201
|
Lenoir O, Jasiek M, Hénique C, Guyonnet L, Hartleben B, Bork T, Chipont A, Flosseau K, Bensaada I, Schmitt A, Massé JM, Souyri M, Huber TB, Tharaux PL. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 2016; 11:1130-45. [PMID: 26039325 DOI: 10.1080/15548627.2015.1049799] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN.
Collapse
Key Words
- BUN, blood urea nitrogen
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- Cdh5, cadherin 5
- DM, diabetes mellitus
- DN, diabetic nephropathy
- ESRD, end-stage renal disease
- GBM, glomerular basement membrane
- GEC, glomerular endothelial cells
- GFB, glomerular filtration barrier
- MAP1LC3A/B/LC3A/B), microtubule-associated protein 1 light chain 3 α/β
- MTOR, mechanistic target of rapamycin
- Nphs2, nephrosis 2, podocin
- SQSTM1, sequestosome 1
- STZ, streptozotocin
- TEM, transmission electron microscopy
- TUBA, tubulin
- autophagy
- diabetic nephropathy
- endothelial cells
- podocytes
- proteinuria
- sclerosis
- α, WT1, Wilms tumor 1
Collapse
Affiliation(s)
- Olivia Lenoir
- a Paris Cardiovascular Research Center; Institut National de la Santé et de la Recherche Médicale (INSERM) ; Paris , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
PURPOSE OF REVIEW The glomerulus is a unique structure required for filtration of blood, while retaining plasma proteins based on size and charge selectivity. Distinct cell types form the structural unit that creates the filtration barrier. Structurally, fenestrated endothelial cells line the capillary loops and lie in close contact with mesangial cells. Podocytes are connected by specialized intercellular junctions known as slit diaphragms and separated from the endothelial compartment by the glomerular basement membrane. In order for this highly specialized structure to function, cross-communication between these cells must occur. RECENT FINDINGS Although classical studies have established key roles for vascular endothelial and platelet-derived growth factors in glomerular cross-communication, novel paracrine signaling pathways within the glomerulus have recently been identified. In addition, unique cellular pathways of established signaling cascades have been identified that are important for maintaining glomerular barrier function in health and disease. SUMMARY Here, we will review our current understanding of the processes of cross-communication between the unique cellular constituents forming the glomerular filtration unit. We will highlight recent findings of cellular crosstalk via signaling pathways that regulate glomerular barrier function in pathophysiological conditions.
Collapse
|
203
|
Gene control of tyrosine kinase TIE2 and vascular manifestations of infections. Proc Natl Acad Sci U S A 2016; 113:2472-7. [PMID: 26884170 DOI: 10.1073/pnas.1519467113] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligands of the endothelial-enriched tunica interna endothelial cell kinase 2 (Tie2) are markedly imbalanced in severe infections associated with vascular leakage, yet regulation of the receptor itself has been understudied in this context. Here, we show that TIE2 gene expression may constitute a novel vascular barrier control mechanism in diverse infections. Tie2 expression declined rapidly in wide-ranging models of leak-associated infections, including anthrax, influenza, malaria, and sepsis. Forced Tie2 suppression sufficed to attenuate barrier function and sensitize endothelium to permeability mediators. Rapid reduction of pulmonary Tie2 in otherwise healthy animals attenuated downstream kinase signaling to the barrier effector vascular endothelial (VE)-cadherin and induced vascular leakage. Compared with wild-type littermates, mice possessing one allele of Tie2 suffered more severe vascular leakage and higher mortality in two different sepsis models. Common genetic variants that influence TIE2 expression were then sought in the HapMap3 cohort. Remarkably, each of the three strongest predicted cis-acting SNPs in HapMap3 was also associated with the risk of acute respiratory distress syndrome (ARDS) in an intensive care unit cohort of 1,614 subjects. The haplotype associated with the highest TIE2 expression conferred a 28% reduction in the risk of ARDS independent of other major clinical variables, including disease severity. In contrast, the most common haplotype was associated with both the lowest TIE2 expression and 31% higher ARDS risk. Together, the results implicate common genetic variation at the TIE2 locus as a determinant of vascular leak-related clinical outcomes from common infections, suggesting new tools to identify individuals at unusual risk for deleterious complications of infection.
Collapse
|
204
|
Aguirre Palma LM, Flamme H, Gerke I, Kreuzer KA. Angiopoietins Modulate Survival, Migration, and the Components of the Ang-Tie2 Pathway of Chronic Lymphocytic Leukaemia (CLL) Cells In Vitro. CANCER MICROENVIRONMENT 2016; 9:13-26. [PMID: 26846110 DOI: 10.1007/s12307-016-0180-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/24/2016] [Indexed: 12/15/2022]
Abstract
In actuality, chronic lymphocytic leukaemia (CLL) remains an incurable haematopoietic malignancy of high prevalence amongst elderly populations in the West. Malignant CLL cells characteristically accumulate in the peripheral blood, bone marrow, lymph nodes, and spleen of CLL patients. There is evidence that CLL cells express Ang2 and Tie1, two central components of the Ang-Tie2 pro-angiogenic pathway. Central to blood vessel development and maintenance, at present it remains unclear how the Ang-Tie2 pathway modulates CLL pathophysiology. Here we evaluate the status of the Ang-Tie2 pathway in CLL cells and assess Ang1 levels in plasma/cell medium from CLL samples. To understand how angiopoietins in the microenvironment regulate the components of Ang-Tie2 pathway, survival, migration, and metabolic fitness of CLL cells, we exposed CLL cells to recombinant angiopoietins. CLL plasma and CLL cells in culture present significant lower levels of Ang1. CLL cells simultaneously express Ang1, Ang2, and Tie1 mRNA, but lack that of Tie2 and its regulator, VE-PTP. Exposure to Ang1 confers survival advantage in the long-term, whereas Ang2 and trebananib, an angiopoietin blocker, proved detrimental. Angiopoietins differentially modulate expression of Ang1, Ang2, and Tie1 transcripts. Ang2, but not Ang1, induces the concomitant and transient expression of Tie2 and VE-PTP mRNA. Both angiopoietins, particularly Ang2, increase CLL-Tie1 expression and Ang1 clearly induces chemotaxis and transendothelial-like migration of CLL cells. Besides, changes in caspase and ATP content corroborate the sensitivity of CLL cells to angiopoietin exposure. Altogether, this work shows that angiopoietins regulate the fate of CLL cells in a Tie2-independent manner and highlights the potential of the Ang-Tie2 pathway as a therapeutic target in CLL research.
Collapse
Affiliation(s)
| | - Hanna Flamme
- Department I of Internal Medicine, University at Cologne, Kerpener Strasse 62, Cologne, Germany
| | - Iris Gerke
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University at Cologne, Kerpener Strasse 62, Cologne, Germany.
| |
Collapse
|
205
|
Lee PH, Kim BG, Seo HJ, Park JS, Lee JH, Park SW, Kim DJ, Park HS, Park CS, Jang AS. Circulating angiopoietin-1 and -2 in patients with stable and exacerbated asthma. Ann Allergy Asthma Immunol 2016; 116:339-43. [PMID: 26776887 DOI: 10.1016/j.anai.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/11/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Angiopoietin (Ang)-1 and -2 are involved in the pathogenesis of asthma and have been identified as markers of asthma severity. OBJECTIVE To determine the relation between circulating angiopoietins and clinical variables of patients with asthma. METHODS Fifty patients with bronchial asthma and 25 healthy controls were enrolled. Ang1 and Ang2 plasma levels were analyzed in patients with stable and exacerbated asthma. RESULTS Plasma Ang1 levels were 28.4 ± 4.01 pg/mg in patients with bronchial asthma and 21.2 ± 5.21 pg/mg in healthy controls. Plasma Ang2 levels were 23.96 ± 1.38 pg/mg in patients with bronchial asthma compared with 36.8 ± 4.46 pg/mg in healthy controls (P = .010). The ratio of Ang2 to Ang1 was lower in patients with asthma than in control subjects. Plasma Ang1 concentrations were correlated with the ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC), and plasma Ang2 levels were correlated with FEV1 percentage of predicted, FEV1/FVC, and total immunoglobulin E values. The ratio of Ang2 to Ang1 was correlated with FEV1 percentage of predicted and FEV1/FVC. Although plasma Ang1 levels tended to be lower in the exacerbated state than in the stable state in patients with asthma, Ang2 levels were higher in the exacerbated state than in the stable state in patients with asthma (P = .001). Plasma Ang2 levels were correlated with initial eosinophil proportions and initial neutrophil proportions. Plasma Ang2 levels and the ratio of Ang2 to Ang1 were correlated with blood eosinophil proportions in the exacerbated state. CONCLUSION These results indicate that circulating angiopoietins could be a useful marker of asthma exacerbation.
