201
|
Zakaria MR, Hirata S, Hassan MA. Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. BIORESOURCE TECHNOLOGY 2015; 176:142-8. [PMID: 25460995 DOI: 10.1016/j.biortech.2014.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 05/09/2023]
Abstract
The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process.
Collapse
Affiliation(s)
- Mohd Rafein Zakaria
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Satoshi Hirata
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
202
|
Bernardinelli OD, Lima MA, Rezende CA, Polikarpov I, deAzevedo ER. Quantitative (13)C MultiCP solid-state NMR as a tool for evaluation of cellulose crystallinity index measured directly inside sugarcane biomass. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:110. [PMID: 26244055 PMCID: PMC4524013 DOI: 10.1186/s13068-015-0292-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/22/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND The crystallinity index (CI) is often associated with changes in cellulose structure after biological and physicochemical pretreatments. While some results obtained with lignocellulosic biomass demonstrate a progressive increase in the CI as a function of pretreatments, it is also shown that the CI can significantly vary depending on the choice of the measurement method. Besides, the influence of the CI on the recalcitrance of biomass has been controversial for a long time, but the most recent results tend to point out that the efficiency of pretreatments in reducing the recalcitrance is not clearly correlated with the decrease of the CI. Much of this controversy is somewhat associated with the inability to distinguish between the CI of the cellulose inside the biomass and the CI of the full biomass, which contains other amorphous components such as lignin and hemicellulose. RESULTS Cross polarization by multiple contact periods (Multi-CP) method was used to obtain quantitative (13)C solid-state nuclear magnetic resonance (ssNMR) spectra of sugarcane bagasse biomass submitted to two-step pretreatments and/or enzymatic hydrolysis. By comparing the dipolar filtered Multi-CP (13)C NMR spectra of untreated bagasse samples with those of samples submitted to acid pretreatment, we show that a 1% H2SO4-assisted pretreatment was very effective in removing practically all the hemicellulose signals. This led us to propose a spectral editing procedure based on the subtraction of MultiCP spectra of acid-treated biomass from that of the extracted lignin, to obtain a virtually pure cellulose spectrum. Based on this idea, we were able to evaluate the CI of the native cellulose inside the sugarcane bagasse biomass. CONCLUSIONS The results show the validity of the proposed method as a tool for evaluating the variations in the CI of the cellulose inside biomasses of similar kinds. Despite a clear increase in the CI of biomass as measured by X-ray diffraction, no significant variations were observed in the CI of the cellulose inside the biomass after a particular 1% H2SO4/0.25-4% NaOH chemical-assisted pretreatments. The CI of cellulose inside the biomass solid fraction that remained after the enzymatic hydrolysis was also evaluated. The results show a slight increase in crystallinity.
Collapse
Affiliation(s)
- Oigres Daniel Bernardinelli
- />Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP 13660-970 Brazil
| | - Marisa Aparecida Lima
- />Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP 13660-970 Brazil
| | - Camila Alves Rezende
- />Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP 13660-970 Brazil
- />Instituto de Química, Universidade de Campinas-UNICAMP, Caixa Postal 6154, Campinas, SP 13084-971 Brazil
| | - Igor Polikarpov
- />Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP 13660-970 Brazil
| | - Eduardo Ribeiro deAzevedo
- />Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP 13660-970 Brazil
| |
Collapse
|
203
|
Sun SL, Sun SN, Wen JL, Zhang XM, Peng F, Sun RC. Assessment of integrated process based on hydrothermal and alkaline treatments for enzymatic saccharification of sweet sorghum stems. BIORESOURCE TECHNOLOGY 2015; 175:473-9. [PMID: 25459857 DOI: 10.1016/j.biortech.2014.10.111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 05/15/2023]
Abstract
In this study, sweet sorghum stem was subjected to hydrothermal pretreatment (HTP) and alkaline post-treatment to enhance its saccharification ratio by reducing its recalcitrance. The results showed that the HTP (110-210°C, 0.5-2.0h) significantly degraded hemicelluloses, and the pretreatment at the temperature higher than 190°C led to the partial degradation of the cellulose. As compared to the sole HTP, the integrated process removed most of lignin and hemicelluloses, which incurred a higher cellulose saccharification ratio. Under an optimum condition evaluated (HTP at 170°C for 0.5h and subsequent 2% NaOH treatment), 77.5% saccharification ratio was achieved, which was 1.8, 2.0 and 5.5 times as compared to the only HTP pretreated substrates, alkaline treated substrates alone and the raw material without pretreatment, respectively. Clearly, the integrated process can be considered as a promising approach to achieve an efficient conversion of lignocellulose to fermentable glucose.
Collapse
Affiliation(s)
- Shao-Long Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Xue-Ming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China.
