammalian cells, Drosophila, yeast, and bacteria. Other studies have identified IMPDH filaments in mammalian cells. Similarities among these studies point to a common evolutionarily conserved cytoplasmic structure composed of a subset of nucleotide biosynthetic enzymes. These structures appear to be a conserved metabolic response to decreased intracellular GTP and/or CTP pools. Antibodies to RR were found to develop in some hepatitis C patients treated with interferon-α and ribavirin. Additionally, the presence of anti-RR antibodies was correlated with poor treatment outcome.
Collapse
Affiliation(s)
- Wendy C Carcamo
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - S John Calise
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, Florida, USA; Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
204
|
Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in bacterial development. FEMS Microbiol Rev 2013; 38:493-522. [PMID: 24354618 DOI: 10.1111/1574-6976.12050] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bacteria use proteases to control three types of events temporally and spatially during the processes of morphological development. These events are the destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, transmembrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, for example turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
205
|
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2013; 1:1383-412. [PMID: 23733647 DOI: 10.1002/cphy.c100042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Collapse
Affiliation(s)
- Hans Hoppeler
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
206
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
207
|
Khatri N, Man HY. Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front Neurol 2013; 4:199. [PMID: 24376435 PMCID: PMC3858785 DOI: 10.3389/fneur.2013.00199] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022] Open
Abstract
Powered by glucose metabolism, the brain is the most energy-demanding organ in our body. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries.
Collapse
Affiliation(s)
- Natasha Khatri
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| | - Heng-Ye Man
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
208
|
Scott JW, Oakhill JS, Ling NXY, Langendorf CG, Foitzik RC, Kemp BE, Issinger OG. ATP sensitive bi-quinoline activator of the AMP-activated protein kinase. Biochem Biophys Res Commun 2013; 443:435-40. [PMID: 24332941 DOI: 10.1016/j.bbrc.2013.11.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
The AMP-activated protein kinase (AMPK) regulates cellular and whole-body energy balance in response to changes in adenylate charge and hormonal signals. Activation of AMPK in tissues such as skeletal muscle and liver reverses many of the metabolic defects associated with obesity and Type 2 diabetes. Here we report a bi-quinoline (JJO-1) that allosterically activates all AMPK αβγ isoforms in vitro except complexes containing the γ3 subunit. JJO-1 does not directly activate the autoinhibited α subunit kinase domain and differs among other known direct activators of AMPK in that allosteric activation occurs only at low ATP concentrations, and is not influenced by either mutation of the γ subunit adenylate-nucleotide binding sites or deletion of the β subunit carbohydrate-binding module. Our findings indicate that AMPK has multiple modes of allosteric activation that may be exploited to design isoform-specific activators as potential therapeutics for metabolic diseases.
Collapse
Affiliation(s)
- John W Scott
- St. Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Victoria, Australia.
| | - Jonathan S Oakhill
- St. Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Victoria, Australia
| | - Naomi X Y Ling
- St. Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Victoria, Australia
| | - Christopher G Langendorf
- St. Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Victoria, Australia
| | - Richard C Foitzik
- Cancer Therapeutics CRC Pty. Ltd., Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Bruce E Kemp
- St. Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Victoria, Australia
| | - Olaf-Georg Issinger
- Biomedical Research Group, BMB, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
209
|
Kroos L, Akiyama Y. Biochemical and structural insights into intramembrane metalloprotease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2873-85. [PMID: 24099006 DOI: 10.1016/j.bbamem.2013.03.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/07/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023]
Abstract
Intramembrane metalloproteases are nearly ubiquitous in living organisms and they function in diverse processes ranging from cholesterol homeostasis and the unfolded protein response in humans to sporulation, stress responses, and virulence of bacteria. Understanding how these enzymes function in membranes is a challenge of fundamental interest with potential applications if modulators can be devised. Progress is described toward a mechanistic understanding, based primarily on molecular genetic and biochemical studies of human S2P and bacterial SpoIVFB and RseP, and on the structure of the membrane domain of an archaeal enzyme. Conserved features of the enzymes appear to include transmembrane helices and loops around the active site zinc ion, which may be near the membrane surface. Extramembrane domains such as PDZ (PSD-95, DLG, ZO-1) or CBS (cystathionine-β-synthase) domains govern substrate access to the active site, but several different mechanisms of access and cleavage site selection can be envisioned, which might differ depending on the substrate and the enzyme. More work is needed to distinguish between these mechanisms, both for enzymes that have been relatively well-studied, and for enzymes lacking PDZ and CBS domains, which have not been studied. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
210
|
Ereño-Orbea J, Oyenarte I, Martínez-Cruz LA. CBS domains: Ligand binding sites and conformational variability. Arch Biochem Biophys 2013; 540:70-81. [DOI: 10.1016/j.abb.2013.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023]
|
211
|
Yamada T, Bhate MP, Strange K. Regulatory phosphorylation induces extracellular conformational changes in a CLC anion channel. Biophys J 2013; 104:1893-904. [PMID: 23663832 DOI: 10.1016/j.bpj.2013.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022] Open
Abstract
CLH-3b is a CLC-1/2/Ka/Kb channel homolog activated by meiotic cell cycle progression and cell swelling. Channel inhibition occurs by GCK-3 kinase-mediated phosphorylation of serine residues on the cytoplasmic C-terminus linker connecting CBS1 and CBS2. Two conserved aromatic amino acid residues located on the intracellular loop connecting membrane helices H and I and α1 of CBS2 are required for transducing phosphorylation changes into changes in channel activity. Helices H and I form part of the interface between the two subunits that comprise functional CLC channels. Using a cysteine-less CLH-3b mutant, we demonstrate that the sulfhydryl reagent reactivity of substituted cysteines at the subunit interface changes dramatically during GCK-3-mediated channel inhibition and that these changes are prevented by mutation of the H-I loop/CBS2 α1 signal transduction domain. We also show that GCK-3 modifies Zn(2+) inhibition, which is thought to be mediated by the common gating process. These and other results suggest that phosphorylation of the cytoplasmic C-terminus inhibits CLH-3b by inducing subunit interface conformation changes that activate the common gate. Our findings have important implications for understanding CLC regulation by diverse signaling mechanisms and for understanding the structure/function relationships that mediate intraprotein communication in this important family of Cl(-) transport proteins.
Collapse
Affiliation(s)
- Toshiki Yamada
- Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | | | | |
Collapse
|
212
|
Pluchon PF, Fouqueau T, Crezé C, Laurent S, Briffotaux J, Hogrel G, Palud A, Henneke G, Godfroy A, Hausner W, Thomm M, Nicolas J, Flament D. An extended network of genomic maintenance in the archaeon Pyrococcus abyssi highlights unexpected associations between eucaryotic homologs. PLoS One 2013; 8:e79707. [PMID: 24244547 PMCID: PMC3820547 DOI: 10.1371/journal.pone.0079707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways. The development of genetic system in hyperthermophilic archaea is still at a modest stage hampering the use of complementary approaches of reverse genetics and biochemistry to elucidate the function of new candidate DNA repair gene. To gain insights into genomic maintenance processes in hyperthermophilic archaea, a protein-interaction network centred on informational processes of Pyrococcus abyssi was generated by affinity purification coupled with mass spectrometry. The network consists of 132 interactions linking 87 proteins. These interactions give insights into the connections of DNA replication with recombination and repair, leading to the discovery of new archaeal components and of associations between eucaryotic homologs. Although this approach did not allow us to clearly delineate new DNA pathways, it provided numerous clues towards the function of new molecular complexes with the potential to better understand genomic maintenance processes in hyperthermophilic archaea. Among others, we found new potential partners of the replication clamp and demonstrated that the single strand DNA binding protein, Replication Protein A, enhances the transcription rate, in vitro, of RNA polymerase. This interaction map provides a valuable tool to explore new aspects of genome integrity in Archaea and also potentially in Eucaryotes.