Collapse
Affiliation(s)
- Pureun-Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Byeong-Gon Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Hyun-Jeong Seo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jong-Sook Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - June-Hyuck Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Sung-Woo Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Do-Jin Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Choon-Sik Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea.
| |
Collapse
|
206
|
Susaki E, Ueda H. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chem Biol 2016; 23:137-157. [DOI: 10.1016/j.chembiol.2015.11.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/29/2022]
|
207
|
El-Nabarawy EA, El-Hanafy GM, Rashed LA, Yasin FS. Expression of angiopoietin-1, angiopoietin-2, and their receptor Tie2 in verruca vulgaris (common skin warts). Int J Dermatol 2015; 55:e327-31. [PMID: 26695562 DOI: 10.1111/ijd.13191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/15/2015] [Accepted: 08/22/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Angiogenesis and vasodilatation are reported associated with the development of verruca vulgaris, yet vascular endothelial growth factor overexpression was not detected in the lesions of common warts. Angiopoietins, as angiogenesis factors, have not been studied before in warts. OBJECTIVES To assess tissue expression of angiopoietin 1 (Ang1), angiopoietin 2 (Ang2), and their receptor Tie2 in the lesions of common warts to try to identify their role as pro-angiogenic factors in the development of these lesions. PATIENTS AND METHODS Fifty patients with common skin warts and 50 age- and sex-matched controls were included in this study. Four millimeter punch skin biopsies were taken from warts and from normal skin of controls for the detection of gene expression of Ang1, Ang2, and Tie2 using real-time polymerase chain reaction. RESULTS The mean levels of Ang1, Ang2, and Tie2 were significantly higher in the lesions of common warts compared to the normal skin of controls (P < 0.001 for all). CONCLUSIONS Upregulation of Ang1, Ang2, and Tie2 seems to play a possible role in the angiogenesis associated with common skin warts.
Collapse
Affiliation(s)
- Eman A El-Nabarawy
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ghada M El-Hanafy
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department ofMedical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fatma S Yasin
- Department of Dermatology, Bani Sweif Hospital, Cairo, Egypt
| |
Collapse
|
208
|
Abstract
Kidney glomeruli ultrafilter blood to generate urine and they are dysfunctional in a variety of kidney diseases. There are two key vascular growth factor families implicated in glomerular biology and function, namely the vascular endothelial growth factors (VEGFs) and the angiopoietins (Angpt). We present examples showing not only how these molecules help generate and maintain healthy glomeruli but also how they drive disease when their expression is dysregulated. Finally, we review how manipulating VEGF and Angpt signalling may be used to treat glomerular disease.
Collapse
|
209
|
Abstract
Diabetic nephropathy is rapidly becoming the major cause of end-stage renal disease and cardiovascular mortality worldwide. Standard of care therapies include strict glycemic control and blockade of the renin-angiotensin-aldosterone axis. While these treatments slow progression of diabetic nephropathy, they do not arrest or reverse it. Newer therapies targeting multiple molecular pathways involved in renal inflammation, fibrosis, and oxidative stress have shown promise in animal models. Subsequently, many of these agents have been investigated in clinical human trials with mixed results. In this review, we will discuss recent findings of novel agents used in the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Sadaf S Khan
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, 303 East Superior Lurie Building, 10th Floor, Chicago, IL, 60611, USA.
| | - Susan E Quaggin
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, 303 East Superior Lurie Building, 10th Floor, Chicago, IL, 60611, USA
| |
Collapse
|
210
|
Balaji S, Han N, Moles C, Shaaban AF, Bollyky PL, Crombleholme TM, Keswani SG. Angiopoietin-1 improves endothelial progenitor cell-dependent neovascularization in diabetic wounds. Surgery 2015; 158:846-56. [PMID: 26266763 DOI: 10.1016/j.surg.2015.06.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The diabetic phenotype of wound healing is in part characterized by impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Angiopoietin-1 (Ang-1) is a potent mobilizer of EPCs from the bone marrow (BM). A suggested mechanism for EPC mobilization from the BM is mediated by matrix metalloproteinase 9 (MMP-9) and stem cell factor (SCF). Taken together, we hypothesized that overexpression of Ang-1 in diabetic wounds will recruit EPCs and improve neovascularization and wound healing. METHODS An endothelial lineage BM-labeled murine model of diabetes was developed to track BM-derived EPCs. FVBN mice were lethally irradiated and then reconstituted with BM from syngeneic Tie2/LacZ donor mice. Diabetes was induced with streptozotocin. Dorsal wounds in BM-transplanted mice were treated with Ad-Ang-1, Ad-GFP, or phosphate-buffered saline. At day 7 after injury, wounds were harvested and analyzed. A similar experiment was conducted in EPC mobilization deficient MMP-9 -/- mice to determine whether the effects of Ang-1 were EPC-dependent. RESULTS Overexpression of Ang-1 resulted in greatly improved re-epithelialization, neovascularization, and EPC recruitment in diabetic BM-transplanted wounds at day 7. Ang-1 treatment resulted in increased serum levels of proMMP-9 and SCF but had no effect on vascular endothelial growth factor levels. According to our FACS results, peripheral blood EPC (CD34(+)/Cd133(+)/Flk1(+)) counts at day 3 after wounding showed impaired EPC mobilization in MMP-9 -/- mice compared with those of wild-type controls. EPC mobilization was rescued by SCF administration, validating this model for EPC-mobilization-deficient mechanistic studies. In MMP-9 -/- mice, Ad-Ang-1 accelerated re-epithelialization in a similar manner, but had no effect on neovascularization. CONCLUSION Our results show that Ang-1 administration results in improved neovascularization which is dependent on EPC recruitment and has direct effects on wound re-epithelialization. These data may represent a novel strategy to correct the phenotype of impaired diabetic neovascularization and may improve diabetic wound healing.
Collapse
Affiliation(s)
- Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Nate Han
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chad Moles
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Aimen F Shaaban
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Timothy M Crombleholme
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Center for Children's Surgery, Children's Hospital Colorado and the University of Colorado School of Medicine, Aurora, CO
| | - Sundeep G Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
211
|
A Designed Angiopoietin-1 Variant, Dimeric CMP-Ang1 Activates Tie2 and Stimulates Angiogenesis and Vascular Stabilization in N-glycan Dependent Manner. Sci Rep 2015; 5:15291. [PMID: 26478188 PMCID: PMC4609988 DOI: 10.1038/srep15291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023] Open
Abstract
Angiopoietin-1 (Ang1), a potential growth factor for therapeutic angiogenesis and vascular stabilization, is known to specifically cluster and activate Tie2 in high oligomeric forms, which is a unique and essential process in this ligand-receptor interaction. However, highly oligomeric native Ang1 and Ang1 variants are difficult to produce, purify, and store in a stable and active form. To overcome these limitations, we developed a simple and active dimeric CMP-Ang1 by replacing the N-terminal of native Ang1 with the coiled-coil domain of cartilage matrix protein (CMP) bearing mutations in its cysteine residues. This dimeric CMP-Ang1 effectively increased the migration, survival, and tube formation of endothelial cells via Tie2 activation. Furthermore, dimeric CMP-Ang1 induced angiogenesis and suppressed vascular leakage in vivo. Despite its dimeric structure, the potencies of such Tie2-activation-induced effects were comparable to those of a previously engineered protein, COMP-Ang1. We also revealed that these effects of dimeric CMP-Ang1 were affected by specified N-glycosylation in its fibrinogen-like domain. Taken together, our results indicate that dimeric CMP-Ang1 is capable of activating Tie2 and stimulating angiogenesis in N-glycan dependent manner.
Collapse
|
212
|
Mechanisms of Vessel Pruning and Regression. Dev Cell 2015; 34:5-17. [PMID: 26151903 DOI: 10.1016/j.devcel.2015.06.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 01/27/2023]
Abstract
The field of angiogenesis research has primarily focused on the mechanisms of sprouting angiogenesis. Yet vascular networks formed by vessel sprouting subsequently undergo extensive vascular remodeling to form a functional and mature vasculature. This "trimming" includes distinct processes of vascular pruning, the regression of selected vascular branches. In some situations complete vascular networks may undergo physiological regression. Vessel regression is an understudied yet emerging field of research. This review summarizes the state-of-the-art of vessel pruning and regression with a focus on the cellular processes and the molecular regulators of vessel maintenance and regression.
Collapse
|
213
|
Abstract
The vascular and the nervous system are responsible for oxygen, nutrient, and information transfer and thereby constitute highly important communication systems in higher organisms. These functional similarities are reflected at the anatomical, cellular, and molecular levels, where common developmental principles and mutual crosstalks have evolved to coordinate their action. This resemblance of the two systems at different levels of complexity has been termed the "neurovascular link." Most of the evidence demonstrating neurovascular interactions derives from studies outside the CNS and from the CNS tissue of the retina. However, little is known about the specific properties of the neurovascular link in the brain. Here, we focus on regulatory effects of molecules involved in the neurovascular link on angiogenesis in the periphery and in the brain and distinguish between general and CNS-specific cues for angiogenesis. Moreover, we discuss the emerging molecular interactions of these angiogenic cues with the VEGF-VEGFR-Delta-like ligand 4 (Dll4)-Jagged-Notch pathway.
Collapse
|
214
|
Garcia NA, Ontoria-Oviedo I, González-King H, Diez-Juan A, Sepúlveda P. Glucose Starvation in Cardiomyocytes Enhances Exosome Secretion and Promotes Angiogenesis in Endothelial Cells. PLoS One 2015; 10:e0138849. [PMID: 26393803 PMCID: PMC4578916 DOI: 10.1371/journal.pone.0138849] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/06/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiomyocytes (CMs) and endothelial cells (ECs) have an intimate anatomical relationship that is essential for maintaining normal development and function in the heart. Little is known about the mechanisms that regulate cardiac and endothelial crosstalk, particularly in situations of acute stress when local active processes are required to regulate endothelial function. We examined whether CM-derived exosomes could modulate endothelial function. Under conditions of glucose deprivation, immortalized H9C2 cardiomyocytes increase their secretion of exosomes. CM-derived exosomes are loaded with a broad repertoire of miRNA and proteins in a glucose availability-dependent manner. Gene Ontology (GO) analysis of exosome cargo molecules identified an enrichment of biological process that could alter EC activity. We observed that addition of CM-derived exosomes to ECs induced changes in transcriptional activity of pro-angiogenic genes. Finally, we demonstrated that incubation of H9C2-derived exosomes with ECs induced proliferation and angiogenesis in the latter. Thus, exosome-mediated communication between CM and EC establishes a functional relationship that could have potential implications for the induction of local neovascularization during acute situations such as cardiac injury.
