201
|
Rincón-Riveros A, Lopez L, Villegas EV, Antonia Rodriguez J. Regulation of Antitumor Immune Responses by Exosomes Derived from Tumor and Immune Cells. Cancers (Basel) 2021; 13:847. [PMID: 33671415 PMCID: PMC7922229 DOI: 10.3390/cancers13040847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are lipid membrane-enclosed vesicles released by all cell types that act at the paracrine or endocrine level to favor cell differentiation, tissue homeostasis, organ remodeling and immune regulation. Their biosynthesis begins with a cell membrane invagination which generates an early endosome that matures to a late endosome. By inward budding of the late endosome membrane, a multivesicular body (MVB) with intraluminal vesicles (ILVs) is generated. The fusion of MVBs with the plasma membrane releases ILVs into the extracellular space as exosomes, ranging in size from 30 to 100 nm in diameter. The bilipid exosome membrane is rich in cholesterol, ceramides and phosphatidylserine and can be loaded with DNA, RNA, microRNAs, proteins and lipids. It has been demonstrated that exosome secretion is a common mechanism used by the tumor to generate an immunosuppressive microenvironment that favors cancer development and progression, allowing tumor escape from immune control. Due to their ability to transport proteins, lipids and nucleic acids from the cell that gave rise to them, exosomes can be used as a source of biomarkers with great potential for clinical applications in diagnostic, prognostic or therapeutic areas. This article will review the latest research findings on exosomes and their contribution to cancer development.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Institute for Genetics, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Liliana Lopez
- Department of Statistics, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - E Victoria Villegas
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | | |
Collapse
|
202
|
Nicolini A, Ferrari P, Biava PM. Exosomes and Cell Communication: From Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13040822. [PMID: 33669294 PMCID: PMC7920050 DOI: 10.3390/cancers13040822] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, within the research community, exosomes, transporters of bioactive molecules involved in many signalling pathways and cell-to-cell communication with the capacity to alter the tumour microenvironment, have been attracting increasing interest among oncologists. These molecules can play multiple roles, e.g., as useful biomarkers in diagnosis, modulators of the immune system, promoters of the formation of the pre-metastatic niches and cancer metastasis and carriers of substances or factors with anticancer properties. This review focuses on the use of exosomes as a novel therapeutic strategy for cancer treatment. Particularly, it highlights the potential of exosomes as carriers of stem cell differentiation stage factors (SCDSFs) for “cell reprogramming” therapy, a promising research field on which we have reported previously. Here, the main characteristics of this treatment and the advantages that can be obtained using mesenchymal stem cell-derived exosomes up-loaded with the SCDSFs as carriers of these factors are also discussed. Abstract Exosomes are nano-vesicle-shaped particles secreted by various cells, including cancer cells. Recently, the interest in exosomes among cancer researchers has grown enormously for their many potential roles, and many studies have focused on the bioactive molecules that they export as exosomal cargo. These molecules can function as biomarkers in diagnosis or play a relevant role in modulating the immune system and in promoting apoptosis, cancer development and progression. Others, considering exosomes potentially helpful for cancer treatment, have started to investigate them in experimental therapeutic trials. In this review, first, the biogenesis of exosomes and their main characteristics was briefly described. Then, the capability of tumour-derived exosomes and oncosomes in tumour microenvironments (TMEs) remodelling and pre-metastatic niche formation, as well as their interference with the immune system during cancer development, was examined. Finally, the potential role of exosomes for cancer therapy was discussed. Particularly, in addition, their use as carriers of natural substances and drugs with anticancer properties or carriers of boron neutron capture therapy (BNCT) and anticancer vaccines for immunotherapy, exosomes as biological reprogrammers of cancer cells have gained increased consensus. The principal aspects and the rationale of this intriguing therapeutic proposal are briefly considered.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Paola Ferrari
- Unit of Oncology 1, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20099 Milan, Italy;
| |
Collapse
|
203
|
Osteoclast-derived small extracellular vesicles induce osteogenic differentiation via inhibiting ARHGAP1. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1191-1203. [PMID: 33664997 PMCID: PMC7900016 DOI: 10.1016/j.omtn.2021.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Activated osteoclasts release large amounts of small extracellular vesicles (sEVs) during bone remodeling. However, little is known about whether osteoclast-derived sEVs affect surrounding cells. In this study, osteoclasts were generated by stimulating bone marrow macrophages (BMMs) with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear actor κB ligand (RANKL). We performed microarray analysis of sEV-microRNAs (miRNAs)s secreted from osteoclast at different stages and identified four miRNAs that were highly expressed in mature osteoclast-derived sEVs. One of these miRNAs, miR-324, significantly induced osteogenic differentiation and mineralization of primary mesenchymal stem cells (MSCs) in vitro by targeting ARHGAP1, a negative regulator of osteogenic differentiation. We next fabricated an sEV-modified scaffold by coating decalcified bone matrix (DBM) with osteoclast-derived sEVs, and the pro-osteogenic regeneration activities of the sEV-modified scaffold were validated in a mouse calvarial defect model. Notably, miR-324-enriched sEV-modified scaffold showed the highest capacity on bone regeneration, whereas inhibition of miR-324 in sEVs abrogated these effects. Taken together, our findings suggest that miR-324-contained sEVs released from mature osteoclast play an essential role in the regulation of osteogenic differentiation and potentially bridge the coupling between osteoclasts and MSCs.
Collapse
|
204
|
Shenoy GN, Greene CJ, Bhatta M, Baroja ML, Loyall JL, Balu‐Iyer SV, Kelleher RJ, Carreno BM, Linette GP, Shultz LD, Bankert RB. Preclinical evaluation of cancer immune therapy using patient-derived tumor antigen-specific T cells in a novel xenograft platform. Clin Transl Immunology 2021; 10:e1246. [PMID: 33552509 PMCID: PMC7853904 DOI: 10.1002/cti2.1246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/16/2020] [Accepted: 01/09/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES With a rapidly growing list of candidate immune-based cancer therapeutics, there is a critical need to generate highly reliable animal models to preclinically evaluate the efficacy of emerging immune-based therapies, facilitating successful clinical translation. Our aim was to design and validate a novel in vivo model (called Xenomimetic or 'X' mouse) that allows monitoring of the ability of human tumor-specific T cells to suppress tumor growth following their entry into the tumor. METHODS Tumor xenografts are established rapidly in the greater omentum of globally immunodeficient NOD-scid IL2Rγnull (NSG) mice following an intraperitoneal injection of melanoma target cells expressing tumor neoantigen peptides, as well as green fluorescent protein and/or luciferase. Changes in tumor burden, as well as in the number and phenotype of adoptively transferred patient-derived tumor neoantigen-specific T cells in response to immunotherapy, are measured by imaging to detect fluorescence/luminescence and flow cytometry, respectively. RESULTS The tumors progress rapidly and disseminate in the mice unless patient-derived tumor-specific T cells are introduced. An initial T cell-mediated tumor arrest is later followed by a tumor escape, which correlates with the upregulation of the checkpoint molecules programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (LAG3) on T cells. Treatment with immune-based therapies that target these checkpoints, such as anti-PD-1 antibody (nivolumab) or interleukin-12 (IL-12), prevented or delayed the tumor escape. Furthermore, IL-12 treatment suppressed PD-1 and LAG3 upregulation on T cells. CONCLUSION Together, these results validate the X-mouse model and establish its potential to preclinically evaluate the therapeutic efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Gautam N Shenoy
- Department of Microbiology and Immunology at the Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
| | - Christopher J Greene
- Department of Microbiology and Immunology at the Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA,Present address:
Hodgson Russ LLP.BuffaloNYUSA
| | - Maulasri Bhatta
- Immune Modulatory Therapies, LLCEdenNYUSA,Present address:
Roswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Miren L Baroja
- Center for Cellular ImmunotherapiesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jenni L Loyall
- Department of Microbiology and Immunology at the Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
| | - Sathy V Balu‐Iyer
- Department of Pharmaceutical SciencesUniversity at BuffaloBuffaloNYUSA
| | - Raymond J Kelleher
- Department of Microbiology and Immunology at the Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
| | - Beatriz M Carreno
- Center for Cellular ImmunotherapiesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Gerald P Linette
- Center for Cellular ImmunotherapiesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | | - Richard B Bankert
- Department of Microbiology and Immunology at the Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
| |
Collapse
|
205
|
Wei Y, Xiao X, Lao XM, Zheng L, Kuang DM. Immune landscape and therapeutic strategies: new insights into PD-L1 in tumors. Cell Mol Life Sci 2021; 78:867-887. [PMID: 32940722 PMCID: PMC11072479 DOI: 10.1007/s00018-020-03637-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/07/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
PD-1/PD-L1 axis represents an important target for renormalizing and resetting anti-tumor immunity in cancer patients. Currently, anti-PD-1/PD-L1 therapy has been applied in a broad spectrum of tumors and has yielded durable remission in patients. However, how to further broaden the application, guide personalized therapeutic strategies, and improve clinical responses remains a vital task. At present, PD-L1 expression is an important parameter of clinical indications for immune checkpoint blockade in many types of cancers, a strategy based on the supposition that positive PD-L1 expression reflects local T cell response. Recent studies have revealed that PD-L1 expression is regulated by multiple layers of complicated factors, during which the host immune microenvironment exerts a pivotal role and determines the clinical efficacy of the therapy. In this review, we will summarize recent findings on PD-1/PD-L1 in cancer, focusing on how local immune landscape participates in the regulation of PD-L1 expression and modification. Importantly, we will also discuss these topics in the context of clinical treatment and analyze how these fundamental principles might inspire our efforts to develop more precise and effective immune therapeutics for cancer.