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| |
Collapse
|
204
|
Merali Z, Collins SRA, Elliston A, Wilson DR, Käsper A, Waldron KW. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:23. [PMID: 25717345 PMCID: PMC4339649 DOI: 10.1186/s13068-015-0207-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/19/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Pretreatments are a prerequisite for enzymatic hydrolysis of biomass and production of ethanol. They are considered to open up the plant cell wall structure by altering, moving or solubilizing lignin and hydrolyzing a proportion of hemicellulosic moieties. However, there is little information concerning pretreatment-induced changes on wheat bran cell wall polymers and indeed on changes in cell wall phenolic esters in bran or other lignocellulosic biomass. Here, we evaluate polymeric changes (chemical and physical) as a result of selected hydrothermal pretreatment conditions on destarched wheat bran using controlled polymer extraction methods. Quantification of cell wall components together with soluble oligosaccharides, the insoluble residues and ease of extractability and fractionation of biomass residues were conducted. RESULTS Pretreatment solubilized selected arabinoxylans and associated cross-linking ferulic and diferulic acids with a concomitant increase in lignin and cellulosic glucose. The remaining insoluble arabinoxylans were more readily extractable in alkali and showed considerable depolymerization. The degree of arabinose substitution was less in xylans released by higher concentrations of alkali. The recalcitrant biomass which remained after pretreatment and alkali extraction contained mostly cellulosic glucose and Klason lignin. Pretreatment generated small but insignificant amounts of yeast-inhibiting compounds such as furfural and hydroxymethyl furfural. As such, simultaneous saccharification and fermentation of the hydrothermally pretreated bran resulted in increased ethanol yields compared to that of the control (97.5% compared to 63% theoretical). CONCLUSION Hydrothermal pretreatment of destarched wheat bran resulted in degradation and depolymerization of the hemicellulosic arabinoxylans together with some breakdown of cellulosic glucose. This was accompanied by a significant reduction in the cross-linking phenolic acids such as ferulic and diferulic acids. The results suggest that hydrothermal pretreatment enhances enzymatic digestibility of the cellulose not only by depolymerization and solubilization of the hemicelluloses but by breakdown of interpolymeric phenolic cross-links between the remaining insoluble polymers. This allows easier access of hydrolytic enzymes by opening or loosening of the cell wall thus resulting in enhanced saccharification of cellulose and subsequent fermentation to ethanol. The reduction in cinnamic acids by selected breeding or biotechnological approaches could provide a useful basis for improved saccharification and fractionation of wheat bran polysaccharides.
Collapse
Affiliation(s)
- Zara Merali
- />The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Samuel R A Collins
- />The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Adam Elliston
- />The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - David R Wilson
- />The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | | | - Keith W Waldron
- />The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| |
Collapse
|
205
|
Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC. Mechanism of lignin inhibition of enzymatic biomass deconstruction. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:217. [PMID: 26697106 PMCID: PMC4687093 DOI: 10.1186/s13068-015-0379-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. RESULTS By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493). CONCLUSIONS Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.
Collapse
Affiliation(s)
- Josh V. Vermaas
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 61801 Urbana, IL USA
| | - Loukas Petridis
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
| | - Xianghong Qi
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 37996 Knoxville, TN USA
| | - Roland Schulz
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 37996 Knoxville, TN USA
| | - Benjamin Lindner
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
| | - Jeremy. C. Smith
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 37996 Knoxville, TN USA
- />University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, P.O.Box 2008, Oak Ridge, TN 37831-6309 USA
| |
Collapse
|
206
|
Ji Z, Zhang X, Ling Z, Zhou X, Ramaswamy S, Xu F. Visualization of Miscanthus × giganteus cell wall deconstruction subjected to dilute acid pretreatment for enhanced enzymatic digestibility. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:103. [PMID: 26213569 PMCID: PMC4513789 DOI: 10.1186/s13068-015-0282-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/01/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND The natural recalcitrance of lignocellulosic plant cell walls resulting from complex arrangement and distribution of heterogeneous components impedes deconstruction of such cell walls. Dilute acid pretreatment (DAP) is an attractive method to overcome the recalcitrant barriers for rendering enzymatic conversion of polysaccharides. In this study, the internodes of Miscanthus × giganteus, a model bioenergy crop, were subjected to DAP to yield a range of samples with altered cell wall structure and chemistry. The consequent morphological and compositional changes and their possible impact on saccharification efficiency were comprehensively investigated. The use of a series of microscopic and microspectroscopic techniques including fluorescence microscopy (FM), transmission electron microscopy (TEM) and confocal Raman microscopy (CRM)) enabled correlative cell wall structural and chemical information to be obtained. RESULTS DAP of M. × giganteus resulted in solubilization of arabinoxylan and cross-linking hydroxycinnamic acids in a temperature-dependent manner. The optimized pretreatment (1% H2SO4, 170°C for 30 min) resulted in significant enhancement in the saccharification efficiency (51.20%) of treated samples in 72 h, which amounted to 4.4-fold increase in sugar yield over untreated samples (11.80%). The remarkable improvement could be correlated to a sequence of changes occurring in plant cell walls due to their pretreatment-induced deconstruction, namely, loss in the matrix between neighboring cell walls, selective removal of hemicelluloses, redistribution of phenolic polymers and increased exposure of cellulose. The consequently occurred changes in inner cell wall structure including damaging, increase of porosity and loss of mechanical resistance were also found to enhance enzyme access to cellulose and further sugar yield. CONCLUSIONS DAP is a highly effective process for improving bioconversion of cellulose to glucose by breaking down the rigidity and resistance of cell walls. The combination of the most relevant microscopic and microanalytical techniques employed in this work provided information crucial for evaluating the influence of anatomical and compositional changes on enhanced enzymatic digestibility.