Collapse
Affiliation(s)
- Nahuel A. Garcia
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Imelda Ontoria-Oviedo
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Hernán González-King
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Antonio Diez-Juan
- Fundación IVI/INCLIVA, Valencia, Spain
- IGENOMIX, Valencia, Spain
- * E-mail: (PS); (ADJ)
| | - Pilar Sepúlveda
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe- Centro de Investigación Príncipe Felipe, Valencia, Spain
- * E-mail: (PS); (ADJ)
| |
Collapse
|
215
|
Anderson GA, Udan RS, Dickinson ME, Henkelman RM. Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics. PLoS One 2015; 10:e0137175. [PMID: 26340748 PMCID: PMC4560395 DOI: 10.1371/journal.pone.0137175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
Background Vascular patterning depends on coordinated timing of arteriovenous specification of endothelial cells and the concomitant hemodynamic forces supplied by the onset of cardiac function. Using a combination of 3D imaging by OPT and embryo registration techniques, we sought to identify structural differences between three different mouse models of cardiovascular perturbation. Results Endoglin mutant mice shared a high degree of similarity to Mlc2a mutant mice, which have been shown to have a primary developmental heart defect causing secondary vessel remodeling failures. Dll4 mutant mice, which have well-characterized arterial blood vessel specification defects, showed distinct differences in vascular patterning when compared to the disruptions seen in Mlc2a-/- and Eng-/- models. While Mlc2a-/- and Eng-/- embryos exhibited significantly larger atria than wild-type, Dll4-/- embryos had significantly smaller hearts than wild-type, but this quantitative volume decrease was not limited to the developing atrium. Dll4-/- embryos also had atretic dorsal aortae and smaller trunks, suggesting that the cardiac abnormalities were secondary to primary arterial blood vessel specification defects. Conclusions The similarities in Eng-/- and Mlc2a-/- embryos suggest that Eng-/- mice may suffer from a primary heart developmental defect and secondary defects in vessel patterning, while defects in Dll4-/- embryos are consistent with primary defects in vessel patterning.
Collapse
Affiliation(s)
- Gregory A. Anderson
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital For Sick Children, Toronto, Ontario, Canada
- * E-mail:
| | - Ryan S. Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - R. Mark Henkelman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital For Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
216
|
Johnson SA, Spurney RF. Twenty years after ACEIs and ARBs: emerging treatment strategies for diabetic nephropathy. Am J Physiol Renal Physiol 2015; 309:F807-20. [PMID: 26336162 DOI: 10.1152/ajprenal.00266.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of both type 1 and type 2 diabetes mellitus. The disease is now the most common cause of end-stage kidney disease (ESKD) in developed countries, and both the incidence and prevalence of diabetes mellitus is increasing worldwide. Current treatments are directed at controlling hyperglycemia and hypertension, as well as blockade of the renin angiotensin system with angiotensin-converting enzyme inhibitors (ACEIs), and angiotensin receptor blockers. Despite these therapies, DN progresses to ESKD in many patients. As a result, much interest is focused on developing new therapies. It has been over two decades since ACEIs were shown to have beneficial effects in DN independent of their blood pressure-lowering actions. Since that time, our understanding of disease mechanisms in DN has evolved. In this review, we summarize major cell signaling pathways implicated in the pathogenesis of diabetic kidney disease, as well as emerging treatment strategies. The goal is to identify promising targets that might be translated into therapies for the treatment of patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Stacy A Johnson
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| |
Collapse
|
217
|
Nätynki M, Kangas J, Miinalainen I, Sormunen R, Pietilä R, Soblet J, Boon LM, Vikkula M, Limaye N, Eklund L. Common and specific effects of TIE2 mutations causing venous malformations. Hum Mol Genet 2015; 24:6374-89. [PMID: 26319232 DOI: 10.1093/hmg/ddv349] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Venous malformations (VMs) are localized defects in vascular morphogenesis frequently caused by mutations in the gene for the endothelial tyrosine kinase receptor TIE2. Here, we report the analysis of a comprehensive collection of 22 TIE2 mutations identified in patients with VM, either as single amino acid substitutions or as double-mutations on the same allele. Using endothelial cell (EC) cultures, mouse models and ultrastructural analysis of tissue biopsies from patients, we demonstrate common as well as mutation-specific cellular and molecular features, on the basis of which mutations cluster into categories that correlate with data from genetic studies. Comparisons of double-mutants with their constituent single-mutant forms identified the pathogenic contributions of individual changes, and their compound effects. We find that defective receptor trafficking and subcellular localization of different TIE2 mutant forms occur via a variety of mechanisms, resulting in attenuated response to ligand. We also demonstrate, for the first time, that TIE2 mutations cause chronic activation of the MAPK pathway resulting in loss of normal EC monolayer due to extracellular matrix (ECM) fibronectin deficiency and leading to upregulation of plasminogen/plasmin proteolytic pathway. Corresponding EC and ECM irregularities are observed in affected tissues from mouse models and patients. Importantly, an imbalance between plasminogen activators versus inhibitors would also account for high d-dimer levels, a major feature of unknown cause that distinguishes VMs from other vascular anomalies.
Collapse
Affiliation(s)
- Marjut Nätynki
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jaakko Kangas
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Raija Sormunen
- Biocenter Oulu, University of Oulu, Oulu, Finland, Department of Pathology and Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Riikka Pietilä
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Julie Soblet
- Human Molecular Genetics, de Duve Institute, and
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, and Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | - Nisha Limaye
- Human Molecular Genetics, de Duve Institute, and
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland,
| |
Collapse
|
218
|
Boscolo E, Limaye N, Huang L, Kang KT, Soblet J, Uebelhoer M, Mendola A, Natynki M, Seront E, Dupont S, Hammer J, Legrand C, Brugnara C, Eklund L, Vikkula M, Bischoff J, Boon LM. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest 2015; 125:3491-504. [PMID: 26258417 DOI: 10.1172/jci76004] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/02/2015] [Indexed: 01/19/2023] Open
Abstract
Venous malformations (VMs) are composed of ectatic veins with scarce smooth muscle cell coverage. Activating mutations in the endothelial cell tyrosine kinase receptor TIE2 are a common cause of these lesions. VMs cause deformity, pain, and local intravascular coagulopathy, and they expand with time. Targeted pharmacological therapies are not available for this condition. Here, we generated a model of VMs by injecting HUVECs expressing the most frequent VM-causing TIE2 mutation, TIE2-L914F, into immune-deficient mice. TIE2-L914F-expressing HUVECs formed VMs with ectatic blood-filled channels that enlarged over time. We tested both rapamycin and a TIE2 tyrosine kinase inhibitor (TIE2-TKI) for their effects on murine VM expansion and for their ability to inhibit mutant TIE2 signaling. Rapamycin prevented VM growth, while TIE2-TKI had no effect. In cultured TIE2-L914F-expressing HUVECs, rapamycin effectively reduced mutant TIE2-induced AKT signaling and, though TIE2-TKI did target the WT receptor, it only weakly suppressed mutant-induced AKT signaling. In a prospective clinical pilot study, we analyzed the effects of rapamycin in 6 patients with difficult-to-treat venous anomalies. Rapamycin reduced pain, bleeding, lesion size, functional and esthetic impairment, and intravascular coagulopathy. This study provides a VM model that allows evaluation of potential therapeutic strategies and demonstrates that rapamycin provides clinical improvement in patients with venous malformation.
Collapse
|
219
|
Syrjälä SO, Nykänen AI, Tuuminen R, Raissadati A, Keränen MAI, Arnaudova R, Krebs R, Koh GY, Alitalo K, Lemström KB. Donor Heart Treatment With COMP-Ang1 Limits Ischemia-Reperfusion Injury and Rejection of Cardiac Allografts. Am J Transplant 2015; 15:2075-84. [PMID: 25932532 DOI: 10.1111/ajt.13296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/01/2015] [Accepted: 02/17/2015] [Indexed: 01/25/2023]
Abstract
The major cause of death during the first year after heart transplantation is primary graft dysfunction due to preservation and ischemia-reperfusion injury (IRI). Angiopoietin-1 is a Tie2 receptor-binding paracrine growth factor with anti-inflammatory properties and indispensable roles in vascular development and stability. We used a stable variant of angiopoietin-1 (COMP-Ang1) to test whether ex vivo intracoronary treatment with a single dose of COMP-Ang1 in donor Dark Agouti rat heart subjected to 4-h cold ischemia would prevent microvascular dysfunction and inflammatory responses in the fully allogeneic recipient Wistar Furth rat. COMP-Ang1 reduced endothelial cell-cell junction disruption of the donor heart in transmission electron microscopy during 4-h cold ischemia, improved myocardial reflow, and reduced microvascular leakage and cardiomyocyte injury of transplanted allografts during IRI. Concurrently, the treatment reduced expression of danger signals, dendritic cell maturation markers, endothelial cell adhesion molecule VCAM-1 and RhoA/Rho-associated protein kinase activation and the influx of macrophages and neutrophils. Furthermore, COMP-Ang1 treatment provided sustained anti-inflammatory effects during acute rejection and prevented the development of cardiac fibrosis and allograft vasculopathy. These results suggest donor heart treatment with COMP-Ang1 having important clinical implications in the prevention of primary and subsequent long-term injury and dysfunction in cardiac allografts.