Collapse
Affiliation(s)
- Yuan Wei
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao Xiao
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Limin Zheng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Dong-Ming Kuang
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
206
|
Han S, Qi Y, Luo Y, Chen X, Liang H. Exosomal Long Non-Coding RNA: Interaction Between Cancer Cells and Non-Cancer Cells. Front Oncol 2021; 10:617837. [PMID: 33520726 PMCID: PMC7840842 DOI: 10.3389/fonc.2020.617837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small membranous vesicles released by many kinds of cells, and are indispensable in cell-to-cell communication by delivering functional biological components both locally and systemically. Long non-coding RNAs (lncRNAs) are long transcripts over 200 nucleotides that exhibit no or limited protein-coding potentials. LncRNAs are dramatic gene expression regulators, and can be selectively sorted into exosomes. Exosomal lncRNAs derived from cancer cells and stromal cells can mediate the generation of pre-metastatic niches (PMNs) and thus promote the progression of cancer. In this review, we summarized the fundamental biology and characteristics of exosomal lncRNAs. Besides, we provided an overview of current research on functions of exosomal lncRNAs between cancer cells and non-cancer cells. A deep understanding of exosomal lncRNAs' role in cancer will be facilitated to find important implications for cancer development and treatment.
Collapse
Affiliation(s)
- Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yongqiang Qi
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yiming Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.,Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| |
Collapse
|
207
|
Ito T, Sugiura K, Hasegawa A, Ouchi W, Yoshimoto T, Mizoguchi I, Inaba T, Hamada K, Eriguchi M, Koyama Y. Microbial Antigen-Presenting Extracellular Vesicles Derived from Genetically Modified Tumor Cells Promote Antitumor Activity of Dendritic Cells. Pharmaceutics 2021; 13:pharmaceutics13010057. [PMID: 33406722 PMCID: PMC7824503 DOI: 10.3390/pharmaceutics13010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Tumor-derived extracellular vesicles (EVs), as tumor vaccines, carry tumor-associated antigens (TAAs), and were expected to transfer TAAs to antigen-presenting cells. However, treatment with tumor-derived EVs exhibited no obvious antitumor effect on the established tumors, likely due to their immuno-suppressive functions, and also to the poor immunogenicity of TAAs. In order to improve the immune stimulating properties, EVs expressing a highly immunogenic bacterial antigen, 6 kDa early secretory antigenic target (ESAT-6), from Mycobacterium tuberculosis were prepared by genetically modifying the parent tumor cells with a plasmid coding for ESAT-6. Cultured B16 tumor cells were transfected with a ternary complex system consisting of pDNA, polyethylenimine (PEI), and chondroitin sulfate. The cells that were transfected with the ternary complex secreted EVs with a higher number of ESAT-6 epitopes than those transfected by a conventional DNA/PEI binary complex, due to the low cytotoxicity, and durable high expression efficiency of the ternary complex systems. The EVs presenting the ESAT-6 epitope (ESAT-EV) were collected and explored as immune modulatory agents. Dendritic cells (DCs) were differentiated from mouse bone marrow cells and incubated with ESAT-EV. After incubating with the EVs for one day, the DCs expressed a significantly higher level of DC maturation marker, CD86. The DCs treated with ESAT-EV showed a significantly improved antitumor activity in tumor-bearing mice.
Collapse
Affiliation(s)
- Tomoko Ito
- Japan Anti-Tuberculosis Association, Shin-Yamanote Hospital, Tokyo 189-0021, Japan;
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (K.S.); (A.H.); (W.O.); (T.I.)
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (T.Y.); (I.M.)
- Department of Clinical Oncology, School of Medicine, Toho University, Tokyo 143-8541, Japan;
- Correspondence: (T.I.); (Y.K.)
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (K.S.); (A.H.); (W.O.); (T.I.)
| | - Aya Hasegawa
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (K.S.); (A.H.); (W.O.); (T.I.)
| | - Wakana Ouchi
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (K.S.); (A.H.); (W.O.); (T.I.)
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (T.Y.); (I.M.)
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (T.Y.); (I.M.)
| | - Toshio Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (K.S.); (A.H.); (W.O.); (T.I.)
| | - Katsuyuki Hamada
- Department of Clinical Oncology, School of Medicine, Toho University, Tokyo 143-8541, Japan;
| | - Masazumi Eriguchi
- Japan Anti-Tuberculosis Association, Shin-Yamanote Hospital, Tokyo 189-0021, Japan;
| | - Yoshiyuki Koyama
- Japan Anti-Tuberculosis Association, Shin-Yamanote Hospital, Tokyo 189-0021, Japan;
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (K.S.); (A.H.); (W.O.); (T.I.)
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (T.Y.); (I.M.)
- Department of Clinical Oncology, School of Medicine, Toho University, Tokyo 143-8541, Japan;
- Correspondence: (T.I.); (Y.K.)
| |
Collapse
|
208
|
Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol Ther 2021; 29:1512-1528. [PMID: 33388421 PMCID: PMC8058488 DOI: 10.1016/j.ymthe.2020.12.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated lymphatic endothelial cells (LECs) are an active barrier to the effector arm of the anti-tumor immune response; however, it remains unclear how LECs become immunosuppressive in the tumor microenvironment (TME). Exosomal microRNAs (miRNAs) have recently been implicated in intercellular crosstalk within the TME. Here, we report a mechanistic model via which cervical cancer-secreted, exosome-encapsulated microRNA (miR)-1468-5p promotes lymphatic PD-L1 upregulation and lymphangiogenesis to impair T cell immunity. Subsequently, exosomal miR-1468-5p epigenetically activates the JAK2/STAT3 pathway in LECs by directly targeting homeobox containing 1 (HMBOX1) in the SOCS1 promoter, activating an immunosuppressive program that allows cancer cells to escape anti-cancer immunity. Furthermore, clinical data reveal that high serum exosomal miR-1468-5p levels correlate with TME immunosuppressive status and poor prognosis in cervical cancer (CCa) patients. Taken together, our results suggest that cancer-secreted exosomal miR-1468-5p instructs LECs to form an integrated immunosuppressive TME component and may be a prognostic biomarker and therapeutic target for CCa.
Collapse
|
209
|
Immunoaffinity-Based Isolation of Melanoma Cell-Derived and T Cell-Derived Exosomes from Plasma of Melanoma Patients. Methods Mol Biol 2021; 2265:305-321. [PMID: 33704724 DOI: 10.1007/978-1-0716-1205-7_23] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor-derived exosomes (TEX), a subset of small extracellular vesicles (EVs) which originate from the endocytic compartment of tumor cells, are emerging as key players in cancer progression. TEX circulate freely in patients' body fluids and transfer bioactive cargos from tumor to various recipient cells. The molecular cargo of melanoma cell-derived exosomes (MTEX) mimics that of the tumor, and MTEX serve as a liquid biopsy that provides potentially useful information for cancer diagnosis, prognosis, or responses to therapy. Plasma of melanoma patients contains a mix of MTEX and exosomes produced by nonmalignant cells (NMTEX). Isolation of these exosome subtypes from the bulk of plasma exosomes is necessary to evaluate contributions of each as potential biomarkers of melanoma progression and outcome. Here, methods for separation of MTEX from T cell-derived exosomes from a single small volume of plasma and their subsequent molecular and functional characterization are described. Following size exclusion chromatography (SEC) to isolate total plasma exosomes, immune affinity-based capture of MTEX with anti-CSPG4 antibody and then of exosomes produced by T cells with anti-CD3 antibody is used to sequentially isolate the two subsets. This immune capture method enables the recovery of MTEX and CD3+ exosomes in quantities sufficient both for molecular profiling by flow cytometry or western blotting and for functional analyses.
Collapse
|
210
|
Liu J, Jiang F, Jiang Y, Wang Y, Li Z, Shi X, Zhu Y, Wang H, Zhang Z. Roles of Exosomes in Ocular Diseases. Int J Nanomedicine 2020; 15:10519-10538. [PMID: 33402823 PMCID: PMC7778680 DOI: 10.2147/ijn.s277190] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes, nanoscale vesicles with a diameter of 30 to 150 nm, are composed of a lipid bilayer, protein, and genetic material. Exosomes are secreted by virtually all types of cells in the human body. They have key functions in cell-to-cell communication, immune regulation, inflammatory response, and neovascularization. Mounting evidence indicates that exosomes play an important role in various diseases, such as cancer, cardiovascular diseases, and brain diseases; however, the role that exosomes play in eye diseases has not yet been rigorously studied. This review covers current exosome research as it relates to ocular diseases including diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, glaucoma, traumatic optic neuropathies, corneal diseases, retinopathy of prematurity, and uveal melanoma. In addition, we discuss recent advances in the biological functions of exosomes, focusing on the toxicity of exosomes and the use of exosomes as biomarkers and drug delivery vesicles. Finally, we summarize the primary considerations and challenges to be taken into account for the effective applications of exosomes.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Yu Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Yicheng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Xuefeng Shi
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, 300020, People's Republic of China.,School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, People's Republic of China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, People's Republic of China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
211
|
Exosomal long non-coding RNAs in the diagnosis and oncogenesis of pancreatic cancer. Cancer Lett 2020; 501:55-65. [PMID: 33359452 DOI: 10.1016/j.canlet.2020.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles, specifically exosomes, play a significant role as an extracellular messenger through their transporting cargo. Of particular interest are the potential roles they play in pancreatic cancer, one of the leading causes of cancer-related mortality worldwide. Pancreatic Ductal Adenocarcinoma displays high chemo-resistance and metastatic ability, which may be influenced by cancer-derived exosomes carrying proteins, lipids and RNA. To date, among the most extensively examined exosomal molecular cargo there are long non-coding RNAs (lncRNAs) that, despite the increasing interest in their role and functions, are relatively poorly understood compared to other RNA transcripts. Nevertheless, we have witnessed an increasing interest for lncRNAs roles and functions in the past decade. For example, lncRNAs have been investigated as potential biomarkers for diagnosing pancreatic cancer and may have a role as therapeutics targets for precision medicine, but may also directly intervene in tumour progression features such as metastasis, epithelial to mesenchymal transition and resistance of cancer cells towards chemotherapy agents. The function of lncRNAs within various cancer exosomes is still undefined. In this review, we summarize the current knowledge on pancreatic cancer-derived exosome specific lncRNAs having prominent roles in genome integrity, pancreatic cancer progression and in other oncogenic hallmarks.