Collapse
Affiliation(s)
- Zhe Ji
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| | - Xun Zhang
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| | - Zhe Ling
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| | - Xia Zhou
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| | - Shri Ramaswamy
- />Department of Bioproducts and Biosystems Engineering, Kaufert Laboratory, University of Minnesota, Saint Paul, MN 55108 USA
| | - Feng Xu
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| |
Collapse
|
207
|
Gaur R, Agrawal R, Kumar R, Ramu E, Bansal VR, Gupta RP, Kumar R, Tuli DK, Das B. Evaluation of recalcitrant features impacting enzymatic saccharification of diverse agricultural residues treated by steam explosion and dilute acid. RSC Adv 2015. [DOI: 10.1039/c5ra12475a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exploring agricultural biomass for biofuel production necessitates pretreatment as a prerequisite step.
Collapse
Affiliation(s)
- Ruchi Gaur
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Ruchi Agrawal
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Rahul Kumar
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - E. Ramu
- Analytical Division
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Veena Rani Bansal
- Analytical Division
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Ravi P. Gupta
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Ravindra Kumar
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Deepak K. Tuli
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Biswapriya Das
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| |
Collapse
|
208
|
Pereira SC, Maehara L, Machado CMM, Farinas CS. 2G ethanol from the whole sugarcane lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:44. [PMID: 25774217 PMCID: PMC4359543 DOI: 10.1186/s13068-015-0224-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/09/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of the lignocellulosic residues from the whole sugarcane lignocellulosic biomass (bagasse, straw, and tops) from commercial sugarcane varieties for the production of 2G ethanol. In addition, the feasibility of using a mixture of these residues from a selected variety was also investigated. RESULTS The materials were pretreated with dilute acid and hydrolyzed with a commercial enzymatic preparation, after which the hydrolysates were fermented using an industrial strain of Saccharomyces cerevisiae. The susceptibility to enzymatic saccharification was higher for the tops, followed by straw and bagasse. Interestingly, the fermentability of the hydrolysates showed a different profile, with straw achieving the highest ethanol yields, followed by tops and bagasse. Using a mixture of the different sugarcane parts (bagasse-straw-tops, 1:1:1, in a dry-weight basis), it was possible to achieve a 55% higher enzymatic conversion and a 25% higher ethanol yield, compared to use of the bagasse alone. For the four commercial sugarcane varieties evaluated using the same experimental set of conditions, it was found that the variety of sugarcane was not a significant factor in the 2G ethanol production process. CONCLUSIONS Assessment of use of the whole lignocellulosic sugarcane biomass clearly showed that 2G ethanol production could be significantly improved by the combined use of bagasse, straw, and tops, when compared to the use of bagasse alone. The lower susceptibility to saccharification of sugarcane bagasse, as well as the lower fermentability of its hydrolysates, can be compensated by using it in combination with straw and tops (sugarcane trash). Furthermore, given that the variety was not a significant factor for the 2G ethanol production process within the four commercial sugarcane varieties evaluated here, agronomic features such as higher productivity and tolerance of soil and climate variations can be used as the criteria for variety selection.
Collapse
Affiliation(s)
| | - Larissa Maehara
- />Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970 São Carlos, SP Brazil
- />Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905 São Carlos, SP Brazil
| | | | - Cristiane Sanchez Farinas
- />Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970 São Carlos, SP Brazil
- />Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905 São Carlos, SP Brazil
| |
Collapse
|
209
|
Sun S, Wen J, Sun S, Sun RC. Systematic evaluation of the degraded products evolved from the hydrothermal pretreatment of sweet sorghum stems. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:37. [PMID: 25883679 PMCID: PMC4399219 DOI: 10.1186/s13068-015-0223-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/04/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Conversion of plant cell walls to bioethanol and bio-based chemicals requires pretreatment as a necessary step to reduce recalcitrance of cell walls to enzymatic and microbial deconstruction. In this study, the sweet sorghum stems were subjected to various hydrothermal pretreatment processes (110°C to 230°C, 0.5 to 2.0 h), and the focus of this work is to systematically evaluate the degraded products of polysaccharides and lignins in the liquor phase obtained during the pretreatment process. RESULTS The maximum yield of xylooligosaccharides (52.25%) with a relatively low level of xylose and other degraded products was achieved at a relatively high pretreatment temperature (170°C) for a short reaction time (0.5 h). Higher temperature (>170°C) and/or longer reaction time (>0.5 h at 170°C) resulted in a decreasing yield of xylooligosaccharides, but increased the concentration of arabinose and galactose. The xylooligosaccharides obtained are composed of xylopyranosyl residues, together with lower amounts of 4-O-Me-α-D-GlcpA units. Meanwhile, the concentrations of the degraded products (especially furfural) increased as a function of pretreatment temperature and time. Molecular weights of the water-soluble polysaccharides and lignins indicated that the degradation of the polysaccharides and lignins occurred during the conditions of harsh hydrothermal pretreatment. In addition, the water-soluble polysaccharides (rich in xylan) and water-soluble lignins (rich in β-O-4 linkages) were obtained at 170°C for 1.0 h. CONCLUSIONS The present study demonstrated that the hydrothermal pretreatment condition had a remarkable impact on the compositions and the chemical structures of the degraded products. An extensive understanding of the degraded products from polysaccharides and lignins during the hydrothermal pretreatment will be beneficial to value-added applications of multiple chemicals in the biorefinery for bioethanol industry.