Collapse
Affiliation(s)
- S O Syrjälä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - A I Nykänen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - R Tuuminen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - A Raissadati
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - M A I Keränen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - R Arnaudova
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - R Krebs
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - G Y Koh
- Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - K Alitalo
- Wihuri Research Institute, Translational Cancer Biology Program and Helsinki University Central Hospital, Helsinki, Finland
| | - K B Lemström
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
220
|
Winkler EA, Sagare AP, Zlokovic BV. The pericyte: a forgotten cell type with important implications for Alzheimer's disease? Brain Pathol 2015; 24:371-86. [PMID: 24946075 DOI: 10.1111/bpa.12152] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022] Open
Abstract
Pericytes are cells in the blood-brain barrier (BBB) that degenerate in Alzheimer's disease (AD), a neurodegenerative disorder characterized by early neurovascular dysfunction, elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss, leading to progressive cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies have shown that pericytes regulate key neurovascular functions including BBB formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow, and clearance of toxic cellular by-products necessary for normal functioning of the central nervous system (CNS). Here, we review the concept of the neurovascular unit and neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD and review new roles of pericytes in the pathogenesis of AD such as vascular-mediated Aβ-independent neurodegeneration, regulation of Aβ clearance and contributions to tau pathology, neuronal loss and cognitive decline. We conclude that future studies should focus on molecular mechanisms and pathways underlying aberrant signal transduction between pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells, astrocytes and neurons, which could represent potential therapeutic targets to control pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.
Collapse
Affiliation(s)
- Ethan A Winkler
- Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, CA; Department of Neurosurgery, University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
221
|
Abstract
The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.
Collapse
Affiliation(s)
- Rizaldy P Scott
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
222
|
Abstract
Chronic rejection of transplanted organs remains the main obstacle in the long-term success of organ transplantation. Thus, there is a persistent quest for development of antichronic rejection therapies and identification of novel molecular and cellular targets. One of the potential targets is the pericytes, the mural cells of microvessels, which regulate microvascular permeability, development, and maturation by controlling endothelial cell functions and regulating tissue fibrosis and inflammatory response. In this review, we discuss the potential of targeting pericytes in the development of microvasular dysfunction and the molecular pathways involved in regulation of pericyte activities for antichronic rejection intervention.
Collapse
|
223
|
Huang JL, Woolf AS, Kolatsi-Joannou M, Baluk P, Sandford RN, Peters DJM, McDonald DM, Price KL, Winyard PJD, Long DA. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol 2015; 27:69-77. [PMID: 26038530 DOI: 10.1681/asn.2014090856] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/11/2015] [Indexed: 12/29/2022] Open
Abstract
Polycystic kidney diseases (PKD) are genetic disorders characterized by progressive epithelial cyst growth leading to destruction of normally functioning renal tissue. Current therapies have focused on the cyst epithelium, and little is known about how the blood and lymphatic microvasculature modulates cystogenesis. Hypomorphic Pkd1(nl/nl) mice were examined, showing that cystogenesis was associated with a disorganized pericystic network of vessels expressing platelet/endothelial cell adhesion molecule 1 and vascular endothelial growth factor receptor 3 (VEGFR3). The major ligand for VEGFR3 is VEGFC, and there were lower levels of Vegfc mRNA within the kidneys during the early stages of cystogenesis in 7-day-old Pkd1(nl/nl) mice. Seven-day-old mice were treated with exogenous VEGFC for 2 weeks on the premise that this would remodel both the VEGFR3(+) pericystic vascular network and larger renal lymphatics that may also affect the severity of PKD. Treatment with VEGFC enhanced VEGFR3 phosphorylation in the kidney, normalized the pattern of the pericystic network of vessels, and widened the large lymphatics in Pkd1(nl/nl) mice. These effects were associated with significant reductions in cystic disease, BUN and serum creatinine levels. Furthermore, VEGFC administration reduced M2 macrophage pericystic infiltrate, which has been implicated in the progression of PKD. VEGFC administration also improved cystic disease in Cys1(cpk/cpk) mice, a model of autosomal recessive PKD, leading to a modest but significant increase in lifespan. Overall, this study highlights VEGFC as a potential new treatment for some aspects of PKD, with the possibility for synergy with current epithelially targeted approaches.
Collapse
Affiliation(s)
- Jennifer L Huang
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom
| | - Peter Baluk
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, California
| | - Richard N Sandford
- Academic Department of Medical Genetics, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; and
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Donald M McDonald
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, California
| | - Karen L Price
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom
| | - Paul J D Winyard
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom;
| |
Collapse
|
224
|
Unwrapping the origins and roles of the renal endothelium. Pediatr Nephrol 2015; 30:865-72. [PMID: 24633402 PMCID: PMC4164630 DOI: 10.1007/s00467-014-2798-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
The renal vasculature, like all vessels, is lined by a thin layer of simple squamous epithelial cells called an endothelium. These endothelial-lined vessels can be subdivided into four major compartments: arteries, veins, capillaries and lymphatics. The renal vasculature is a highly integrated network that forms through the active processes of angiogenesis and vasculogenesis. Determination of the precise contribution of these two processes and of the molecular signaling that governs the differentiation, specification and maturation of these critical cell populations is the focus of an actively evolving field of research. Although much of the focus has concentrated on the origin of the glomerular capillaries, in this review we extend the investigation to the origins of the endothelial cells throughout the entire kidney and the signaling events that cause their distinct functional and molecular profiles. A thorough understanding of endothelial cell biology may play a critical role in a better understanding of renal vascular diseases.
Collapse
|
225
|
Making Blood: The Haematopoietic Niche throughout Ontogeny. Stem Cells Int 2015; 2015:571893. [PMID: 26113865 PMCID: PMC4465740 DOI: 10.1155/2015/571893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/10/2015] [Indexed: 01/06/2023] Open
Abstract
Approximately one-quarter of all cells in the adult human body are blood cells. The haematopoietic system is therefore massive in scale and requires exquisite regulation to be maintained under homeostatic conditions. It must also be able to respond when needed, such as during infection or following blood loss, to produce more blood cells. Supporting cells serve to maintain haematopoietic stem and progenitor cells during homeostatic and pathological conditions. This coalition of supportive cell types, organised in specific tissues, is termed the haematopoietic niche. Haematopoietic stem and progenitor cells are generated in a number of distinct locations during mammalian embryogenesis. These stem and progenitor cells migrate to a variety of anatomical locations through the conceptus until finally homing to the bone marrow shortly before birth. Under stress, extramedullary haematopoiesis can take place in regions that are typically lacking in blood-producing activity. Our aim in this review is to examine blood production throughout the embryo and adult, under normal and pathological conditions, to identify commonalities and distinctions between each niche. A clearer understanding of the mechanism underlying each haematopoietic niche can be applied to improving ex vivo cultures of haematopoietic stem cells and potentially lead to new directions for transplantation medicine.