Collapse
|
212
|
Droste M, Thakur BK, Eliceiri BP. Tumor-Derived Extracellular Vesicles and the Immune System-Lessons From Immune-Competent Mouse-Tumor Models. Front Immunol 2020; 11:606859. [PMID: 33391275 PMCID: PMC7772428 DOI: 10.3389/fimmu.2020.606859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived extracellular vesicles (TEVs) are important regulators of the immune response in cancer; however, most research so far has been carried out using cell culture systems. Immune-competent murine tumor models currently provide the best platform to assess proposed roles of TEVs using in vivo animal models and therefore are important for examining interactions between TEVs and the immune system. In this review, we present the current knowledge on TEVs using in vivo tumor-bearing animal models, with a focus on the role of TEVs in mediating crosstalk between tumor cells and both adaptive and innate immune cells. In particular, we address the question how animal models can clarify the reported heterogeneity of TEV effects in both anti-tumor responses and evasion of immune surveillance. The potential of TEVs in mediating direct antigen-presenting functions supports their potential as cancer vaccine therapeutics, therefore, we provide an overview of key findings of TEV trials that have the potential as novel immunotherapies, and shed light on challenges in the path toward the first in-human trials. We also highlight the important updates on the methods that continue to enhance the rigor and reproducibility of EV studies, particularly in functional animal models.
Collapse
Affiliation(s)
- Marvin Droste
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, UC San Diego School of Medicine, San Diego, CA, United States.,Department of Pediatrics II (Pediatric Nephrology), University Hospital Essen, Essen, Germany
| | - Basant K Thakur
- Cancer Exosomes Laboratory, Department of Pediatrics III, University Hospital Essen, Essen, Germany
| | - Brian P Eliceiri
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, UC San Diego School of Medicine, San Diego, CA, United States
| |
Collapse
|
213
|
Zheng B, Xu Y, Huang M, Li X, Wang T, Ming D. Bio-Inorganic Hybrid Nongenetically Modified Viruses as an Immune Agonist for Systemic Elimination of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53691-53704. [PMID: 33206505 DOI: 10.1021/acsami.0c16978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial-based cancer therapy is nowadays considered as an interesting approach, especially with viruses which are attracting more attention owing to their simple structure and nanoscale. However, because of the need for cumbersome genetic modification and poor biosafety, its application is seriously limited. Here, nonpathogenic natural Sendai viruses (SEVs) are used as an alternative immune agonist after being mineralized by calcium ions. Both in vitro and in vivo studies indicated that virus-inorganic hybrids can effectively excite antigen-presenting cells (APCs). Then, the tumor antigens were released in large amounts by photothermal damage. Meanwhile, these released antigens were presented to lymph nodes to mature antitumor T lymphocytes via the peritumoral APCs previously recruited by the SEV. Our results demonstrated that even after administration at one point, the nanohybrids could still effectively stimulate systemic antitumor immune response to suppress the potential cancer metastatic spread. The bio-inorganic hybrid nongenetically modified virus-inorganic nanocomposites might serve as an alternative strategy for synergistic immune therapy.
Collapse
Affiliation(s)
- Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yanan Xu
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xianhuang Li
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
214
|
Zhu X, Qin X, Wang X, Wang Y, Cao W, Zhang J, Chen W. Oral cancer cell‑derived exosomes modulate natural killer cell activity by regulating the receptors on these cells. Int J Mol Med 2020; 46:2115-2125. [PMID: 33125101 PMCID: PMC7595664 DOI: 10.3892/ijmm.2020.4736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
Oral cancer (OC) is the most common type of head and neck malignant tumor. Tumor‑derived exosomes induce a complex extracellular environment that affects tumor immunity. In the present study, exosomes were isolated from OC cell lines (WSU‑HN4 and SCC‑9) by ultrafiltration and the protein content of these oral cancer‑derived exosomes (OCEXs) was analyzed by mass spectrometry, which revealed the enrichment of transforming growth factor (TGF)‑β1. Natural killer (NK) cells were examined by flow cytometry following co‑culture with OCEXs. The expression of killer cell lectin like receptor K1 (KLRK1; also known as NKG2D, as used herein) and natural cytotoxicity triggering receptor 3 (NCR3; also known as NKp30, as used herein) in NK cells was found to be significantly upregulated following co‑culture with the OCEXs for 1 day, whereas this expression decreased at 7 days. Killer cell lectin like receptor C1 (KLRC1; also known as NKG2A; as used herein) expression exhibited an opposite trend at 1 day. In addition, NK cell cytotoxicity against the OC cells was enhanced at 1 day, but was attenuated at 7 days. TGF‑β1 inhibited the function of NK cells at 7 days, whereas it had no obvious effects at 1 and 3 days. On the whole, the findings of the present study reveal changes in NK cell function and provide new insight into NK cell dysfunction.
Collapse
Affiliation(s)
- Xueqin Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Yingnan Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
- Correspondence to: Professor Wantao Chen, Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China, E-mail:
| |
Collapse
|
215
|
Mechanical strain induces phenotypic changes in breast cancer cells and promotes immunosuppression in the tumor microenvironment. J Transl Med 2020; 100:1503-1516. [PMID: 32572176 PMCID: PMC7686122 DOI: 10.1038/s41374-020-0452-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BCa) proliferates within a complex, three-dimensional microenvironment amid heterogeneous biochemical and biophysical cues. Understanding how mechanical forces within the tumor microenvironment (TME) regulate BCa phenotype is of great interest. We demonstrate that mechanical strain enhanced the proliferation and migration of both estrogen receptor+ and triple-negative (TNBC) human and mouse BCa cells. Furthermore, a critical role for exosomes derived from cells subjected to mechanical strain in these pro-tumorigenic effects was identified. Exosome production by TNBC cells increased upon exposure to oscillatory strain (OS), which correlated with elevated cell proliferation. Using a syngeneic, orthotopic mouse model of TNBC, we identified that preconditioning BCa cells with OS significantly increased tumor growth and myeloid-derived suppressor cells (MDSCs) and M2 macrophages in the TME. This pro-tumorigenic myeloid cell enrichment also correlated with a decrease in CD8+ T cells. An increase in PD-L1+ exosome release from BCa cells following OS supported additive T cell inhibitory functions in the TME. The role of exosomes in MDSC and M2 macrophage was confirmed in vivo by cytotracking fluorescent exosomes, derived from labeled 4T1.2 cells, preconditioned with OS. In addition, in vivo internalization and intratumoral localization of tumor-cell derived exosomes was observed within MDSCs, M2 macrophages, and CD45-negative cell populations following direct injection of fluorescently-labeled exosomes. Our data demonstrate that exposure to mechanical strain promotes invasive and pro-tumorigenic phenotypes in BCa cells, indicating that mechanical strain can impact the growth and proliferation of cancer cell, alter exosome production by BCa, and induce immunosuppression in the TME by dampening anti-tumor immunity.
Collapse
|
216
|
Salminen A. Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer's disease. Neurochem Int 2020; 142:104919. [PMID: 33242538 DOI: 10.1016/j.neuint.2020.104919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which causes a non-reversible cognitive impairment and dementia. The primary cause of late-onset AD remains unknown although its pathology was discovered over a century ago. Recently, the vascular hypothesis of AD has received backing from evidence emerging from neuroimaging studies which have revealed the presence of a significant hypoperfusion in the brain regions vulnerable to AD pathology. In fact, hypoxia can explain many of the pathological changes evident in AD pathology, e.g. the deposition of β-amyloid plaques and chronic low-grade inflammation. Hypoxia-inducible factor-1α (HIF-1α) stimulates inflammatory responses and modulates both innate and adaptive immunity. It is known that hypoxia-induced inflammation evokes compensatory anti-inflammatory response involving tissue-resident microglia/macrophages and infiltrated immune cells. Hypoxia/HIF-1α induce immunosuppression by (i) increasing the expression of immunosuppressive genes, (ii) stimulating adenosinergic signaling, (iii) enhancing aerobic glycolysis, i.e. lactate production, and (iv) augmenting the secretion of immunosuppressive exosomes. Interestingly, it seems that these common mechanisms are also involved in the pathogenesis of AD. In AD pathology, an enhanced immunosuppression appears, e.g. as a shift in microglia/macrophage phenotypes towards the anti-inflammatory M2 phenotype and an increase in the numbers of regulatory T cells (Treg). The augmented anti-inflammatory capacity promotes the resolution of acute inflammation but persistent inflammation has crucial effects not only on immune cells but also harmful responses to the homeostasis of AD brain. I will examine in detail the mechanisms of the hypoperfusion/hypoxia-induced immunosuppressive state in general and especially, in its association with AD pathogenesis. These immunological observations support the vascular hypothesis of AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
217
|
Zanetti-Domingues LC, Bonner SE, Martin-Fernandez ML, Huber V. Mechanisms of Action of EGFR Tyrosine Kinase Receptor Incorporated in Extracellular Vesicles. Cells 2020; 9:cells9112505. [PMID: 33228060 PMCID: PMC7699420 DOI: 10.3390/cells9112505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
EGFR and some of the cognate ligands extensively traffic in extracellular vesicles (EVs) from different biogenesis pathways. EGFR belongs to a family of four homologous tyrosine kinase receptors (TKRs). This family are one of the major drivers of cancer and is involved in several of the most frequent malignancies such as non-small cell lung cancer, breast cancer, colorectal cancer and ovarian cancer. The carrier EVs exert crucial biological effects on recipient cells, impacting immunity, pre-metastatic niche preparation, angiogenesis, cancer cell stemness and horizontal oncogene transfer. While EV-mediated EGFR signalling is important to EGFR-driven cancers, little is known about the precise mechanisms by which TKRs incorporated in EVs play their biological role, their stoichiometry and associations to other proteins relevant to cancer pathology and EV biogenesis, and their means of incorporation in the target cell. In addition, it remains unclear whether different subtypes of EVs incorporate different complexes of TKRs with specific functions. A raft of high spatial and temporal resolution methods is emerging that could solve these and other questions regarding the activity of EGFR and its ligands in EVs. More importantly, methods are emerging to block or mitigate EV activity to suppress cancer progression and drug resistance. By highlighting key findings and areas that remain obscure at the intersection of EGFR signalling and EV action, we hope to cross-fertilise the two fields and speed up the application of novel techniques and paradigms to both.
