201
|
So KA, Min KJ, Hong JH, Lee JK. Interleukin-6 expression by interactions between gynecologic cancer cells and human mesenchymal stem cells promotes epithelial-mesenchymal transition. Int J Oncol 2015; 47:1451-9. [PMID: 26316317 DOI: 10.3892/ijo.2015.3122] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) facilitates the invasion and metastasis of cancer cells. EMT seems to be mediated by the interaction between cancer cells and human mesenchymal stem cells (hMSCs) in the tumor microenvironment. The present study is intended to identify specific cytokines as potent inducers of EMT associated hMSCs-tumor interactions. We used ovarian cancer cell lines (SKOV-3 and IGROV-1), endometrial cancer cell line (Ishikawa) and hMSCs (bone marrow MSC, amniotic membrane MSC and decidua MSC). The expressions of EMT markers (E-cadherin, Snail, Twist and N-cadherin) were analyzed using quantitative RT-PCR, immunofluorescence and western blot analysis. Matrix metalloproteinases (MMP-2 and MMP-9), Matrigel invasion assay, and wound healing assay were used to analyze cell migration and invasion. Gynecologic cancer cells directly co-cultured with hMSCs had contact-dependent altered morphology and growth patterns. IL-6 was elevated in all co-cultures using a human cytokine array. After IL-6 treatment of cancer cell lines, RT-PCR and western blot analysis indicated a decrease in an epithelial marker and an increase in mesenchymal markers. Also, cancer cells with IL-6 significantly increase in MMP-2 and MMP-9 and significantly enhance the migration ability compared to untreated cells (P<0.05), as shown by wound healing assay. On Matrigel invasion assay, treated cells displayed significantly increased invasiveness compared to untreated cancer cells. Gyneocologic cancer cells exposed to IL-6 acquired mesenchymal properties that facilitated metastasis and invasion by promoting EMT. The present study suggests that IL-6 of the tumor microenvironment has a critical role in oncogenic EMT.
Collapse
Affiliation(s)
- Kyeong A So
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook university College of Medicine, Seoul, Republic of Korea
| | - Kyung Jin Min
- Department of Obstetrics and Gynecology Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin Hwa Hong
- Department of Obstetrics and Gynecology Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae-Kwan Lee
- Department of Obstetrics and Gynecology Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
202
|
Mohamed HG, Idris SB, Ahmed MF, Åstrøm AN, Mustafa K, Ibrahim SO, Mustafa M. Influence of type 2 diabetes on local production of inflammatory molecules in adults with and without chronic periodontitis: a cross-sectional study. BMC Oral Health 2015. [PMID: 26211001 PMCID: PMC4515322 DOI: 10.1186/s12903-015-0073-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Pathological changes in periodontal tissues are mediated by the interaction between microorganisms and the host immune-inflammatory response. Hyperglycemia may interfere with this process. The aim of this study was to compare the levels of 27 inflammatory molecules in the gingival crevicular fluid (GCF) of patients with type 2 diabetes, with and without chronic periodontitis, and of chronic periodontitis subjects without diabetes. A putative correlation between glycated haemoglobin (HbA1c) and levels of the inflammatory molecules was also investigated. Methods The study population comprised a total of 108 individuals, stratified into: 54 with type 2 diabetes and chronic periodontitis (DM + CP), 30 with chronic periodontitis (CP) and 24 with type 2 diabetes (DM). Participants were interviewed with the aid of structured questionnaire. Periodontal parameters (dental plaque, bleeding on probing and periodontal pocket depth) were recorded. The GCF levels of the 27 inflammatory molecules were measured using multiplex micro-bead immunoassay. A glycated haemoglobin (HbA1c) test was performed for patients with diabetes by boronate affinity chromatography. Results After adjustment for potential confounders, the DM + CP group had higher levels of IL-8 and MIP-1β, and lower levels of TNF-α, IL-4, INF-γ, RANTES and IL-7 compared to the CP group. Moreover, the DM + CP group had lower levels of IL-6, IL-7 and G-CSF compared to the DM group. The DM group had higher levels of IL-10, VEGF, and G-CSF compared to the CP group. The levels of MIP-1α and FGF were lower in diabetes patients (regardless of their periodontal status) than in chronic periodontitis subjects without diabetes. Diabetes patients (DM + CP and DM) had higher Th-2/Th-1 ratio compared to the CP group. HbA1c correlated positively with the pro-inflammatory cytokines (Pearson correlation coefficient = 0.27, P value: 0.02). Conclusion Type 2 diabetes and chronic periodontitis may influence the GCF levels of inflammatory molecules synergistically as well as independently. Type 2 diabetes was associated with high Th-2/Th-1 ratio, and modulated the local expression of molecules involved in the anti-inflammatory and healing processes.
Collapse
Affiliation(s)
- Hasaan G Mohamed
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 19, 5009, Bergen, Norway. .,Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan.
| | - Shaza B Idris
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 19, 5009, Bergen, Norway.
| | | | - Anne N Åstrøm
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 19, 5009, Bergen, Norway.