Collapse
Affiliation(s)
- Pierre-François Pluchon
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Thomas Fouqueau
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Christophe Crezé
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Sébastien Laurent
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Julien Briffotaux
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Gaëlle Hogrel
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Adeline Palud
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Ghislaine Henneke
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Anne Godfroy
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Winfried Hausner
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Jacques Nicolas
- IRISA-INRIA, Campus de Beaulieu, Rennes, France
- * E-mail: (DF); (JN)
| | - Didier Flament
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- * E-mail: (DF); (JN)
| |
Collapse
|
213
|
Zhang BL, Ye Z, Xu RL, You XH, Qin YW, Wu H, Cao J, Zhang JL, Zheng X, Zhao XX. Overexpression of G100S mutation in PRKAG2 causes Wolff-Parkinson-White syndrome in zebrafish. Clin Genet 2013; 86:287-91. [PMID: 23992123 DOI: 10.1111/cge.12267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 11/29/2022]
Abstract
The Wolff-Parkinson-White (WPW) syndrome was believed to be associated with PRKAG2 gene mutations. In this study, we verified the pathopoiesis of G100S mutation, a novel mutation only discovered in Chinese patients with WPW, in cardiac disorder. Similar to R302Q, when overexpressed PRKAG2 G100S mutant in zebrafish, we observed a thicker heart wall, detected a decreased AMPK enzymatic activity by tissue AMPK kinase activity colorimetric technique, as well as examined an increased glycogen storage in heart wall using the method for periodic acid-Schiff staining, in comparison with the zebrafish without exogenous PRKAG2 (mock) or with wild-type PRKAG2 (WT). Taken together, we concluded PRKAG2 G100S mutation might contribute to impair the AMP-activated protein kinase function, which resulted in increased cardiac glycogen storage, serving as a pathogenesis for WPW syndrome in Chinese.
Collapse
Affiliation(s)
- B L Zhang
- Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Zhang YL, Guo H, Zhang CS, Lin SY, Yin Z, Peng Y, Luo H, Shi Y, Lian G, Zhang C, Li M, Ye Z, Ye J, Han J, Li P, Wu JW, Lin SC. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab 2013; 18:546-55. [PMID: 24093678 DOI: 10.1016/j.cmet.2013.09.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/09/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
The AMP-activated protein kinase (AMPK) is a master regulator of metabolic homeostasis by sensing cellular energy status. AMPK is mainly activated via phosphorylation by LKB1 when cellular AMP/ADP levels are increased. However, how AMP/ADP brings about AMPK phosphorylation remains unclear. Here, we show that it is AMP, but not ADP, that drives AXIN to directly tether LKB1 to phosphorylate AMPK. The complex formation of AXIN-AMPK-LKB1 is greatly enhanced in glucose-starved or AICAR-treated cells and in cell-free systems supplemented with exogenous AMP. Depletion of AXIN abrogated starvation-induced AMPK-LKB1 colocalization. Importantly, adenovirus-based knockdown of AXIN in the mouse liver impaired AMPK activation and caused exacerbated fatty liver after starvation, underscoring an essential role of AXIN in AMPK activation. These findings demonstrate an initiating role of AMP and demonstrate that AXIN directly transmits AMP binding of AMPK to its activation by LKB1, uncovering the mechanistic route for AMP to elicit AMPK activation by LKB1.
Collapse
Affiliation(s)
- Ya-Lin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Gowans GJ, Hawley SA, Ross FA, Hardie DG. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 2013; 18:556-66. [PMID: 24093679 PMCID: PMC3791399 DOI: 10.1016/j.cmet.2013.08.019] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/12/2013] [Accepted: 08/14/2013] [Indexed: 11/24/2022]
Abstract
While allosteric activation of AMPK is triggered only by AMP, binding of both ADP and AMP has been reported to promote phosphorylation and inhibit dephosphorylation at Thr172. Because cellular concentrations of ADP and ATP are higher than AMP, it has been proposed that ADP is the physiological signal that promotes phosphorylation and that allosteric activation is not significant in vivo. However, we report that: AMP is 10-fold more potent than ADP in inhibiting Thr172 dephosphorylation; only AMP enhances LKB1-induced Thr172 phosphorylation; and AMP can cause > 10-fold allosteric activation even at concentrations 1-2 orders of magnitude lower than ATP. We also provide evidence that allosteric activation by AMP can cause increased phosphorylation of acetyl-CoA carboxylase in intact cells under conditions in which there is no change in Thr172 phosphorylation. Thus, AMP is a true physiological regulator of AMPK, and allosteric regulation is an important component of the overall activation mechanism.
Collapse
Affiliation(s)
- Graeme J Gowans
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
216
|
Abstract
Resveratrol (RSV) is a natural polyphenol produced by plants and is proposed to have multiple beneficial effects on health. In recent years, the interest in this molecule has increased nearly exponentially following the major findings that RSV (I) is chemo-preventive in some cancer models, (II) is cardio-protective and (III) has positive effects on metabolism in mammals and increases lifespan in lower organisms. Mechanistic target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism and angiogenesis. As a part of the mTORC1 and mTORC2 complexes, the mTOR kinase plays a key role in several pathways involved in cancer and metabolic diseases. Recent studies suggest that modulation of the mTOR signalling pathway could play an important role in mediating the beneficial effects of RSV. Therefore, this review summarises the current findings regarding RSV and its inhibition/activation of the proteins in the mTOR pathway, and thereby propose the proteins of the mTOR cascade to be primary targets for RSV. RSV affects many different targets related to mTOR, and it is not clear which is most relevant. However, most frequently, RSV is found to inhibit the activity of the mTOR pathway proteins, and to activate AMPK and LKB1, which can suppress mTOR signalling. Thus, it appears that RSV plays a role in modulation of proteins of the mTOR pathway although more research is still needed to fully understand the interaction.
Collapse
|
217
|
Localisation of AMPK γ subunits in cardiac and skeletal muscles. J Muscle Res Cell Motil 2013; 34:369-78. [PMID: 24037260 PMCID: PMC3853370 DOI: 10.1007/s10974-013-9359-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/30/2013] [Indexed: 11/22/2022]
Abstract
The trimeric protein AMP-activated protein kinase (AMPK) is an important sensor of energetic status and cellular stress, and mutations in genes encoding two of the regulatory γ subunits cause inherited disorders of either cardiac or skeletal muscle. AMPKγ2 mutations cause hypertrophic cardiomyopathy with glycogen deposition and conduction abnormalities; mutations in AMPKγ3 result in increased skeletal muscle glycogen. In order to gain further insight into the roles of the different γ subunits in muscle and into possible disease mechanisms, we localised the γ2 and γ3 subunits, along with the more abundant γ1 subunit, by immunofluorescence in cardiomyocytes and skeletal muscle fibres. The predominant cardiac γ2 variant, γ2-3B, gave a striated pattern in cardiomyocytes, aligning with the Z-disk but with punctate staining similar to T-tubule (L-type Ca2+ channel) and sarcoplasmic reticulum (SERCA2) markers. In skeletal muscle fibres AMPKγ3 localises to the I band, presenting a uniform staining that flanks the Z-disk, also coinciding with the position of Ca2+ influx in these muscles. The localisation of γ2-3B- and γ3-containing AMPK suggests that these trimers may have similar functions in the different muscles. AMPK containing γ2-3B was detected in oxidative skeletal muscles which had low expression of γ3, confirming that these two regulatory subunits may be co-ordinately regulated in response to metabolic requirements. Compartmentalisation of AMPK complexes is most likely dependent on the regulatory γ subunit and this differential localisation may direct substrate selection and specify particular functional roles.
Collapse
|
218
|
AMP-activated protein kinase as a key molecular link between metabolism and clockwork. Exp Mol Med 2013; 45:e33. [PMID: 23887727 PMCID: PMC3731663 DOI: 10.1038/emm.2013.65] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 01/06/2023] Open
Abstract
Circadian clocks regulate behavioral, physiological and biochemical processes in a day/night cycle. Circadian oscillators have an essential role in the coordination of physiological processes with the cyclic changes in the physical environment. Such mammalian circadian clocks composed of the positive components (BMAL1 and CLOCK) and the negative components (CRY and PERIOD (PER)) are regulated by a negative transcriptional feedback loop in which PER is rate-limiting for feedback inhibition. In addition, posttranslational modification of these components is critical for setting or resetting the circadian oscillation. Circadian regulation of metabolism is mediated through reciprocal signaling between the clock and metabolic regulatory networks. AMP-activated protein kinase (AMPK) in the brain and peripheral tissue is a crucial cellular energy sensor that has a role in metabolic control. AMPK-mediated phosphorylation of CRY and Casein kinases I regulates the negative feedback control of circadian clock by proteolytic degradation. AMPK can also modulate the circadian rhythms through nicotinamide adenine dinucleotide-dependent regulation of silent information regulator 1. Growing evidence elucidates the AMPK-mediated controls of circadian clock in metabolic diseases such as obesity and diabetes. In this review, we summarize the current comprehension of AMPK-mediated regulation of the circadian rhythms. This will provide insight into understanding how their components regulate the metabolism.