Collapse
Affiliation(s)
- Shaolong Sun
- No. 35 Tsing Hua East Road, Haidian District, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Jialong Wen
- No. 35 Tsing Hua East Road, Haidian District, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Shaoni Sun
- No. 35 Tsing Hua East Road, Haidian District, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Run-Cang Sun
- No. 35 Tsing Hua East Road, Haidian District, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
210
|
Gao D, Haarmeyer C, Balan V, Whitehead TA, Dale BE, Chundawat SPS. Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:175. [PMID: 25530803 PMCID: PMC4272552 DOI: 10.1186/s13068-014-0175-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/27/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus non-productive (binding to lignin) binding of cellulases to lignocellulose, there is currently a poor understanding of individual enzyme adsorption to lignin during the time course of pretreated biomass saccharification. RESULTS In this study, we have utilized an FPLC (fast protein liquid chromatography)-based methodology to quantify free Trichoderma reesei cellulases (namely CBH I, CBH II, and EG I) concentration within a complex hydrolyzate mixture during the varying time course of biomass saccharification. Three pretreated corn stover (CS) samples were included in this study: Ammonia Fiber Expansion(a) (AFEX™-CS), dilute acid (DA-CS), and ionic liquid (IL-CS) pretreatments. The relative fraction of bound individual cellulases varied depending not only on the pretreated biomass type (and lignin abundance) but also on the type of cellulase. Acid pretreated biomass had the highest levels of non-recoverable cellulases, while ionic liquid pretreated biomass had the highest overall cellulase recovery. CBH II has the lowest thermal stability among the three T. reesei cellulases tested. By preparing recombinant family 1 carbohydrate binding module (CBM) fusion proteins, we have shown that family 1 CBMs are highly implicated in the non-productive binding of full-length T. reesei cellulases to lignin. CONCLUSIONS Our findings aid in further understanding the complex mechanisms of non-productive binding of cellulases to pretreated lignocellulosic biomass. Developing optimized pretreatment processes with reduced or modified lignin content to minimize non-productive enzyme binding or engineering pretreatment-specific, low-lignin binding cellulases will improve enzyme specific activity, facilitate enzyme recycling, and thereby permit production of cheaper biofuels.
Collapse
Affiliation(s)
- Dahai Gao
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
- />Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, 164 Food Safety and Toxicology Building, East Lansing, MI 48824 USA
- />Biomass Conversion Research Lab (BCRL), MBI Building, 3900 Collins Road, East Lansing, MI 48910 USA
| | - Carolyn Haarmeyer
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
| | - Venkatesh Balan
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
- />Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, 164 Food Safety and Toxicology Building, East Lansing, MI 48824 USA
- />Biomass Conversion Research Lab (BCRL), MBI Building, 3900 Collins Road, East Lansing, MI 48910 USA
| | - Timothy A Whitehead
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
- />Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Bruce E Dale
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
- />Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, 164 Food Safety and Toxicology Building, East Lansing, MI 48824 USA
- />Biomass Conversion Research Lab (BCRL), MBI Building, 3900 Collins Road, East Lansing, MI 48910 USA
| | - Shishir PS Chundawat
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
- />Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, 164 Food Safety and Toxicology Building, East Lansing, MI 48824 USA
- />Biomass Conversion Research Lab (BCRL), MBI Building, 3900 Collins Road, East Lansing, MI 48910 USA
- />Department of Chemical & Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Room C-150A, Piscataway, NJ 08854 USA
| |
Collapse
|
211
|
Chandra A, Deshpande S, Shinde DB, Pillai VK, Singh N. Mitigating the Cytotoxicity of Graphene Quantum Dots and Enhancing Their Applications in Bioimaging and Drug Delivery. ACS Macro Lett 2014; 3:1064-1068. [PMID: 35610793 DOI: 10.1021/mz500479k] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the promising photophysical properties of fluorescent graphene quantum dots (GQDs), their cellular toxicity needs to be addressed before their full potential could be completely realized in biomedicine. A simple method for mitigating the toxicity of GQDs by embedding them in PEG matrix is reported here. The enhanced biocompatibility of polymer modified, P-GQDs, is attributed to reduced reactive oxygen species generation, as measured by an intracellular ROS assay. We also demonstrate the enhanced loading and efficient intracellular delivery of therapeutics by P-GQDs.