Collapse
Affiliation(s)
- Laura C. Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
- Correspondence: (L.C.Z.-D.); (V.H.)
| | - Scott E. Bonner
- The Wood Lab, Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK;
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: (L.C.Z.-D.); (V.H.)
| |
Collapse
|
218
|
Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials 2020; 269:120539. [PMID: 33243424 DOI: 10.1016/j.biomaterials.2020.120539] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Transplantation of synovial fluid-derived mesenchymal stem cells (SF-MSCs) is a viable therapy for cartilage degeneration of osteoarthritis (OA). But controlling chondrogenic differentiation of the transplanted SF-MSCs in the joints remains a challenge. Kartogenin (KGN) is a small molecule that has been discovered to induce differentiation of SF-MSCs to chondrocytes both in vitro and in vivo. The clinical application of KGN however is limited by its low water solubility. KGN forms precipitates in the cell, resulting in low effective concentration and thus limiting its chondrogesis-promoting activity. Here we report that targeted delivery of KGN to SF-MSCs by engineered exosomes leads to even dispersion of KGN in the cytosol, increases its effective concentration in the cell, and strongly promotes the chondrogenesis of SF-MSCs in vitro and in vivo. Fusing an MSC-binding peptide E7 with the exosomal membrane protein Lamp 2b yields exosomes with E7 peptide displayed on the surface (E7-Exo) that has SF-MSC targeting capability. KGN delivered by E7-Exo efficiently enters SF-MSCs and induces higher degree of cartilage differentiation than KGN alone or KGN delivered by exosomes without E7. Co-administration of SF-MSCs with E7-Exo/KGN in the knee joints via intra-articular injection also shows more pronounced therapeutic effects in a rat OA model than KGN alone or KGN delivered by exosomes without E7. Altogether, transplantation of SF-MSCs with in situ chondrogenesis enabled by E7-Exo delivered KGN holds promise towards as an advanced stem cell therapy for OA.
Collapse
|
219
|
Dong X, Bai X, Ni J, Zhang H, Duan W, Graham P, Li Y. Exosomes and breast cancer drug resistance. Cell Death Dis 2020; 11:987. [PMID: 33203834 PMCID: PMC7673022 DOI: 10.1038/s41419-020-03189-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Drug resistance is a daunting challenge in the treatment of breast cancer (BC). Exosomes, as intercellular communicative vectors in the tumor microenvironment, play an important role in BC progression. With the in-depth understanding of tumor heterogeneity, an emerging role of exosomes in drug resistance has attracted extensive attention. The functional proteins or non-coding RNAs contained in exosomes secreted from tumor and stromal cells mediate drug resistance by regulating drug efflux and metabolism, pro-survival signaling, epithelial–mesenchymal transition, stem-like property, and tumor microenvironmental remodeling. In this review, we summarize the underlying associations between exosomes and drug resistance of BC and discuss the unique biogenesis of exosomes, the change of exosome cargo, and the pattern of release by BC cells in response to drug treatment. Moreover, we propose exosome as a candidate biomarker in predicting and monitoring the therapeutic drug response of BC and as a potential target or carrier to reverse the drug resistance of BC.
Collapse
Affiliation(s)
- Xingli Dong
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, China.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Xupeng Bai
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology and Department of Pathology, Jinan University Medical College, 510630, Guangzhou, China
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia. .,School of Basic Medicine Sciences, Zhengzhou University, 450001, Henan, China.
| |
Collapse
|
220
|
Qu X, Li JW, Chan J, Meehan K. Extracellular Vesicles in Head and Neck Cancer: A Potential New Trend in Diagnosis, Prognosis, and Treatment. Int J Mol Sci 2020; 21:ijms21218260. [PMID: 33158181 PMCID: PMC7662588 DOI: 10.3390/ijms21218260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Head and neck cancer (HNC) is a fatal and debilitating disease that is characterized by steady, poor survival rates despite advances in treatment. There is an urgent and unmet need to improve our understanding of what drives this insidious cancer and causes poor outcomes. Extracellular vesicles (EVs) are small vesicles that originate from tumor cells, immune cells, and other cell types and are secreted into plasma, saliva, and other bio-fluids. EVs represent dynamic, real-time changes of cells and offer an exciting opportunity to improve our understanding of HNC biology that may translate to improved clinical practice. Considering the amplified interest in EVs, we have sought to provide a contemporary review of the most recent and salient literature that is shaping the field. Herein, we discuss the functionality of EVs in HNCs and their clinical potential with regards to biomarker and therapeutic capabilities.
Collapse
Affiliation(s)
- Xinyu Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (X.Q.); (J.C.)
| | - Jing-Woei Li
- Department of Ear, Nose and Throat, Queen Elizabeth Hospital, Hong Kong, China;
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Jason Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (X.Q.); (J.C.)
| | - Katie Meehan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (X.Q.); (J.C.)
- Correspondence: ; Tel.: +852-3763-6039
| |
Collapse
|
221
|
Del Re M, van Schaik RHN, Fogli S, Mathijssen RHJ, Cucchiara F, Capuano A, Scavone C, Jenster GW, Danesi R. Blood-based PD-L1 analysis in tumor-derived extracellular vesicles: Applications for optimal use of anti-PD-1/PD-L1 axis inhibitors. Biochim Biophys Acta Rev Cancer 2020; 1875:188463. [PMID: 33137405 DOI: 10.1016/j.bbcan.2020.188463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Monoclonal antibodies that inhibit the programmed cell death protein 1 axis (anti-PD-1/PD-L1) are part of a new pharmacological strategy aimed at reinforcing the immune response to cancer. Despite the success in several cancer types, a significant percentage of patients do not benefit from treatment with these drugs due to intrinsic or acquired resistance or the occurrence of immune-related adverse reactions. Assessment of PD-L1 expression in tumor tissues is currently used to predict drug response in the clinics; however, there is a growing interest in identifying blood-based biomarkers that, owing to the minimally-invasive nature, can allow a dynamic monitoring of drug response in daily clinical practice. In the current review article, we discuss whether the assessment of PD-L1 mRNA and protein levels in circulating extracellular vesicles may have the potential to predict the likelihood of tumor response to anti-PD-1/PD-L1 antibodies.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Guido W Jenster
- Department of Urology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
222
|
Scholl JN, Dias CK, Muller L, Battastini AMO, Figueiró F. Extracellular vesicles in cancer progression: are they part of the problem or part of the solution? Nanomedicine (Lond) 2020; 15:2625-2641. [PMID: 33094653 DOI: 10.2217/nnm-2020-0256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are released especially by cancer cells. They modulate the tumor microenvironment by interacting with immune cells while carrying immunosuppressive or immunostimulatory molecules. In this review, we will explore some conflicting reports regarding the immunological outcomes of EVs in cancer progression, in which they might initiate an antitumor immune response or an immunosuppressive response. Concerning immunosuppression, the role of tumor-derived EVs' in the adenosinergic system is underexplored. The enhancement of adenosine (ADO) levels in the tumor microenvironment impairs T-cell function and cytokine release. However, some tumor-derived EVs may deliver immunostimulatory factors, promoting immunogenic activity, even with ADO production. The modulatory role of ADO over the tumor progression represents a piece in an intricate microenvironment with anti and pro tumoral seesaw-like mechanisms.
Collapse
Affiliation(s)
- Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Camila Kehl Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Laurent Muller
- Department of Otolaryngology, Head & Neck Surgery, University of Basel, Basel, 4031, Switzerland
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
223
|
Yang E, Wang X, Gong Z, Yu M, Wu H, Zhang D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther 2020; 5:242. [PMID: 33077737 PMCID: PMC7572387 DOI: 10.1038/s41392-020-00359-5] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is reported to be one of the hallmarks of cancer, which is an adaptive mechanism by which fast-growing cancer cells adapt to their increasing energy demands. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Meanwhile, the TME is a highly heterogeneous ecosystem incorporating cancer cells, fibroblasts, adipocytes, endothelial cells, mesenchymal stem cells, and extracellular matrix. Accumulated evidence indicates that exosomes may transfer biologically functional molecules to the recipient cells, which facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells and their surrounding stromal cells. In this review, we present the role of exosomes in the TME and the underlying mechanism of how exosomes exacerbate tumor development through metabolic reprogramming. In addition, we will also discuss the potential role of exosomes targeting metabolic process as biomarkers for tumor diagnosis and prognosis, and exosomes-mediated metabolic reprogramming as potential targets for cancer therapy. Furthermore, a better understanding of the link between exosomes and metabolic reprogramming, and their impact on cancer progression, would provide novel insights for cancer prevention and treatment in the future.