Collapse
|
226
|
Cogle CR, Bosse RC, Brewer T, Migdady Y, Shirzad R, Kampen KR, Saki N. Acute myeloid leukemia in the vascular niche. Cancer Lett 2015; 380:552-560. [PMID: 25963886 DOI: 10.1016/j.canlet.2015.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/26/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
The greatest challenge in treating acute myeloid leukemia (AML) is refractory disease. With approximately 60-80% of AML patients dying of relapsed disease, there is an urgent need to define and target mechanisms of drug resistance. Unfortunately, targeting cell-intrinsic resistance has failed to improve clinical outcomes in AML. Emerging data show that cell-extrinsic factors in the bone marrow microenvironment protect and support AML cells. The vascular niche, in particular, regulates AML cell survival and cell cycling by both paracrine secretion and adhesive contact with endothelial cells. Moreover, AML cells can functionally integrate within vascular endothelia, undergo quiescence, and resist cytotoxic chemotherapy. Together, these findings support the notion of blood vessels as sanctuary sites for AML. Therefore, vascular targeting agents may serve to remit AML. Several early phase clinical trials have tested anti-angiogenic agents, leukemia mobilizing agents, and vascular disrupting agents in AML patients. In general, these agents can be safely administered to AML patients and cardiovascular side effects were reported. Response rates to vascular targeting agents in AML have been modest; however, a majority of vascular targeting trials in AML are monotherapy in design and indiscriminate in patient recruitment. When considering the chemosensitizing effects of targeting the microenvironment, there is a strong rationale to build upon these early phase clinical trials and initiate phase IB/II trials of combination therapy where vascular targeting agents are positioned as priming agents for cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Raphael C Bosse
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Takae Brewer
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yazan Migdady
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Reza Shirzad
- Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kim Rosalie Kampen
- Department of Pediatric Oncology/Hematology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Najmaldin Saki
- Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
227
|
Venner JM, Hidalgo LG, Famulski KS, Chang J, Halloran PF. The molecular landscape of antibody-mediated kidney transplant rejection: evidence for NK involvement through CD16a Fc receptors. Am J Transplant 2015; 15:1336-48. [PMID: 25787894 DOI: 10.1111/ajt.13115] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/25/2023]
Abstract
The recent recognition that antibody-mediated rejection (ABMR) is the major cause of kidney transplant loss creates strong interest in its pathogenesis. We used microarray analysis of kidney transplant biopsies to identify the changes in pure ABMR. We found that the ABMR transcript changes in the initial Discovery Set were strongly conserved in a subsequent Validation Set. In the Combined Set of 703 biopsies, 2603 transcripts were significantly changed (FDR < 0.05) in ABMR versus all other biopsies. In cultured cells, the transcripts strongly associated with ABMR were expressed in endothelial cells, e.g. cadherins CDH5 and CDH13; IFNG-treated endothelial cells, e.g. phospholipase PLA1A and chemokine CXCL11; or NK cells, e.g. cytotoxicity molecules granulysin (GNLY) and FGFBP2. Other ABMR transcripts were expressed in normal kidney but not cell lines, either increased e.g. Duffy chemokine receptor (DARC) or decreased e.g. sclerostin (SOST). Pathway analysis of ABMR transcripts identified angiogenesis, with roles for angiopoietin and vascular endothelial growth factors; leukocyte-endothelial interactions; and NK signaling, including evidence for CD16a Fc receptor signaling elements shared with T cells. These data support a model of ABMR involving injury-repair in the microcirculation induced by cognate recognition involving antibody and CD16a, triggering IFNG release and antibody-dependent NK cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- J M Venner
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada; Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
228
|
Zuliani-Alvarez L, Midwood KS. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:273-285. [PMID: 26005593 DOI: 10.1089/wound.2014.0599] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022] Open
Abstract
Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Kim S. Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
229
|
Early systemic microvascular damage in pigs with atherogenic diabetes mellitus coincides with renal angiopoietin dysbalance. PLoS One 2015; 10:e0121555. [PMID: 25909188 PMCID: PMC4409307 DOI: 10.1371/journal.pone.0121555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 02/16/2015] [Indexed: 12/16/2022] Open
Abstract
Background Diabetes mellitus (DM) is associated with a range of microvascular complications including diabetic nephropathy (DN). Microvascular abnormalities in the kidneys are common histopathologic findings in DN, which represent one manifestation of ongoing systemic microvascular damage. Recently, sidestream dark-field (SDF) imaging has emerged as a noninvasive tool that enables one to visualize the microcirculation. In this study, we investigated whether changes in the systemic microvasculature induced by DM and an atherogenic diet correlated spatiotemporally with renal damage. Methods Atherosclerotic lesion development was triggered in streptozotocin-induced DM pigs (140 mg/kg body weight) by administering an atherogenic diet for approximately 11 months. Fifteen months following induction of DM, microvascular morphology was visualized in control pigs (n = 7), non-diabetic pigs fed an atherogenic diet (ATH, n = 5), and DM pigs fed an atherogenic diet (DM+ATH, n = 5) using SDF imaging of oral mucosal tissue. Subsequently, kidneys were harvested from anethesized pigs and the expression levels of well-established markers for microvascular integrity, such as Angiopoietin-1 (Angpt1) and Angiopoietin-2 (Angpt2) were determined immunohistochemically, while endothelial cell (EC) abundance was determined by immunostaining for von Willebrand factor (vWF). Results Our study revealed an increase in the capillary tortuosity index in DM+ATH pigs (2.31±0.17) as compared to the control groups (Controls 0.89±0.08 and ATH 1.55±0.11; p<0.05). Kidney biopsies showed marked glomerular lesions consisting of mesangial expansion and podocyte lesions. Furthermore, we observed a disturbed Angpt2/ Angpt1balance in the cortex of the kidney, as evidenced by increased expression of Angpt2 in DM+ATH pigs as compared to Control pigs (p<0.05). Conclusion In the setting of DM, atherogenesis leads to the augmentation of mucosal capillary tortuosity, indicative of systemic microvascular damage. Concomitantly, a dysbalance in renal angiopoietins was correlated with the development of diabetic nephropathy. As such, our studies strongly suggest that defects in the systemic microvasculature mirror the accumulation of microvascular damage in the kidney.
Collapse
|
230
|
The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 2015; 32:168-80. [PMID: 25625206 DOI: 10.1016/j.devcel.2014.12.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/21/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
The cerebral cavernous malformation (CCM) pathway is required in endothelial cells for normal cardiovascular development and to prevent postnatal vascular malformations, but its molecular effectors are not well defined. Here we show that loss of CCM signaling in endocardial cells results in mid-gestation heart failure associated with premature degradation of cardiac jelly. CCM deficiency dramatically alters endocardial and endothelial gene expression, including increased expression of the Klf2 and Klf4 transcription factors and the Adamts4 and Adamts5 proteases that degrade cardiac jelly. These changes in gene expression result from increased activity of MEKK3, a mitogen-activated protein kinase that binds CCM2 in endothelial cells. MEKK3 is both necessary and sufficient for expression of these genes, and partial loss of MEKK3 rescues cardiac defects in CCM-deficient embryos. These findings reveal a molecular mechanism by which CCM signaling controls endothelial gene expression during cardiovascular development that may also underlie CCM formation.
Collapse
|
231
|
Lilly B. We have contact: endothelial cell-smooth muscle cell interactions. Physiology (Bethesda) 2015; 29:234-41. [PMID: 24985327 DOI: 10.1152/physiol.00047.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood vessels are composed of two primary cell types, endothelial cells and smooth muscle cells, each providing a unique contribution to vessel function. Signaling between these two cell types is essential for maintaining tone in mature vessels, and their communication is critical during development, and for repair and remodeling associated with blood vessel growth. This review will highlight the pathways that endothelial cells and smooth muscle cells utilize to communicate during vessel formation and discuss how disruptions in these pathways contribute to disease.
Collapse
Affiliation(s)
- Brenda Lilly
- Department of Pediatrics, Nationwide Children's Hospital, The Heart Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
232
|
Milam KE, Parikh SM. The angiopoietin-Tie2 signaling axis in the vascular leakage of systemic inflammation. Tissue Barriers 2015; 3:e957508. [PMID: 25838975 DOI: 10.4161/21688362.2014.957508] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/19/2014] [Indexed: 12/31/2022] Open
Abstract
The ability of small blood vessels to undergo rapid, reversible morphological changes is essential for the adaptive response to tissue injury or local infection. A canonical feature of this response is transient hyperpermeability. However, when leakiness is profound or persistent, adverse consequences accrue to the host, including organ dysfunction and shock. A growing body of literature identifies the Tie2 receptor, a transmembrane tyrosine kinase highly enriched in the endothelium, as an important regulator of vascular barrier function in health and in disease. The principal ligands of Tie2, Angiopoietins 1 and 2, exert opposite effects on this receptor in the context of inflammation. This review will focus on recent studies that have illuminated novel aspects of the exquisitely controlled Tie2 signaling axis while proposing unanswered questions and future directions for this field of study.
Collapse
Affiliation(s)
- Katelyn E Milam
- Center for Vascular Biology Research; Beth Israel Deaconess Medical Center and Harvard Medical School ; Boston, MA USA
| | - Samir M Parikh
- Center for Vascular Biology Research; Beth Israel Deaconess Medical Center and Harvard Medical School ; Boston, MA USA ; Division of Nephrology; Beth Israel Deaconess Medical Center and Harvard Medical School ; Boston, MA USA
| |
Collapse
|
233
|
Zhou BO, Ding L, Morrison SJ. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. eLife 2015; 4:e05521. [PMID: 25821987 PMCID: PMC4411515 DOI: 10.7554/elife.05521] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are maintained by a perivascular niche in bone marrow but it is unclear whether the niche is reciprocally regulated by HSCs. Here, we systematically assessed the expression and function of Angiopoietin-1 (Angpt1) in bone marrow. Angpt1 was not expressed by osteoblasts. Angpt1 was most highly expressed by HSCs, and at lower levels by c-kit+ hematopoietic progenitors, megakaryocytes, and Leptin Receptor+ (LepR+) stromal cells. Global conditional deletion of Angpt1, or deletion from osteoblasts, LepR+ cells, Nes-cre-expressing cells, megakaryocytes, endothelial cells or hematopoietic cells in normal mice did not affect hematopoiesis, HSC maintenance, or HSC quiescence. Deletion of Angpt1 from hematopoietic cells and LepR+ cells had little effect on vasculature or HSC frequency under steady-state conditions but accelerated vascular and hematopoietic recovery after irradiation while increasing vascular leakiness. Hematopoietic stem/progenitor cells and LepR+ stromal cells regulate niche regeneration by secreting Angpt1, reducing vascular leakiness but slowing niche recovery. DOI:http://dx.doi.org/10.7554/eLife.05521.001 In adults, blood cells develop from a set of stem cells that are found in bone marrow. There are also specialized blood vessels and cells called ‘stromal cells’ within the bone marrow that provide these stem cells with oxygen, nutrients, and other molecules. This local environment, or ‘niche’, plays an important role in regulating the maintenance of these stem cells. But it has not been known whether stem cells can reciprocally regulate their niches. Unfortunately, radiation used to treat cancer obliterates the stem cells and their niche; both must recover after such a treatment before the patient can produce blood cells normally again. A protein called Angpt1 is thought to play a role in this post-treatment recovery. Angpt1 is known to regulate blood vessels in the bone marrow, and one influential study had previously suggested that bone cells produce Angpt1, which promotes and regulates the maintenance of the stem cells within the niche. However, this previous study did not directly test this. Thus, it was not clear whether Angpt1 promotes the regeneration of the stem cells themselves or if it regulates the rebuilding of the niche. Now, Zhou, Ding and Morrison have genetically engineered mice to make a ‘reporter’ molecule—which glows green when viewed under a microscope—wherever and whenever the gene for Angpt1 is active. These experiments showed where the protein is produced, and unexpectedly revealed that the bone cells do not make Angpt1. Instead, it is the stem cells and the stromal cells in the niche that made the protein. Further experiments showed that deleting the gene for Angpt1 from mice, or just from their bone cells, did not affect blood cell production; nor did it affect the maintenance or regulation of the stem cells. Next, Zhou, Ding and Morrison looked at whether Angpt1 might be involved in rebuilding the niche after being exposed to radiation. Some of these irradiated mice had been genetically engineered to lack Angpt1; and, in these mice, blood stem cells and blood cell production recovered more quickly than in mice with Angpt1. The blood vessels in the niche also grew back more quickly in the irradiated mice that lacked Angpt1. However, these regenerated blood vessels were leaky. This suggests that blood stem cells produce Angpt1 to slow the recovery of the niche and reduce leakage from the blood vessels. Thus, blood stem cells can regulate the regeneration of the niches that maintain them. DOI:http://dx.doi.org/10.7554/eLife.05521.002
Collapse
Affiliation(s)
- Bo O Zhou
- Department of Pediatrics and Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lei Ding
- Department of Pediatrics and Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics and Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
234
|
Abstract
The endothelial TIE1 and TIE2 receptor tyrosine kinases form a distinct subfamily characterized by their unique extracellular domains. Together with the angiopoietin growth factors (ANGPT1, ANGPT2, ANGPT4, also abbreviated as ANG), the TIE receptors form an endothelial specific signaling pathway with important functions in the regulation of lymphatic and cardiovascular development and vascular homeostasis. Angiopoietins exist in multimeric forms that activate the TIE receptors via unique mechanism. In endothelial cell–cell contacts, angiopoietins induce the formation of homomeric in trans TIE receptor complexes extending across the cell junctions, whereas matrix-bound angiopoietin-1 (ANG1) activates the TIE receptors in a cis configuration. In comparison to the vascular endothelial growth factor receptors, the TIE receptors undergo little ubiquitin-mediated degradation after activation, whereas TIE2 signaling is negatively regulated by the vascular endothelial protein tyrosine phosphatase, VE-PTP. ANG1 activation of TIE2 supports vascular stabilization, whereas angiopoietin-2 (ANG2), a context-dependent weak TIE2 agonist/antagonist, promotes pathological tumor angiogenesis, vascular permeability, and inflammation. Recently, ANG2 has been found to mediate some of its vascular destabilizing and angiogenic functions via integrin signalling. The circulating levels of ANG2 are increased in cancer, and in several human diseases associated with inflammation and vascular leak, for example, in sepsis. Blocking of ANG2 has emerged as a potential novel therapeutic strategy for these diseases. In addition, preclinical results demonstrate that genetic TIE1 deletion in mice inhibits the vascularization and growth of tumor isografts and protects from atherosclerosis, with little effect on normal vascular homeostasis in adult mice. The ability of the ANG-TIE pathway to control vessel stability and angiogenesis makes it an interesting vascular target for the treatment of the various diseases.