Collapse
Affiliation(s)
- Anil Chandra
- Centre
for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Division
of Polymer Science and Engineering, National Chemical Laboratory, Dr. Homi Bhaba Road, Pune 411008, India
| | - Sonal Deshpande
- Centre
for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Division
of Polymer Science and Engineering, National Chemical Laboratory, Dr. Homi Bhaba Road, Pune 411008, India
| | - Dhanraj B. Shinde
- Physical
and Materials Chemistry Division, National Chemical Laboratory, Pune 411008, India
| | - Vijayamohanan K. Pillai
- Central Electrochemical
Research Institute, College Road, Karaikudi, Tamil Nadu 630006, India
| | - Neetu Singh
- Centre
for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Division
of Polymer Science and Engineering, National Chemical Laboratory, Dr. Homi Bhaba Road, Pune 411008, India
| |
Collapse
|
212
|
Sun Q, Foston M, Meng X, Sawada D, Pingali SV, O’Neill HM, Li H, Wyman CE, Langan P, Ragauskas AJ, Kumar R. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:150. [PMID: 25342973 PMCID: PMC4205766 DOI: 10.1186/s13068-014-0150-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 09/25/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have large implications with respect to enzymatic deconstruction efforts. RESULTS Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons' stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DPw) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. CONCLUSIONS Overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of cellulose microfibril dimensions and crystallite size becomes more apparent. Further, this enlargement of cellulose microfibril dimensions is attributed to specific processes, including the co-crystallization of crystalline cellulose driven by irreversible inter-chain hydrogen bonding (similar to hornification) and/or cellulose annealing that converts amorphous cellulose to paracrystalline and crystalline cellulose. Essentially, lignin acts as a barrier to prevent cellulose crystallinity increase and cellulose fibril coalescence during DAP.
Collapse
Affiliation(s)
- Qining Sun
- />School of Chemistry and Biochemistry, Renewable Bioproducts Institute,
Georgia Institute of Technology, 500 10th Street, N.W. Atlanta, GA 30332-0620 USA
| | - Marcus Foston
- />Department of Energy, Environmental and Chemical
Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130 USA
| | - Xianzhi Meng
- />School of Chemistry and Biochemistry, Renewable Bioproducts Institute,
Georgia Institute of Technology, 500 10th Street, N.W. Atlanta, GA 30332-0620 USA
| | - Daisuke Sawada
- />Center for Structural Molecular Biology and the Biology and Soft Matter
Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sai Venkatesh Pingali
- />Center for Structural Molecular Biology and the Biology and Soft Matter
Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Hugh M O’Neill
- />Center for Structural Molecular Biology and the Biology and Soft Matter
Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Hongjia Li
- />Center for Environmental Research and Technology
(CE-CERT), Bourns College of Engineering, University of California, 1084 Columbia Avenue, Riverside, CA 92507 USA
| | - Charles E Wyman
- />Center for Environmental Research and Technology
(CE-CERT), Bourns College of Engineering, University of California, 1084 Columbia Avenue, Riverside, CA 92507 USA
- />Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, 900 University Avenue, Riverside, CA 92521 USA
- />BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| | - Paul Langan
- />Center for Structural Molecular Biology and the Biology and Soft Matter
Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Art J Ragauskas
- />School of Chemistry and Biochemistry, Renewable Bioproducts Institute,
Georgia Institute of Technology, 500 10th Street, N.W. Atlanta, GA 30332-0620 USA
- />BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
- />Department of Chemical and Biomolecular Engineering, Department of
Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996-2200 USA
| | - Rajeev Kumar
- />Center for Environmental Research and Technology
(CE-CERT), Bourns College of Engineering, University of California, 1084 Columbia Avenue, Riverside, CA 92507 USA
- />BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| |
Collapse
|
213
|
Zakaria MR, Hirata S, Hassan MA. Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber. BIORESOURCE TECHNOLOGY 2014; 169:236-243. [PMID: 25058299 DOI: 10.1016/j.biortech.2014.06.095] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 05/02/2023]
Abstract
Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported.
Collapse
Affiliation(s)
- Mohd Rafein Zakaria
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Satoshi Hirata
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
214
|
Yu G, Yano S, Inoue H, Inoue S, Wang J, Endo T. Structural insights into rice straw pretreated by hot-compressed water in relation to enzymatic hydrolysis. Appl Biochem Biotechnol 2014; 174:2278-94. [PMID: 25178420 DOI: 10.1007/s12010-014-1199-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/22/2014] [Indexed: 11/29/2022]
Abstract
Pretreatment-induced structural alteration is critical in influencing the rate and extent of enzymatic saccharification of lignocellulosic biomass. The present work has investigated structural features of rice straw pretreated by hot-compressed water (HCW) from 140 to 240 °C for 10 or 30 min and enzymatic hydrolysis profiles of pretreated rice straw. Compositional profiles of pretreated rice straw were examined to offer the basis for structural changes. The wide-angle X-ray diffraction analysis revealed possible modification in crystalline microstructure of cellulose and the severity-dependent variation of crystallinity. The specific surface area (SSA) of pretreated samples was able to achieve more than 10-fold of that of the raw material and was in linear relationship with the removal of acetyl groups and xylan. The glucose yield by enzymatic hydrolysis of pretreated materials correlated linearly with the SSA increase and the dissolution of acetyl and xylan. A quantitatively intrinsic relationship was suggested to exist between enzymatic hydrolysis and the extraction of hemicellulose components in hydrothermally treated rice straw, and SSA was considered one important structural parameter signaling the efficiency of enzymatic digestibility in HCW-treated materials in which hemicellulose removal and lignin redistribution happened.