Collapse
|
219
|
Bossus M, Charmantier G, Blondeau-Bidet E, Valletta B, Boulo V, Lorin-Nebel C. The ClC-3 chloride channel and osmoregulation in the European sea bass, Dicentrarchus labrax. J Comp Physiol B 2013; 183:641-62. [PMID: 23292336 DOI: 10.1007/s00360-012-0737-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/27/2012] [Accepted: 11/23/2012] [Indexed: 11/29/2022]
Abstract
Dicentrarchus labrax migrates between sea (SW), brackish and fresh water (FW) where chloride concentrations and requirements for chloride handling change: in FW, fish absorb chloride and restrict renal losses; in SW, they excrete chloride. In this study, the expression and localization of ClC-3 and Na(+)/K(+)-ATPase (NKA) were studied in fish adapted to SW, or exposed to FW from 10 min to 30 days. In gills, NKA-α1 subunit expression transiently increased from 10 min and reached a stabilized intermediate expression level after 24 h in FW. ClC-3 co-localized with NKA in the basolateral membrane of mitochondria-rich cells (MRCs) at all conditions. The intensity of MRC ClC-3 immunostaining was significantly higher (by 50 %) 1 h after the transfer to FW, whereas the branchial ClC-3 protein expression was 30 % higher 7 days after the transfer as compared to SW. This is consistent with the increased number of immunopositive MRCs (immunostained for NKA and ClC-3). However, the ClC-3 mRNA expression was significantly lower in FW gills. In the kidney, after FW transfer, a transient decrease in NKA-α1 subunit expression was followed by significantly higher stable levels from 24 h. The low ClC-3 protein expression detected at both salinities was not observed by immunocytochemistry in the SW kidney; ClC-3 was localized in the basal membrane of the collecting ducts and tubules 7 and 30 days after transfer to FW. Renal ClC-3 mRNA expression, however, seemed higher in SW than in FW. The potential role of this chloride channel ClC-3 in osmoregulatory and osmosensing mechanisms is discussed.
Collapse
Affiliation(s)
- Maryline Bossus
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR5119 - EcoSyM, UM2-UM1-CNRS-IRD-IFREMER, cc 092, Place E. Bataillon, 34095 Montpellier cedex 05, France.
| | | | | | | | | | | |
Collapse
|
220
|
Ramon M, Ruelens P, Li Y, Sheen J, Geuten K, Rolland F. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:11-25. [PMID: 23551663 PMCID: PMC6599549 DOI: 10.1111/tpj.12192] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 05/17/2023]
Abstract
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy-sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ-like proteins, plants also encode a hybrid βγ protein that combines the Four-Cystathionine β-synthase (CBS)-domain (FCD) structure in γ subunits with a glycogen-binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in-depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast-containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre-CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.
Collapse
Affiliation(s)
- Matthew Ramon
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Philip Ruelens
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Yi Li
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative, Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Koen Geuten
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| |
Collapse
|
221
|
Abstract
The AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy that appears to have arisen at an early stage during eukaryotic evolution. In 2001 it was shown to be activated by metformin, currently the major drug for treatment for type 2 diabetes. Although the known metabolic effects of AMPK activation are consistent with the idea that it mediates some of the therapeutic benefits of metformin, as discussed below it now appears unlikely that AMPK is the sole target of the drug. AMPK is also activated by several natural plant products derived from traditional medicines, and the mechanisms by which they activate AMPK are discussed. One of these is salicylate, probably the oldest medicinal agent known to humankind. The salicylate prodrug salsalate has been shown to improve metabolic parameters in subjects with insulin resistance and prediabetes, and whether this might be mediated in part by AMPK is discussed. Interestingly, there is evidence that both metformin and aspirin provide some protection against development of cancer in humans, and whether AMPK might be involved in these effects is also discussed.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
222
|
Identification and functional analysis of a novel PRKAG2 mutation responsible for Chinese PRKAG2 cardiac syndrome reveal an important role of non-CBS domains in regulating the AMPK pathway. J Cardiol 2013; 62:241-8. [PMID: 23778007 DOI: 10.1016/j.jjcc.2013.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND PRKAG2 gene encodes the γ2 regulatory subunit of AMP-activated protein kinase (AMPK) that acts as a sensor of cellular energy status, and its germline mutations are responsible for PRKAG2 cardiac syndrome (PCS). The majority of missense mutations of cystathionine beta-synthase (CBS) domains found in PCS impair the binding activity of PRKAG2 to adenosine derivatives, and therefore lead to PRKAG2 function impairment and AMPK activity alteration, resulting in a familial syndrome of ventricular preexcitation, conduction defects, and cardiac hypertrophy. However, it is unclear about the PRKAG2 mutation in the non-CBS domain. Here, a Chinese family exhibiting the cardiac syndrome associated with a novel heterozygous PRKAG2 mutation (Gly100Ser) mapped to exon 3 encoding a non-CBS domain is described and the function of this novel mutation was investigated in vitro. METHODS The PRKAG2 G100S and R302Q mutations were constructed by a two-step polymerase chain reaction and then transfected into CCL13 cells by lentivirus vectors. Wild-type PRKAG2 gene transfection was used as a negative control. PRKAG2 expression was determined by Western blot. Immunofluorescence was used to localize the intracellular PRKAG2 proteins. MTT assay was performed to explore the effect of mutations on cell proliferation. Periodic acid-Schiff staining was used for detecting glycogen accumulation. AMPK concentration was measured with enzyme-linked immunosorbent assay. RESULTS Our results showed neither intracellular localization of PRKAG2 nor cell growth was altered. In contrast, PRKAG2 protein expression levels were significantly reduced by this mutation. Furthermore, PRKAG2-mediated activity of AMPK was attenuated, resulting in glycogen metabolism dysregulation. These findings revealed that non-CBS domains of PRKAG2 were essential to the regulation of AMPK activity, similar to CBS. CONCLUSIONS Our study ascribes a crucial regulatory role to the novel PRKAG2 G100S mutation, and reiterates that PCS occurs as a consequence of AMPK signaling abnormality caused by PRKAG2 gene mutations.