Collapse
|
235
|
Kameyama H, Udagawa O, Hoshi T, Toukairin Y, Arai T, Nogami M. The mRNA expressions and immunohistochemistry of factors involved in angiogenesis and lymphangiogenesis in the early stage of rat skin incision wounds. Leg Med (Tokyo) 2015; 17:255-60. [PMID: 25794881 DOI: 10.1016/j.legalmed.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
Abstract
Wound healing evaluation is important in forensic pathology, in which angiogenesis plays an important role. We have already shown that vascular endothelial growth factor A (VEGF) is produced in the rat skin incision wounds by neutrophils, endothelial cells, and fibroblasts. In this study, we assessed the changes in the mRNA expressions of various factors possibly involved in angiogenesis including angiopoietin (ANGPT) 1 and 2, cadherin 5 (CDH5), granulocyte-macrophage colony stimulating factor (CSF2/GM-CSF), granulocyte colony stimulating factor (CSF3/G-CSF), chemokine (C-X-C motif) ligand 2 (CXCL2), chemokine (C-X-C motif) ligand12 (CXCL12/SDF1), endothelin 1 (ET1), fibroblast growth factor 1 (FGF 1), hepatocyte growth factor (HGF), hypoxia inducible factor 1 alpha (HIF1a), leptin, matrix metallopepitidase 9 (MMP9), serpine/plasminogen activator inhibitor1 (PAI1), platelet-derived growth factor-A (PDGF-A), transforming growth factor alpha and beta 1 (TGFa and b1), tenomodulin (TNMD), and troponin I type 2 (TNNI2) in the early stage of the rat skin incision wounds by real time RT-PCR. Factors reported to be involved in lymphangiogenesis such as fibroblast growth factor 2 (FGF 2), c-fos induced growth factor (FIGF/VEGF-D), forkhead box C2 (FOXC2), and prospero homeobox 1 (PROX1) were also studied. One and 3 days after the dorsal skin incisions, wounds on male Sprague-Dawley rats showed the statistically significant increases in the mRNA expressions for CXCL2, CSF3, MMP9, PAI1, and CSF2, whereas TGFa, TNNI2, FGF1, TNMD, leptin, and CXCL12 showed the statistically significant decreases. Interestingly, lymphgangiogenic factors FOXC2, PROX1, and FGF2 also showed the statistically significant decreases. In situ hybridization and immunohistochemistry showed the mRNA and protein positivity in endothelial cells, fibroblasts, and some leukocytes at the bottom of the wound tissue for PAI1, CSF3, and MMP9, 1 day after the skin incisions. Our novel findings show the possible involvement of several factors involved in angiogenesis and lymphangiogenesis in the early stage of wound healing process, which may be useful for forensic wound evaluations.
Collapse
Affiliation(s)
- Hiroshi Kameyama
- Criminal Investigation Laboratory, Saitama Prefectural Police Headquarters, 3-15-1, Takasago, Urawa-ku, Saitama City, Saitama 330-8533, Japan; Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Orie Udagawa
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomoaki Hoshi
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoko Toukairin
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomomi Arai
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Makoto Nogami
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
236
|
Kostallari E, Baba-Amer Y, Alonso-Martin S, Ngoh P, Relaix F, Lafuste P, Gherardi RK. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development 2015; 142:1242-53. [PMID: 25742797 DOI: 10.1242/dev.115386] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The satellite cells, which serve as adult muscle stem cells, are both located beneath myofiber basement membranes and closely associated with capillary endothelial cells. We observed that 90% of capillaries were associated with pericytes in adult mouse and human muscle. During post-natal growth, newly formed vessels with their neuroglial 2 proteoglycan (NG2)-positive pericytes became progressively associated with the post-natal muscle stem cells, as myofibers increased in size and satellite cells entered into quiescence. In vitro, human muscle-derived pericytes promoted myogenic cell differentiation through insulin-like growth factor 1 (IGF1) and myogenic cell quiescence through angiopoietin 1 (ANGPT1). Diphtheria toxin-induced ablation of muscle pericytes in growing mice led both to myofiber hypotrophy and to impaired establishment of stem cells quiescence. Similar effects were observed following conditional in vivo deletion of pericyte Igf1 and Angpt1 genes, respectively. Our data therefore demonstrate that, by promoting post-natal myogenesis and stem cell quiescence, pericytes play a key role in the microvascular niche of satellite cells.
Collapse
Affiliation(s)
- Enis Kostallari
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est, 5 boulevard Descartes, Marne-la-Vallée cedex 2 F-77454, France
| | - Yasmine Baba-Amer
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France
| | - Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France
| | - Pamela Ngoh
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université d'Evry-Val d'Essonne, Boulevard François Mitterrand, Evry F-91000, France
| | - Frederic Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France Etablissement Français du Sang, Créteil 94017, France Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort 94700, France Hôpital Henri Mondor, Département de Pathologie, 51 avenue du Maréchal de Lattre de Tassigny, Créteil F-94010, France
| | - Peggy Lafuste
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France
| | - Romain K Gherardi
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France Hôpital Henri Mondor, Département de Pathologie, 51 avenue du Maréchal de Lattre de Tassigny, Créteil F-94010, France
| |
Collapse
|
237
|
Szederjesi J, Almasy E, Lazar A, Huțanu A, Georgescu A. The Role of Angiopoietine-2 in the Diagnosis and Prognosis of Sepsis. ACTA ACUST UNITED AC 2015; 1:18-23. [PMID: 29967811 DOI: 10.1515/jccm-2015-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/15/2015] [Indexed: 12/29/2022]
Abstract
Introduction Angiopoietin-2 (ANG-2) is a new biomarker whose blood-serum values increase in sepsis and its expression is elevated in line with the severity of the degree of inflammation. The aim of this study was to identify the diagnostic role of ANG-2 in patients with non-surgical sepsis addmitted to an intensive care unit. Material and methods This was a prospective randomized study including 74 patients admitted in the Clinic of Intensive Care of the County Clinical Emergency Hospital Tirgu Mureș, divided into two groups: Group S: patients with sepsis (n=40, 54%) and Group C:control, without sepsis (n=34, 46%). ANG-2 levels were determined in both groups. Results From the Group S, 14 patients (35%) had positive haemocultures. ANG-2 values varied between 1 and 43 ng/mL, with an average of 6.0 ng/mL in patients without sepsis and 10.38 ng/mL in patients with sepsis (p=0.021). A positive correlation between ANG-2 and SAPS II, SOFA and APACHE II severity scores was demonstrated, as was a positive correlation between serum levels of ANG-2 and procalcitonine. ANG-2 had a 5.71% specificity and 74.36% sensitivity for diagnosis of sepsis. Conclusions ANG-2 serum levels were elevated in sepsis, being well correlated with PCT values and prognostic scores. ANG-2 should be considered as a useful biomarker for the diagnosis and the prognosis of this pathology.
Collapse
Affiliation(s)
- Janos Szederjesi
- University of Medicine and Pharmacy Tîrgu Mureş, Romania, Discipline of Intensive Care, 38 Gheorghe Marinescu street, Tirgu Mures, 540139, Romania
| | - Emoke Almasy
- University of Medicine and Pharmacy Tîrgu Mureş, Romania, Discipline of Intensive Care, 38 Gheorghe Marinescu street, Tirgu Mures, 540139, Romania
| | - Alexandra Lazar
- University of Medicine and Pharmacy Tîrgu Mureş, Romania, Discipline of Intensive Care, 38 Gheorghe Marinescu street, Tirgu Mures, 540139, Romania
| | - Adina Huțanu
- County Clinical Emergency Hospital Tirgu Mures, Romania, 50 Gheorghe Marinescu street, Tirgu Mures, 540139, Romania
| | - Anca Georgescu
- University of Medicine and Pharmacy Tîrgu Mureş, Romania, Discipline of Infectious Diseases, 38 Gheorghe Marinescu street, Tirgu Mures, 540139, Romania
| |
Collapse
|
238
|
Putting the glomerulus back together: per aspera ad astra ("a rough road leads to the stars"). Kidney Int 2015; 85:991-8. [PMID: 24786868 DOI: 10.1038/ki.2014.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
239
|
Nakagawa N, Xin C, Roach AM, Naiman N, Shankland SJ, Ligresti G, Ren S, Szak S, Gomez IG, Duffield JS. Dicer1 activity in the stromal compartment regulates nephron differentiation and vascular patterning during mammalian kidney organogenesis. Kidney Int 2015; 87:1125-40. [PMID: 25651362 PMCID: PMC4449790 DOI: 10.1038/ki.2014.406] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/09/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022]
Abstract
MicroRNAs, activated by the enzyme Dicer1, control post-transcriptional gene expression. Dicer1 has important roles in the epithelium during nephrogenesis, but its function in stromal cells during kidney development is unknown. To study this, we inactivated Dicer1 in renal stromal cells. This resulted in hypoplastic kidneys, abnormal differentiation of the nephron tubule and vasculature, and perinatal mortality. In mutant kidneys, genes involved in stromal cell migration and activation were suppressed as were those involved in epithelial and endothelial differentiation and maturation. Consistently, polarity of the proximal tubule was incorrect, distal tubule differentiation was diminished, and elongation of Henle's loop attenuated resulting in lack of inner medulla and papilla in stroma-specific Dicer1 mutants. Glomerular maturation and capillary loop formation were abnormal, whereas peritubular capillaries, with enhanced branching and increased diameter, formed later. In Dicer1-null renal stromal cells, expression of factors associated with migration, proliferation, and morphogenic functions including α-smooth muscle actin, integrin-α8, -β1, and the WNT pathway transcriptional regulator LEF1 were reduced. Dicer1 mutation in stroma led to loss of expression of distinct microRNAs. Of these, miR-214, -199a-5p, and -199a-3p regulate stromal cell functions ex vivo, including WNT pathway activation, migration, and proliferation. Thus, Dicer1 activity in the renal stromal compartment regulates critical stromal cell functions that, in turn, regulate differentiation of the nephron and vasculature during nephrogenesis.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Cuiyan Xin
- Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Allie M Roach
- 1] Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington, USA [2] Research and Development, Biogen Idec, Cambridge, Massachusetts, USA
| | - Natalie Naiman
- Department of Medicine, Division of Nephrology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stuart J Shankland
- 1] Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington, USA [2] Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Giovanni Ligresti
- 1] Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington, USA [2] Research and Development, Biogen Idec, Cambridge, Massachusetts, USA
| | - Shuyu Ren
- 1] Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington, USA [2] Research and Development, Biogen Idec, Cambridge, Massachusetts, USA
| | - Suzanne Szak
- Research and Development, Biogen Idec, Cambridge, Massachusetts, USA
| | - Ivan G Gomez
- 1] Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington, USA [2] Research and Development, Biogen Idec, Cambridge, Massachusetts, USA
| | - Jeremy S Duffield
- 1] Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington, USA [2] Research and Development, Biogen Idec, Cambridge, Massachusetts, USA [3] Kidney Research Institute, University of Washington, Seattle, Washington, USA [4] Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
240
|
Qiu T, Xian L, Crane J, Wen C, Hilton M, Lu W, Newman P, Cao X. PTH receptor signaling in osteoblasts regulates endochondral vascularization in maintenance of postnatal growth plate. J Bone Miner Res 2015; 30:309-17. [PMID: 25196529 PMCID: PMC4730385 DOI: 10.1002/jbmr.2327] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 11/09/2022]
Abstract
Longitudinal growth of postnatal bone requires precise control of growth plate cartilage chondrocytes and subsequent osteogenesis and bone formation. Little is known about the role of angiogenesis and bone remodeling in maintenance of cartilaginous growth plate. Parathyroid hormone (PTH) stimulates bone remodeling by activating PTH receptor (PTH1R). Mice with conditional deletion of PTH1R in osteoblasts showed disrupted trabecular bone formation. The mice also exhibited postnatal growth retardation with profound defects in growth plate cartilage, ascribable predominantly to a decrease in number of hypertrophic chondrocytes, resulting in premature fusion of the growth plate and shortened long bones. Further characterization of hypertrophic zone and primary spongiosa revealed that endochondral angiogenesis and vascular invasion of the cartilage were impaired, which was associated with aberrant chondrocyte maturation and cartilage development. These studies reveal that PTH1R signaling in osteoblasts regulates cartilaginous growth plate for postnatal growth of bone.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lingling Xian
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chunyi Wen
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, China
| | - Matthew Hilton
- Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, USA
| | - William Lu
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, China
| | - Peter Newman
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
241
|
Abstract
A number of genes involved in kidney development are reactivated in the adult after acute kidney injury (AKI). This has led to the belief that tissue repair mechanisms recapitulate pathways involved in embryonic development after AKI. We will discuss evidence to support this hypothesis by comparing the mechanisms of development with common pathways known to regulate post-AKI repair, or that we identified as cell-specific candidates based on public datasets from recent AKI translational profiling studies. We will argue that while many of these developmental pathways are reactivated after AKI, this is not associated with general cellular reprogramming to an embryonic state. We will show that reactivation of these developmental genes is often associated with expression in cells that are not normally involved in mediating parallel responses in the embryo, and that depending on the cellular context, these responses can have beneficial or detrimental effects on injury and repair after AKI.
Collapse
|
242
|
Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun 2015; 6:5962. [PMID: 25635707 PMCID: PMC4316742 DOI: 10.1038/ncomms6962] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023] Open
Abstract
Angiopoietins regulate vascular homeostasis via the endothelial Tie receptor tyrosine kinases. Angiopoietin-1 (Ang1) supports endothelial stabilization via Tie2 activation. Angiopoietin-2 (Ang2) functions as a context-dependent Tie2 agonist/antagonist promoting pathological angiogenesis, vascular permeability and inflammation. Elucidating Ang2-dependent mechanisms of vascular destablization is critical for rational design of angiopoietin antagonists that have demonstrated therapeutic efficacy in cancer trials. Here, we report that Ang2, but not Ang1, activates β1-integrin, leading to endothelial destablization. Autocrine Ang2 signalling upon Tie2 silencing, or in Ang2 transgenic mice, promotes β1-integrin-positive elongated matrix adhesions and actin stress fibres, regulating vascular endothelial-cadherin-containing cell–cell junctions. The Tie2-silenced monolayer integrity is rescued by β1-integrin, phosphoinositide-3 kinase or Rho kinase inhibition, and by re-expression of a membrane-bound Tie2 ectodomain. Furthermore, Tie2 silencing increases, whereas Ang2 blocking inhibits transendothelial tumour cell migration in vitro. These results establish Ang2-mediated β1-integrin activation as a promoter of endothelial destablization, explaining the controversial vascular functions of Ang1 and Ang2. Angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) have opposing effects on vascular stability through their receptor Tie2, but there is evidence for Tie2-independent functions of Ang2. Here, Hakanpaa et al. show that Ang2 directly activates β1-integrin, leading to rearrangement of the actin cytoskeleton and decreased VE-cadherin in cell–cell junctions.
Collapse
|
243
|
Mofarrahi M, McClung JM, Kontos CD, Davis EC, Tappuni B, Moroz N, Pickett AE, Huck L, Harel S, Danialou G, Hussain SNA. Angiopoietin-1 enhances skeletal muscle regeneration in mice. Am J Physiol Regul Integr Comp Physiol 2015; 308:R576-89. [PMID: 25608750 DOI: 10.1152/ajpregu.00267.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/07/2015] [Indexed: 12/27/2022]
Abstract
Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells.
Collapse
Affiliation(s)
- Mahroo Mofarrahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Quebec, Canada; Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Joseph M McClung
- Department of Pharmacology and Cancer Biology, Duke University Medical Center and the Duke University School of Medicine, Durham, North Carolina
| | - Christopher D Kontos
- Department of Pharmacology and Cancer Biology, Duke University Medical Center and the Duke University School of Medicine, Durham, North Carolina
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada; and
| | - Bassman Tappuni
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Nicolay Moroz
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Amy E Pickett
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada; and
| | - Laurent Huck
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Sharon Harel
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Gawiyou Danialou
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Quebec, Canada; Département des sciences de la nature, Collège militaire royal de Saint-Jean, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sabah N A Hussain
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Quebec, Canada; Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada;
| |
Collapse
|
244
|
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ. Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 2014; 148:66-84. [PMID: 25476109 DOI: 10.1016/j.pharmthera.2014.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
Abstract
Pressure overload causes an accumulation of homocysteine in the heart, which is accompanied by copper depletion through the formation of copper-homocysteine complexes and the excretion of the complexes. Copper supplementation recovers cytochrome c oxidase (CCO) activity and promotes myocardial angiogenesis, along with the regression of cardiac hypertrophy and the recovery of cardiac contractile function. Increased copper availability is responsible for the recovery of CCO activity. Copper promoted expression of angiogenesis factors including vascular endothelial growth factor (VEGF) in endothelial cells is responsible for angiogenesis. VEGF receptor-2 (VEGFR-2) is critical for hypertrophic growth of cardiomyocytes and VEGFR-1 is essential for the regression of cardiomyocyte hypertrophy. Copper, through promoting VEGF production and suppressing VEGFR-2, switches the VEGF signaling pathway from VEGFR-2-dependent to VEGFR-1-dependent, leading to the regression of cardiomyocyte hypertrophy. Copper is also required for hypoxia-inducible factor-1 (HIF-1) transcriptional activity, acting on the interaction between HIF-1 and the hypoxia responsible element and the formation of HIF-1 transcriptional complex by inhibiting the factor inhibiting HIF-1. Therefore, therapeutic targets for copper supplementation-induced regression of cardiac hypertrophy include: (1) the recovery of copper availability for CCO and other critical cellular events; (2) the activation of HIF-1 transcriptional complex leading to the promotion of angiogenesis in the endothelial cells by VEGF and other factors; (3) the activation of VEGFR-1-dependent regression signaling pathway in the cardiomyocytes; and (4) the inhibition of VEGFR-2 through post-translational regulation in the hypertrophic cardiomyocytes. Future studies should focus on target-specific delivery of copper for the development of clinical application.
Collapse
Affiliation(s)
- Lily Zheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wen Yin
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
245
|
Hill J, Rom S, Ramirez SH, Persidsky Y. Emerging roles of pericytes in the regulation of the neurovascular unit in health and disease. J Neuroimmune Pharmacol 2014; 9:591-605. [PMID: 25119834 PMCID: PMC4209199 DOI: 10.1007/s11481-014-9557-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
Pericytes of the central nervous system (CNS) are uniquely positioned within a multicellular structure termed the neurovascular unit (NVU) to provide crucial support to blood brain barrier (BBB) formation, maintenance, and stability. Numerous CNS diseases are associated with some aspect of BBB dysfunction. A dysfunction can manifest as one or multiple disruptions to any of the following barriers: physical, metabolic, immunological and transport barrier. A breach in the BBB can notably result in BBB hyper-permeability, endothelial activation and enhanced immune-endothelial interaction. How the BBB is regulated within this integrated unit remains largely unknown, especially as it relates to pericyte-endothelial interaction. We summarize the latest findings on pericyte origin, possible marker expression, and availability within different organ systems. We highlight pericyte-endothelial cell interactions, concentrating on extra- and intra- cellular signaling mechanisms linked to platelet derived growth factor-B, transforming growth factor -β, angiopoietins, Notch, and gap junctions. We discuss the role of pericytes in the NVU under inflammatory insult, focusing on how pericytes may indirectly affect leukocyte CNS infiltration, the direct role of pericyte-mediated basement membrane modifications, and immune responses. We review new findings of pericyte actions in CNS pathologies including Alzheimer's disease, stroke, multiple sclerosis, diabetic retinopathy, and HIV-1 infection. The uncovering of the regulatory role of pericytes on the BBB will provide key insight into how barrier integrity can be re-established during neuroinflammation.
Collapse
Affiliation(s)
- Jeremy Hill
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| | - Servio H. Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| |
Collapse
|
246
|
Fu J, Lee K, Chuang PY, Liu Z, He JC. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol 2014; 308:F287-97. [PMID: 25411387 DOI: 10.1152/ajprenal.00533.2014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD.
Collapse
Affiliation(s)
- Jia Fu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu, China; and
| | - Kyung Lee
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter Y Chuang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhihong Liu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu, China; and
| | - John Cijiang He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
247
|
Cui R, Chen X, Peng L, Ma J, Zhu D, Li T, Wei Q, Li B. Multiple Mechanisms in Renal Artery Stenosis-Induced Renal Interstitial Fibrosis. ACTA ACUST UNITED AC 2014; 128:57-66. [DOI: 10.1159/000366481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
|
248
|
Phosphoinositide 3-kinase β mediates microvascular endothelial repair of thrombotic microangiopathy. Blood 2014; 124:2142-9. [DOI: 10.1182/blood-2014-02-557975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Key Points
Endothelial PI3Kβ is not required in the quiescent vasculature, but PI3Kβ loss confers sensitivity for thrombotic microangiopathy. PI3Kβ activity is required for endothelial angiogenic differentiation and microvascular repair.
Collapse
|
249
|
Joyal JS, Nim S, Zhu T, Sitaras N, Rivera JC, Shao Z, Sapieha P, Hamel D, Sanchez M, Zaniolo K, St-Louis M, Ouellette J, Montoya-Zavala M, Zabeida A, Picard E, Hardy P, Bhosle V, Varma DR, Gobeil F, Beauséjour C, Boileau C, Klein W, Hollenberg M, Ribeiro-da-Silva A, Andelfinger G, Chemtob S. Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis. Nat Med 2014; 20:1165-73. [PMID: 25216639 DOI: 10.1038/nm.3669] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Neurons have an important role in retinal vascular development. Here we show that the G protein-coupled receptor (GPCR) coagulation factor II receptor-like 1 (F2rl1, previously known as Par2) is abundant in retinal ganglion cells and is associated with new blood vessel formation during retinal development and in ischemic retinopathy. After stimulation, F2rl1 in retinal ganglion cells translocates from the plasma membrane to the cell nucleus using a microtubule-dependent shuttle that requires sorting nexin 11 (Snx11). At the nucleus, F2rl1 facilitates recruitment of the transcription factor Sp1 to trigger Vegfa expression and, in turn, neovascularization. In contrast, classical plasma membrane activation of F2rl1 leads to the expression of distinct genes, including Ang1, that are involved in vessel maturation. Mutant versions of F2rl1 that prevent nuclear relocalization but not plasma membrane activation interfere with Vegfa but not Ang1 expression. Complementary angiogenic factors are therefore regulated by the subcellular localization of a receptor (F2rl1) that governs angiogenesis. These findings may have implications for the selectivity of drug actions based on the subcellular distribution of their targets.
Collapse
Affiliation(s)
- Jean-Sébastien Joyal
- 1] Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada. [2] Department of Ophthalmology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montreal, Montreal, Québec, Canada. [3] Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada. [4] Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada. [5]
| | - Satra Nim
- 1] Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada. [2]
| | - Tang Zhu
- 1] Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada. [2]
| | - Nicholas Sitaras
- 1] Department of Ophthalmology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montreal, Montreal, Québec, Canada. [2] Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - José Carlos Rivera
- 1] Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada. [2] Department of Ophthalmology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montreal, Montreal, Québec, Canada
| | - Zhuo Shao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montreal, Montreal, Québec, Canada
| | - David Hamel
- Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Melanie Sanchez
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Karine Zaniolo
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Manon St-Louis
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Johanne Ouellette
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | - Alexandra Zabeida
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Emilie Picard
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Hardy
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Vikrant Bhosle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Daya R Varma
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Fernand Gobeil
- Department of Pharmacology, Sherbrooke University, Sherbrooke, Quebec, Canada
| | | | - Christelle Boileau
- Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - William Klein
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Morley Hollenberg
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gregor Andelfinger
- Department of Cardiology, CHU Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Sylvain Chemtob
- 1] Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada. [2] Department of Ophthalmology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montreal, Montreal, Québec, Canada. [3] Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada. [4] Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
250
|
Thomson BR, Heinen S, Jeansson M, Ghosh AK, Fatima A, Sung HK, Onay T, Chen H, Yamaguchi S, Economides AN, Flenniken A, Gale NW, Hong YK, Fawzi A, Liu X, Kume T, Quaggin SE. A lymphatic defect causes ocular hypertension and glaucoma in mice. J Clin Invest 2014; 124:4320-4. [PMID: 25202984 DOI: 10.1172/jci77162] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/31/2014] [Indexed: 01/11/2023] Open
Abstract
Glaucoma is a leading cause of blindness, afflicting more than 60 million people worldwide. Increased intraocular pressure (IOP) due to impaired aqueous humor drainage is a major risk factor for the development of glaucoma. Here, we demonstrated that genetic disruption of the angiopoietin/TIE2 (ANGPT/TIE2) signaling pathway results in high IOP, buphthalmos, and classic features of glaucoma, including retinal ganglion degeneration and vision loss. Eyes from mice with induced deletion of Angpt1 and Angpt2 (A1A2Flox(WB) mice) lacked drainage pathways in the corneal limbus, including Schlemm's canal and lymphatic capillaries, which share expression of the PROX1, VEGFR3, and FOXC family of transcription factors. VEGFR3 and FOXCs have been linked to lymphatic disorders in patients, and FOXC1 has been linked to glaucoma. In contrast to blood endothelium, in which ANGPT2 is an antagonist of ANGPT1, we have shown that both ligands cooperate to regulate TIE2 in the lymphatic network of the eye. While A1A2Flox(WB) mice developed high IOP and glaucoma, expression of ANGPT1 or ANGPT2 alone was sufficient for ocular drainage. Furthermore, we demonstrated that loss of FOXC2 from lymphatics results in TIE2 downregulation, suggesting a mechanism for ocular defects in patients with FOXC mutations. These data reveal a pathogenetic and molecular basis for glaucoma and demonstrate the importance of angiopoietin ligand cooperation in the lymphatic endothelium.
Collapse
|