Collapse
Affiliation(s)
- Guoce Yu
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan,
| | | | | | | | | | | |
Collapse
|
215
|
Meineke T, Manisseri C, Voigt CA. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass. PLoS One 2014; 9:e103580. [PMID: 25133818 PMCID: PMC4136770 DOI: 10.1371/journal.pone.0103580] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/04/2014] [Indexed: 12/26/2022] Open
Abstract
The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat) with the C4 grasses Zea mays (maize) and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108-117 mg ethanol·g(-1) dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type.
Collapse
Affiliation(s)
- Till Meineke
- Phytopathology & Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Chithra Manisseri
- Phytopathology & Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Christian A. Voigt
- Phytopathology & Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| |
Collapse
|
216
|
Kim IJ, Lee HJ, Choi IG, Kim KH. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 2014; 98:8469-80. [PMID: 25129610 DOI: 10.1007/s00253-014-6001-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
Abstract
Reducing the enzyme loadings for enzymatic saccharification of lignocellulose is required for economically feasible production of biofuels and biochemicals. One strategy is addition of small amounts of synergistic proteins to cellulase mixtures. Synergistic proteins increase the activity of cellulase without causing significant hydrolysis of cellulose. Synergistic proteins exert their activity by inducing structural modifications in cellulose. Recently, synergistic proteins from various biological sources, including bacteria, fungi, and plants, were identified based on genomic data, and their synergistic activities were investigated. Currently, an up-to-date overview of several aspects of synergistic proteins, such as their functions, action mechanisms and synergistic activity, are important for future industrial application. In this review, we summarize the current state of research on four synergistic proteins: carbohydrate-binding modules, plant expansins, expansin-like proteins, and Auxiliary Activity family 9 (formerly GH61) proteins. This review provides critical information to aid in promoting research on the development of efficient and industrially feasible synergistic proteins.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | | | | | | |
Collapse
|
217
|
Linville JL, Rodriguez M, Brown SD, Mielenz JR, Cox CD. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain. BMC Microbiol 2014; 14:215. [PMID: 25128475 PMCID: PMC4236516 DOI: 10.1186/s12866-014-0215-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms. Conclusion These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.
Collapse
Affiliation(s)
| | | | | | | | - Chris D Cox
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
218
|
Fan X, Cheng G, Zhang H, Li M, Wang S, Yuan Q. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob. Carbohydr Polym 2014; 114:21-26. [PMID: 25263859 DOI: 10.1016/j.carbpol.2014.07.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/20/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022]
Abstract
Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry.
Collapse
Affiliation(s)
- Xiaoguang Fan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Gang Cheng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongjia Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Menghua Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shizeng Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
219
|
Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:103-65. [PMID: 24767427 DOI: 10.1016/b978-0-12-800260-5.00004-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, the present knowledge on the occurrence of cellulases, with a special emphasis on the presence of carbohydrate-binding modules (CBMs) in various fungal strains, has been summarized. The importance of efficient fungal cellulases is growing due to their potential uses in biorefinery processes where lignocellulosic biomasses are converted to platform sugars and further to biofuels and chemicals. Most secreted cellulases studied in detail have a bimodular structure containing an active core domain attached to a CBM. CBMs are traditionally been considered as essential parts in cellulases, especially in cellobiohydrolases. However, presently available genome data indicate that many cellulases lack the binding domains in cellulose-degrading organisms. Recent data also demonstrate that CBMs are not necessary for the action of cellulases and they solely increase the concentration of enzymes on the substrate surfaces. On the other hand, in practical industrial processes where high substrate concentrations with low amounts of water are employed, the enzymes have been shown to act equally efficiently with and without CBM. Furthermore, available kinetic data show that enzymes without CBMs can desorb more readily from the often lignaceous substrates, that is, they are not stuck on the substrates and are thus available for new actions. In this review, the available data on the natural habitats of different wood-degrading organisms (with emphasis on the amount of water present during wood degradation) and occurrence of cellulose-binding domains in their genome have been assessed in order to identify evolutionary advantages for the development of CBM-less cellulases in nature.
Collapse
|
220
|
Meng X, Ragauskas AJ. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 2014; 27:150-8. [DOI: 10.1016/j.copbio.2014.01.014] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
|
221
|
Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 2014; 98:6525-42. [DOI: 10.1007/s00253-014-5810-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 11/27/2022]
|
222
|
Sun SL, Wen JL, Ma MG, Song XL, Sun RC. Integrated biorefinery based on hydrothermal and alkaline treatments: investigation of sorghum hemicelluloses. Carbohydr Polym 2014; 111:663-9. [PMID: 25037401 DOI: 10.1016/j.carbpol.2014.04.099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/19/2014] [Accepted: 04/25/2014] [Indexed: 11/24/2022]
Abstract
An integrated process based on hydrothermal pretreatment (HTP) and alkaline post-treatment was proposed to treat sweet sorghum stem. The structural features of the alkali-soluble hemicelluloses (ASHs) obtained from the un-pretreated and hydrothermally pretreated materials were comprehensively investigated by HPAEC, GPC, NMR, FT-IR, and TGA techniques. The ASH with the highest yield (60.6%) was obtained from the HTP residue performed at 130 °C for 1.0 h. All the results indicated that the ASHs had a more linear structure with increasing the pretreatment temperature (110-170 °C). The molecular weights of the ASHs were decreased with increasing the pretreatment temperature, suggesting that C-O bonds in the ASHs were gradually cleaved, especially at the higher temperatures (≥ 170 °C). Interestingly, the integrated process yielded more homogeneous ASHs than hemicelluloses obtained from the un-pretreated material. Based on the spectral analyses, the structure of the ASHs was assumed to be L-arabino-4-O-methyl-D-glucurono-D-xylan.