Collapse
|
223
|
Liu Y, Bai R, Wang L, Zhang C, Zhao R, Wan D, Chen X, Caceres G, Barr D, Barajas-Martinez H, Antzelevitch C, Hu D. Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One 2013; 8:e64603. [PMID: 23741347 PMCID: PMC3669303 DOI: 10.1371/journal.pone.0064603] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022] Open
Abstract
Introduction The major structure elements of the AMP-activated protein kinase (AMPK) are α, β, and γ sunbunits. Mutations in γ2 subunit (PRKAG2) have been associated with a cardiac syndrome including inherited ventricular preexcitation, conduction disorder and hypertrophy mimicking hypertrophic cardiomyopathy. The aim of the present study was to identify PRKAG2 syndrome among patients presenting with left ventricular hypertrophy (LVH). Methods and Results Nineteen unrelated subjects with unexplained LVH were clinically and genetically evaluated. Among 4 patients with bradycardia, manifestations of preexcitation were only found in a 19 year old male who also developed congestive heart failure 3 years later. Electrophysiological study of this case identified the coexistence of an AV accessory pathway and AV conduction defect. Histological analysis of his ventricular tissue isolated by biopsy confirmed excessive glycogen accumulation, prominent myofibrillar disarray and interstitial fibrosis. Direct sequencing of his DNA revealed a heterozygous mutation in PRKAG2 consisting of an A-to-G transition at nucleotide 1453 (c.1453A>G), predicting a substitution of a glutamic acid for lysine at highly-conserved residue 485 (p.Lys485Glu, K485E), which was absent in his unaffected family members and in 215 healthy controls. To assess the role of K485 in the structure and function of the protein, computational modeling calculations and conservation analyses were performed. Electrostatic calculations indicate that K485 forms a salt bridge with the conserved D248 residue in the AMPK β subunit, which is critical for proper regulation of the enzyme, and the K485E mutant disrupts the connection. Conclusions Our study identifies a novel de novo PRKAG2 mutation in a young, in which progression of the disease warrants close medical attention. It also underlines the importance of molecular screening of PRKAG2 gene in patients with unexplained LVH, ventricular preexcitation, conduction defect, and/or early onset of heart failure.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Department, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangzhou, China
| | - Rong Bai
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruifu Zhao
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deli Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinshan Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gabriel Caceres
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York, United States of America
| | - Daniel Barr
- Department of Chemistry and Biochemistry, Utica College, Utica, New York, United States of America
| | - Hector Barajas-Martinez
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York, United States of America
| | - Charles Antzelevitch
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York, United States of America
| | - Dan Hu
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York, United States of America
- * E-mail:
| |
Collapse
|
224
|
Jeong BC, Park SH, Yoo KS, Shin JS, Song HK. Change in single cystathionine β-synthase domain-containing protein from a bent to flat conformation upon adenosine monophosphate binding. J Struct Biol 2013; 183:40-6. [PMID: 23664870 DOI: 10.1016/j.jsb.2013.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 12/25/2022]
Abstract
Cystathionine β-synthase (CBS) domains are small intracellular modules that can act as binding domains for adenosine derivatives, and they may regulate the activity of associated enzymes or other functional domains. Among these, the single CBS domain-containing proteins, CBSXs, from Arabidopsis thaliana, have recently been identified as redox regulators of the thioredoxin system. Here, the crystal structure of CBSX2 in complex with adenosine monophosphate (AMP) is reported at 2.2Å resolution. The structure of dimeric CBSX2 with bound-AMP is shown to be approximately flat, which is in stark contrast to the bent form of apo-CBSXs. This conformational change in quaternary structure is triggered by a local structural change of the unique α5 helix, and by moving each loop P into an open conformation to accommodate incoming ligands. Furthermore, subtle rearrangement of the dimer interface triggers movement of all subunits, and consequently, the bent structure of the CBSX2 dimer becomes a flat structure. This reshaping of the structure upon complex formation with adenosine-containing ligand provides evidence that ligand-induced conformational reorganization of antiparallel CBS domains is an important regulatory mechanism.
Collapse
Affiliation(s)
- Byung-Cheon Jeong
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | | | | | |
Collapse
|
225
|
MgATP regulates allostery and fiber formation in IMPDHs. Structure 2013; 21:975-85. [PMID: 23643948 DOI: 10.1016/j.str.2013.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/22/2022]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in nucleotide biosynthesis studied as an important therapeutic target and its complex functioning in vivo is still puzzling and debated. Here, we highlight the structural basis for the regulation of IMPDHs by MgATP. Our results demonstrate the essential role of the CBS tandem, conserved among almost all IMPDHs. We found that Pseudomonas aeruginosa IMPDH is an octameric enzyme allosterically regulated by MgATP and showed that this octameric organization is widely conserved in the crystal structures of other IMPDHs. We also demonstrated that human IMPDH1 adopts two types of complementary octamers that can pile up into isolated fibers in the presence of MgATP. The aggregation of such fibers in the autosomal dominant mutant, D226N, could explain the onset of the retinopathy adRP10. Thus, the regulatory CBS modules in IMPDHs are functional and they can either modulate catalysis or macromolecular assembly.
Collapse
|
226
|
Regulation of ClC-2 gating by intracellular ATP. Pflugers Arch 2013; 465:1423-37. [PMID: 23632988 PMCID: PMC3778897 DOI: 10.1007/s00424-013-1286-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
Abstract
ClC-2 is a voltage-dependent chloride channel that activates slowly at voltages negative to the chloride reversal potential. Adenosine triphosphate (ATP) and other nucleotides have been shown to bind to carboxy-terminal cystathionine-ß-synthase (CBS) domains of ClC-2, but the functional consequences of binding are not sufficiently understood. We here studied the effect of nucleotides on channel gating using single-channel and whole-cell patch clamp recordings on transfected mammalian cells. ATP slowed down macroscopic activation and deactivation time courses in a dose-dependent manner. Removal of the complete carboxy-terminus abolishes the effect of ATP, suggesting that CBS domains are necessary for ATP regulation of ClC-2 gating. Single-channel recordings identified long-lasting closed states of ATP-bound channels as basis of this gating deceleration. ClC-2 channel dimers exhibit two largely independent protopores that are opened and closed individually as well as by a common gating process. A seven-state model of common gating with altered voltage dependencies of opening and closing transitions for ATP-bound states correctly describes the effects of ATP on macroscopic and microscopic ClC-2 currents. To test for a potential pathophysiological impact of ClC-2 regulation by ATP, we studied ClC-2 channels carrying naturally occurring sequence variants found in patients with idiopathic generalized epilepsy, G715E, R577Q, and R653T. All naturally occurring sequence variants accelerate common gating in the presence but not in the absence of ATP. We propose that ClC-2 uses ATP as a co-factor to slow down common gating for sufficient electrical stability of neurons under physiological conditions.
Collapse
|
227
|
Iseli TJ, Turner N, Zeng XY, Cooney GJ, Kraegen EW, Yao S, Ye Y, James DE, Ye JM. Activation of AMPK by bitter melon triterpenoids involves CaMKKβ. PLoS One 2013; 8:e62309. [PMID: 23638033 PMCID: PMC3636144 DOI: 10.1371/journal.pone.0062309] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/19/2013] [Indexed: 01/11/2023] Open
Abstract
We recently showed that bitter melon-derived triterpenoids (BMTs) activate AMPK and increase GLUT4 translocation to the plasma membrane in vitro, and improve glucose disposal in insulin resistant models in vivo. Here we interrogated the mechanism by which these novel compounds activate AMPK, a leading anti-diabetic drug target. BMTs did not activate AMPK directly in an allosteric manner as AMP or the Abbott compound (A-769662) does, nor did they activate AMPK by inhibiting cellular respiration like many commonly used anti-diabetic medications. BMTs increased AMPK activity in both L6 myotubes and LKB1-deficient HeLa cells by 20–35%. Incubation with the CaMKKβ inhibitor, STO-609, completely attenuated this effect suggesting a key role for CaMKKβ in this activation. Incubation of L6 myotubes with the calcium chelator EGTA-AM did not alter this activation suggesting that the BMT-dependent activation was Ca2+-independent. We therefore propose that CaMKKβ is a key upstream kinase for BMT-induced activation of AMPK.
Collapse
Affiliation(s)
- Tristan J. Iseli
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Nigel Turner
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Xiao-Yi Zeng
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, Australia
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Australia
| | - Gregory J. Cooney
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Edward W. Kraegen
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - David E. James
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Ji-Ming Ye
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, Australia
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Australia
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
228
|
Features of Pro-σK important for cleavage by SpoIVFB, an intramembrane metalloprotease. J Bacteriol 2013; 195:2793-806. [PMID: 23585539 DOI: 10.1128/jb.00229-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intramembrane proteases regulate diverse processes by cleaving substrates within a transmembrane segment or near the membrane surface. Bacillus subtilis SpoIVFB is an intramembrane metalloprotease that cleaves Pro-σ(K) during sporulation. To elucidate features of Pro-σ(K) important for cleavage by SpoIVFB, coexpression of the two proteins in Escherichia coli was used along with cell fractionation. In the absence of SpoIVFB, a portion of the Pro-σ(K) was peripherally membrane associated. This portion was not observed in the presence of SpoIVFB, suggesting that it serves as the substrate. Deletion of Pro-σ(K) residues 2 to 8, addition of residues at its N terminus, or certain single-residue substitutions near the cleavage site impaired cleavage. Certain multiresidue substitutions near the cleavage site changed the position of cleavage, revealing preferences for a small residue preceding the cleavage site N-terminally (i.e., at the P1 position) and a hydrophobic residue at the second position following the cleavage site C-terminally (i.e., P2'). These features appear to be conserved among Pro-σ(K) orthologs. SpoIVFB did not tolerate an aromatic residue at P1 or P2' of Pro-σ(K). A Lys residue at P3' of Pro-σ(K) could not be replaced with Ala unless a Lys was provided farther C-terminally (e.g., at P9'). α-Helix-destabilizing residues near the cleavage site were not crucial for SpoIVFB to cleave Pro-σ(K). The preferences and tolerances of SpoIVFB are somewhat different from those of other intramembrane metalloproteases, perhaps reflecting differences in the interaction of the substrate with the membrane and the enzyme.
Collapse
|
229
|
Rubio T, Vernia S, Sanz P. Sumoylation of AMPKβ2 subunit enhances AMP-activated protein kinase activity. Mol Biol Cell 2013; 24:1801-11, S1-4. [PMID: 23552691 PMCID: PMC3667731 DOI: 10.1091/mbc.e12-11-0806] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. It is a heterotrimer composed of a catalytic α and two regulatory subunits (β and γ). AMPK activity is regulated allosterically by AMP and by the phosphorylation of residue Thr-172 within the catalytic domain of the AMPKα subunit by upstream kinases. We present evidence that the AMPKβ2 subunit may be posttranslationally modified by sumoylation. This process is carried out by the E3-small ubiquitin-like modifier (SUMO) ligase protein inhibitor of activated STAT PIASy, which modifies the AMPKβ2 subunit by the attachment of SUMO2 but not SUMO1 moieties. Of interest, AMPKβ1 is not a substrate for this modification. We also demonstrate that sumoylation of AMPKβ2 enhances the activity of the trimeric α2β2γ1 AMPK complex. In addition, our results indicate that sumoylation is antagonist and competes with the ubiquitination of the AMPKβ2 subunit. This adds a new layer of complexity to the regulation of the activity of the AMPK complex, since conditions that promote ubiquitination result in inactivation, whereas those that promote sumoylation result in the activation of the AMPK complex.
Collapse
Affiliation(s)
- Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, and Centro de Investigación en Red de Enfermedades Raras, 46010-Valencia, Spain
| | | | | |
Collapse
|
230
|
Sriwijitkamol A, Musi N. Advances in the development of AMPK-activating compounds. Expert Opin Drug Discov 2013; 3:1167-76. [PMID: 23489075 DOI: 10.1517/17460441.3.10.1167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an energy sensing enzyme that controls glucose and lipid metabolism. OBJECTIVE This review summarizes the present data on AMPK as a pharmacologic target for the treatment of metabolic disorders. METHODS The mechanisms governing AMPK activity and how this enzyme controls different metabolic pathways are reviewed briefly, and details about the effect that AMPK activators have on glucose metabolism are provided. CONCLUSION Evidence obtained using the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) suggests that AMPK promotes glucose transport into skeletal muscles and that this enzyme inhibits hepatic glucose production. AICAR also induces fatty acid oxidation in muscle and inhibits cholesterol synthesis in the liver. The metabolic effects of AICAR on glucose and lipid metabolism indicate that AMPK may be a good pharmacologic target for the treatment of type 2 diabetes and hypercholesterolemia. Novel AMPK-specific compounds are allowing researchers to examine whether this enzyme is a useful pharmacologic target for the treatment of human disease and whether chronic activation of AMPK will be safe.
Collapse
Affiliation(s)
- Apiradee Sriwijitkamol
- University of Texas Health Science Center at San Antonio, Diabetes Division, San Antonio, Texas, USA
| | | |
Collapse
|
231
|
Ahn YJ, Kim H, Lim H, Lee M, Kang Y, Moon S, Kim HS, Kim HH. AMP-activated protein kinase: implications on ischemic diseases. BMB Rep 2013; 45:489-95. [PMID: 23010169 DOI: 10.5483/bmbrep.2012.45.9.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ischemia is a blockage of blood supply due to an embolism or a hemorrhage in a blood vessel. When an organ cannot receive oxygenated blood and can therefore no longer replenish its blood supply due to ischemia, stresses, such as the disruption of blood glucose homeostasis, hypoglycemia and hypoxia, activate the AMPK complex. LKB1 and CaMKKβ are essential activators of the AMPK signaling pathway. AMPK triggers proangiogenic effects through the eNOS protein in tissues with ischemic conditions, where cells are vulnerable to apoptosis, autophagy and necrosis. The AMPK complex acts to restore blood glucose levels and ATP levels back to homeostasis. This review will discuss AMPK, as well as its key activators (LKB1 and CaMKKβ), as a central energy regulator and evaluate the upstream and downstream regulating pathways of AMPK. We will also discuss how we can control this important enzyme in ischemic conditions to prevent harmful effects in patients with vascular damage.
Collapse
Affiliation(s)
- Yong-Joo Ahn
- Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Stanley DN, Raines CA, Kerfeld CA. Comparative analysis of 126 cyanobacterial genomes reveals evidence of functional diversity among homologs of the redox-regulated CP12 protein. PLANT PHYSIOLOGY 2013; 161. [PMID: 23184231 PMCID: PMC3561022 DOI: 10.1104/pp.112.210542] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CP12 is found almost universally among photosynthetic organisms, where it plays a key role in regulation of the Calvin cycle by forming a ternary complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase. Newly available genomic sequence data for the phylum Cyanobacteria reveals a heretofore unobserved diversity in cyanobacterial CP12 proteins. Cyanobacterial CP12 proteins can be classified into eight different types based on primary structure features. Among these are CP12-CBS (for cystathionine-β-synthase) domain fusions. CBS domains are regulatory modules for a wide range of cellular activities; many of these bind adenine nucleotides through a conserved motif that is also present in the CBS domains fused to CP12. In addition, a survey of expression data sets shows that the CP12 paralogs are differentially regulated. Furthermore, modeling of the cyanobacterial CP12 protein variants based on the recently available three-dimensional structure of the canonical cyanobacterial CP12 in complex with GAPDH suggests that some of the newly identified cyanobacterial CP12 types are unlikely to bind to GAPDH. Collectively these data show that, as is becoming increasingly apparent for plant CP12 proteins, the role of CP12 in cyanobacteria is likely more complex than previously appreciated, possibly involving other signals in addition to light. Moreover, our findings substantiate the proposal that this small protein may have multiple roles in photosynthetic organisms.
Collapse
|
233
|
Jung KW, Kim YY, Yoo KS, Ok SH, Cui MH, Jeong BC, Yoo SD, Jeung JU, Shin JS. A cystathionine-β-synthase domain-containing protein, CBSX2, regulates endothecial secondary cell wall thickening in anther development. PLANT & CELL PHYSIOLOGY 2013; 54:195-208. [PMID: 23220733 DOI: 10.1093/pcp/pcs166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Anther formation and dehiscence are complex pivotal processes in reproductive development. The secondary wall thickening in endothecial cells of the anther is a known prerequisite for successful anther dehiscence. However, many gaps remain in our understanding of the regulatory mechanisms underlying anther dehiscence in planta, including a possible role for jasmonic acid (JA) and H(2)O(2) in secondary wall thickening of endothecial cells. Here, we report that the cystathionine β-synthase domain-containing protein CBSX2 located in the chloroplast plays a critical role in thickening of the secondary cell walls of the endothecium during anther dehiscence in Arabidopsis. A T-DNA insertion mutant of CBSX2 (cbsx2) showed increased secondary wall thickening of endothecial cells and early anther dehiscence. Consistently, overexpression of CBSX2 resulted in anther indehiscence. Exogenous JA application induced secondary wall thickening and caused flower infertility in the cbsx2 mutant, whereas it partially restored fertility in the CBSX2-overexpressing lines lacking the wall thickening. CBSX2 directly modulated thioredoxin (Trx) in chloroplasts, which affected the level of H(2)O(2) and, consequently, expression of the genes involved in secondary cell wall thickening. Our findings have revealed that CBSX2 modulates the H(2)O(2) status, which is linked to the JA response and in turn controls secondary wall thickening of the endothecial cells in anthers for dehiscence to occur.
Collapse
Affiliation(s)
- Kwang Wook Jung
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Su Y, Majtan T, Freeman KM, Linck R, Ponter S, Kraus JP, Burstyn JN. Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases. Biochemistry 2013; 52:741-51. [PMID: 23002992 PMCID: PMC3751582 DOI: 10.1021/bi300615c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway, which is critical for the synthesis of cysteine from methionine in eukaryotes. CBS uses coenzyme pyridoxal 5'-phosphate (PLP) for catalysis, and S-adenosylmethionine regulates the activity of human CBS, but not yeast CBS. Human and fruit fly CBS contain heme; however, the role for heme is not clear. This paper reports biochemical and spectroscopic characterization of CBS from fruit fly Drosophila melanogaster (DmCBS) and the CO/NO gas binding reactions of DmCBS and human CBS. Like CBS enzymes from lower organisms (e.g., yeast), DmCBS is intrinsically highly active and is not regulated by AdoMet. The DmCBS heme coordination environment, the reactivity, and the accompanying effects on enzyme activity are similar to those of human CBS. The DmCBS heme bears histidine and cysteine axial ligands, and the enzyme becomes inactive when the cysteine ligand is replaced. The Fe(II) heme in DmCBS is less stable than that in human CBS, undergoing more facile reoxidation and ligand exchange. In both CBS proteins, the overall stability of the protein is correlated with the heme oxidation state. Human and DmCBS Fe(II) hemes react relatively slowly with CO and NO, and the rate of the CO binding reaction is faster at low pH than at high pH. Together, the results suggest that heme incorporation and AdoMet regulation in CBS are not correlated, possibly providing two independent means for regulating the enzyme.
Collapse
Affiliation(s)
- Yang Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
- Department of Genomics & Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Rachel Linck
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Sarah Ponter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| |
Collapse
|
235
|
Liu J, Zhang JF, Lu JZ, Zhang DL, Li K, Su K, Wang J, Zhang YM, Wang N, Yang ST, Bu L, Ou-yang JP. Astragalus polysaccharide stimulates glucose uptake in L6 myotubes through AMPK activation and AS160/TBC1D4 phosphorylation. Acta Pharmacol Sin 2013; 34:137-45. [PMID: 23103623 DOI: 10.1038/aps.2012.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM To establish the mechanism responsible for the stimulation of glucose uptake by Astragalus polysaccharide (APS), extracted from Astragalus membranaceus Bunge, in L6 myotubes in vitro. METHODS APS-stimulated glucose uptake in L6 myotubes was measured using the 2-deoxy-[(3)H]-D-glucose method. The adenine nucleotide contents in the cells were measured by HPLC. The phosphorylation of AMP-activated protein kinase (AMPK) and Akt substrate of 160 kDa (AS160) was examined using Western blot analysis. The cells transfected with 4P mutant AS160 (AS160-4P) were constructed using gene transfer approach. RESULTS Treatment of L6 myotubes with APS (100-1600 μg/mL) significantly increased glucose uptake in time- and concentration-dependent manners. The maximal glucose uptake was reached in the cells treated with APS (400 μg/mL) for 36 h. The APS-stimulated glucose uptake was significantly attenuated by pretreatment with Compound C, a selective AMPK inhibitor or in the cells overexpressing AS160-4P. Treatment of L6 myotubes with APS strongly promoted the activation of AMPK. We further demonstrated that either Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) or liver kinase B1 (LKB1) mediated APS-induced activation of AMPK in L6 myotubes, and the increased cellular AMP: ATP ratio was also involved. Treatment of L6 myotubes with APS robustly enhanced the phosphorylation of AS160, which was significantly attenuated by pretreatment with Compound C. CONCLUSION Our results demonstrate that APS stimulates glucose uptake in L6 myotubes through the AMP-AMPK-AS160 pathway, which may contribute to its hypoglycemic effect.
Collapse
|
236
|
Human cystathionine β-synthase (CBS) contains two classes of binding sites for S-adenosylmethionine (SAM): complex regulation of CBS activity and stability by SAM. Biochem J 2012; 449:109-21. [DOI: 10.1042/bj20120731] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CBS (cystathionine β-synthase) is a multidomain tetrameric enzyme essential in the regulation of homocysteine metabolism, whose activity is enhanced by the allosteric regulator SAM (S-adenosylmethionine). Missense mutations in CBS are the major cause of inherited HCU (homocystinuria). In the present study we apply a novel approach based on a combination of calorimetric methods, functional assays and kinetic modelling to provide structural and energetic insight into the effects of SAM on the stability and activity of WT (wild-type) CBS and seven HCU-causing mutants. We found two sets of SAM-binding sites in the C-terminal regulatory domain with different structural and energetic features: a high affinity set of two sites, probably involved in kinetic stabilization of the regulatory domain, and a low affinity set of four sites, which are involved in the enzyme activation. We show that the regulatory domain displays a low kinetic stability in WT CBS, which is further decreased in many HCU-causing mutants. We propose that the SAM-induced stabilization may play a key role in modulating steady-state levels of WT and mutant CBS in vivo. Our strategy may be valuable for understanding ligand effects on proteins with a complex architecture and their role in human genetic diseases and for the development of novel pharmacological strategies.
Collapse
|
237
|
Thomas EC, Gunter JH, Webster JA, Schieber NL, Oorschot V, Parton RG, Whitehead JP. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH) isoforms. PLoS One 2012; 7:e51096. [PMID: 23236438 PMCID: PMC3517587 DOI: 10.1371/journal.pone.0051096] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.
Collapse
Affiliation(s)
- Elaine C. Thomas
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (ECT); (JPW)
| | - Jennifer H. Gunter
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Julie A. Webster
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- Metabolic Medicine, Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | - Nicole L. Schieber
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Viola Oorschot
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Jonathan P. Whitehead
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- Metabolic Medicine, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- * E-mail: (ECT); (JPW)
| |
Collapse
|
238
|
Chandrashekarappa DG, McCartney RR, Schmidt MC. Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J Biol Chem 2012. [PMID: 23184934 DOI: 10.1074/jbc.m112.422659] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) is a conserved signaling molecule in a pathway that maintains adenosine triphosphate homeostasis. Recent studies have suggested that low energy adenylate ligands bound to one or more sites in the γ subunit of AMPK promote the formation of an active, phosphatase-resistant conformation. We propose an alternative model in which the kinase domain association with the heterotrimer core results in activation of the kinase catalytic activity, whereas low energy adenylate ligands bound in the kinase active site promote phosphatase resistance. Purified Snf1 α subunit with a conservative, single amino acid substitution in the kinase domain is protected from dephosphorylation by adenosine diphosphate in the complete absence of the β and γ subunits. Staurosporine, a compound known to bind to the active site of many protein kinases, mediates strong protection from dephosphorylation to yeast and mammalian AMPK enzymes. The analog-sensitive Snf1-I132G protein but not wild type Snf1 exhibits protection from dephosphorylation when bound by the adenosine analog 2NM-PP1 in vitro and in vivo. These data demonstrate that ligand binding to the Snf1 active site can mediate phosphatase resistance. Finally, Snf1 kinase with an amino acid substitution at the interface of the kinase domain and the heterotrimer core exhibits normal regulation of phosphorylation in vivo but greatly reduced Snf1 kinase activity, supporting a model in which kinase domain association with the heterotrimer core is needed for kinase activation.
Collapse
Affiliation(s)
- Dakshayini G Chandrashekarappa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
239
|
Williams BS, Isokpehi RD, Mbah AN, Hollman AL, Bernard CO, Simmons SS, Ayensu WK, Garner BL. Functional Annotation Analytics of Bacillus Genomes Reveals Stress Responsive Acetate Utilization and Sulfate Uptake in the Biotechnologically Relevant Bacillus megaterium. Bioinform Biol Insights 2012; 6:275-86. [PMID: 23226010 PMCID: PMC3511254 DOI: 10.4137/bbi.s7977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus species form an heterogeneous group of Gram-positive bacteria that include members that are disease-causing, biotechnologically-relevant, and can serve as biological research tools. A common feature of Bacillus species is their ability to survive in harsh environmental conditions by formation of resistant endospores. Genes encoding the universal stress protein (USP) domain confer cellular and organismal survival during unfavorable conditions such as nutrient depletion. As of February 2012, the genome sequences and a variety of functional annotations for at least 123 Bacillus isolates including 45 Bacillus cereus isolates were available in public domain bioinformatics resources. Additionally, the genome sequencing status of 10 of the B. cereus isolates were annotated as finished with each genome encoded 3 USP genes. The conservation of gene neighborhood of the 140 aa universal stress protein in the B. cereus genomes led to the identification of a predicted plasmid-encoded transcriptional unit that includes a USP gene and a sulfate uptake gene in the soil-inhabiting Bacillus megaterium. Gene neighborhood analysis combined with visual analytics of chemical ligand binding sites data provided knowledge-building biological insights on possible cellular functions of B. megaterium universal stress proteins. These functions include sulfate and potassium uptake, acid extrusion, cellular energy-level sensing, survival in high oxygen conditions and acetate utilization. Of particular interest was a two-gene transcriptional unit that consisted of genes for a universal stress protein and a sirtuin Sir2 (deacetylase enzyme for NAD+-dependent acetate utilization). The predicted transcriptional units for stress responsive inorganic sulfate uptake and acetate utilization could explain biological mechanisms for survival of soil-inhabiting Bacillus species in sulfate and acetate limiting conditions. Considering the key role of sirtuins in mammalian physiology additional research on the USP-Sir2 transcriptional unit of B. megaterium could help explain mammalian acetate metabolism in glucose-limiting conditions such as caloric restriction. Finally, the deep-rooted position of B. megaterium in the phylogeny of Bacillus species makes the investigation of the functional coupling acetate utilization and stress response compelling.
Collapse
Affiliation(s)
- Baraka S Williams
- Center for Bioinformatics and Computational Biology, Department of Biology, Jackson State University, Jackson, MS, USA. ; Department of Biology, Division of Natural Science, Tougaloo College, 500 West County Line Road, Tougaloo, MS, USA
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Giordanetto F, Karis D. Direct AMP-activated protein kinase activators: a review of evidence from the patent literature. Expert Opin Ther Pat 2012; 22:1467-77. [DOI: 10.1517/13543776.2012.743994] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
241
|
Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL. Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol Biotechnol 2012; 52:205-16. [PMID: 22302312 DOI: 10.1007/s12033-011-9487-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have recently identified and classified a cystathionine β-synthase domain containing protein family in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L.). Based on the microarray and MPSS data, we have suggested their involvement in stress tolerance. In this study, we have characterized a rice protein of unknown function, OsCBSX4. This gene was found to be upregulated under high salinity, heavy metal, and oxidative stresses at seedling stage. Transgenic tobacco plants overexpressing OsCBSX4 exhibited improved tolerance toward salinity, heavy metal, and oxidative stress. This enhanced stress tolerance in transgenic plants could directly be correlated with higher accumulation of OsCBSX4 protein. Transgenic plants could grow and set seeds under continuous presence of 150 mM NaCl. The total seed yield in WT plants was reduced by 80%, while in transgenic plants, it was reduced only by 15-17%. The transgenic plants accumulated less Na+, especially in seeds and maintained higher net photosynthesis rate and Fv/Fm than WT plants under NaCl stress. Transgenic seedlings also accumulated significantly less H2O2 as compared to WT under salinity, heavy metal, and oxidative stress. OsCBSX4 overexpressing transgenic plants exhibit higher abiotic stress tolerance than WT plants suggesting its role in abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Anil K Singh
- Plant Molecular Biology, International Center for Genetic Engineering & Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
242
|
Hardie DG, Ross FA, Hawley SA. AMP-activated protein kinase: a target for drugs both ancient and modern. CHEMISTRY & BIOLOGY 2012; 19:1222-36. [PMID: 23102217 PMCID: PMC5722193 DOI: 10.1016/j.chembiol.2012.08.019] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 02/07/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. It is activated, by a mechanism requiring the tumor suppressor LKB1, by metabolic stresses that increase cellular ADP:ATP and/or AMP:ATP ratios. Once activated, it switches on catabolic pathways that generate ATP, while switching off biosynthetic pathways and cell-cycle progress. These effects suggest that AMPK activators might be useful for treatment and/or prevention of type 2 diabetes and cancer. Indeed, AMPK is activated by the drugs metformin and salicylate, the latter being the major breakdown product of aspirin. Metformin is widely used to treat diabetes, while there is epidemiological evidence that both metformin and aspirin provide protection against cancer. We review the mechanisms of AMPK activation by these and other drugs, and by natural products derived from traditional herbal medicines.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| | | | | |
Collapse
|
243
|
Miyazaki H, Yamada T, Parton A, Morrison R, Kim S, Beth AH, Strange K. CLC anion channel regulatory phosphorylation and conserved signal transduction domains. Biophys J 2012; 103:1706-18. [PMID: 23083714 DOI: 10.1016/j.bpj.2012.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/20/2012] [Accepted: 09/04/2012] [Indexed: 12/01/2022] Open
Abstract
The signaling mechanisms that regulate CLC anion channels are poorly understood. Caenorhabditis elegans CLH-3b is a member of the CLC-1/2/Ka/Kb channel subfamily. CLH-3b is activated by meiotic cell-cycle progression and cell swelling. Inhibition is brought about by GCK-3 kinase-mediated phosphorylation of S742 and S747 located on a ∼176 amino acid disordered domain linking CBS1 and CBS2. Much of the inter-CBS linker is dispensable for channel regulation. However, deletion of a 14 amino acid activation domain encompassing S742 and S747 inhibits channel activity to the same extent as GCK-3. The crystal structure of CmCLC demonstrated that CBS2 interfaces extensively with an intracellular loop connecting membrane helices H and I, the C-terminus of helix D, and a short linker connecting helix R to CBS1. Point mutagenesis of this interface identified two highly conserved aromatic amino acid residues located in the H-I loop and the first α-helix (α1) of CBS2. Mutation of either residue to alanine rendered CLH-3b insensitive to GCK-3 inhibition. We suggest that the dephosphorylated activation domain normally interacts with CBS1 and/or CBS2, and that conformational information associated with this interaction is transduced through a conserved signal transduction module comprising the H-I loop and CBS2 α1.
Collapse
Affiliation(s)
- Hiroaki Miyazaki
- Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
244
|
Amato S, Man HY. AMPK signaling in neuronal polarization: Putting the brakes on axonal traffic of PI3-Kinase. Commun Integr Biol 2012; 5:152-5. [PMID: 22808319 PMCID: PMC3376050 DOI: 10.4161/cib.18968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuronal polarization, the process by which neurons form multiple dendrites and an axon from the soma, is the first critical step in the formation and function of neural networks. Polarization begins with the rapid extension of a single neurite to produce an axon of impressive size and complex geometry, while the remaining sister neurites differentiate into dendrites. The extensive biosynthesis required to produce an axon therefore necessitates coordination with cellular energy status to ensure an ample energy supply. Our recent work shows that activity of the AMP-activated protein kinase (AMPK), the bio-energy sensor responsible for maintaining cellular energy homeostasis in all eukaryotic cells, plays an important role in the initiation of axonal growth. AMPK phosphorylates the cargo-binding light chain of the Kif5 motor protein, leading to dissociation of the phosphatidylinositol 3-Kinase (PI3K) from the motor complex. The mislocation of PI3K, which is normally enriched at the axonal tip for extension and differentiation, results in a lack of neurite specification and neuron polarization. These findings reveal a link between cellular bioenergy homeostasis and neuron morphogenesis, and suggest a novel cellular mechanism underlying the long-term neurological abnormalities as a consequence of bioenergy deficiency during early brain development.
Collapse
Affiliation(s)
- Stephen Amato
- Department of Biology; Boston University; Boston, MA USA
| | | |
Collapse
|
245
|
Gómez-García I, Stuiver M, Ereño J, Oyenarte I, Corral-Rodríguez MA, Müller D, Martínez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2). Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1198-203. [PMID: 23027747 PMCID: PMC3497979 DOI: 10.1107/s1744309112035348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/09/2012] [Indexed: 05/13/2024]
Abstract
This work describes the purification and preliminary crystallographic analysis of the CBS-domain pair of the murine CNNM2 magnesium transporter (formerly known as ancient domain protein 2; ACDP2), which consists of a pair of cystathionine β-synthase (CBS) motifs and has 100% sequence identity to its human homologue. CNNM proteins represent the least-studied members of the eight different types of magnesium transporters identified to date in mammals. In humans, the CNNM family is encoded by four genes: CNNM1-4. CNNM1 acts as a cytosolic copper chaperone, whereas CNNM2 and CNNM4 have been associated with magnesium handling. Interestingly, mutations in the CNNM2 gene cause familial dominant hypomagnesaemia (MIM:607803), a rare human disorder characterized by renal and intestinal magnesium (Mg(2+)) wasting, which may lead to symptoms of Mg(2+) depletion such as tetany, seizures and cardiac arrhythmias. This manuscript describes the preliminary crystallographic analysis of two different crystal habits of a truncated form of the protein containing its regulatory CBS-domain pair, which has been reported to host the pathological mutation T568I in humans. The crystals belonged to space groups P2(1)2(1)2 and I222 (or I2(1)2(1)2(1)) and diffracted X-rays to 2.0 and 3.6 Å resolution, respectively, using synchrotron radiation.
Collapse
Affiliation(s)
- Inmaculada Gómez-García
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| | - Marchel Stuiver
- Department of Pediatric Nephrology, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - June Ereño
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| | | | - Dominik Müller
- Department of Pediatric Nephrology, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
246
|
Bairagya HR, Mukhopadhyay BP, Bera AK. Role of salt bridge dynamics in inter domain recognition of human IMPDH isoforms: an insight to inhibitor topology for isoform-II. J Biomol Struct Dyn 2012; 29:441-62. [PMID: 22066532 DOI: 10.1080/07391102.2011.10507397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) enzyme involves in the biosynthesis pathway of guanosine nucleotide. Type II isoform of the enzyme is selectively upregulated in neoplastic fast replicating lymphocytes and CML cancer cells. The hIMPDH-II is an excellent target for antileukemic agent. The detailed investigation during MD-Simulation (15 ns) of three different unliganded structures (1B3O, 1JCN and 1JR1) have clearly explored the salt bridge mediated stabilization of inter or intra domain (catalytic domains I(N), I(C) with res. Id. 28-111 and 233-504, whereas two CBS domains C₁, C₂ are 112-171 and 172-232) in IMPDH enzyme which are mostly inaccessible in their X-rays structures. The salt bridge interaction in I(N)---C₁ inter-domain of hIMPDH-I, I(N)---C₂ of IMPDH-II and C₁---I(C) of nhIMPDH-II are discriminative features among the isoforms. The I(N)---C₂ recognition in hIMPDH-II (1B3O) is missing in type-I isoform (1JCN). The salt bridge interaction D232---K238 at the surface of protein and the involvement of three conserved water molecules or the hydrophilic centers (WA²³²(OD1), WB ²³²(OD2) and W²³⁸(NZ)) to those acidic and basic residues seem to be unique in hIMPDH-II. The hydrophilic susceptibility, geometrical and electronic consequences of this salt bridge interaction could be useful to design the topology of specific inhibitor for hIMPDH-II which may not be effective for hIMPDH-I. Possibly, the aliphatic ligand containing carboxyl, amide or hydrophilic groups with flexible structure may be implicated for hIMPDH-II inhibitor design using the conserved water mimic drug design protocol.
Collapse
Affiliation(s)
- Hridoy R Bairagya
- Department of Chemistry, National Institute of Technology-Durgapur, West Bengal, Durgapur-713209, India
| | | | | |
Collapse
|
247
|
Yadav PK, Xie P, Banerjee R. Allosteric communication between the pyridoxal 5'-phosphate (PLP) and heme sites in the H2S generator human cystathionine β-synthase. J Biol Chem 2012; 287:37611-20. [PMID: 22977242 DOI: 10.1074/jbc.m112.414706] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cystathionine β-synthase (CBS) is a unique pyridoxal 5'-phosphate (PLP)-dependent enzyme that has a regulatory heme cofactor. Previous studies have demonstrated the importance of Arg-266, a residue at the heme pocket end of α-helix 8, for communication between the heme and PLP sites. In this study, we have examined the role of the conserved Thr-257 and Thr-260 residues, located at the other end of α-helix 8 on the heme electronic environment and on activity. The mutations at the two positions destabilize PLP binding, leading to lower PLP content and ~2- to ~500-fold lower activity compared with the wild-type enzyme. Activity is unresponsive to PLP supplementation, consistent with the pyridoxine-nonresponsive phenotype of the T257M mutation in a homocystinuric patient. The H(2)S-producing activities, also impacted by the mutations, show a different pattern of inhibition compared with the canonical transsulfuration reaction. Interestingly, the mutants exhibit contrasting sensitivities to the allosteric effector, S-adenosylmethionine (AdoMet); whereas T257M and T257I are inhibited, the other mutants are hyperactivated by AdoMet. All mutants showed an increased propensity of the ferrous heme to form an inactive species with a 424 nm Soret peak and exhibited significantly reduced enzyme activity in the ferrous and ferrous-CO states. Our results provide the first evidence for bidirectional transmission of information between the cofactor binding sites, suggest the additional involvement of this region in allosteric communication with the regulatory AdoMet-binding domain, and reveal the potential for independent modulation of the canonical transsulfuration versus H(2)S-generating reactions catalyzed by CBS.
Collapse
Affiliation(s)
- Pramod Kumar Yadav
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, USA
| | | | | |
Collapse
|
248
|
Jämsen J, Baykov AA, Lahti R. Fast kinetics of nucleotide binding to Clostridium perfringens family II pyrophosphatase containing CBS and DRTGG domains. BIOCHEMISTRY (MOSCOW) 2012; 77:165-70. [PMID: 22348476 DOI: 10.1134/s0006297912020071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We earlier described CBS-pyrophosphatase of Moorella thermoacetica (mtCBS-PPase) as a novel phosphohydrolase that acquired a pair of nucleotide-binding CBS domains during evolution, thus endowing the protein with the capacity to be allosterically regulated by adenine nucleotides (Jämsen, J., Tuominen, H., Salminen, A., Belogurov, G. A., Magretova, N. N., Baykov, A. A., and Lahti, R. (2007) Biochem. J., 408, 327-333). We herein describe a more evolved type of CBS-pyrophosphatase from Clostridium perfringens (cpCBS-PPase) that additionally contains a DRTGG domain between the two CBS domains in the regulatory part. cpCBS-PPase retained the ability of mtCBS-PPase to be inhibited by micromolar concentrations of AMP and ADP and activated by ATP and was additionally activated by diadenosine polyphosphates (AP(n)A) with n > 2. Stopped-flow measurements using a fluorescent nucleotide analog, 2'(3')-O-(N-methylanthranoyl)-AMP, revealed that cpCBS-PPase interconverts through two different conformations with transit times on the millisecond scale upon nucleotide binding. The results suggest that the presence of the DRTGG domain affords greater flexibility to the regulatory part, allowing it to more rapidly undergo conformational changes in response to binding.
Collapse
Affiliation(s)
- J Jämsen
- Department of Biochemistry and Food Chemistry, University of Turku, Finland
| | | | | |
Collapse
|
249
|
Amatya PN, Kim HB, Park SJ, Youn CK, Hyun JW, Chang IY, Lee JH, You HJ. A role of DNA-dependent protein kinase for the activation of AMP-activated protein kinase in response to glucose deprivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2099-108. [PMID: 22982065 DOI: 10.1016/j.bbamcr.2012.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/21/2012] [Accepted: 08/30/2012] [Indexed: 11/27/2022]
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) plays an essential role in double-strand break repair by initially recognizing and binding to DNA breaks. Here, we show that DNA-PKcs interacts with the regulatory γ1 subunit of AMP-activated protein kinase (AMPK), a heterotrimeric enzyme that has been proposed to function as a "fuel gauge" to monitor changes in the energy status of cells and is controlled by the upstream kinases LKB1 and Ca²⁺/calmodulin-dependent kinase kinase (CaMKK). In co-immunoprecipitation analyses, DNA-PKcs and AMPKγ1 interacted physically in DNA-PKcs-proficient M059K cells but not in DNA-PKcs-deficient M059J cells. Glucose deprivation-stimulated phosphorylation of AMPKα on Thr172 and of acetyl-CoA carboxylase (ACC), a downstream target of AMPK, is substantially reduced in M059J cells compared with M059K cells. The inhibition or down-regulation of DNA-PKcs by the DNA-PKcs inhibitors, wortmannin and Nu7441, or by DNA-PKcs siRNA caused a marked reduction in AMPK phosphorylation, AMPK activity, and ACC phosphorylation in response to glucose depletion in M059K, WI38, and IMR90 cells. In addition, DNA-DNA-PKcs(-/-) mouse embryonic fibroblasts (MEFs) exhibited decreased AMPK activation in response to glucose-free conditions. Furthermore, the knockdown of DNA-PKcs led to the suppression of AMPK (Thr172) phosphorylation in LKB1-deficient HeLa cells under glucose deprivation. Taken together, these findings support the positive regulation of AMPK activation by DNA-PKcs under glucose-deprived conditions in mammalian cells.
Collapse
Affiliation(s)
- Parmeshwar Narayan Amatya
- DNA Damage Response Network Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 501-759, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Transcript variant dictates Prkag2 cardiomyopathy? J Mol Cell Cardiol 2012; 53:317-9. [DOI: 10.1016/j.yjmcc.2012.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/24/2012] [Indexed: 12/31/2022]
|