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 19, 5009, Bergen, Norway.
| | - Salah O Ibrahim
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 19, 5009, Bergen, Norway.
| | - Manal Mustafa
- Oral Health Competence Center in Western Norway, Hordaland, Bergen, Norway.
| |
Collapse
|
203
|
Chaturvedi S, Siegel D, Wagner CL, Park J, van de Velde H, Vermeulen J, Fung MC, Reddy M, Hall B, Sasser K. Development and validation of panoptic Meso scale discovery assay to quantify total systemic interleukin-6. Br J Clin Pharmacol 2015; 80:687-97. [PMID: 25847183 DOI: 10.1111/bcp.12652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
AIM Interleukin-6 (IL-6), a multifunctional cytokine, exists in several forms ranging from a low molecular weight (MW 20-30 kDa) non-complexed form to high MW (200-450 kDa), complexes. Accurate baseline IL-6 assessment is pivotal to understand clinical responses to IL-6-targeted treatments. Existing assays measure only the low MW, non-complexed IL-6 form. The present work aimed to develop a validated assay to measure accurately total IL-6 (complexed and non-complexed) in serum or plasma as matrix in a high throughput and easily standardized format for clinical testing. METHODS Commercial capture and detection antibodies were screened against humanized IL-6 and evaluated in an enzyme-linked immunosorbent assay format. The best antibody combinations were screened to identify an antibody pair that gave minimum background and maximum recovery of IL-6 in the presence of 100% serum matrix. A plate-based total IL-6 assay was developed and transferred to the Meso Scale Discovery (MSD) platform for large scale clinical testing. RESULTS The top-performing antibody pair from 36 capture and four detection candidates was validated on the MSD platform. The lower limit of quantification in human serum samples (n = 6) was 9.77 pg l(-1) , recovery ranged from 93.13-113.27%, the overall pooled coefficients of variation were 20.12% (inter-assay) and 8.67% (intra-assay). High MW forms of IL-6, in size fractionated serum samples from myelodysplastic syndrome and rheumatoid arthritis patients, were detected by the assay but not by a commercial kit. CONCLUSION This novel panoptic (sees all forms) IL-6 MSD assay that measures both high and low MW forms may have clinical utility.
Collapse
Affiliation(s)
- Shalini Chaturvedi
- Oncology, Translational Research, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania
| | - Derick Siegel
- Oncology, Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania
| | - Carrie L Wagner
- Immunology Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Jaehong Park
- Oncology, Translational Research, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania
| | - Helgi van de Velde
- Oncology Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Jessica Vermeulen
- Oncology Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Leiden, the Netherlands
| | - Man-Cheong Fung
- Oncology, Janssen Pharmaceutical Companies of Johnson & Johnson, Raritan, New Jersey
| | - Manjula Reddy
- Oncology, Translational Research, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania
| | - Brett Hall
- Oncology, Translational Research, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania.,Current address: MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland, USA
| | - Kate Sasser
- Oncology, Translational Research, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania
| |
Collapse
|
204
|
Zhang C, Zhang X, Chen XH. Inhibition of the interleukin-6 signaling pathway: a strategy to induce immune tolerance. Clin Rev Allergy Immunol 2015; 47:163-73. [PMID: 24647663 DOI: 10.1007/s12016-014-8413-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that is multifunctional, with multifaceted effects. IL-6 signaling plays a vital role in the control of the differentiation and activation of T lymphocytes by inducing different pathways. In particular, IL-6 controls the balance between Th17 cells and regulatory T (Treg) cells. An imbalance between Treg and Th17 cells is thought to play a pathological role in various immune-mediated diseases. Deregulated IL-6 production and signaling are associated with immune tolerance. Therefore, methods of inhibiting IL-6 production, receptors, and signaling pathways are strategies that are currently being widely pursued to develop novel therapies that induce immune tolerance. This survey aims to provide an updated account of why IL-6 inhibitors are becoming a vital class of drugs that are potentially useful for inducing immune tolerance as a treatment for autoimmune diseases and transplant rejection. In addition, we discuss the effect of targeting IL-6 in recent experimental and clinical studies on autoimmune diseases and transplant rejection.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China,
| | | | | |
Collapse
|
205
|
Deshmukh SK, Srivastava SK, Bhardwaj A, Singh AP, Tyagi N, Marimuthu S, Dyess DL, Zotto VD, Carter JE, Singh S. Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation. Oncotarget 2015; 6:11231-11241. [PMID: 25868978 PMCID: PMC4484452 DOI: 10.18632/oncotarget.3591] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
African-American (AA) women with breast cancer (BC) are diagnosed with more aggressive disease, have higher risk of recurrence and poorer prognosis as compared to Caucasian American (CA) women. Therefore, it is imperative to define the factors associated with such disparities to reduce the unequal burden of cancer. Emerging data suggest that inherent differences exist in the tumor microenvironment of AA and CA BC patients, however, its molecular bases and functional impact have remained poorly understood. Here, we conducted cytokine profiling in serum samples from AA and CA BC patients and identified resistin and IL-6 to be the most differentially-expressed cytokines with relative greater expression in AA patients. Resistin and IL-6 exhibited positive correlation in serum levels and treatment of BC cells with resistin led to enhanced production of IL-6. Moreover, resistin also enhanced the expression and phosphorylation of STAT3, and treatment of BC cells with IL-6-neutralizing antibody prior to resistin stimulation abolished STAT3 phosphorylation. In addition, resistin promoted growth and aggressiveness of BC cells, and these effects were mediated through STAT3 activation. Together, these findings suggest a crucial role of resistin, IL-6 and STAT3 in BC racial disparity.