Collapse
Affiliation(s)
- Shao-Long Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ming-Guo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xian-Liang Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
223
|
Toquero C, Bolado S. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. BIORESOURCE TECHNOLOGY 2014; 157:68-76. [PMID: 24531149 DOI: 10.1016/j.biortech.2014.01.090] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/16/2023]
Abstract
Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L.
Collapse
Affiliation(s)
- Cristina Toquero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Silvia Bolado
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
224
|
Ji Z, Ma J, Xu F. Multi-scale visualization of dynamic changes in poplar cell walls during alkali pretreatment. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:566-76. [PMID: 24548595 DOI: 10.1017/s1431927614000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Alkali pretreatment is a promising pretreatment technology that can effectively deconstruct plant cell walls to enhance sugar release performance. In this study, multi-scale visualization of dynamic changes in poplar cell walls during sodium hydroxide pretreatment (2% w/v, 121°C) was carried out by light microscopy (LM), confocal Raman microscopy (CRM) and atomic force microscopy (AFM). LM observations indicated that swelling occurred primarily in the secondary wall (S) but alkali had little effect on the cell corner middle lamella (CCML). Correspondingly, there was a preferential delignification in the S at the beginning of pretreatment, while the level of delignification in CCML (~88%) was higher than that in the S (~83%) for the whole process revealed by Raman spectra. It also suggested that prolonging residence time to 180 min would not remove lignin completely but cause rapid loss of carbohydrates, which was further visualized by Raman spectroscopy images. Furthermore, AFM measurements illustrated that pretreatment with alkali exposed the embedded microfibrils from noncellulosic polymers clearly, enlarged the diameter of microfibrils, and decreased the surface porosity. These results suggested that there was a synergistic mechanism of lignocellulose deconstruction regarding cell wall swelling, main components dissolution, and microfibril morphological changes that occurred during alkali pretreatment.
Collapse
Affiliation(s)
- Zhe Ji
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jianfeng Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
225
|
Hu F, Ragauskas A. Suppression of pseudo-lignin formation under dilute acid pretreatment conditions. RSC Adv 2014. [DOI: 10.1039/c3ra42841a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
226
|
Wilson CM, Rodriguez M, Johnson CM, Martin SL, Chu TM, Wolfinger RD, Hauser LJ, Land ML, Klingeman DM, Syed MH, Ragauskas AJ, Tschaplinski TJ, Mielenz JR, Brown SD. Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:179. [PMID: 24295562 PMCID: PMC3880215 DOI: 10.1186/1754-6834-6-179] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP) biocatalyst for cellulosic ethanol production. The aim of this study was to investigate C. thermocellum genes required to ferment biomass substrates and to conduct a robust comparison of DNA microarray and RNA sequencing (RNA-seq) analytical platforms. RESULTS C. thermocellum ATCC 27405 fermentations were conducted with a 5 g/L solid substrate loading of either pretreated switchgrass or Populus. Quantitative saccharification and inductively coupled plasma emission spectroscopy (ICP-ES) for elemental analysis revealed composition differences between biomass substrates, which may have influenced growth and transcriptomic profiles. High quality RNA was prepared for C. thermocellum grown on solid substrates and transcriptome profiles were obtained for two time points during active growth (12 hours and 37 hours postinoculation). A comparison of two transcriptomic analytical techniques, microarray and RNA-seq, was performed and the data analyzed for statistical significance. Large expression differences for cellulosomal genes were not observed. We updated gene predictions for the strain and a small novel gene, Cthe_3383, with a putative AgrD peptide quorum sensing function was among the most highly expressed genes. RNA-seq data also supported different small regulatory RNA predictions over others. The DNA microarray gave a greater number (2,351) of significant genes relative to RNA-seq (280 genes when normalized by the kernel density mean of M component (KDMM) method) in an analysis of variance (ANOVA) testing method with a 5% false discovery rate (FDR). When a 2-fold difference in expression threshold was applied, 73 genes were significantly differentially expressed in common between the two techniques. Sulfate and phosphate uptake/utilization genes, along with genes for a putative efflux pump system were some of the most differentially regulated transcripts when profiles for C. thermocellum grown on either pretreated switchgrass or Populus were compared. CONCLUSIONS Our results suggest that a high degree of agreement in differential gene expression measurements between transcriptomic platforms is possible, but choosing an appropriate normalization regime is essential.
Collapse
Affiliation(s)
- Charlotte M Wilson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Courtney M Johnson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | - Loren J Hauser
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miriam L Land
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mustafa H Syed
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jonathan R Mielenz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
227
|
Jiang LQ, Fang Z, Li XK, Luo J, Fan SP. Combination of dilute acid and ionic liquid pretreatments of sugarcane bagasse for glucose by enzymatic hydrolysis. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
228
|
Yang M, Kuittinen S, Zhang J, Keinänen M, Pappinen A. Effect of dilute acid pretreatment on the conversion of barley straw with grains to fermentable sugars. BIORESOURCE TECHNOLOGY 2013; 146:444-450. [PMID: 23955092 DOI: 10.1016/j.biortech.2013.07.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
This study investigated the effects of pretreatment conditions, dilute sulfuric acid concentration and treatment time, on the carbohydrate solubility of a mixture of barley straw and grain. The conditions were expressed as combined severity (CS) to evaluate sugar recovery from pretreated samples. Enzymatic hydrolysates from the lignocellulose pretreatment residues were also included to the results. CS was positively correlating with glucose recovery in all conditions, but in higher acid concentrations CS did not predict xylose recovery. It appeared that the residual xylan better indicate the xylose release. An optimal fermentable sugar yield from the mixture of barley straw and grain was obtained by maintaining the CS at around 1.38, corresponding to an overall glucose yield of 96% and a xylose yield of 57%.
Collapse
Affiliation(s)
- Ming Yang
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland.
| | - Suvi Kuittinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Markku Keinänen
- Department of Biology, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Ari Pappinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| |
Collapse
|
229
|
Kont R, Kurašin M, Teugjas H, Väljamäe P. Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:135. [PMID: 24053778 PMCID: PMC3849272 DOI: 10.1186/1754-6834-6-135] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/13/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND The use of the enzymatic hydrolysis of lignocellulose with subsequent fermentation to ethanol provides a green alternative for the production of transportation fuels. Because of its recalcitrant nature, the lignocellulosic biomass must be pretreated before enzymatic hydrolysis. However, the pretreatment often results in the formation of compounds that are inhibitory for the enzymes or fermenting organism. Although well recognized, little quantitative information on the inhibition of individual cellulase components by identified inhibitors is available. RESULTS Strong cellulase inhibitors were separated from the liquid fraction of the hydrothermal pretreatment of wheat straw. HPLC and mass-spectroscopy analyses confirmed that the inhibitors were oligosaccharides (inhibitory oligosaccharides, IOS) with a degree of polymerization from 7 to 16. The IOS are composed of a mixture of xylo- (XOS) and gluco-oligosaccharides (GOS). We propose that XOS and GOS are the fragments of the xylan backbone and mixed-linkage β-glucans, respectively. The IOS were approximately 100 times stronger inhibitors for Trichoderma reesei cellobiohydrolases (CBHs) than cellobiose, which is one of the strongest inhibitors of these enzymes reported to date. Inhibition of endoglucanases (EGs) by IOS was weaker than that of CBHs. Most of the tested cellulases and hemicellulases were able to slowly degrade IOS and reduce the inhibitory power of the liquid fraction to some extent. The most efficient single enzyme component here was T. reesei EG TrCel7B. Although reduced by the enzyme treatment, the residual inhibitory power of IOS and the liquid fraction was strong enough to silence the major component of the T. reesei cellulase system, CBH TrCel7A. CONCLUSIONS The cellulase inhibitors described here may be responsible for the poor yields from the enzymatic conversion of the whole slurries from lignocellulose pretreatment under conditions that do not favor complete degradation of hemicellulose. Identification of the inhibitory compounds helps to design better enzyme mixtures for their degradation and to optimize the pretreatment regimes to minimize their formation.
Collapse
Affiliation(s)
- Riin Kont
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b - 202, 51010 Tartu, Estonia
| | - Mihhail Kurašin
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b - 202, 51010 Tartu, Estonia
| | - Hele Teugjas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b - 202, 51010 Tartu, Estonia
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b - 202, 51010 Tartu, Estonia
| |
Collapse
|
230
|
Mou HY, Orblin E, Kruus K, Fardim P. Topochemical pretreatment of wood biomass to enhance enzymatic hydrolysis of polysaccharides to sugars. BIORESOURCE TECHNOLOGY 2013; 142:540-5. [PMID: 23774220 DOI: 10.1016/j.biortech.2013.05.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 05/05/2023]
Abstract
The surface chemistry of milled birch and pine wood pretreated by ionic liquid, hydrothermal and hydrotropic methods, followed by enzymatic hydrolysis was studied in this work. Surface coverage by lignin was measured by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to describe the surface chemical composition after pretreatment in detail, and the morphology after pretreatment was investigated by FE-SEM. Ionic liquid (1-ethyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium chloride) pretreatment at room temperature made the samples swell but did not dissolve the wood. Comparing the surface coverage by lignin, both in the case of birch and pine wood, hydrotropic worked best to remove the lignin hampering enzymatic hydrolysis. ToF-SIMS supported this finding, and showed that in birch, the carbohydrates were degraded more than in pine after hydrotropic pretreatment. The glucose yield of birch was improved by hydrotropic pretreatment from 5.1% to 83.9%, more significantly than in case of pine.
Collapse
Affiliation(s)
- Hong-Yan Mou
- Laboratory of Fibre and Cellulose Technology, Åbo Akademi University, Porthansgatan 3, FI-20500 Turku, Finland.
| | | | | | | |
Collapse
|