Collapse
Affiliation(s)
- Enli Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Zhiyuan Gong
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Miao Yu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China. .,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China. .,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China.
| |
Collapse
|
224
|
MCU-dependent negative sorting of miR-4488 to extracellular vesicles enhances angiogenesis and promotes breast cancer metastatic colonization. Oncogene 2020; 39:6975-6989. [PMID: 33067576 DOI: 10.1038/s41388-020-01514-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Based on Stephen Paget's well-established theory, both cell-autonomous and non-cell-autonomous mechanisms are crucial for metastasis. Although the mitochondrial calcium uniporter (MCU) has been suggested to be involved in breast cancer (BC) progression via cell-autonomous mechanisms, whether it assists the metastasis of BC cells through non-cell-autonomous mechanisms remains unclear. This study aimed to demonstrate that the MCU regulates BC metastatic colonization via non-cell-autonomous mechanisms. The results suggested that extracellular vesicles (EVs) derived from MCU-downregulated MDA-MB-231 cells suppressed angiogenesis in the metastatic niche in a nude mouse model, thereby hindering the colonization of BC cells. Mechanistically, we revealed that the MCU negatively correlated with miR-4488 in EVs derived from BC cells. Significantly, miR-4488 was determined to suppress angiogenesis of vascular endothelial cells by directly targeting angiogenic CX3CL1. Furthermore, we identified miR-4488 as being significantly downregulated in serum EVs from patients with triple-negative BC. Hence, this study suggests that MCU-dependent negative sorting of miR-4488 to EVs enhances angiogenesis in the metastatic niche and, thus, favors the metastatic colonization of BC cells.
Collapse
|
225
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
226
|
Choi JU, Park IK, Lee YK, Hwang SR. The Biological Function and Therapeutic Potential of Exosomes in Cancer: Exosomes as Efficient Nanocommunicators for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21197363. [PMID: 33028046 PMCID: PMC7582692 DOI: 10.3390/ijms21197363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapeutics must be delivered to their targets for improving efficacy and reducing toxicity, though they encounter physiological barriers in the tumor microenvironment. They also face limitations associated with genetic instability and dynamic changes of surface proteins in cancer cells. Nanosized exosomes generated from the endosomal compartment, however, transfer their cargo to the recipient cells and mediate the intercellular communication, which affects malignancy progression, tumor immunity, and chemoresistance. In this review, we give an overview of exosomes' biological aspects and therapeutic potential as diagnostic biomarkers and drug delivery vehicles for oncotherapy. Furthermore, we discuss whether exosomes could contribute to personalized cancer immunotherapy drug design as efficient nanocommunicators.
Collapse
Affiliation(s)
- Jeong Uk Choi
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 322 Seoyang-ro, Hwasun 58128, Korea;
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea;
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-6365
| |
Collapse
|
227
|
Kugeratski FG, Kalluri R. Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J 2020; 288:10-35. [PMID: 32910536 DOI: 10.1111/febs.15558] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Exosomes are nanosized extracellular vesicles of endosomal origin that enclose a multitude of functional biomolecules. Exosomes have emerged as key players of intercellular communication in physiological and pathological conditions. In cancer, depending on the context, exosomes can oppose or potentiate the development of an aggressive tumor microenvironment, thereby impacting tumor progression and clinical outcome. Increasing evidence has established exosomes as important mediators of immune regulation in cancer, as they deliver a plethora of signals that can either support or restrain immunosuppression of lymphoid and myeloid cell populations in tumors. Here, we review the current knowledge related to exosome-mediated regulation of lymphoid (T lymphocytes, B lymphocytes, and NK cells) and myeloid (macrophages, dendritic cells, monocytes, myeloid-derived suppressor cells, and neutrophils) cell populations in cancer. We also discuss the translational potential of engineered exosomes as immunomodulatory agents for cancer therapy.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
228
|
Shenoy GN, Bhatta M, Loyall JL, Kelleher RJ, Bernstein JM, Bankert RB. Exosomes Represent an Immune Suppressive T Cell Checkpoint in Human Chronic Inflammatory Microenvironments. Immunol Invest 2020; 49:726-743. [PMID: 32299258 PMCID: PMC7554261 DOI: 10.1080/08820139.2020.1748047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: T cells present in chronic inflammatory tissues such as nasal polyps (from chronic rhinosinusitis patients) have been demonstrated to be hypo-responsive to activation via the TCR, similar to tumor-specific T cells in multiple different human tumor microenvironments. While immunosuppressive exosomes have been known to contribute to the failure of the tumor-associated T cells to respond optimally to activation stimuli, it is not known whether they play a similar role in chronic inflammatory microenvironments. In the current study, we investigate whether exosomes derived from chronic inflammatory microenvironments contribute to the immune suppression of T cells. Methods: Exosomes were isolated by ultracentrifugation and characterized by size and composition using nanoparticle tracking analysis, scanning electron microscopy, antibody arrays and flow exometry. Immunosuppressive ability of the exosomes was measured by quantifying its effect on activation of T cells, using nuclear translocation of NFκB as an activation endpoint. Results: Exosomes were isolated and characterized from two different types of chronic inflammatory tissues - nasal polyps from chronic rhinosinusitis patients and synovial fluid from rheumatoid arthritis patients. These exosomes arrest the activation of T cells stimulated via the TCR. This immune suppression, like that which is seen in tumor microenvironments, is dependent in part upon a lipid, ganglioside GD3, which is expressed on the exosomal surface. Conclusion: Immunosuppressive exosomes present in non-malignant chronic inflammatory tissues represent a new T cell checkpoint, and potentially represent a novel therapeutic target to enhance the response to current therapies and prevent disease recurrences.
Collapse
Affiliation(s)
- Gautam N Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | | | - Jenni L Loyall
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Raymond J Kelleher
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Joel M Bernstein
- Department of Otolaryngology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Richard B Bankert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
229
|
Dieterich LC, Bikfalvi A. The tumor organismal environment: Role in tumor development and cancer immunotherapy. Semin Cancer Biol 2020; 65:197-206. [DOI: 10.1016/j.semcancer.2019.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|
230
|
Extracellular Vesicles as Biomarkers in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12102825. [PMID: 33007968 PMCID: PMC7600903 DOI: 10.3390/cancers12102825] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are small particles found throughout the body. EVs are released by living cells and contain cargo representing the cell of origin. In recent years, EVs have gained attention in cancer research. Since the cargo found inside EVs can be traced back to the cell of origin, EVs shed from cancer cells, in particular, may be used to better describe and characterize a patient’s tumor. EVs have been found and isolated from a variety of bodily fluids, including blood, saliva, and amniotic fluid, and therefore offer a non-invasive way of also diagnosing and monitoring patients before, during, and after cancer immunotherapy. The aim of this review article was to summarize some of the recent work conducted in this field and the challenges we face moving forward in utilizing EVs for cancer diagnostic and therapeutic purposes in cancer immunotherapy in the clinical setting. Abstract Extracellular vesicles (EVs), including exosomes and microvesicles, are membrane-bound vesicles secreted by most cell types during both physiologic conditions as well in response to cellular stress. EVs play an important role in intercellular communication and are emerging as key players in tumor immunology. Tumor-derived EVs (TDEs) harbor a diverse array of tumor neoantigens and contain unique molecular signature that is reflective of tumor’s underlying genetic complexity. As such they offer a glimpse into the immune tumor microenvironment (TME) and have the potential to be a novel, minimally invasive biomarker for cancer immunotherapy. Immune checkpoint inhibitors (ICI), such as anti- programmed death-1(PD-1) and its ligand (PD-L1) antibodies, have revolutionized the treatment of a wide variety of solid tumors including head and neck squamous cell carcinoma, urothelial carcinoma, melanoma, non-small cell lung cancer, and others. Typically, an invasive tissue biopsy is required both for histologic diagnosis and next-generation sequencing efforts; the latter have become more widespread in daily clinical practice. There is an unmet need for noninvasive or minimally invasive (e.g., plasma-based) biomarkers both for diagnosis and treatment monitoring. Targeted analysis of EVs in biospecimens, such as plasma and saliva could serve this purpose by potentially obviating the need for tissue sample. In this review, we describe the current challenges of biomarkers in cancer immunotherapy as well as the mechanistic role of TDEs in modulating antitumor immune response.
Collapse
|
231
|
Abstract
BACKGROUND Clinical application of immune checkpoint inhibitors (ICI), whether as monotherapy or in combination with established methods, is revolutionizing treatment of head and neck cancer. However, this change in therapeutic concepts requires reevaluation and further development of predictive and prognostic markers, since the survival rates for advanced and particularly human papillomavirus (HPV)-negative disease remain poor. MATERIALS AND METHODS A selective literature review was performed in PubMed. Literature found with the keywords "cytodiagnostics, circulating tumor cells, liquid biopsy, cfDNA, exosomes" in combination with "head and neck cancer" and/or "immune checkpoint inhibitor therapy" published until March 2020 was included. The articles were selected for their relevance for the current study by the authors. RESULTS This work provides a review of the current literature and indicates possible applications in the field of head and neck cancers. Liquid biopsy refers to the analysis of circulating tumor cells or of tumor genetic material in body fluids. This minimally invasive analysis can support therapeutic decisions and enable a personalized approach to treating head and neck cancer. DISCUSSION Before any of these approaches can be established in clinical routine, long-term data and standardization of the methods for isolating and analyzing the markers are needed.
Collapse
|
232
|
Ludwig S, Rotter N, Theodoraki MN, Jablonska J, Lammert A, Lang S. [Exosomes as immune regulators in head and neck cancer]. HNO 2020; 68:719-725. [PMID: 32399644 DOI: 10.1007/s00106-020-00871-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes, virus-sized nanovesicles, are utilized as messenger systems of our body to communicate with other body cells and regulate immune functions. Almost all cells produce exosomes and are able to interact with immune cells in the blood stream and peripheral body areas. Different markers on the surface of exosomes are necessary for immune cell adhesion and interaction. Furthermore, many types of exosome-immune cell interaction, such as surface receptor contact and phagocytosis, are known. As carriers of different cargos, exosomes affect different immune cell types in head and neck cancers: So far, T cells, natural killer cells, macrophages, and dendritic cells have been described in this context. For diagnostic purposes, a combined analysis of different parameters including protein amount, nucleic acid/protein expression, and the immunosuppressive impact of exosomes could empower exosomes as useful tools for evaluation of tumor promotion and progression in the future.
Collapse
Affiliation(s)
- S Ludwig
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland.
| | - N Rotter
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland
| | - M-N Theodoraki
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - J Jablonska
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Essen, Essen, Deutschland
| | - A Lammert
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland
| | - S Lang
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Essen, Essen, Deutschland
| |
Collapse
|
233
|
Qiao XW, Jiang J, Pang X, Huang MC, Tang YJ, Liang XH, Tang YL. The Evolving Landscape of PD-1/PD-L1 Pathway in Head and Neck Cancer. Front Immunol 2020; 11:1721. [PMID: 33072064 PMCID: PMC7531035 DOI: 10.3389/fimmu.2020.01721] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Over the past 10 years, cancer immunotherapy has made significant progress in multiple cancer types and has been gradually been applied to clinical cancer care, in which the programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is one of the most attractive targets. Compared with traditional therapies, the emerging PD-1/PD-L1 blockade immunotherapy exhibited more satisfactory curative effects and lower toxicity for patients with advanced head and neck squamous cell carcinoma (HNSCC). This review analyzes the expression characteristics and clinical significance of PD-1/PD-L1 in HNSCC, the immunosuppressive roles of tumor cell and stromal cell expressing PD-1/PD-L1 in this disease, and presents the development landscape of PD-1/PD-L1 inhibitors, which may provide new curative alternatives for recurrent or metastatic HNSCC.
Collapse
Affiliation(s)
- Xin-Wei Qiao
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
234
|
Novikova S, Shushkova N, Farafonova T, Tikhonova O, Kamyshinsky R, Zgoda V. Proteomic Approach for Searching for Universal, Tissue-Specific, and Line-Specific Markers of Extracellular Vesicles in Lung and Colorectal Adenocarcinoma Cell Lines. Int J Mol Sci 2020; 21:E6601. [PMID: 32916986 PMCID: PMC7555231 DOI: 10.3390/ijms21186601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor-derived extracellular vesicles (EVs), including exosomes, contain proteins that mirror the molecular landscape of producer cells. Being potentially detectible in biological fluids, EVs are of great interest for the screening of cancer biomarkers. To reveal universal, tissue-specific, and line-specific markers, we performed label-free mass spectrometric profiling of EVs originating from the human colon cancer cell lines Caco-2, HT29, and HCT-116, as well as from the lung cancer cell lines NCI-H23 and A549. A total of 651 proteins was identified in the EV samples using at least two peptides. These proteins were highly enriched in exosome markers. We found 11 universal, eight tissue-specific, and 29 line-specific markers, the levels of which were increased in EVs compared to the whole lysates. The EV proteins were involved in the EGFR, Rap1, integrin, and microRNA signaling associated with metastasis and cancer progression. An EV protein-based assay could be developed as a liquid biopsy tool.
Collapse
Affiliation(s)
- Svetlana Novikova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, 119121 Moscow, Russia; (T.F.); (O.T.); (V.Z.)
| | - Natalia Shushkova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, 119121 Moscow, Russia; (T.F.); (O.T.); (V.Z.)
| | - Tatiana Farafonova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, 119121 Moscow, Russia; (T.F.); (O.T.); (V.Z.)
| | - Olga Tikhonova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, 119121 Moscow, Russia; (T.F.); (O.T.); (V.Z.)
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, 141700 Moscow, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, 119121 Moscow, Russia; (T.F.); (O.T.); (V.Z.)
| |
Collapse
|
235
|
Zhao R, Chen X, Song H, Bie Q, Zhang B. Dual Role of MSC-Derived Exosomes in Tumor Development. Stem Cells Int 2020; 2020:8844730. [PMID: 32963552 PMCID: PMC7499322 DOI: 10.1155/2020/8844730] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/08/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a class of adult stem cells derived from the mesoderm. They can self-renew, have multidirectional differentiation potential, and can differentiate into a variety of mesenchymal tissues. MSCs can produce a large number of exosomes, which can mediate information exchange and transmission between cells in the tumor microenvironment under conditions of rest or stress. Recent studies have reported conflicting findings regarding the effect of MSC-derived exosomes on tumors. Some studies have suggested that MSC-derived exosomes can promote tumor growth and metastasis, but others have reported that they can inhibit tumor cell growth. Here, we investigate the two sides of the debate regarding the effect of MSC-derived exosomes on tumors and analyze the reasons for the divergent findings.
Collapse
Affiliation(s)
- Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Department of Microbiology, Qingdao University Life Science College, Qingdao, Shandong, China
| | - Xinke Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Hui Song
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
236
|
Salminen A, Kaarniranta K, Kauppinen A. Exosomal vesicles enhance immunosuppression in chronic inflammation: Impact in cellular senescence and the aging process. Cell Signal 2020; 75:109771. [PMID: 32896608 DOI: 10.1016/j.cellsig.2020.109771] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Exosomes represent an evolutionarily conserved signaling pathway which can act as an alarming mechanism in responses to diverse stresses, e.g. chronic inflammation activates the budding of exosomal vesicles in both immune and non-immune cells. Exosomes can contain both pro- and anti-inflammatory cargos but in chronic inflammation, exosomes mostly carry immunosuppressive cargos, e.g. enzymes and miRNAs. The aging process is associated with chronic low-grade inflammation and the accumulation of pro-inflammatory senescent cells into tissues. There is clear evidence that aging increases the number of exosomes in both the circulation and tissues. Especially, the secretion of immunosuppressive exosomes robustly increases from senescent cells. There are observations that the exosomes from senescent cells are involved in the expansion of senescence into neighbouring cells. Interestingly, the age-related exosomes contain immune suppressive cargos which enhance the immunosuppression within recipient immune cells, i.e. tissue-resident and recruited immune cells including M2 macrophages, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). It seems that increased immunosuppression with aging impairs the clearance of senescent cells and their accumulation within tissues augments the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
237
|
Sun W, Ren Y, Lu Z, Zhao X. The potential roles of exosomes in pancreatic cancer initiation and metastasis. Mol Cancer 2020; 19:135. [PMID: 32878635 PMCID: PMC7466807 DOI: 10.1186/s12943-020-01255-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PaCa) is an insidious and highly metastatic malignancy, with a 5-year survival rate of less than 5%. So far, the pathogenesis and progression mechanisms of PaCa have been poorly characterized. Exosomes correspond to a class of extracellular nanovesicles, produced by a broad range of human somatic and cancerous cells. These particular nanovesicles are mainly composed by proteins, genetic substances and lipids, which mediate signal transduction and material transport. A large number of studies have indicated that exosomes may play decisive roles in the occurrence and metastatic progression of PaCa. This article summarizes the specific functions of exosomes and their underlying molecular mechanisms in mediating the initiation and metastatic capability of PaCa.
Collapse
Affiliation(s)
- Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
238
|
Liang M, Chen X, Wang L, Qin L, Wang H, Sun Z, Zhao W, Geng B. Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:176. [PMID: 32867817 PMCID: PMC7457778 DOI: 10.1186/s13046-020-01688-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
Background Exosomes are emerging as important mediators of the cross-talk between tumor cells and the microenvironment. The communication between tumor-derived exosomes and macrophages has a critical role in facilitating tumor progression. However, the mechanisms by which exosomes modulate tumor development in lung cancer are not fully understood. Methods Short hairpin RNA mediated knockdown or exogenous expression of TRIM59 combined with in vitro and in vivo assays were performed to prove the functional significance of TRIM59. Western blotting, real-time PCR, co-immunoprecipitation, immunofluorescence (IF) staining assays, proximity ligation assay (PLA), ubiquitination assays, lactate secretion and lipid droplets content measurement, and rescue experiments were used to evaluate the mechanism. Lewis lung carcinoma (LLC) cells were injected via subcutaneously or tail vein into C57BL/6 wild-type (WT) and transgenic mice to assess the role of TRIM59 in vivo. Results We demonstrated that tripartite motif-containing 59 (TRIM59) was expressed in lung cancer cells-derived exosomes, and can be transferred to macrophages through the exosomes. Activated macrophages by TRIM59 promote lung cancer progression in vitro and in vivo. Mechanistic investigations revealed that TRIM59 physically interacts with abhydrolase domain containing 5 (ABHD5) and directly induced the ubiquitination of ABHD5 and led to its proteasome-dependent degradation. ABHD5, an lipolytic co-activator, deficiency induced metabolic reprogramming and enabled NLRP3 inflammasome activation in macrophages. Further studies showed that the exacerbation of NLRP3 inflammasome activation by ABHD5 deficiency, provides a positive feedback loop to promote cancer progression by preferentially secrete the proinflammatory cytokine IL-1β. Conclusions Collectively, these data indicate that tumor-derived exosomal TRIM59 converts macrophages to tumor-promoting functions of macrophages via regulating ABHD5 proteasomal degradation, to activate NLRP3 inflammasome signaling pathway to promote lung cancer progression by IL-1β secretion. Our findings also indicate that tumor-derived exosomal TRIM59 has an important role in intercellular communication for fostering an inflammatory microenvironment and promoting lung metastasis.
Collapse
Affiliation(s)
- Manman Liang
- Department of Infectious Diseases, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Xingwu Chen
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Lijing Wang
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Lilong Qin
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Hanli Wang
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Zhengui Sun
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Wenying Zhao
- Department of Medical Oncology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Biao Geng
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China.
| |
Collapse
|
239
|
Elgamal S, Colombo F, Cottini F, Byrd JC, Cocucci E. Imaging intercellular interaction and extracellular vesicle exchange in a co-culture model of chronic lymphocytic leukemia and stromal cells by lattice light-sheet fluorescence microscopy. Methods Enzymol 2020; 645:79-107. [PMID: 33565979 DOI: 10.1016/bs.mie.2020.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in live cell imaging allow investigating processes that take place over the entire cell volume with unprecedented time and spatial resolution. Here we describe a protocol to study intercellular communication, including extracellular vesicle exchange, between cancer cells and their microenvironment, using lattice light sheet fluorescence microscopy. While the described protocol is intended to study the interactions between chronic lymphocytic leukemia cells and bone marrow stromal cells, many components of it can be applied to study other cancers of hematopoietic or solid tumor origin, as well as to characterize other modalities of intercellular communication.
Collapse
Affiliation(s)
- Sara Elgamal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
240
|
Theodoraki MN, Hong CS, Donnenberg VS, Donnenberg AD, Whiteside TL. Evaluation of Exosome Proteins by on-Bead Flow Cytometry. Cytometry A 2020; 99:372-381. [PMID: 33448645 DOI: 10.1002/cyto.a.24193] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Exosomes, recently re-named "small extracellular vesicles" or "sEV," are emerging as an intercellular communication system. Quantification of the molecular cargo exosomes carry by on-bead flow cytometry is needed for defining their role in information transfer and in human disease. Exosomes (sEV) isolated from cell supernatants or plasma of cancer patients by size-exclusion chromatography were captured by biotinylated antibodies specific for antigens in the exosome cargo (e.g., tetraspanins) and placed on streptavidin-labeled beads. Detection was performed with pretitered fluorochrome-labeled antibodies of desired specificity. The data were acquired in a conventional cytometer, and molecules of equivalent soluble fluorochrome (MESF) beads were used to quantify the number of fluorescent molecules bound per bead. Isotype antibody controls were obligatory. The mean fluorescence intensity (MFI) value of each sample was converted into MESF units, and the separation index (SI), which quantifies separation of stained and isotype control beads, was determined. Various proteins identified by labeled antibodies were quantified on the surface of tumor cell-derived exosomes. To identify intravesicular cargo, such as cytokines or chemokines, exosomes were lysed with 0.3% Triton-100, and the proteins in lysates were loaded on aldehyde/sulfate latex beads for flow cytometry. Examples of quantitative surface and/or intravesicular on-bead flow cytometry for exosomes produced by various cells or present in body fluids of cancer patients are provided. On-bead flow cytometry standardized for use with conventional cytometers is a useful method for protein detection and quantitation in exosomes isolated from supernatants of cell lines or plasma of patients with cancer. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Vera S Donnenberg
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Albert D Donnenberg
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
241
|
Li P, Luo X, Xie Y, Li P, Hu F, Chu J, Chen X, Song W, Wang A, Tian G, Gu X. GC-Derived EVs Enriched with MicroRNA-675-3p Contribute to the MAPK/PD-L1-Mediated Tumor Immune Escape by Targeting CXXC4. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:615-626. [PMID: 33230461 PMCID: PMC7578556 DOI: 10.1016/j.omtn.2020.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) delivered by gastric cancer (GC)-secreted extracellular vesicles (GC-EVs) are associated with the immune escape in GC. Microarray analysis based on the GEO: GSE112369 dataset identified the presence of poorly expressed CXXC finger protein 4 (CXXC4) in GC, which was validated in clinical samples of GC patients. Moreover, prediction based on TargetScan analysis demonstrated the putative miR-675-3p binding site in the 3′ UTR region of CXXC4. Thereby, our study aims to determine the role of GC-EV-encapsulated miR-675-3p in GC. First, CXXC4 was found to be negatively correlated with programmed cell death 1 ligand 1 (PD-L1). The effects of mitogen-activated protein kinase (MAPK) signaling on GC were evaluated using activator of the MAPK pathway. The overexpression of CXXC4 led to a downregulated MAPK signaling pathway, thus decreasing PD-L1 expression to augment the proliferation and activation of T cells co-cultured with GC HGC-27 cells. GC-EV-encapsulated miR-675-3p negatively regulated the expression of its target gene CXXC4. GC-EV-encapsulated miR-675-3p increased PD-L1 expression to stimulate the immune escape in vitro and EV-encapsulated miR-675-3p accelerated cisplatin resistance in vivo. Collectively, the aforementioned findings present a mechanism in which EV-mediated miR-675-3p upregulates PD-L1 expression, promoting immune escape in GC.
Collapse
Affiliation(s)
- Ping Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China.,Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China.,Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, 68167 Mannheim, Germany
| | - Xingdong Luo
- Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China
| | - Yue Xie
- Department of General Surgery, Gaoyou Traditional Chinese Medicine Hospital, Gaoyou 225600, P.R. China
| | - Pengfei Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China
| | - Fangyong Hu
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Xiaojun Chen
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Wenbo Song
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Ali Wang
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Xiang Gu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| |
Collapse
|
242
|
Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A, Lorenc T. Exosomes in Angiogenesis and Anti-angiogenic Therapy in Cancers. Int J Mol Sci 2020; 21:ijms21165840. [PMID: 32823989 PMCID: PMC7461570 DOI: 10.3390/ijms21165840] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is the process through which new blood vessels are formed from pre-existing ones. Exosomes are involved in angiogenesis in cancer progression by transporting numerous pro-angiogenic biomolecules like vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and microRNAs. Exosomes promote angiogenesis by suppressing expression of factor-inhibiting hypoxia-inducible factor 1 (HIF-1). Uptake of tumor-derived exosomes (TEX) by normal endothelial cells activates angiogenic signaling pathways in endothelial cells and stimulates new vessel formation. TEX-driven cross-talk of mesenchymal stem cells (MSCs) with immune cells blocks their anti-tumor activity. Effective inhibition of tumor angiogenesis may arrest tumor progression. Bevacizumab, a VEGF-specific antibody, was the first antiangiogenic agent to enter the clinic. The most important clinical problem associated with cancer therapy using VEGF- or VEFGR-targeting agents is drug resistance. Combined strategies based on angiogenesis inhibitors and immunotherapy effectively enhances therapies in various cancers, but effective treatment requires further research.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.K.-T.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.K.-T.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| | - Tomasz Lorenc
- 1st Department of Clinical Radiology, Medical University of Warsaw, ul. Chałubińskiego 5, 02-004 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-502-1073
| |
Collapse
|
243
|
Hong CS, Jeong E, Boyiadzis M, Whiteside TL. Increased small extracellular vesicle secretion after chemotherapy via upregulation of cholesterol metabolism in acute myeloid leukaemia. J Extracell Vesicles 2020; 9:1800979. [PMID: 32944189 PMCID: PMC7480590 DOI: 10.1080/20013078.2020.1800979] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most patients with acute myeloid leukaemia (AML) experience disease recurrence after chemotherapy largely due to the development of drug resistance. Small extracellular vesicles (sEVs) are known to play a significant role in leukaemia drug resistance by delivery of anti-apoptotic proteins and genes conferring resistance to recipient cells. sEV levels are elevated in AML patients’ plasma at the time of diagnosis and remain elevated in complete remission after chemotherapy. The mechanism of enhanced sEV secretion in AML is unknown. We speculated that cholesterol synthesis by AML blasts may be related to elevated sEV secretion. Intracellular levels of cholesterol and of HMGCR (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase), the rate-limiting enzyme in cholesterol synthesizing mevalonate pathway, significantly increased in cultured AML cells or primary human non-malignant cells treated with cytarabine or decitabine. Concomitantly, levels of sEVs produced by these cells also increased. Treatment with an HMGCR inhibitor, Simvastatin, or siRNAs targeting HMGCR blocked the chemotherapy-induced enhancement of sEV secretion in AML cells. sEVs carry HMGCR and chemotherapy enhances HMGCR levels in sEVs. HMGCR+ sEVs upregulate intracellular cholesterol and promote AML cell proliferation. A pharmacologic blockade of HMGCR emerges as a potential future therapeutic option for disrupting sEV signalling leading to cholesterol-driven chemo-resistance in AML.
Collapse
Affiliation(s)
- Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily Jeong
- Taylor Allderdice High School, Pittsburgh, PA, USA
| | - Michael Boyiadzis
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
244
|
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5:145. [PMID: 32759948 PMCID: PMC7406508 DOI: 10.1038/s41392-020-00261-0] [Citation(s) in RCA: 612] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles secreted by most eukaryotic cells and participate in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long noncoding RNA, circular RNA, etc., which play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, we mainly summarized as followed: the role of exosome contents in cancer, focusing on proteins and noncoding RNA; the interaction between exosomes and tumor microenvironment; the mechanisms that epithelial-mesenchymal transition, invasion and migration of tumor affected by exosomes; and tumor suppression strategies based on exosomes. Finally, the application potential of exosomes in clinical tumor diagnosis and therapy is prospected, which providing theoretical supports for using exosomes to serve precise tumor treatment in the clinic.
Collapse
Affiliation(s)
- Jie Dai
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Bang Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zuping He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013, Jiangsu, China.
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China. .,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
245
|
Wang G, He L, Wang S, Zhang M, Li Y, Liu Q, Sun N, Zhang X, Liu Y, Zhang J, Tai J, Ni X. EV PD-L1 is Correlated With Clinical Features and Contributes to T Cell Suppression in Pediatric Thyroid Cancer. J Clin Endocrinol Metab 2020; 105:5847668. [PMID: 32459310 DOI: 10.1210/clinem/dgaa309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT The contribution of blood extracellular vesicular (EV) programmed death-ligand 1 (PD-L1) and programmed death-1 (PD-1) in papillary thyroid cancer (PTC) is uncertain. OBJECTIVE We sought to determine the relationship of EV PD-L1/PD-1 with the clinical features of pediatric PTC and the role of EV PD-L1 in immunosuppression. MAIN OUTCOME MEASURES Plasma levels of EV and soluble PD-L1 and PD-1 and levels of plasma cytokines in children with PTC and controls were determined by enzyme-linked immunosorbent assay. Levels of tumor PD-L1 and the tumor-infiltrating lymphocyte (TIL) score were determined by immunohistochemistry. Correlations of the plasma PD-L1/PD-1 level with clinicopathological characteristics, levels of plasma cytokines, tumor PD-L1 expression, and TIL score were analyzed. T-cell suppression by EVs from PTC patients was determined by incubation of PD-L1high or PD-L1low EVs with activated CD8+ T cells. Changes in CD69 and PD-1 expression and changes in tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) secretion were measured by flow cytometry. RESULTS The levels of plasma PD-L1/PD-1 were significantly higher in children with PTC than in controls. The levels of plasma EV PD-L1 significantly correlated with tumor T stage, tumor PD-L1 expression, TIL score, and plasma cytokine content. Levels of plasma soluble PD-1 significantly correlated with patient age, plasma EV PD-L1, and IFNα concentration. PD-L1high EVs significantly inhibited the activation of CD8+ T cells. CONCLUSIONS Plasma levels of EV PD-L1, but not soluble PD-L1, were associated with tumor T stage in children with PTC. Plasma EV PD-L1 emerges as a useful metric for assessing tumor T stage and T cell suppression in PTC.
Collapse
Affiliation(s)
- Guoliang Wang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Lejian He
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shengcai Wang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Meng Zhang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanzhen Li
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qiaoyin Liu
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Nian Sun
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xuexi Zhang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuwei Liu
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jun Tai
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xin Ni
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
246
|
Schroeder JC, Puntigam L, Hofmann L, Jeske SS, Beccard IJ, Doescher J, Laban S, Hoffmann TK, Brunner C, Theodoraki MN, Schuler PJ. Circulating Exosomes Inhibit B Cell Proliferation and Activity. Cancers (Basel) 2020; 12:cancers12082110. [PMID: 32751214 PMCID: PMC7464446 DOI: 10.3390/cancers12082110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Head and neck squamous cell carcinoma (HNSCC) is characterized by a distinctive suppression of the anti-tumor immunity, both locally in the tumor microenvironment (TME) and the periphery. Tumor-derived exosomes mediate this immune suppression by directly suppressing T effector function and by inducing differentiation of regulatory T cells. However, little is known about the effects of exosomes on B cells. (2) Methods: Peripheral B cells from healthy donors and HNSCC patients were isolated and checkpoint receptor expression was analyzed by flow cytometry. Circulating exosomes were isolated from the plasma of HNSCC patients (n = 21) and healthy individuals (n = 10) by mini size-exclusion chromatography. B cells from healthy individuals were co-cultured with isolated exosomes for up to 4 days. Proliferation, viability, surface expression of checkpoint receptors, and intracellular signaling were analyzed in B cells by flow cytometry. (3) Results: Expression of the checkpoint receptors PD-1 and LAG3 was increased on B cells from HNSCC patients. The protein concentration of circulating exosomes was increased in HNSCC patients as compared to healthy donors. Both exosomes from healthy individuals and HNSCC patients inhibited B cell proliferation and survival, in vitro. Surface expression of inhibitory and stimulatory checkpoint receptors on B cells was modulated in co-culture with exosomes. In addition, an inhibitory effect of exosomes on B cell receptor (BCR) signaling was demonstrated in B cells. (4) Conclusions: Plasma-derived exosomes show inhibitory effects on the function of healthy B cells. Interestingly, these inhibitory effects are similar between exosomes from healthy individuals and HNSCC patients, suggesting a physiological B cell inhibitory role of circulating exosomes.
Collapse
|
247
|
Jiang M, Fang H, Dang E, Zhang J, Qiao P, Yu C, Yang A, Wang G. Small Extracellular Vesicles Containing miR-381-3p from Keratinocytes Promote T Helper Type 1 and T Helper Type 17 Polarization in Psoriasis. J Invest Dermatol 2020; 141:563-574. [PMID: 32712160 DOI: 10.1016/j.jid.2020.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023]
Abstract
T helper cells are crucial for psoriasis pathogenesis. Communication between T cells and psoriatic keratinocytes (KCs) helps drive the Th1 and Th17 response, but the underlying mechanism is not well-understood. Small extracellular vesicles (sEVs) are emerging mediators of intercellular communication. Here, we investigated the role of KC-derived sEVs in the Th1 and Th17 response in psoriasis. We isolated and characterized sEVs from KCs under normal (untreated) and psoriatic (cytokine-treated) conditions. sEVs under both conditions exhibited a cup-shaped morphology and expressed markers CD63 and CD81. sEVs from cytokine-treated KCs can be taken up by CD4+T cells, leading to the induction of Th1 and Th17 polarization. Small RNA sequencing revealed that miR-381-3p was significantly increased in sEVs from cytokine-treated KCs and in CD4+T cells from patients with psoriasis. Moreover, sEVs-containing miR-381-3p was responsible for sEVs-induced Th1 and Th17 polarization. We further found that the miR-381-3p targeted to the 3' untranslated region of E3 ubiquitin-ligase UBR5 and stabilized RORγt protein expression. It also targeted to the 3' untranslated region of FOXO1, associated with activated T-bet and RORγt transcription. Taken together, we propose that psoriatic KCs transfer miR-381-3p to CD4+T cells through sEVs, inducing Th1 and Th17 polarization and promoting psoriasis development. Our findings motivate future studies of KC-derived sEVs or their specific cargoes as therapeutic candidates for psoriasis.
Collapse
Affiliation(s)
- Man Jiang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jieyu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Yu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Angang Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China; The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
248
|
Yang Y, Li C, Liu T, Dai X, Bazhin AV. Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation. Front Immunol 2020; 11:1371. [PMID: 32793192 PMCID: PMC7387650 DOI: 10.3389/fimmu.2020.01371] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Among the various immunological and non-immunological tumor-promoting activities of myeloid-derived suppressor cells (MDSCs), their immunosuppressive capacity remains a key hallmark. Effort in the past decade has provided us with a clearer view of the suppressive nature of MDSCs. More suppressive pathways have been identified, and their recognized targets have been expanded from T cells and natural killer (NK) cells to other immune cells. These novel mechanisms and targets afford MDSCs versatility in suppressing both innate and adaptive immunity. On the other hand, a better understanding of the regulation of their development and function has been unveiled. This intricate regulatory network, consisting of tumor cells, stromal cells, soluble mediators, and hostile physical conditions, reveals bi-directional crosstalk between MDSCs and the tumor microenvironment. In this article, we will review available information on how MDSCs exert their immunosuppressive function and how they are regulated in the tumor milieu. As MDSCs are a well-established obstacle to anti-tumor immunity, new insights in the potential synergistic combination of MDSC-targeted therapy and immunotherapy will be discussed.
Collapse
Affiliation(s)
- Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Lab of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
249
|
Zebrowska A, Widlak P, Whiteside T, Pietrowska M. Signaling of Tumor-Derived sEV Impacts Melanoma Progression. Int J Mol Sci 2020; 21:ijms21145066. [PMID: 32709086 PMCID: PMC7404104 DOI: 10.3390/ijms21145066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Small extracellular vesicles (sEV or exosomes) are nanovesicles (30–150 nm) released both in vivo and in vitro by most cell types. Tumor cells produce sEV called TEX and disperse them throughout all body fluids. TEX contain a cargo of proteins, lipids, and RNA that is similar but not identical to that of the “parent” producer cell (i.e., the cargo of exosomes released by melanoma cells is similar but not identical to exosomes released by melanocytes), possibly due to selective endosomal packaging. TEX and their role in cancer biology have been intensively investigated largely due to the possibility that TEX might serve as key component of a “liquid tumor biopsy.” TEX are also involved in the crosstalk between cancer and immune cells and play a key role in the suppression of anti-tumor immune responses, thus contributing to the tumor progression. Most of the available information about the TEX molecular composition and functions has been gained using sEV isolated from supernatants of cancer cell lines. However, newer data linking plasma levels of TEX with cancer progression have focused attention on TEX in the patients’ peripheral circulation as potential biomarkers of cancer diagnosis, development, activity, and response to therapy. Here, we consider the molecular cargo and functions of TEX as potential biomarkers of one of the most fatal malignancies—melanoma. Studies of TEX in plasma of patients with melanoma offer the possibility of an in-depth understanding of the melanoma biology and response to immune therapies. This review features melanoma cell-derived exosomes (MTEX) with special emphasis on exosome-mediated signaling between melanoma cells and the host immune system.
Collapse
Affiliation(s)
- Aneta Zebrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland; (A.Z.); (P.W.)
| | - Piotr Widlak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland; (A.Z.); (P.W.)
| | - Theresa Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Pathology, University of Pittsburgh School of Medicine Pittsburgh, Pittsburgh, PA 15261, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland; (A.Z.); (P.W.)
- Correspondence: ; Tel.: +48-32-278-9627
| |
Collapse
|
250
|
Saleh R, Elkord E. Exosomes: Biological Carriers and Promising Tools for Cancer Immunotherapy. Vaccines (Basel) 2020; 8:vaccines8030390. [PMID: 32708564 PMCID: PMC7565712 DOI: 10.3390/vaccines8030390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are recognized as new therapeutic targets for cancer biomedicine and cancer immunotherapy [...].
Collapse
Affiliation(s)
| | - Eyad Elkord
- Correspondence: or ; Tel.: +974-4454-2367; Fax: +974-4454-1770
| |
Collapse
|