Collapse
Affiliation(s)
- Sachin K. Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Sanjeev K. Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P. Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Saravanakumar Marimuthu
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Donna L. Dyess
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Valeria Dal Zotto
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - James E. Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
206
|
Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension. Proc Natl Acad Sci U S A 2015; 112:E2677-86. [PMID: 25941359 DOI: 10.1073/pnas.1424774112] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IL-6 is a multifunctional proinflammatory cytokine that is elevated in the serum of patients with pulmonary arterial hypertension (PAH) and can predict the survival of patients with idiopathic PAH (IPAH). Previous animal experiments and clinical human studies indicate that IL-6 is important in PAH; however, the molecular mechanisms of IL-6-mediated pathogenesis of PAH have been elusive. Here we identified IL-21 as a downstream target of IL-6 signaling in PAH. First, we found that IL-6 blockade by the monoclonal anti-IL-6 receptor antibody, MR16-1, ameliorated hypoxia-induced pulmonary hypertension (HPH) and prevented the hypoxia-induced accumulation of Th17 cells and M2 macrophages in the lungs. Consistently, the expression levels of IL-17 and IL-21 genes, one of the signature genes for Th17 cells, were significantly up-regulated after hypoxia exposure in the lungs of mice treated with control antibody but not in the lungs of mice treated with MR16-1. Although IL-17 blockade with an anti-IL-17A neutralizing antibody had no effect on HPH, IL-21 receptor-deficient mice were resistant to HPH and exhibited no significant accumulation of M2 macrophages in the lungs. In accordance with these findings, IL-21 promoted the polarization of primary alveolar macrophages toward the M2 phenotype. Of note, significantly enhanced expressions of IL-21 and M2 macrophage markers were detected in the lungs of IPAH patients who underwent lung transplantation. Collectively, these findings suggest that IL-21 promotes PAH in association with M2 macrophage polarization, downstream of IL-6-signaling. The IL-6/IL-21-signaling axis may be a potential target for treating PAH.
Collapse
|
207
|
Zhang M, Gong W, Zhang Y, Yang Y, Zhou D, Weng M, Qin Y, Jiang A, Ma F, Quan Z. Expression of interleukin-6 is associated with epithelial-mesenchymal transition and survival rates in gallbladder cancer. Mol Med Rep 2015; 11:3539-3546. [PMID: 25573292 DOI: 10.3892/mmr.2014.3143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to investigate the expression of interleukin‑6 (IL‑6) in gallbladder cancer (GBC) tissues and its correlation with survival rate. The association between IL‑6 and epithelial‑mesenchymal transition (EMT)‑associated markers was also examined. Using immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis, the protein and mRNA expression levels of IL‑6, Twist, E‑cadherin and Vimentin in 20 GBC tissues were analyzed. The IL‑6, Twist and Vimentin proteins were overexpressed in 40, 20 and 70% of the human GBC samples, respectively. The protein expression of E‑cadherin was higher in only 5% of the GBC samples. These differences were significant (P<0.05). Western blot analysis also revealed overexpression of IL‑6, Twist and Vimentin and underexpression of E‑cadherin in the GBC samples with poor differentiation, local invasion and a higher tumor‑node‑metastasis (TNM) stage (P<0.05). Higher mRNA expression levels of IL‑6, Twist and Vimentin and a reduced expression level of E‑cadherin were also demonstrated in the GBC tissues (P<0.05). The degree of differentiation, local invasion, lymph node metastasis and clinical stage were significantly associated with the mRNA expression levels of IL‑6, Twist and E‑cadherin. The increased expression levels of IL‑6 and Twist and the reduced expression of E‑cadherin correlated with shorter median survival rates (P<0.05). Line regression results revealed correlation among the mRNA expression levels of IL‑6, Twist, E‑cadherin and Vimentin. To the best of our knowledge, the present study is the first to demonstrate that IL‑6 is associated with EMT‑associated markers, tumor differentiation, local invasion, TNM stage and survival rates in GBC.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Yong Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Yong Yang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Yiyu Qin
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Alex Jiang
- Department of Health Science, Schulich School of Medicine and Dentistry, Western Ontario University, London, ON N6A 3K6, Canada
| | - Fei Ma
- Department of Oncology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
208
|
Lu Z, Li Y, Jin J, Zhang X, Hannun YA, Huang Y. GPR40/FFA1 and neutral sphingomyelinase are involved in palmitate-boosted inflammatory response of microvascular endothelial cells to LPS. Atherosclerosis 2015; 240:163-73. [PMID: 25795558 PMCID: PMC4397186 DOI: 10.1016/j.atherosclerosis.2015.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/25/2015] [Accepted: 03/08/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Increased levels of both saturated fatty acids (SFAs) and lipopolysaccharide (LPS) are associated with type 2 diabetes. However, it remains largely unknown how SFAs interact with LPS to regulate inflammatory responses in microvascular endothelial cells (MIC ECs) that are critically involved in atherosclerosis as a diabetic complication. In this study, we compared the effects of LPS, palmitic acid (PA), the most abundant saturated fatty acid, or the combination of LPS and PA on interleukin (IL)-6 expression by MIC ECs and explored the underlying mechanisms. METHODS Human cardiac MIC ECs were treated with LPS, PA and LPS plus PA and the regulatory pathways including receptors, signal transduction, transcription and post-transcription, and sphingolipid metabolism for IL-6 expression were investigated. RESULTS G protein-coupled receptor (GPR)40 or free fatty acid receptor 1 (FFA1), but not toll-like receptor 4, was involved in PA-stimulated IL-6 expression. PA not only stimulated IL-6 expression by itself, but also remarkably enhanced LPS-stimulated IL-6 expression via a cooperative stimulation on mitogen-activated protein kinase and nuclear factor kappa B signaling pathways, and both transcriptional and post-transcriptional activation. Furthermore, PA induced a robust neutral sphingomyelinase (nSMase)-mediated sphingomyelin hydrolysis that was involved in PA-augmented IL-6 upregulation. CONCLUSION PA boosted inflammatory response of microvascular endothelial cells to LPS via GPR40 and nSMase.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Junfei Jin
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, People's Republic of China
| | - Xiaoming Zhang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA; Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
209
|
Efficacy of tocilizumab on MRI-determined bone oedema in rheumatoid arthritis. Clin Rheumatol 2015; 34:1031-7. [DOI: 10.1007/s10067-015-2934-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
|
210
|
Abdul Rahim SN, Ho GY, Coward JIG. The role of interleukin-6 in malignant mesothelioma. Transl Lung Cancer Res 2015; 4:55-66. [PMID: 25806346 DOI: 10.3978/j.issn.2218-6751.2014.07.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Malignant mesothelioma (MM) still remains a dismal disease with a median overall survival between 9-12 months. During the past decade since the introduction of the multi-folate antagonist, pemetrexed, there have been no significant advances in its systemic treatment, particularly with novel therapeutics that have exhibited varying degrees of success in other solid tumours. In recent years, the pleiotropic proinflammatory cytokine, interleukin-6 (IL-6) has emerged as a mediator of pivotal processes such as cell proliferation and chemoresistance within the mesothelioma tumour microenvironment in addition to clinical symptoms commonly witnessed in this disease. This manuscript provides a brief summary on the pathophysiology and clinical management of MM, followed by the role of IL-6 in its tumourigenesis and the rationale for utilising anti-IL-6 therapeutics alongside standard chemotherapy and targeted agents in an attempt to prolong survival.
Collapse
Affiliation(s)
- Siti N Abdul Rahim
- 1 Inflammation & Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia ; 2 School of Chemistry & Molecular Bioscience, 3 School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia ; 4 Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| | - Gwo Y Ho
- 1 Inflammation & Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia ; 2 School of Chemistry & Molecular Bioscience, 3 School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia ; 4 Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| | - Jermaine I G Coward
- 1 Inflammation & Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia ; 2 School of Chemistry & Molecular Bioscience, 3 School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia ; 4 Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| |
Collapse
|
211
|
Boulate D, Perros F, Dorfmuller P, Arthur-Ataam J, Guihaire J, Lamrani L, Decante B, Humbert M, Eddahibi S, Dartevelle P, Fadel E, Mercier O. Pulmonary microvascular lesions regress in reperfused chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant 2015; 34:457-67. [DOI: 10.1016/j.healun.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 05/08/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022] Open
|
212
|
Fonseka TM, McIntyre RS, Soczynska JK, Kennedy SH. Novel investigational drugs targeting IL-6 signaling for the treatment of depression. Expert Opin Investig Drugs 2015; 24:459-75. [PMID: 25585966 DOI: 10.1517/13543784.2014.998334] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Elevated levels of IL-6 have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). Convergent evidence suggests that IL-6 primarily mediates proinflammatory functions via the soluble IL-6 receptor/trans-signaling, and anti-inflammatory functions via a transmembrane receptor (IL-6R). A targeted approach to selectively inhibit IL-6 trans-signaling may offer putative antidepressant effects. AREAS COVERED This review addresses three primary domains. The first focuses on the biological role of IL-6 within inflammation and its signal transduction pathways. The second addresses the potential contributions of IL-6 to the pathophysiology of MDD, and the mechanisms that may mediate these effects. Finally, the article outlines the therapeutic benefits of incorporating anti-inflammatory properties into the pharmacological treatment of MDD, and proposes inhibition of IL-6 signaling as a viable treatment strategy. EXPERT OPINION To improve drug development for the treatment of MDD, there is a critical need to identify promising targets. Target identification will require guidance from a strategic framework such as The Research Domain Criteria, and convincing evidence relating known targets to brain function under both physiological and pathological conditions. Although current evidence provides rationale for administering anti-IL-6 treatments in MDD, further studies confirming safety, target affinity and therapeutic benefits are warranted.
Collapse
Affiliation(s)
- Trehani M Fonseka
- University of Toronto, University Health Network, Department of Psychiatry , 200 Elizabeth Street, 8-EN-238, Toronto, M5G 2C4, ON , Canada +1 416 340 3888 ; +1 416 340 4198 ;
| | | | | | | |
Collapse
|
213
|
Gruol DL. IL-6 regulation of synaptic function in the CNS. Neuropharmacology 2014; 96:42-54. [PMID: 25445486 DOI: 10.1016/j.neuropharm.2014.10.023] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/20/2022]
Abstract
A growing body of evidence supports a role for glial-produced neuroimmune factors, including the cytokine IL-6, in CNS physiology and pathology. CNS expression of IL-6 has been documented in the normal CNS at low levels and at elevated levels in several neurodegenerative or psychiatric disease states as well as in CNS infection and injury. The altered CNS function associated with these conditions raises the possibility that IL-6 has neuronal or synaptic actions. Studies in in vitro and in vivo models confirmed this possibility and showed that IL-6 can regulate a number of important neuronal and synaptic functions including synaptic transmission and synaptic plasticity, an important cellular mechanism of memory and learning. Behavioral studies in animal models provided further evidence of an important role for IL-6 as a regulator of CNS pathways that are critical to cognitive function. This review summarizes studies that have lead to our current state of knowledge. In spite of the progress that has been made, there is a need for a greater understanding of the physiological and pathophysiological actions of IL-6 in the CNS, the mechanisms underlying these actions, conditions that induce production of IL-6 in the CNS and therapeutic strategies that could ameliorate or promote IL-6 actions. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Donna L Gruol
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
214
|
Buhrmann C, Shayan P, Aggarwal BB, Shakibaei M. Evidence that TNF-β (lymphotoxin α) can activate the inflammatory environment in human chondrocytes. Arthritis Res Ther 2014; 15:R202. [PMID: 24283517 PMCID: PMC3979010 DOI: 10.1186/ar4393] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022] Open
Abstract
Introduction Inflammatory cytokines play a key role in the pathogenesis of joint diseases such as rheumatoid arthritis (RA). Current therapies target mainly tumor necrosis factor α (TNF-α) as this has proven benefits. However, a large number of patients do not respond to or become resistant to anti-TNF-α therapy. While the role of TNF-α in RA is quite evident, the role of TNF-β, also called lymphotoxin-α (LT-α), is unclear. In this study we investigated whether TNF-β and its receptor play a role in chondrocytes in the inflammatory environment. Methods An in vitro model of primary human chondrocytes was used to study TNF-β-mediated inflammatory signaling. Results Cytokine-induced inflammation enhances TNF-β and TNF-β-receptor expression in primary human chondrocytes accompanied by the up-regulation of inflammatory (cyclooxygenase-2), matrix degrading (matrix metalloproteinase-9 and -13) and apoptotic (p53, cleaved caspase-3) signaling pathways, all known to be regulated by NF-κB. In contrast, anti-TNF-β, similar to the natural NF-κB inhibitor (curcumin, diferuloylmethane) or the knockdown of NF-κB by using antisense oligonucleotides (ASO), suppressed IL-1β-induced NF-κB activation and its translocation to the nucleus, and abolished the pro-inflammatory and apoptotic effects of IL-1β. This highlights, at least in part, the crucial role of NF-κB in TNF-β-induced-inflammation in cartilage, similar to that expected for TNF-α. Finally, the adhesiveness between TNF-β-expressing T-lymphocytes and the responding chondrocytes was significantly enhanced through a TNF-β-induced inflammatory microenvironment. Conclusions These results suggest for the first time that TNF-β is involved in microenvironment inflammation in chondrocytes during RA parallel to TNF-α, resulting in the up-regulation of NF-κB signaling and activation of pro-inflammatory activity.
Collapse
|
215
|
Basinska K, Marycz K, Śieszek A, Nicpoń J. The production and distribution of IL-6 and TNF-a in subcutaneous adipose tissue and their correlation with serum concentrations in Welsh ponies with equine metabolic syndrome. J Vet Sci 2014; 16:113-20. [PMID: 25269712 PMCID: PMC4367141 DOI: 10.4142/jvs.2015.16.1.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 09/26/2014] [Indexed: 12/21/2022] Open
Abstract
A main symptom of equine metabolic syndrome (EMS) in ponies is pathological obesity characterized by abnormal accumulation of fat deposits and inflammation. In this study, we analyzed the expression of two pro-inflammatory cytokines, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), in subcutaneous adipose tissue and the correlation with serum concentrations in peripheral blood of Welsh ponies. Based on clinical examination findings, the animals were divided into two groups: ponies affected with EMS (n = 8) and obese ponies (n = 8). The adipose tissue was examined using immunohistochemical analysis while concentrations IL-6 and TNF-α were measured using enzyme-linked immunosorbent assays (ELISAs). Additionally, histological characterization of the adipose tissue was performed. The results obtained showed that IL-6 expression in adipose tissue biopsies derived from animals with EMS was enhanced while TNF-α levels of both groups were comparable. Compared to the obese ponies, EMS animals also had significantly elevated levels of serum IL-6 and TNF-α. Histological analysis revealed macrophage infiltration and fibrosis in adipose tissue preparations from the EMS group. These data suggest that IL-6 may play a key role in the course of EMS in Welsh ponies. Our findings also demonstrated that analysis of pro-inflammatory cytokines levels in serum may serve as an additional tool for diagnosing EMS.
Collapse
Affiliation(s)
- Katarzyna Basinska
- Electron Microscope Laboratory, Wroclaw University of Environmental and Life Sciences, Wroclaw 51-631,
| | | | | | | |
Collapse
|
216
|
Blüml S, Redlich K, Smolen JS. Mechanisms of tissue damage in arthritis. Semin Immunopathol 2014; 36:531-40. [PMID: 25212687 DOI: 10.1007/s00281-014-0442-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/31/2014] [Indexed: 01/17/2023]
Abstract
The destruction of articular structures in the course of inflammatory arthritides such as rheumatoid arthritis (RA) or seronegative spondyloarthropathies is the most serious direct consequence of these diseases. Indeed, joint damage constitutes the "organ damage" of RA and-just like in all other diseases with organ involvement-such damage will usually be irreversible, cause permanent loss of function and subsequent disability. Research has identified a number of mechanisms and mediators of damage to articular structures such as bone and cartilage, ranging from proinflammatory cytokines, signal transduction pathways and cells types, which will be discussed in this review.
Collapse
Affiliation(s)
- Stephan Blüml
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
217
|
Palmiere C, Augsburger M. Markers for sepsis diagnosis in the forensic setting: state of the art. Croat Med J 2014; 55:103-14. [PMID: 24778096 PMCID: PMC4009711 DOI: 10.3325/cmj.2014.55.103] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Reliable diagnoses of sepsis remain challenging in forensic pathology routine despite improved methods of sample collection and extensive biochemical and immunohistochemical investigations. Macroscopic findings may be elusive and have an infectious or non-infectious origin. Blood culture results can be difficult to interpret due to postmortem contamination or bacterial translocation. Lastly, peripheral and cardiac blood may be unavailable during autopsy. Procalcitonin, C-reactive protein, and interleukin-6 can be measured in biological fluids collected during autopsy and may be used as in clinical practice for diagnostic purposes. However, concentrations of these parameters may be increased due to etiologies other than bacterial infections, indicating that a combination of biomarkers could more effectively discriminate non-infectious from infectious inflammations. In this article, we propose a review of the literature pertaining to the diagnostic performance of classical and novel biomarkers of inflammation and bacterial infection in the forensic setting.
Collapse
Affiliation(s)
- Cristian Palmiere
- Cristian Palmiere, , University Center of Legal Medicine, Lausanne, Switzerland
| | | |
Collapse
|
218
|
Anti-stress action of an orally-given combination of resveratrol, β-glucan, and vitamin C. Molecules 2014; 19:13724-34. [PMID: 25255758 PMCID: PMC6271389 DOI: 10.3390/molecules190913724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 11/16/2022] Open
Abstract
Stress has repeatedly been found to reduce the abilities of the immune system to fight against individual attacks. The current dissatisfaction with classical medications has led to more attention being focused on natural molecules. As recent studies have suggested that some bioactive molecules can have synergistic effects in stimulation of immune system and reduction of stress, we have evaluated the stress-reducing effects of the resveratrol-β-glucan-vitamin C combination. We found that compared to its individual components, this combination was the strongest reducer of stress-related symptoms, including corticosterone levels and IL-6, IL-12 and IFN-γ production.
Collapse
|
219
|
Yamagishi J, Natori A, Tolba MEM, Mongan AE, Sugimoto C, Katayama T, Kawashima S, Makalowski W, Maeda R, Eshita Y, Tuda J, Suzuki Y. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum. Genome Res 2014; 24:1433-44. [PMID: 25091627 PMCID: PMC4158759 DOI: 10.1101/gr.158980.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which are far more complex than those observed under laboratory conditions.
Collapse
Affiliation(s)
- Junya Yamagishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8579, Japan; Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Anna Natori
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | - Arthur E Mongan
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu Manado, 95115, Indonesia
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Toshiaki Katayama
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), The University of Tokyo Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shuichi Kawashima
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), The University of Tokyo Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, 48149 Munster, Germany
| | - Ryuichiro Maeda
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yuki Eshita
- Oita University, School of Medicine, Yufushi, Oita 879-5593, Japan
| | - Josef Tuda
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu Manado, 95115, Indonesia
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan;
| |
Collapse
|
220
|
Ataie-Kachoie P, Pourgholami MH, Richardson DR, Morris DL. Gene of the month: Interleukin 6 (IL-6). J Clin Pathol 2014; 67:932-7. [PMID: 25031389 DOI: 10.1136/jclinpath-2014-202493] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Interleukin 6 (IL-6) gene encodes the classic proinflammatory cytokine IL-6. It is also known as interferon-β2 (IFN-β2), B cell stimulatory factor-2 and hybridoma/plasmacytoma growth factor. IL-6 is a multifunctional cytokine with a central role in many physiological inflammatory and immunological processes. Due to its major role in initiation as well as resolving inflammation, deregulation of IL-6 is a mainstay of chronic inflammatory and autoimmune diseases. Additionally, IL-6 has been shown to be implicated in pathogenesis of many human malignancies. Thus, a better understanding of IL-6 and its role in various pathological conditions could enable the development of strategies to use it as a therapeutic target. This short review focuses on the structure, regulation and biological activities of IL-6. In addition we discuss the role of IL-6 in diseases with inflammatory background and cancer and also the therapeutic applications of anti-IL-6 agents.
Collapse
|
221
|
Inamdar A, Merlo-Pich E, Gee M, Makumi C, Mistry P, Robertson J, Steinberg E, Zamuner S, Learned S, Alexander R, Ratti E. Evaluation of antidepressant properties of the p38 MAP kinase inhibitor losmapimod (GW856553) in Major Depressive Disorder: Results from two randomised, placebo-controlled, double-blind, multicentre studies using a Bayesian approach. J Psychopharmacol 2014; 28:570-81. [PMID: 24699061 DOI: 10.1177/0269881114529377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pro-inflammatory cytokines (PICs) may play important pathophysiological roles in some forms of Major Depressive Disorder (MDD). The p38 MAPK inhibitor losmapimod (GW856553) attenuates the pro-inflammatory response in humans by reducing PIC production. Losmapimod (7.5 mg BD) was administered for 6 weeks in two randomised, placebo-controlled trials in subjects with MDD enriched with symptoms of loss of energy/interest and psychomotor retardation (Studies 574 and 009). Primary efficacy endpoints were the Bech 6-item depression subscale of the HAMD-17 (the 'Bech,') for Study 009; and the Bech, Inventory of Depressive Symptomatology-Clinician Rated (IDS-C), HAMD-17, and Quick Inventory of Depressive Symptomatology (self-rated) (QIDS-SR) for Study 574. Key cytokine biomarker levels were also measured. Study 574 (n=24) was terminated prematurely in light of emerging data from an internal study in rheumatoid arthritis. Efficacy results available at termination favoured losmapimod (Bech, 6 weeks: endpoint drug vs. placebo difference = -4.10; 95% CI, -7.36, -0.83; p=0.017). A subsequent study, Study 009 (n=128), designed using a Bayesian approach based on a prior derived from Study 574, showed no advantage for losmapimod (Bech, 6 weeks: endpoint drug vs. placebo difference = 1.11; 95% credible interval, -0.22, 2.50). Biomarker data showed no significant changes. In conclusion 7.5 mg BID losmapimod was not effective in MDD.
Collapse
Affiliation(s)
- Amir Inamdar
- Neurosciences Centre for Excellence in Drug Discovery, GlaxoSmithKline R&D Ltd, Harlow, Essex, UK The first two authors equally contributed to the work here reported Present address: Takeda Development Centre Europe Ltd., London, UK
| | - Emilio Merlo-Pich
- Neurosciences Centre for Excellence in Drug Discovery, GlaxoSmithKline R&D Ltd, Verona, Italy The first two authors equally contributed to the work here reported Present address: Neuroscience DTA, F. Hoffman-la Roche, Basel, Switzerland
| | - Michelle Gee
- Neurosciences Medicines Development Centre, GlaxoSmithKline R&D Ltd, Harlow, Essex, UK
| | - Clare Makumi
- Neurosciences Medicines Development Centre, GlaxoSmithKline R&D Ltd, Durham, NC, USA
| | - Prafull Mistry
- Discovery Biometrics, GlaxoSmithKline R&D Ltd, Harlow, Essex, UK
| | - Jon Robertson
- Discovery Biometrics, GlaxoSmithKline R&D Ltd, Harlow, Essex, UK
| | - Erik Steinberg
- Neurosciences Medicines Development Centre, GlaxoSmithKline R&D Ltd, Durham, NC, USA
| | - Stefano Zamuner
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline R&D Ltd, Verona, Italy
| | - Susan Learned
- Neurosciences Centre for Excellence in Drug Discovery, GlaxoSmithKline R&D Ltd, Durham, NC, USA
| | - Robert Alexander
- Neurosciences Centre for Excellence in Drug Discovery, GlaxoSmithKline R&D Ltd, Verona, Italy
| | - Emiliangelo Ratti
- Neurosciences Centre for Excellence in Drug Discovery, GlaxoSmithKline R&D Ltd, Verona, Italy
| |
Collapse
|
222
|
He Y, Fang J, Peng X, Cui H, Zuo Z, Deng J, Chen Z, Lai W, Shu G, Tang L. Effects of sodium selenite on aflatoxin B1-induced decrease of ileac T cell and the mRNA contents of IL-2, IL-6, and TNF-α in broilers. Biol Trace Elem Res 2014; 159:167-73. [PMID: 24807686 DOI: 10.1007/s12011-014-9999-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/28/2014] [Indexed: 01/15/2023]
Abstract
The aim of this work was to assess the protective effect of sodium selenite on the ileum mucosal immunologic toxicity induced by aflatoxin B1 (AFB1). One hundred and eighty one-day-old healthy male avian broilers were divided into four groups of three replicates and 15 birds per replicate and fed with basal diet (control group), 0.3 mg/kg AFB1 (AFB1 group), 0.4 mg/kg Se (+Se group), and 0.3 mg/kg AFB1+0.4 mg/kg Se (AFB1+Se group), respectively. The ileac T-cell subsets were determined by the methods of flow cytometry (FCM), and the mRNA contents of interleukin-2 (IL-2), interleukin-6(IL-6), and tumor necrosis factor-alpha (TNF-α) by quantitative real-time PCR. Compared with those in control group, the percentages of CD3+, CD3+CD4+, CD3+CD8+ intraepithelial lymphocytes (IELs) and LPLs, the CD4+/CD8+ ratio of IELs, and the mRNA contents of IL-2, IL-6, and TNF-α were decreased in AFB1 group. However, compared with those in AFB1 group, these parameters of AFB1+Se group were increased to be close to those in control group. It was concluded that 0.3 mg/kg AFB1 could reduce the cellular immune function of the ileum mucosa, but 0.4 mg/kg supplemented dietary selenium showed protective effects on AFB1-induced immunologic injury.
Collapse
Affiliation(s)
- Yang He
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Almolda B, Villacampa N, Manders P, Hidalgo J, Campbell IL, González B, Castellano B. Effects of astrocyte-targeted production of interleukin-6 in the mouse on the host response to nerve injury. Glia 2014; 62:1142-61. [DOI: 10.1002/glia.22668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Nàdia Villacampa
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Peter Manders
- School of Molecular Bioscience; University of Sydney; Sydney NSW 2006 Australia
| | - Juan Hidalgo
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Iain L. Campbell
- School of Molecular Bioscience; University of Sydney; Sydney NSW 2006 Australia
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| |
Collapse
|
224
|
Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment. Mediators Inflamm 2014; 2014:583409. [PMID: 24707116 PMCID: PMC3943259 DOI: 10.1155/2014/583409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/20/2013] [Accepted: 12/26/2013] [Indexed: 12/21/2022] Open
Abstract
Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition.
Collapse
|
225
|
Bay-Jensen AC, Platt A, Byrjalsen I, Vergnoud P, Christiansen C, Karsdal MA. Effect of tocilizumab combined with methotrexate on circulating biomarkers of synovium, cartilage, and bone in the LITHE study. Semin Arthritis Rheum 2014; 43:470-8. [DOI: 10.1016/j.semarthrit.2013.07.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 06/21/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
|
226
|
Fanouriakis A, Boumpas DT, Bertsias GK. Balancing efficacy and toxicity of novel therapies in systemic lupus erythematosus. Expert Rev Clin Pharmacol 2014; 4:437-51. [DOI: 10.1586/ecp.11.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
227
|
Davies R, Choy E. Clinical experience of IL-6 blockade in rheumatic diseases - implications on IL-6 biology and disease pathogenesis. Semin Immunol 2014; 26:97-104. [PMID: 24389239 DOI: 10.1016/j.smim.2013.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022]
Abstract
Interleukin 6 (IL-6) plays a significant role in many rheumatological diseases and has been described as both a pro- and anti-inflammatory cytokine. IL-6 blockade has been investigated in various rheumatic diseases and a humanised anti-IL-6 receptor antibody has been licensed for use in rheumatoid arthritis, systemic and polyarticular juvenile idiopathic arthritis. The increasing clinical experience of IL-6 blockade in rheumatic diseases adds to the existing knowledge regarding the physiological and pathological roles of IL-6.
Collapse
Affiliation(s)
- Ruth Davies
- CREATE Centre, