201
|
Wang W, Meng Y, Chen Y, Yu Y, Wang H, Yang S, Sun W. A comprehensive analysis of LMO2 pathogenic regulatory profile during T-lineage development and leukemic transformation. Oncogene 2022; 41:4079-4090. [PMID: 35851847 DOI: 10.1038/s41388-022-02414-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
Abstract
LMO2 is a well-known leukemic proto-oncogene, its ectopic expression in T-lineage specifically initiates malignant transformation of immature T cells and ultimately causes the onset of acute T-lymphocytic leukemia (T-ALL) in both mouse models and human patients. In this study, we systematically explored the LMO2 performance on the profiles of transcriptome, DNA-binding and protein interactions during T-lineage development in the pre-leukemic stage. Our data indicated that large-scale transcriptional dysregulation caused by LMO2 primarily occurred in DN3 thymocytes, characterized by enriched upregulation of the target genes of typical LMO2 complex, RUNX, ETS and STATs, and ectopic LMO2 primarily targeted to RUNX motifs along with intensive interaction with RUNX1 and H3K4 methyltransferase component ASH2L in this stage. However, binding of LMO2 on specific motifs was largely reduced in the following DP and SP stages, along with gradually disappeared LMO2-RUNX1 and LMO2-ASH2L interactions and less alteration of certain transcriptional factor profiles. Moreover, LMO2 showed relatively less influence on cellular behavior of DN3 thymocyte whereas displayed more prominent effects in DP and SP stages, including promoting Notch signaling and cell cycles. These findings provide a high-resolution landscape of the pathogenic role of LMO2 during T-lineage development in molecular level, and may benefit further clinical investigations for LMO2-associated T-lineage malignancies.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yingying Meng
- School of Medicine, Nankai University, Tianjin, China
| | - Yaxin Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Yanhong Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Hang Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
202
|
Palamenghi M, De Luca M, De Rosa L. The steep uphill path leading to ex vivo gene therapy for genodermatoses. Am J Physiol Cell Physiol 2022; 323:C896-C906. [PMID: 35912986 DOI: 10.1152/ajpcell.00117.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapy, gene therapy and tissue engineering have the potential to revolutionize the field of regenerative medicine. In particular, gene therapy is understood as the therapeutical correction of mutated genes by addition of a correct copy of the gene or site-specific gene modifications. Gene correction of somatic stem cells sustaining renewing tissues is critical to ensure long-term clinical success of ex vivo gene therapy. To date, remarkable clinical outcomes arose from combined ex vivo cell and gene therapy of different genetic diseases, such as immunodeficiencies and genodermatoses. Despite the efforts of researchers around the world, only few of these advanced approaches has yet made it to routine therapy. In fact, gene therapy poses one of the greatest technical challenges in modern medicine, spanning safety and efficacy issues, regulatory constraints, registration and market access, all of which need to be addressed to make the therapy available to rare disease patients. In this review, we survey at some of the main challenges in the development of combined cell and gene therapy of genetic skin diseases.
Collapse
Affiliation(s)
- Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
203
|
Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14081605. [PMID: 36015231 PMCID: PMC9414879 DOI: 10.3390/pharmaceutics14081605] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
- Correspondence: (Y.A.); (C.K.)
| | - Adeline Berger
- Group Epigenetics of ocular diseases, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Florian Udry
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
- Correspondence: (Y.A.); (C.K.)
| |
Collapse
|
204
|
Butt MH, Zaman M, Ahmad A, Khan R, Mallhi TH, Hasan MM, Khan YH, Hafeez S, Massoud EES, Rahman MH, Cavalu S. Appraisal for the Potential of Viral and Nonviral Vectors in Gene Therapy: A Review. Genes (Basel) 2022; 13:1370. [PMID: 36011281 PMCID: PMC9407213 DOI: 10.3390/genes13081370] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Over the past few decades, gene therapy has gained immense importance in medical research as a promising treatment strategy for diseases such as cancer, AIDS, Alzheimer's disease, and many genetic disorders. When a gene needs to be delivered to a target cell inside the human body, it has to pass a large number of barriers through the extracellular and intracellular environment. This is why the delivery of naked genes and nucleic acids is highly unfavorable, and gene delivery requires suitable vectors that can carry the gene cargo to the target site and protect it from biological degradation. To date, medical research has come up with two types of gene delivery vectors, which are viral and nonviral vectors. The ability of viruses to protect transgenes from biological degradation and their capability to efficiently cross cellular barriers have allowed gene therapy research to develop new approaches utilizing viruses and their different genomes as vectors for gene delivery. Although viral vectors are very efficient, science has also come up with numerous nonviral systems based on cationic lipids, cationic polymers, and inorganic particles that provide sustainable gene expression without triggering unwanted inflammatory and immune reactions, and that are considered nontoxic. In this review, we discuss in detail the latest data available on all viral and nonviral vectors used in gene delivery. The mechanisms of viral and nonviral vector-based gene delivery are presented, and the advantages and disadvantages of all types of vectors are also given.
Collapse
Affiliation(s)
- Muhammad Hammad Butt
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Muhammad Zaman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Abrar Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Rahima Khan
- Department of Pharmaceutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (M.H.B.); (A.A.); (R.K.)
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia or (T.H.M.); or (Y.H.K.)
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh;
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia or (T.H.M.); or (Y.H.K.)
| | - Sara Hafeez
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
205
|
BET-Independent Murine Leukemia Virus Integration Is Retargeted
In Vivo
and Selects Distinct Genomic Elements for Lymphomagenesis. Microbiol Spectr 2022; 10:e0147822. [PMID: 35852337 PMCID: PMC9431007 DOI: 10.1128/spectrum.01478-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Moloney murine leukemia virus (MLV) infects BALB/c mice and induces T-cell lymphoma in mice. Retroviral integration is mediated by the interaction of the MLV integrase (IN) with members of the bromodomain and extraterminal motif (BET) protein family (BRD2, BRD3, and BRD4). The introduction of the W390A mutation into MLV IN abolishes the BET interaction. Here, we compared the replication of W390A MLV to that of wild-type (WT) MLV in adult BALB/c mice to study the role of BET proteins in replication, integration, and tumorigenesis in vivo. Comparing WT and W390A MLV infections revealed similar viral loads in the blood, thymus, and spleen cells. Interestingly, W390A MLV integration was retargeted away from GC-enriched genomic regions. However, both WT MLV- and W390A MLV-infected mice developed T-cell lymphoma after similar latencies represented by an enlarged thymus and spleen and multiorgan tumor infiltration. Integration site sequencing from splenic tumor cells revealed clonal expansion in all WT MLV- and W390A MLV-infected mice. However, the integration profiles of W390A MLV and WT MLV differed significantly. Integrations were enriched in enhancers and promoters, but compared to the WT, W390A MLV integrated less frequently into enhancers and more frequently into oncogene bodies such as Notch1 and Ppp1r16b. We conclude that host factors direct MLV in vivo integration site selection. Although BET proteins target WT MLV integration preferentially toward enhancers and promoters, insertional lymphomagenesis can occur independently from BET, likely due to the intrinsically strong enhancer/promoter of the MLV long terminal repeat (LTR). IMPORTANCE In this study, we have shown that the in vivo replication of murine leukemia virus happens independently of BET proteins, which are key host determinants involved in retroviral integration site selection. This finding opens a new research line in the discovery of alternative viral or host factors that may complement the dominant host factor. In addition, our results show that BET-independent murine leukemia virus uncouples insertional mutagenesis from gene enhancers, although lymphomagenesis still occurs despite the lack of an interaction with BET proteins. Our findings also have implications for the engineering of BET-independent MLV-based vectors for gene therapy, which may not be a safe alternative.
Collapse
|
206
|
A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy. Gene Ther 2022; 30:288-296. [PMID: 35835952 DOI: 10.1038/s41434-022-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
A hematopoietic stem cell (HSC) gene therapy (GT) using lentiviral vectors has attracted interest as a promising treatment approach for neuropathic lysosomal storage diseases. To proceed with the clinical development of HSC-GT, evaluation of the therapeutic potential of gene-transduced human CD34+ (hCD34+) cells in vivo is one of the key issues before human trials. Here, we established an immunodeficient murine model of mucopolysaccharidosis type II (MPS II), which are transplantable human cells, and demonstrated the application of those mice in evaluating the therapeutic efficacy of gene-modified hCD34+ cells. NOG/MPS II mice, which were generated using CRISPR/Cas9, exhibited a reduction of disease-causing enzyme iduronate-2-sulfatatase (IDS) activity and the accumulation of glycosaminoglycans in their tissues. When we transplanted hCD34+ cells transduced with a lentiviral vector carrying the IDS gene into NOG/MPS II mice, a significant amelioration of biochemical pathophenotypes was observed in the visceral and neuronal tissues of those mice. In addition, grafted cells in the NOG/MPS II mice showed the oligoclonal integration pattern of the vector, but no obvious clonal dominance was detected in the mice. Our findings indicate the promising application of NOG/MPS II mice to preclinical study of HSC-GT for MPS II using human cells.
Collapse
|
207
|
Baghery Saghchy Khorasani A, Yousefi AM, Bashash D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int Immunopharmacol 2022; 110:109041. [PMID: 35839565 DOI: 10.1016/j.intimp.2022.109041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
Adoptive cell treatment (ACT) utilizing chimeric antigen receptors (CAR) diverts the specificity of safe cells against a target-specific antigen and portrays exceptional potential for cancer treatment. While CAR T cell treatment has risen as a breakthrough with unprecedented results within the therapeutic procedures of human malignancies, different deficiencies including challenging and costly generation processes, strict patient qualification criteria, and undesirable toxicity have ruined its application. Unlike T cells, the application of natural killer (NK) cells has attracted consideration as a reasonable alternative owing to the major histocompatibility complex (MHC)-independency, shorter life expectancy, the potential to create an off-the-shelf immune product, and potent antitumor properties. In this article, we provide an updated review of the differences between CAR T and CAR NK cells, current enhancements in CAR NK design, the available sources for collecting NK cells, and strategies for the transduction step of the CARs to NK cells. Furthermore, we focus on the published and ongoing preclinical and clinical studies of CAR NK treatment strategies both in hematologic malignancies and solid tumors. We also discuss limitations and plausible solutions to improve the perseverance, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
Affiliation(s)
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
208
|
Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother 2022; 153:113324. [PMID: 35779421 DOI: 10.1016/j.biopha.2022.113324] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
There have been many ups and downs since the introduction of gene therapy as a therapeutic modality for diseases. However, the journey of gene therapy has reached a fundamental milestone, as evidenced by the increasing number of gene therapy products on the market. Looking at the currently approved and under-approval products, as well as the numerous clinical trials in this field, gene therapy has a promising future. Trend of changes in gene therapy strategies, vectors, and targets could be insightful for pharmaceutical companies, policymakers, and researchers. In this paper, following a brief history of gene therapy, we reviewed current gene therapy products as well as gene therapies that may be approved in the near future. We also looked at ten-year changes in gene therapy clinical trials strategies, such as the use of vectors, target cells, transferred genes, and ex-vivo/in-vivo methods, as well as the major fields that gene therapy has entered. Although gene therapy was initially used to treat genetic diseases, cancer now has the greatest number of gene therapy clinical trials. Changes in gene therapy strategies, particularly in pioneering countries in this field, may point to the direction of future clinical products.
Collapse
Affiliation(s)
- Fatemeh Arabi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran.
| |
Collapse
|
209
|
Watson-Levings RS, Palmer GD, Levings PP, Dacanay EA, Evans CH, Ghivizzani SC. Gene Therapy in Orthopaedics: Progress and Challenges in Pre-Clinical Development and Translation. Front Bioeng Biotechnol 2022; 10:901317. [PMID: 35837555 PMCID: PMC9274665 DOI: 10.3389/fbioe.2022.901317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
In orthopaedics, gene-based treatment approaches are being investigated for an array of common -yet medically challenging- pathologic conditions of the skeletal connective tissues and structures (bone, cartilage, ligament, tendon, joints, intervertebral discs etc.). As the skeletal system protects the vital organs and provides weight-bearing structural support, the various tissues are principally composed of dense extracellular matrix (ECM), often with minimal cellularity and vasculature. Due to their functional roles, composition, and distribution throughout the body the skeletal tissues are prone to traumatic injury, and/or structural failure from chronic inflammation and matrix degradation. Due to a mixture of environment and endogenous factors repair processes are often slow and fail to restore the native quality of the ECM and its function. In other cases, large-scale lesions from severe trauma or tumor surgery, exceed the body’s healing and regenerative capacity. Although a wide range of exogenous gene products (proteins and RNAs) have the potential to enhance tissue repair/regeneration and inhibit degenerative disease their clinical use is hindered by the absence of practical methods for safe, effective delivery. Cumulatively, a large body of evidence demonstrates the capacity to transfer coding sequences for biologic agents to cells in the skeletal tissues to achieve prolonged delivery at functional levels to augment local repair or inhibit pathologic processes. With an eye toward clinical translation, we discuss the research progress in the primary injury and disease targets in orthopaedic gene therapy. Technical considerations important to the exploration and pre-clinical development are presented, with an emphasis on vector technologies and delivery strategies whose capacity to generate and sustain functional transgene expression in vivo is well-established.
Collapse
Affiliation(s)
- Rachael S. Watson-Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Glyn D. Palmer
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Padraic P. Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - E. Anthony Dacanay
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher H. Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MI, United States
| | - Steven C. Ghivizzani
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Steven C. Ghivizzani,
| |
Collapse
|
210
|
De Ravin SS, Liu S, Sweeney CL, Brault J, Whiting-Theobald N, Ma M, Liu T, Choi U, Lee J, O'Brien SA, Quackenbush P, Estwick T, Karra A, Docking E, Kwatemaa N, Guo S, Su L, Sun Z, Zhou S, Puck J, Cowan MJ, Notarangelo LD, Kang E, Malech HL, Wu X. Lentivector cryptic splicing mediates increase in CD34+ clones expressing truncated HMGA2 in human X-linked severe combined immunodeficiency. Nat Commun 2022; 13:3710. [PMID: 35764638 PMCID: PMC9240040 DOI: 10.1038/s41467-022-31344-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
X-linked Severe Combined Immunodeficiency (SCID-X1) due to IL2RG mutations is potentially fatal in infancy where 'emergency' life-saving stem cell transplant may only achieve incomplete immune reconstitution following transplant. Salvage therapy SCID-X1 patients over 2 years old (NCT01306019) is a non-randomized, open-label, phase I/II clinical trial for administration of lentiviral-transduced autologous hematopoietic stem cells following busulfan (6 mg/kg total) conditioning. The primary and secondary objectives assess efficacy in restoring immunity and safety by vector insertion site analysis (VISA). In this ongoing study (19 patients treated), we report VISA in blood lineages from first eight treated patients with longer follow up found a > 60-fold increase in frequency of forward-orientated VIS within intron 3 of the High Mobility Group AT-hook 2 gene. All eight patients demonstrated emergence of dominant HMGA2 VIS clones in progenitor and myeloid lineages, but without disturbance of hematopoiesis. Our molecular analysis demonstrated a cryptic splice site within the chicken β-globin hypersensitivity 4 insulator element in the vector generating truncated mRNA transcripts from many transcriptionally active gene containing forward-oriented intronic vector insert. A two base-pair change at the splice site within the lentiviral vector eliminated splicing activity while retaining vector functional capability. This highlights the importance of functional analysis of lentivectors for cryptic splicing for preclinical safety assessment and a redesign of clinical vectors to improve safety.
Collapse
Affiliation(s)
- Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA.
| | - Siyuan Liu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Colin L Sweeney
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Julie Brault
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Narda Whiting-Theobald
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Michelle Ma
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Taylor Liu
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Janet Lee
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Sandra Anaya O'Brien
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Priscilla Quackenbush
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Tyra Estwick
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Anita Karra
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Ethan Docking
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Nana Kwatemaa
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Shuang Guo
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ling Su
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jennifer Puck
- Division of Allergy Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, 94143, USA
| | - Morton J Cowan
- Division of Allergy Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, 94143, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth Kang
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA.
| | - Xiaolin Wu
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
211
|
Gao TA, Chen YY. Engineering Next-Generation CAR-T Cells: Overcoming Tumor Hypoxia and Metabolism. Annu Rev Chem Biomol Eng 2022; 13:193-216. [PMID: 35700528 DOI: 10.1146/annurev-chembioeng-092120-092914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) have shown remarkable success in treating B-cell malignancies, reflected by multiple US Food and Drug Administration-approved CAR-T cell products currently on the market. However, various obstacles have thus far limited the use of approved products and constrained the efficacy of CAR-T cell therapy against solid tumors. Overcoming these obstacles will necessitate multidimensional CAR-T cell engineering approaches and better understanding of the intricate tumor microenvironment (TME). Key challenges include treatment-related toxicity, antigen escape and heterogeneity, and the highly immunosuppressive profile of the TME. Notably, the hypoxic and nutrient-deprived nature of the TME severely attenuates CAR-T cell fitness and efficacy, highlighting the need for more sophisticated engineering strategies. In this review, we examine recent advances in protein- and cell-engineering strategies to improve CAR-T cell safety and efficacy, with an emphasis on overcoming immunosuppression induced by tumor metabolism and hypoxia.
Collapse
Affiliation(s)
- Torahito A Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; , .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA.,Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, California, USA
| |
Collapse
|
212
|
Moretti A, Ponzo M, Nicolette CA, Tcherepanova IY, Biondi A, Magnani CF. The Past, Present, and Future of Non-Viral CAR T Cells. Front Immunol 2022; 13:867013. [PMID: 35757746 PMCID: PMC9218214 DOI: 10.3389/fimmu.2022.867013] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.
Collapse
Affiliation(s)
- Alex Moretti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | - Marianna Ponzo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | | | | | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Pediatrics, University of Milano - Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano - Bicocca/Fondazione MBBM, Monza, Italy
| | - Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
213
|
Liang Q, Vlaar EC, Catalano F, Pijnenburg JM, Stok M, van Helsdingen Y, Vulto AG, Unger WW, van der Ploeg AT, Pijnappel WP, van Til NP. Lentiviral gene therapy prevents anti-human acid α-glucosidase antibody formation in murine Pompe disease. Mol Ther Methods Clin Dev 2022; 25:520-532. [PMID: 35662813 PMCID: PMC9127119 DOI: 10.1016/j.omtm.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/29/2022] [Indexed: 01/20/2023]
Abstract
Enzyme replacement therapy (ERT) is the current standard treatment for Pompe disease, a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). ERT has shown to be lifesaving in patients with classic infantile Pompe disease. However, a major drawback is the development of neutralizing antibodies against ERT. Hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) provides a novel, potential lifelong therapy with a single intervention and may induce immune tolerance. Here, we investigated whether ERT can be safely applied as additional or alternative therapy following HSPC-LVGT in a murine model of Pompe disease. We found that lentiviral expression at subtherapeutic dose was sufficient to induce tolerance to the transgene product, as well as to subsequently administered ERT. Immune tolerance was established within 4–6 weeks after gene therapy. The mice tolerated ERT doses up to 100 mg/kg, allowing ERT to eliminate glycogen accumulation in cardiac and skeletal muscle and normalizing locomotor function. The presence of HSPC-derived cells expressing GAA in the thymus suggested the establishment of central immune tolerance. These findings demonstrate that lentiviral gene therapy in murine Pompe disease induced robust and long-term immune tolerance to GAA either expressed by a transgene or supplied as ERT.
Collapse
Affiliation(s)
- Qiushi Liang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eva C. Vlaar
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Fabio Catalano
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Joon M. Pijnenburg
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Merel Stok
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Yvette van Helsdingen
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Arnold G. Vulto
- Hospital Pharmacy, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Wendy W.J. Unger
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children’s Hospital, 3015GE Rotterdam, the Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - W.W.M. Pim Pijnappel
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Corresponding author W.W.M. Pim Pijnappel, PhD, Erasmus University Medical Center, 3015GE Rotterdam, the Netherlands.
| | - Niek P. van Til
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
214
|
Mendell JR, Connolly AM, Lehman KJ, Griffin DA, Khan SZ, Dharia SD, Quintana-Gallardo L, Rodino-Klapac LR. Testing preexisting antibodies prior to AAV gene transfer therapy: rationale, lessons and future considerations. Mol Ther Methods Clin Dev 2022; 25:74-83. [PMID: 35356756 PMCID: PMC8933338 DOI: 10.1016/j.omtm.2022.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Given the increasing number of gene transfer therapy studies either completed or underway, there is growing attention to the importance of preexisting adaptive immunity to the viral vectors used. The recombinant viral vectors developed for gene transfer therapy share structural features with naturally occurring wild-type virus. Antibodies generated against viral vectors obtained through a previous exposure to wild-type virus can potentially compromise transgene expression by blocking transduction, thereby limiting the therapeutic efficacy of the gene transfer therapy; they may also pose potential safety concerns. Therefore, systemic gene transfer delivery requires testing patients for preexisting antibodies. Two different assays have been used: (1) binding assays that focus on total antibodies (both neutralizing and non-neutralizing) and (2) neutralizing assays that detect neutralizing antibodies. In this review we focus on adeno-associated virus-based gene therapies, describing the immune response that occurs to naturally occurring adeno-associated viruses, the implications for patients with this exposure, the assays used to detect preexisting immune responses, and strategies to circumvent preexisting adaptive immunity to expand the patient base that could benefit from such therapies.
Collapse
Affiliation(s)
- Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43205, USA
| | - Anne M. Connolly
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43205, USA
| | - Kelly J. Lehman
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | | | - Sohrab Z. Khan
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Sachi D. Dharia
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | | | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
215
|
Chetty K, Houghton BC, Booth C. Gene Therapy for Inborn Errors of Immunity. Hematol Oncol Clin North Am 2022; 36:813-827. [DOI: 10.1016/j.hoc.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
216
|
Ha T, DiPrima M, Koparde V, Jailwala P, Ohnuki H, Feng JX, Palangat M, Larson D, Tosato G. Antisense transcription from lentiviral gene targeting linked to an integrated stress response in colorectal cancer cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:877-891. [PMID: 35694213 PMCID: PMC9163427 DOI: 10.1016/j.omtn.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022]
Abstract
Advances in gene therapy research have resulted in the successful development of new therapies for clinical use. Here, we explored a gene targeting approach to deplete ephrinB2 from colorectal cancer cells using an inducible lentiviral vector. EphrinB2, a transmembrane ephrin ligand, promotes colorectal cancer cell growth and viability and predicts poor patient survival when expressed at high levels in colorectal cancer tissues. We discovered that lentiviral vector integration and expression in the host DNA frequently drive divergent host gene transcription, generating antisense reads coupled with splicing events and generation of chimeric vector/host transcripts. Antisense transcription of host DNA was linked to development of an integrated stress response and cell death. Despite recent successes, off-target effects remain a concern in genetic medicine. Our results provide evidence that divergent gene transcription is a previously unrecognized off-target effect of lentiviral vector integration with built-in properties for regulation of gene expression.
Collapse
|
217
|
Leonard A, Tisdale JF, Bonner M. Gene Therapy for Hemoglobinopathies. Hematol Oncol Clin North Am 2022; 36:769-795. [DOI: 10.1016/j.hoc.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
218
|
O'Sullivan GM, Philips JG, Mitchell HJ, Dornbusch M, Rasko JEJ. 20 Years of Legislation - How Australia Has Responded to the Challenge of Regulating Genetically Modified Organisms in the Clinic. Front Med (Lausanne) 2022; 9:883434. [PMID: 35620726 PMCID: PMC9127347 DOI: 10.3389/fmed.2022.883434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 01/21/2023] Open
Abstract
In contrast to the prior voluntary system, since 2001, gene technology in Australia has been regulated under a legislated national Gene Technology Regulatory Scheme which is administered by the Gene Technology Regulator. The Scheme provides science-based assessment of the potential risks of gene technology to the health and safety of people and the environment. It complements the role of the Australian Therapeutic Goods Administration which regulates all therapeutic products in Australia to ensure they are safe and effective. Recent reforms to the Scheme contribute to, and anticipate, the continued safe development and delivery of gene-based human therapeutics in Australia as a successful model for other jurisdictions.
Collapse
Affiliation(s)
- Gabrielle M O'Sullivan
- Research Ethics and Governance Office, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Joshua G Philips
- Office of the Gene Technology Regulator, Australian Government Department of Health, Canberra, ACT, Australia
| | - Heidi J Mitchell
- Office of the Gene Technology Regulator, Australian Government Department of Health, Canberra, ACT, Australia
| | - Michael Dornbusch
- Office of the Gene Technology Regulator, Australian Government Department of Health, Canberra, ACT, Australia
| | - John E J Rasko
- Department of Cell and Molecular Therapies, RPA Hospital, SLHD, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
219
|
Rossini L, Durante C, Marzollo A, Biffi A. New Indications for Hematopoietic Stem Cell Gene Therapy in Lysosomal Storage Disorders. Front Oncol 2022; 12:885639. [PMID: 35646708 PMCID: PMC9136164 DOI: 10.3389/fonc.2022.885639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Lysosomal storage disorders (LSDs) are a heterogenous group of disorders due to genetically determined deficits of lysosomal enzymes. The specific molecular mechanism and disease phenotype depends on the type of storage material. Several disorders affect the brain resulting in severe clinical manifestations that substantially impact the expectancy and quality of life. Current treatment modalities for LSDs include enzyme replacement therapy (ERT) and hematopoietic cell transplantation (HCT) from allogeneic healthy donors, but are available for a limited number of disorders and lack efficacy on several clinical manifestations. Hematopoietic stem cell gene therapy (HSC GT) based on integrating lentiviral vectors resulted in robust clinical benefit when administered to patients affected by Metachromatic Leukodystrophy, for whom it is now available as a registered medicinal product. More recently, HSC GT has also shown promising results in Hurler syndrome patients. Here, we discuss possible novel HSC GT indications that are currently under development. If these novel drugs will prove effective, they might represent a new standard of care for these disorders, but several challenges will need to be addresses, including defining and possibly expanding the patient population for whom HSC GT could be efficacious.
Collapse
Affiliation(s)
- Linda Rossini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Caterina Durante
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Fondazione Citta’ della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
- *Correspondence: Alessandra Biffi,
| |
Collapse
|
220
|
Oh SA, Senger K, Madireddi S, Akhmetzyanova I, Ishizuka IE, Tarighat S, Lo JH, Shaw D, Haley B, Rutz S. High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA. J Exp Med 2022; 219:213176. [PMID: 35452075 PMCID: PMC9040063 DOI: 10.1084/jem.20211530] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022] Open
Abstract
Genome engineering of T lymphocytes, the main effectors of antitumor adaptive immune responses, has the potential to uncover unique insights into their functions and enable the development of next-generation adoptive T cell therapies. Viral gene delivery into T cells, which is currently used to generate CAR T cells, has limitations in regard to targeting precision, cargo flexibility, and reagent production. Nonviral methods for effective CRISPR/Cas9-mediated gene knock-out in primary human T cells have been developed, but complementary techniques for nonviral gene knock-in can be cumbersome and inefficient. Here, we report a convenient and scalable nonviral method that allows precise gene edits and transgene integration in primary human T cells, using plasmid donor DNA template and Cas9-RNP. This method is highly efficient for single and multiplex gene manipulation, without compromising T cell function, and is thus valuable for use in basic and translational research.
Collapse
Affiliation(s)
- Soyoung A Oh
- Cancer Immunology, Genentech, South San Francisco, CA
| | - Kate Senger
- Molecular Biology, Genentech, South San Francisco, CA
| | | | | | | | - Somayeh Tarighat
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA
| | - Jerry H Lo
- Oncology Bioinformatics, Genentech, South San Francisco, CA
| | - David Shaw
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA
| | | | - Sascha Rutz
- Cancer Immunology, Genentech, South San Francisco, CA
| |
Collapse
|
221
|
In Situ Electroporation on PERFECT Filter for High-Efficiency and High-Viability Tumor Cell Labeling. MICROMACHINES 2022; 13:mi13050672. [PMID: 35630139 PMCID: PMC9146625 DOI: 10.3390/mi13050672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023]
Abstract
Labeling-assisted visualization is a powerful strategy to track circulating tumor cells (CTCs) for mechanism study (e.g., tumor metastasis). Due to the rarity of CTCs in the whole blood, efficient simultaneous enrichment and labeling of CTCs are needed. Hereby, novel in situ electroporation on a previously-developed micropore-arrayed filter (PERFECT filter) is proposed. Benefiting from the ultra-small-thickness and high-porosity of the filter plus high precision pore diameter, target rare tumor cells were enriched with less damage and uniform size distribution, contributing to enhanced molecular delivery efficiency and cell viability in the downstream electroporation. Various biomolecules (e.g., small molecule dyes, plasmids, and functional proteins) were used to verify this in situ electroporation system. High labeling efficiency (74.08 ± 2.94%) and high viability (81.15 ± 3.04%, verified via live/dead staining) were achieved by optimizing the parameters of electric field strength and pulse number, ensuring the labeled tumor cells can be used for further culture and down-stream analysis. In addition, high specificity (99.03 ± 1.67%) probing of tumor cells was further achieved by introducing fluorescent dye-conjugated antibodies into target cells. The whole procedure, including cell separation and electroporation, can be finished quickly (<10 min). The proposed in situ electroporation on the PERFECT filter system has great potential to track CTCs for tumor metastasis studies.
Collapse
|
222
|
Li G, Li X, Zhuang S, Wang L, Zhu Y, Chen Y, Sun W, Wu Z, Zhou Z, Chen J, Huang X, Wang J, Li D, Li W, Wang H, Wei W. Gene editing and its applications in biomedicine. SCIENCE CHINA. LIFE SCIENCES 2022; 65:660-700. [PMID: 35235150 PMCID: PMC8889061 DOI: 10.1007/s11427-021-2057-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. The application of these technologies in basic biomedical research has yielded significant advances in identifying and studying key molecular targets relevant to human diseases and their treatment. The clinical translation of genome editing techniques offers unprecedented biomedical engineering capabilities in the diagnosis, prevention, and treatment of disease or disability. Here, we provide a general summary of emerging biomedical applications of genome editing, including open challenges. We also summarize the tools of genome editing and the insights derived from their applications, hoping to accelerate new discoveries and therapies in biomedicine.
Collapse
Affiliation(s)
- Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Songkuan Zhuang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yifan Zhu
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yangcan Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeguang Wu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jin Wang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China.
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
223
|
The tricks for fighting against cancer using CAR NK cells: A review. Mol Cell Probes 2022; 63:101817. [DOI: 10.1016/j.mcp.2022.101817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
|
224
|
Chamberlain CA, Bennett EP, Kverneland AH, Svane IM, Donia M, Met Ö. Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy. Mol Ther Oncolytics 2022; 24:417-428. [PMID: 35141398 PMCID: PMC8807971 DOI: 10.1016/j.omto.2022.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
Adoptive T cell therapy (ACT) with expanded tumor-infiltrating lymphocytes (TIL) can induce durable responses in cancer patients from multiple histologies, with response rates of up to 50%. Antibodies blocking the engagement of the inhibitory receptor programmed cell death protein 1 (PD-1) have been successful across a variety of cancer diagnoses. We hypothesized that these approaches could be combined by using CRISPR-Cas9 gene editing to knock out PD-1 in TILs from metastatic melanoma and head-and-neck, thyroid, and colorectal cancer. Non-viral, non-plasmid-based PD-1 knockout was carried out immediately prior to the traditional 14-day TIL-based ACT rapid-expansion protocol. A median 87.53% reduction in cell surface PD-1 expression was observed post-expansion and confirmed at the genomic level. No off-target editing was detected, and PD-1 knockout had no effect on final fold expansion. Edited cells exhibited few phenotypic differences and matched control functionality. Pre-clinical-scale results were confirmed at a clinical scale by generating a PD-1-deficient TIL product using the good manufacturing practice facilities, equipment, procedures, and starting material used for standard patient treatment. Our results demonstrate that simple, non-viral, non-plasmid-based CRISPR-Cas9 methods can be feasibly adopted into a TIL-based ACT protocol to produce treatment products deficient in molecules such as PD-1, without any evident negative effects.
Collapse
Affiliation(s)
- Christopher Aled Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark
| | - Eric Paul Bennett
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N, Denmark.,Department for RNA & Gene Therapy, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Anders Handrup Kverneland
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
225
|
Tucci F, Galimberti S, Naldini L, Valsecchi MG, Aiuti A. A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat Commun 2022; 13:1315. [PMID: 35288539 PMCID: PMC8921234 DOI: 10.1038/s41467-022-28762-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ex-vivo gene therapy (GT) with hematopoietic stem and progenitor cells (HSPCs) engineered with integrating vectors is a promising treatment for monogenic diseases, but lack of centralized databases is hampering an overall outcomes assessment. Here we aim to provide a comprehensive assessment of the short and long term safety of HSPC-GT from trials using different vector platforms. We review systematically the literature on HSPC-GT to describe survival, genotoxicity and engraftment of gene corrected cells. From 1995 to 2020, 55 trials for 14 diseases met inclusion criteria and 406 patients with primary immunodeficiencies (55.2%), metabolic diseases (17.0%), haemoglobinopathies (24.4%) and bone marrow failures (3.4%) were treated with gammaretroviral vector (γRV) (29.1%), self-inactivating γRV (2.2%) or lentiviral vectors (LV) (68.7%). The pooled overall incidence rate of death is 0.9 per 100 person-years of observation (PYO) (95% CI = 0.37-2.17). There are 21 genotoxic events out of 1504.02 PYO, which occurred in γRV trials (0.99 events per 100 PYO, 95% CI = 0.18-5.43) for primary immunodeficiencies. Pooled rate of engraftment is 86.7% (95% CI = 67.1-95.5%) for γRV and 98.7% (95% CI = 94.5-99.7%) for LV HSPC-GT (p = 0.005). Our analyses show stable reconstitution of haematopoiesis in most recipients with superior engraftment and safer profile in patients receiving LV-transduced HSPCs.
Collapse
Affiliation(s)
- Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
226
|
Baron Y, Sens J, Lange L, Nassauer L, Klatt D, Hoffmann D, Kleppa MJ, Barbosa PV, Keisker M, Steinberg V, Suerth JD, Vondran FW, Meyer J, Morgan M, Schambach A, Galla M. Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:810-823. [PMID: 35141043 PMCID: PMC8801357 DOI: 10.1016/j.omtn.2021.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
DNA-modifying technologies, such as the CRISPR-Cas9 system, are promising tools in the field of gene and cell therapies. However, high and prolonged expression of DNA-modifying enzymes may cause cytotoxic and genotoxic side effects and is therefore unwanted in therapeutic approaches. Consequently, development of new and potent short-term delivery methods is of utmost importance. Recently, we developed non-integrating gammaretrovirus- and MS2 bacteriophage-based Gag.MS2 (g.Gag.MS2) particles for transient transfer of non-retroviral CRISPR-Cas9 RNA into target cells. In the present study, we further improved the technique by transferring the system to the alpharetroviral vector platform (a.Gag.MS2), which significantly increased CRISPR-Cas9 delivery into target cells and allowed efficient targeted knockout of endogenous TP53/Trp53 genes in primary murine fibroblasts as well as primary human fibroblasts, hepatocytes, and cord-blood-derived CD34+ stem and progenitor cells. Strikingly, co-packaging of Cas9 mRNA and multiple single guide RNAs (sgRNAs) into a.Gag.MS2 chimera displayed efficient targeted knockout of up to three genes. Co-transfection of single-stranded DNA donor oligonucleotides during CRISPR-Cas9 particle production generated all-in-one particles, which mediated up to 12.5% of homology-directed repair in primary cell cultures. In summary, optimized a.Gag.MS2 particles represent a versatile tool for short-term delivery of DNA-modifying enzymes into a variety of target cells, including primary murine and human cells.
Collapse
Affiliation(s)
- Yvonne Baron
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johanna Sens
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Vollmer Barbosa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover 30625, Germany
| | - Maximilian Keisker
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Viviane Steinberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Julia D. Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Florian W.R. Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
227
|
Kocher T, Petkovic I, Bischof J, Koller U. Current developments in gene therapy for epidermolysis bullosa. Expert Opin Biol Ther 2022; 22:1137-1150. [PMID: 35235467 DOI: 10.1080/14712598.2022.2049229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The genodermatosis epidermolysis bullosa (EB) is a monogenetic disease, characterized by severe blister formation on the skin and mucous membranes upon minimal mechanical trauma. Causes for the disease are mutations in genes encoding proteins that are essential for skin integrity. In EB, one of these proteins is either functionally impaired or completely absent. Therefore, the development and improvement of DNA and RNA-based therapeutic approaches for this severe blistering skin disease is mandatory to achieve a treatment option for the patients. AREAS COVERED Currently, there are several forms of DNA/RNA therapies potentially feasible for EB. Whereas some of them are still at the preclinical stage, others are clinically advanced and have already been applied to patients. In particular, this is the case for a cDNA replacement approach successfully applied for a small number of patients with junctional EB. EXPERT OPINION The heterogeneity of EB justifies the development of therapeutic options with distinct modes of action at a DNA or RNA level. Besides, splicing-modulating therapies, based on RNA trans-splicing or short antisense oligonucleotides, especially designer nucleases, have steadily improved in efficiency and safety and thus likely represent the most promising gene therapy tool in the near future.
Collapse
Affiliation(s)
- Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Igor Petkovic
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
228
|
Avances en terapia génica en humanos: algunos conceptos básicos y un recorrido histórico. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
229
|
Corre G, Seye A, Frin S, Ferrand M, Winkler K, Luc C, Dorange F, Rocca CJ, Galy A. Lentiviral standards to determine the sensitivity of assays that quantify lentiviral vector copy numbers and genomic insertion sites in cells. Gene Ther 2022; 29:536-543. [PMID: 35194185 PMCID: PMC9482878 DOI: 10.1038/s41434-022-00315-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
With an increasing number of gene therapy clinical trials and drugs reaching the market, it becomes important to standardize the methods that evaluate the efficacy and safety of gene therapy. We herein report the generation of lentiviral standards which are stable, cloned human cells prepared from the diploid HCT116 cell line and which carry a known number of lentiviral vector copies in their genome. These clones can be used as reference cellular materials for the calibration or qualification of analytical methods that quantify vector copy numbers in cells (VCN) or lentiviral vector genomic integration sites (IS). Cellular standards were used to show the superior precision of digital droplet PCR (ddPCR) over quantitative PCR (qPCR) for VCN determination. This enabled us to develop a new sensitive and specific VCN ddPCR method specific for the integrated provirus and not recognizing the transfer plasmid. The cellular standards, were also useful to assess the sensitivity and limits of a ligation-mediated PCR (LM-PCR) method to measure IS showing that at least 1% abundance of a single IS can be detected in a polyclonal population but that not all IS can be amplified with similar efficiency. Thus, lentiviral standards should be systematically used in all assays that assess lentiviral gene therapy efficacy and safety.
Collapse
Affiliation(s)
- Guillaume Corre
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Ababacar Seye
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Sophie Frin
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Maxime Ferrand
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | | | | | | | - Céline J Rocca
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France. .,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France. .,ART-TG, Inserm US35, Inserm, Corbeil-Essonnes, France.
| |
Collapse
|
230
|
Locatelli F, Thompson AA, Kwiatkowski JL, Porter JB, Thrasher AJ, Hongeng S, Sauer MG, Thuret I, Lal A, Algeri M, Schneiderman J, Olson TS, Carpenter B, Amrolia PJ, Anurathapan U, Schambach A, Chabannon C, Schmidt M, Labik I, Elliot H, Guo R, Asmal M, Colvin RA, Walters MC. Betibeglogene Autotemcel Gene Therapy for Non-β 0/β 0 Genotype β-Thalassemia. N Engl J Med 2022; 386:415-427. [PMID: 34891223 DOI: 10.1056/nejmoa2113206] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Betibeglogene autotemcel (beti-cel) gene therapy for transfusion-dependent β-thalassemia contains autologous CD34+ hematopoietic stem cells and progenitor cells transduced with the BB305 lentiviral vector encoding the β-globin (βA-T87Q) gene. METHODS In this open-label, phase 3 study, we evaluated the efficacy and safety of beti-cel in adult and pediatric patients with transfusion-dependent β-thalassemia and a non-β0/β0 genotype. Patients underwent myeloablation with busulfan (with doses adjusted on the basis of pharmacokinetic analysis) and received beti-cel intravenously. The primary end point was transfusion independence (i.e., a weighted average hemoglobin level of ≥9 g per deciliter without red-cell transfusions for ≥12 months). RESULTS A total of 23 patients were enrolled and received treatment, with a median follow-up of 29.5 months (range, 13.0 to 48.2). Transfusion independence occurred in 20 of 22 patients who could be evaluated (91%), including 6 of 7 patients (86%) who were younger than 12 years of age. The average hemoglobin level during transfusion independence was 11.7 g per deciliter (range, 9.5 to 12.8). Twelve months after beti-cel infusion, the median level of gene therapy-derived adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q) was 8.7 g per deciliter (range, 5.2 to 10.6) in patients who had transfusion independence. The safety profile of beti-cel was consistent with that of busulfan-based myeloablation. Four patients had at least one adverse event that was considered by the investigators to be related or possibly related to beti-cel; all events were nonserious except for thrombocytopenia (in 1 patient). No cases of cancer were observed. CONCLUSIONS Treatment with beti-cel resulted in a sustained HbAT87Q level and a total hemoglobin level that was high enough to enable transfusion independence in most patients with a non-β0/β0 genotype, including those younger than 12 years of age. (Funded by Bluebird Bio; HGB-207 ClinicalTrials.gov number, NCT02906202.).
Collapse
Affiliation(s)
- Franco Locatelli
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Alexis A Thompson
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Janet L Kwiatkowski
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - John B Porter
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Adrian J Thrasher
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Suradej Hongeng
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Martin G Sauer
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Isabelle Thuret
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Ashutosh Lal
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Mattia Algeri
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Jennifer Schneiderman
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Timothy S Olson
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Ben Carpenter
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Persis J Amrolia
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Usanarat Anurathapan
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Axel Schambach
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Christian Chabannon
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Manfred Schmidt
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Ivan Labik
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Heidi Elliot
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Ruiting Guo
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Mohammed Asmal
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Richard A Colvin
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| | - Mark C Walters
- From IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome (F.L., M. Algeri); Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago (A.A.T., J.S.); Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia (J.L.K., T.S.O.); University College London Hospital (J.B.P., B.C.) and University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust (A.J.T., P.J.A.) - all in London; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (S.H., U.A.); the Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation in Children (M.G.S.) and the Institute of Experimental Hematology (A.S.), Hannover Medical School, Hannover, and GeneWerk, Heidelberg (M.S., I.L.) - both in Germany; Hôpital de la Timone (I.T.) and Institut Paoli-Calmettes Comprehensive Cancer Center (C.C.) - both in Marseille, France; the University of California, San Francisco, Benioff Children's Hospital, Oakland (A.L., M.C.W.); and the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston (A.S.), and Bluebird Bio, Cambridge (H.E., R.G., M. Asmal, R.A.C.) - all in Massachusetts
| |
Collapse
|
231
|
Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, Khurana I, Banothu AK, Weiskirchen R, Bharani KK. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci 2022; 294:120375. [PMID: 35123997 DOI: 10.1016/j.lfs.2022.120375] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Gene therapy is the product of man's quest to eliminate diseases. Gene therapy has three facets namely, gene silencing using siRNA, shRNA and miRNA, gene replacement where the desired gene in the form of plasmids and viral vectors, are directly administered and finally gene editing based therapy where mutations are modified using specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short tandem repeats (CRISPR)/CRISPR-associated protein (Cas)-associated nucleases. Transfer of gene is either through transformation where under specific conditions the gene is directly taken up by the bacterial cells, transduction where a bacteriophage is used to transfer the genetic material and lastly transfection that involves forceful delivery of gene using either viral or non-viral vectors. The non-viral transfection methods are subdivided into physical, chemical and biological. The physical methods include electroporation, biolistic, microinjection, laser, elevated temperature, ultrasound and hydrodynamic gene transfer. The chemical methods utilize calcium- phosphate, DAE-dextran, liposomes and nanoparticles for transfection. The biological methods are increasingly using viruses for gene transfer, these viruses could either integrate within the genome of the host cell conferring a stable gene expression, whereas few other non-integrating viruses are episomal and their expression is diluted proportional to the cell division. So far, gene therapy has been wielded in a plethora of diseases. However, coherent and innocuous delivery of genes is among the major hurdles in the use of this promising therapy. Hence this review aims to highlight the current options available for gene transfer along with the advantages and limitations of every method.
Collapse
Affiliation(s)
- Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik 400020, Maharashtra, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | | | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India.
| |
Collapse
|
232
|
Lohia A, Sahel DK, Salman M, Singh V, Mariappan I, Mittal A, Chitkara D. Delivery Strategies for CRISPR/Cas Genome editing tool for Retinal Dystrophies: challenges and opportunities. Asian J Pharm Sci 2022; 17:153-176. [PMID: 36320315 PMCID: PMC9614410 DOI: 10.1016/j.ajps.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas, an adaptive immune system in bacteria, has been adopted as an efficient and precise tool for site-specific gene editing with potential therapeutic opportunities. It has been explored for a variety of applications, including gene modulation, epigenome editing, diagnosis, mRNA editing, etc. It has found applications in retinal dystrophic conditions including progressive cone and cone-rod dystrophies, congenital stationary night blindness, X-linked juvenile retinoschisis, retinitis pigmentosa, age-related macular degeneration, leber's congenital amaurosis, etc. Most of the therapies for retinal dystrophic conditions work by regressing symptoms instead of reversing the gene mutations. CRISPR/Cas9 through indel could impart beneficial effects in the reversal of gene mutations in dystrophic conditions. Recent research has also consolidated on the approaches of using CRISPR systems for retinal dystrophies but their delivery to the posterior part of the eye is a major concern due to high molecular weight, negative charge, and in vivo stability of CRISPR components. Recently, non-viral vectors have gained interest due to their potential in tissue-specific nucleic acid (miRNA/siRNA/CRISPR) delivery. This review highlights the opportunities of retinal dystrophies management using CRISPR/Cas nanomedicine.
Collapse
|
233
|
Boutin J, Cappellen D, Rosier J, Amintas S, Dabernat S, Bedel A, Moreau-Gaudry F. ON-target Adverse Events of CRISPR-Cas9 Nuclease: More Chaotic than Expected. CRISPR J 2022; 5:19-30. [DOI: 10.1089/crispr.2021.0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Julian Boutin
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - David Cappellen
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Tumor Biology and Tumor Bank Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Juliette Rosier
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
| | - Samuel Amintas
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Tumor Biology and Tumor Bank Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Sandrine Dabernat
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Aurélie Bedel
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| |
Collapse
|
234
|
Buechner J, Caruana I, Künkele A, Rives S, Vettenranta K, Bader P, Peters C, Baruchel A, Calkoen FG. Chimeric Antigen Receptor T-Cell Therapy in Paediatric B-Cell Precursor Acute Lymphoblastic Leukaemia: Curative Treatment Option or Bridge to Transplant? Front Pediatr 2022; 9:784024. [PMID: 35145941 PMCID: PMC8823293 DOI: 10.3389/fped.2021.784024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023] Open
Abstract
Chimeric antigen receptor T-cell therapy (CAR-T) targeting CD19 has been associated with remarkable responses in paediatric patients and adolescents and young adults (AYA) with relapsed/refractory (R/R) B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). Tisagenlecleucel, the first approved CD19 CAR-T, has become a viable treatment option for paediatric patients and AYAs with BCP-ALL relapsing repeatedly or after haematopoietic stem cell transplantation (HSCT). Based on the chimeric antigen receptor molecular design and the presence of a 4-1BB costimulatory domain, tisagenlecleucel can persist for a long time and thereby provide sustained leukaemia control. "Real-world" experience with tisagenlecleucel confirms the safety and efficacy profile observed in the pivotal registration trial. Recent guidelines for the recognition, management and prevention of the two most common adverse events related to CAR-T - cytokine release syndrome and immune-cell-associated neurotoxicity syndrome - have helped to further decrease treatment toxicity. Consequently, the questions of how and for whom CD19 CAR-T could substitute HSCT in BCP-ALL are inevitable. Currently, 40-50% of R/R BCP-ALL patients relapse post CD19 CAR-T with either CD19- or CD19+ disease, and consolidative HSCT has been proposed to avoid disease recurrence. Contrarily, CD19 CAR-T is currently being investigated in the upfront treatment of high-risk BCP-ALL with an aim to avoid allogeneic HSCT and associated treatment-related morbidity, mortality and late effects. To improve survival and decrease long-term side effects in children with BCP-ALL, it is important to define parameters predicting the success or failure of CAR-T, allowing the careful selection of candidates in need of HSCT consolidation. In this review, we describe the current clinical evidence on CAR-T in BCP-ALL and discuss factors associated with response to or failure of this therapy: product specifications, patient- and disease-related factors and the impact of additional therapies given before (e.g., blinatumomab and inotuzumab ozogamicin) or after infusion (e.g., CAR-T re-infusion and/or checkpoint inhibition). We discuss where to position CAR-T in the treatment of BCP-ALL and present considerations for the design of supportive trials for the different phases of disease. Finally, we elaborate on clinical settings in which CAR-T might indeed replace HSCT.
Collapse
Affiliation(s)
- Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, Würzburg, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susana Rives
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu de Barcelona, Institut per la Recerca Sant Joan de Déu, Barcelona, Spain
| | - Kim Vettenranta
- University of Helsinki and Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt, Germany
| | - Christina Peters
- St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - André Baruchel
- Université de Paris et Institut de Recherche Saint-Louis (EA 35-18) and Hôpital Universitaire Robert Debré (APHP), Paris, France
| | - Friso G. Calkoen
- Department of Stem Cell Transplantation and Cellular Therapy, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
235
|
Aznauryan E, Yermanos A, Kinzina E, Devaux A, Kapetanovic E, Milanova D, Church GM, Reddy ST. Discovery and validation of human genomic safe harbor sites for gene and cell therapies. CELL REPORTS METHODS 2022; 2:100154. [PMID: 35474867 PMCID: PMC9017210 DOI: 10.1016/j.crmeth.2021.100154] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 11/12/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
Existing approaches to therapeutic gene transfer are marred by the transient nature of gene expression following non-integrative gene delivery and by safety concerns due to the random mechanism of viral-mediated genomic insertions. The disadvantages of these methods encourage future research in identifying human genomic sites that allow for durable and safe expression of genes of interest. We conducted a bioinformatic search followed by the experimental characterization of human genomic sites, identifying two that demonstrated the stable expression of integrated reporter and therapeutic genes without malignant changes to the cellular transcriptome. The cell-type agnostic criteria used in our bioinformatic search suggest widescale applicability of identified sites for engineering of a diverse range of tissues for clinical and research purposes, including modified T cells for cancer therapy and engineered skin to ameliorate inherited diseases and aging. In addition, the stable and robust levels of gene expression from identified sites allow for the industry-scale biomanufacturing of proteins in human cells.
Collapse
Affiliation(s)
- Erik Aznauryan
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Systems Biology Program, Life Science Zürich Graduate School, Zürich, Switzerland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Elvira Kinzina
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna Devaux
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Denitsa Milanova
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
236
|
Hauck ES, Hecker JG. Non-Viral Delivery of RNA Gene Therapy to the Central Nervous System. Pharmaceutics 2022; 14:165. [PMID: 35057059 PMCID: PMC8779867 DOI: 10.3390/pharmaceutics14010165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 02/05/2023] Open
Abstract
Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Lipid-mediated nucleic acid delivery is an alternative to viral vector-mediated gene delivery and has the following advantages. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, since transit across the nuclear membrane is not necessary, and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Delivery of RNA to target organ(s) has previously been challenging due to RNA's rapid degradation in biological systems, but cationic lipids complexed with RNA, as well as lipid nanoparticles (LNPs), have allowed for delivery and expression of the complexed RNA both in vitro and in vivo. This review will focus on the non-viral lipid-mediated delivery of RNAs, including mRNA, siRNA, shRNA, and microRNA, to the central nervous system (CNS), an organ with at least two unique challenges. The CNS contains a large number of slowly dividing or non-dividing cell types and is protected by the blood brain barrier (BBB). In non-dividing cells, RNA-lipid complexes demonstrated increased transfection efficiency relative to DNA transfection. The efficiency, timing of the onset, and duration of expression after transfection may determine which nucleic acid is best for which proposed therapy. Expression can be seen as soon as 1 h after RNA delivery, but duration of expression has been limited to 5-7 h. In contrast, transfection with a DNA lipoplex demonstrates protein expression within 5 h and lasts as long as several weeks after transfection.
Collapse
Affiliation(s)
- Ellen S. Hauck
- Department of Anesthesiology, Lewis Katz School of Medicine, Temple University, 3401 N Broad St., Philadelphia, PA 19140, USA
| | - James G. Hecker
- Department of Anesthesiology, Harborview Medical Center, University of Washington, P.O. Box 359724, 329 Ninth Ave, Seattle, WA 98104, USA;
| |
Collapse
|
237
|
Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Ng MH. Non-Integrating Lentiviral Vectors in Clinical Applications: A Glance Through. Biomedicines 2022; 10:biomedicines10010107. [PMID: 35052787 PMCID: PMC8773317 DOI: 10.3390/biomedicines10010107] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.
Collapse
Affiliation(s)
- Narmatha Gurumoorthy
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
- Correspondence:
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Malaysia;
| | | | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| |
Collapse
|
238
|
Mirzaee Godarzee M, Mahmud Hussen B, Razmara E, Hakak‐Zargar B, Mohajerani F, Dabiri H, Fatih Rasul M, Ghazimoradi MH, Babashah S, Sadeghizadeh M. Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Ann N Y Acad Sci 2022; 1510:18-35. [DOI: 10.1111/nyas.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022]
Affiliation(s)
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy Hawler Medical University Erbil Iraq
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute Monash University, Clayton, Victoria, Australia, 3800
| | | | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Hamed Dabiri
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Sciences Tishk International University Erbil Iraq
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
239
|
Yuan X, Li L, Liu H, Luo J, Zhao Y, Pan C, Zhang X, Chen Y, Gou M. Strategies for improving adipose-derived stem cells for tissue regeneration. BURNS & TRAUMA 2022; 10:tkac028. [PMID: 35992369 PMCID: PMC9382096 DOI: 10.1093/burnst/tkac028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Adipose-derived stem cells (ADSCs) have promising applications in tissue regeneration. Currently, there are only a few ADSC products that have been approved for clinical use. The clinical application of ADSCs still faces many challenges. Here, we review emerging strategies to improve the therapeutic efficacy of ADSCs in tissue regeneration. First, a great quantity of cells is often needed for the stem cell therapies, which requires the advanced cell expansion technologies. In addition cell-derived products are also required for the development of ‘cell-free’ therapies to overcome the drawbacks of cell-based therapies. Second, it is necessary to strengthen the regenerative functions of ADSCs, including viability, differentiation and paracrine ability, for the tissue repair and regeneration required for different physiological and pathophysiological conditions. Third, poor delivery efficiency also restricts the therapeutic effect of ADSCs. Effective methods to improve cell delivery include alleviating harsh microenvironments, enhancing targeting ability and prolonging cell retention. Moreover, we also point out some critical issues about the sources, effectiveness and safety of ADSCs. With these advanced strategies to improve the therapeutic efficacy of ADSCs, ADSC-based treatment holds great promise for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Li Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Jing Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yongchao Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Cheng Pan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Xue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| |
Collapse
|
240
|
Development and clinical translation of ex vivo gene therapy. Comput Struct Biotechnol J 2022; 20:2986-3003. [PMID: 35782737 PMCID: PMC9218169 DOI: 10.1016/j.csbj.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Retroviral gene therapy has emerged as a promising therapeutic modality for multiple inherited and acquired human diseases. The capability of delivering curative treatment or mediating therapeutic benefits for a long-term period following a single application fundamentally distinguishes this medical intervention from traditional medicine and various lentiviral/γ-retroviral vector-mediated gene therapy products have been approved for clinical use. Continued advances in retroviral vector engineering, genomic editing, synthetic biology and immunology will broaden the medical applications of gene therapy and improve the efficacy and safety of the treatments based on genetic correction and alteration. This review will summarize the advent and clinical translation of ex vivo gene therapy, with the focus on the milestones during the exploitation of genetically engineered hematopoietic stem cells (HSCs) tackling a variety of pathological conditions which led to marketing approval. Finally, current statue and future prospects of gene editing as an alternative therapeutic approach are also discussed.
Collapse
|
241
|
Bauer G, Fury B. Challenges of translating a cell therapy to GMP. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:207-234. [DOI: 10.1016/bs.irn.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
242
|
Miskey C, Kesselring L, Querques I, Abrusán G, Barabas O, Ivics Z. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2807-2825. [PMID: 35188569 PMCID: PMC8934666 DOI: 10.1093/nar/gkac092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system is a popular tool for genome engineering, but random integration into the genome carries a certain genotoxic risk in therapeutic applications. Here we investigate the role of amino acids H187, P247 and K248 in target site selection of the SB transposase. Structural modeling implicates these three amino acids located in positions analogous to amino acids with established functions in target site selection in retroviral integrases and transposases. Saturation mutagenesis of these residues in the SB transposase yielded variants with altered target site selection properties. Transposon integration profiling of several mutants reveals increased specificity of integrations into palindromic AT repeat target sequences in genomic regions characterized by high DNA bendability. The H187V and K248R mutants redirect integrations away from exons, transcriptional regulatory elements and nucleosomal DNA in the human genome, suggesting enhanced safety and thus utility of these SB variants in gene therapy applications.
Collapse
Affiliation(s)
| | | | - Irma Querques
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - György Abrusán
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Zoltán Ivics
- To whom correspondence should be addressed. Tel: +49 6103 77 6000; Fax: +49 6103 77 1280;
| |
Collapse
|
243
|
Yu X, Bai Y, Han B, Ju M, Tang T, Shen L, Li M, Yang L, Zhang Z, Hu G, Chao J, Zhang Y, Yao H. Extracellular vesicle-mediated delivery of circDYM alleviates CUS-induced depressive-like behaviours. J Extracell Vesicles 2022; 11:e12185. [PMID: 35029057 PMCID: PMC8758833 DOI: 10.1002/jev2.12185] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/25/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is the most prevalent psychiatric disorder worldwide and severely limits psychosocial function and quality of life, but no effective medication is currently available. Circular RNAs (circRNAs) have been revealed to participate in the MDD pathological process. Targeted delivery of circRNAs without blood-brain barrier (BBB) restriction for remission of MDD represents a promising approach for antidepressant therapy. In this study, RVG-circDYM-extracellular vesicles (RVG-circDYM-EVs) were engineered to target and preferentially transfer circDYM to the brain, and the effect on the pathological process in a chronic unpredictable stress (CUS) mouse model of depression was investigated. The results showed that RVG-circDYM-EVs were successfully purified by ultracentrifugation from overexpressed circDYM HEK 293T cells, and the characterization of RVG-circDYM-EVs was successfully demonstrated in terms of size, morphology and specific markers. Beyond demonstrating proof-of-concept for an RNA drug delivery technology, we observed that systemic administration of RVG-circDYM-EVs efficiently delivered circDYM to the brain, and alleviated CUS-induced depressive-like behaviours, and we discovered that RVG-circDYM-EVs notably inhibited microglial activation, BBB leakiness and peripheral immune cells infiltration, and attenuated astrocyte disfunction induced by CUS. CircDYM can bind mechanistically to the transcription factor TAF1 (TATA-box binding protein associated factor 1), resulting in the decreased expression of its downstream target genes with consequently suppressed neuroinflammation. Taken together, our findings suggest that extracellular vesicle-mediated delivery of circDYM is effective for MDD treatment and promising for clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Ying Bai
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Bing Han
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Minzi Ju
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Tianci Tang
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Ling Shen
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Mingyue Li
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Li Yang
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guoku Hu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jie Chao
- Department of PhysiologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Yuan Zhang
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Honghong Yao
- Department of PharmacologySchool of MedicineSoutheast UniversityNanjingJiangsuChina
- Jiangsu Provincial Key Laboratory of Critical Care MedicineSoutheast UniversityNanjingJiangsuChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
- Institute of Life SciencesKey Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
244
|
Xue VW, Chung JYF, Tang PCT, Chan ASW, To THW, Chung JSY, Mussal F, Lam EWF, Li C, To KF, Leung KT, Lan HY, Tang PMK. USMB-shMincle: a virus-free gene therapy for blocking M1/M2 polarization of tumor-associated macrophages. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:26-37. [PMID: 34589582 PMCID: PMC8463747 DOI: 10.1016/j.omto.2021.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Mincle is essential for tumor-associated macrophage (TAM)-driven cancer progression and represents a potential immunotherapeutic target for cancer. Nevertheless, the lack of a specific inhibitor has largely limited its clinical translation. Here, we successfully developed a gene therapeutic strategy for silencing Mincle in a virus-free and tumor-specific manner by combining RNA interference technology with an ultrasound-microbubble-mediated gene transfer system (USMB). We identified a small hairpin RNA (shRNA) sequence shMincle that can silence not only Mincle expression but also the protumoral effector production in mouse bone marrow- and human THP-1-derived macrophages in the cancer setting in vitro. By using our well-established USMB system (USMB-shMincle), the shMincle-expressing plasmids were delivered in a tissue-specific manner into xenografts of human lung carcinoma A549 and melanoma A375 in vivo. Encouragingly, we found that USMB-shMincle effectively inhibited the protumoral phenotypes of TAMs as well as the progression of both A549 and A375 xenografts in a dose-dependent manner in mice without significant side effects. Mechanistically, we identified that USMB-shMincle markedly enhanced the anticancer M1 phenotype of TAMs in the A549 and A375 xenografts by blocking the protumoral Mincle/Syk/nuclear factor κB (NF-κB) signaling axis. Thus, USMB-shMincle may represent a clinically translatable novel and safe gene therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Shatin 999077, Hong Kong
| | - Travis Hoi-Wai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Justin Shing-Yin Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Francis Mussal
- Paediatric Oncology, Birmingham Children's Hospital, University of Birmingham, Birmingham B15 2TT, UK
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong 510060, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| |
Collapse
|
245
|
Van Looveren D, Giacomazzi G, Thiry I, Sampaolesi M, Gijsbers R. Improved functionality and potency of next generation BinMLV viral vectors toward safer gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:51-67. [PMID: 34553002 PMCID: PMC8433069 DOI: 10.1016/j.omtm.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/16/2021] [Indexed: 10/27/2022]
Abstract
To develop safer retroviral murine leukemia virus (MLV)-based vectors, we previously mutated and re-engineered the MLV integrase: the W390A mutation abolished the interaction with its cellular tethering factors, BET proteins, and a retargeting peptide (the chromodomain of the CBX1 protein) was fused C-terminally. The resulting BET-independent MLVW390A-CBX was shown to integrate efficiently and more randomly, away from typical retroviral markers. In this study, we assessed the functionality and stability of expression of the redistributed MLVW390A-CBX vector in more depth, and evaluated safety using a clinically more relevant vector design encompassing a self-inactivated (SIN) LTR and a weak internal elongation factor 1α short (EFS) promoter. MLVW390A-CBX-EFS produced like MLVWT and efficiently transduced laboratory cells and primary human CD34+ hematopoetic stem cells (HSC) without transgene silencing over time, while displaying a more preferred, redistributed, and safer integration pattern. In a human mesoangioblast (MAB) stem cell model, the myogenic fusion capacity was hindered following MLVWT transduction, while this remained unaffected when applying MLVW390A-CBX. Likewise, smooth muscle cell differentiation of MABs was unaltered by MLVW390A-CBX-EFS. Taken together, our results underscore the potential of MLVW390A-CBX-EFS as a clinically relevant viral vector for ex-vivo gene therapy, combining efficient production with a preferable integration site distribution profile and stable expression over time.
Collapse
Affiliation(s)
- Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Giacomazzi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Irina Thiry
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
246
|
Subramaniam KS, Antoniou MN, McGrath JA, Lwin SM. The potential of gene therapy for recessive dystrophic epidermolysis bullosa. Br J Dermatol 2021; 186:609-619. [PMID: 34862606 DOI: 10.1111/bjd.20910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
Epidermolysis bullosa (EB) encompasses a heterogeneous group of inherited skin fragility disorders with mutations in genes encoding the basement membrane zone (BMZ) proteins that normally ensure dermal-epidermal integrity. Of the four main EB types, recessive dystrophic EB (RDEB), especially the severe variant, represents one of the most debilitating clinical entities with recurrent mucocutaneous blistering and ulceration leading to chronic wounds, infections, inflammation, scarring and ultimately cutaneous squamous cell carcinoma, which leads to premature death. Improved understanding of the molecular genetics of EB over the past three decades and advances in biotechnology has led to rapid progress in developing gene and cell-based regenerative therapies for EB. In particular, RDEB is at the vanguard of advances in human clinical trials of advanced therapeutics. Furthermore, the past decade has witnessed the emergence of a real collective, global effort involving academia and industry, supported by international EB patient organisations such as the Dystrophic Epidermolysis Bullosa Research Association (DEBRA), amongst others, to develop clinically relevant and marketable targeted therapeutics for EB. Thus, there is an increasing need for the practising dermatologist to become familiar with the concept of gene therapy, fundamental differences between various approaches and their human applications. This review explains the principles of different approaches of gene therapy; summarises its journey and discusses its current and future impact in RDEB.
Collapse
Affiliation(s)
- K S Subramaniam
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - M N Antoniou
- Gene Expression and Therapy Group, Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - J A McGrath
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - S M Lwin
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
247
|
Cherqui S. Hematopoietic Stem Cell Gene Therapy for Cystinosis: From Bench-to-Bedside. Cells 2021; 10:3273. [PMID: 34943781 PMCID: PMC8699556 DOI: 10.3390/cells10123273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The gene involved is the CTNS gene that encodes cystinosin, a seven-transmembrane domain lysosomal protein, which is a proton-driven cystine transporter. Cystinosis is characterized by the lysosomal accumulation of cystine, a dimer of cysteine, in all the cells of the body leading to multi-organ failure, including the failure of the kidney, eye, thyroid, muscle, and pancreas, and eventually causing premature death in early adulthood. The current treatment is the drug cysteamine, which is onerous and expensive, and only delays the progression of the disease. Employing the mouse model of cystinosis, using Ctns-/- mice, we first showed that the transplantation of syngeneic wild-type murine hematopoietic stem and progenitor cells (HSPCs) led to abundant tissue integration of bone marrow-derived cells, a significant decrease in tissue cystine accumulation, and long-term kidney, eye and thyroid preservation. To translate this result to a potential human therapeutic treatment, given the risks of mortality and morbidity associated with allogeneic HSPC transplantation, we developed an autologous transplantation approach of HSPCs modified ex vivo using a self-inactivated lentiviral vector to introduce a functional version of the CTNS cDNA, pCCL-CTNS, and showed its efficacy in Ctns-/- mice. Based on these promising results, we held a pre-IND meeting with the Food and Drug Administration (FDA) to carry out the FDA agreed-upon pharmacological and toxicological studies for our therapeutic candidate, manufacturing development, production of the GMP lentiviral vector, design Phase 1/2 of the clinical trial, and filing of an IND application. Our IND was cleared by the FDA on 19 December 2018, to proceed to the clinical trial using CD34+ HSPCs from the G-CSF/plerixafor-mobilized peripheral blood stem cells of patients with cystinosis, modified by ex vivo transduction using the pCCL-CTNS vector (investigational product name: CTNS-RD-04). The clinical trial evaluated the safety and efficacy of CTNS-RD-04 and takes place at the University of California, San Diego (UCSD) and will include up to six patients affected with cystinosis. Following leukapheresis and cell manufacturing, the subjects undergo myeloablation before HSPC infusion. Patients also undergo comprehensive assessments before and after treatment to evaluate the impact of CTNS-RD-04 on the clinical outcomes and cystine and cystine crystal levels in the blood and tissues for 2 years. If successful, this treatment could be a one-time therapy that may eliminate or reduce renal deterioration as well as the long-term complications associated with cystinosis. In this review, we will describe the long path from bench-to-bedside for autologous HSPC gene therapy used to treat cystinosis.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
248
|
Ramos RN, Picanço-Castro V, Oliveira TGM, Mendrone A, De Santis GC, Bonamino MH, Rocha V. Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. VII. Present and future of technologies for production of CAR cell therapies. Hematol Transfus Cell Ther 2021; 43 Suppl 2:S46-S53. [PMID: 34794797 PMCID: PMC8606694 DOI: 10.1016/j.htct.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022] Open
Abstract
Chimeric Antigen Receptor T (CAR-T) cells are certainly an important therapy for patients with relapsed and/or refractory hematologic malignancies. Currently, there are five CAR-T cell products approved by the FDA but several research groups and/or biopharmaceutical companies are encouraged to develop new products based on CAR cells using T or other cell types. Production of CAR cells requires intensive work from the basic, pre-clinical to translational levels, aiming to overcome technical difficulties and failure in the production. At least five key common steps are needed for the manipulation of T-lymphocytes (or other cells), such as: cell type selection, activation, gene delivery, cell expansion and final product formulation. However, reproducible manufacturing of high-quality clinical-grade CAR cell products is still required to apply this technology to a greater number of patients. This chapter will discuss the present and future development of new CAR designs that are safer and more effective to improve this therapy, achieving more selective killing of malignant cells and less toxicity to be applied in the clinical setting.
Collapse
Affiliation(s)
- Rodrigo Nalio Ramos
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
| | - Virginia Picanço-Castro
- Fundação Hemocentro de Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, (HC FMRPUSP) Ribeirão Preto, SP, Brazil
| | - Theo Gremen M Oliveira
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
| | | | - Gil Cunha De Santis
- Fundação Hemocentro de Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, (HC FMRPUSP) Ribeirão Preto, SP, Brazil
| | - Martin Hernan Bonamino
- Divisão de Pesquisa Experimental e Translacional, Instituto Nacional do Câncer (INCA), Rio de Janeiro, RJ, Brazil; Vice-Presidência de Pesquisa e Coleções Biológicas da Fundação Oswaldo Cruz ((VPPCB FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Vanderson Rocha
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil; Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil.
| |
Collapse
|
249
|
Ding Y, Li Y, Sun Z, Han X, Chen Y, Ge Y, Mao Z, Wang W. Cell-derived extracellular vesicles and membranes for tissue repair. J Nanobiotechnology 2021; 19:368. [PMID: 34789267 PMCID: PMC8600774 DOI: 10.1186/s12951-021-01113-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
Humans have a limited postinjury regenerative ability. Therefore, cell-derived biomaterials have long been utilized for tissue repair. Cells with multipotent differentiation potential, such as stem cells, have been administered to patients for the treatment of various diseases. Researchers expected that these cells would mediate tissue repair and regeneration through their multipotency. However, increasing evidence has suggested that in most stem cell therapies, the paracrine effect but not cell differentiation or regeneration is the major driving force of tissue repair. Additionally, ethical and safety problems have limited the application of stem cell therapies. Therefore, nonliving cell-derived techniques such as extracellular vesicle (EV) therapy and cell membrane-based therapy to fulfil the unmet demand for tissue repair are important. Nonliving cell-derived biomaterials are safer and more controllable, and their efficacy is easier to enhance through bioengineering approaches. Here, we described the development and evolution from cell therapy to EV therapy and cell membrane-based therapy for tissue repair. Furthermore, the latest advances in nonliving cell-derived therapies empowered by advanced engineering techniques are emphatically reviewed, and their potential and challenges in the future are discussed.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Yanjie Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Xin Han
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Yao Ge
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Zhengwei Mao
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
250
|
Rees HA, Minella AC, Burnett CA, Komor AC, Gaudelli NM. CRISPR-derived genome editing therapies: Progress from bench to bedside. Mol Ther 2021; 29:3125-3139. [PMID: 34619370 PMCID: PMC8572140 DOI: 10.1016/j.ymthe.2021.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The development of CRISPR-derived genome editing technologies has enabled the precise manipulation of DNA sequences within the human genome. In this review, we discuss the initial development and cellular mechanism of action of CRISPR nucleases and DNA base editors. We then describe factors that must be taken into consideration when developing these tools into therapeutic agents, including the potential for unintended and off-target edits when using these genome editing tools, and methods to characterize these types of edits. We finish by considering specific challenges associated with bringing a CRISPR-based therapy to the clinic, including manufacturing, regulatory oversight, and considerations for clinical trials that involve genome editing agents.
Collapse
|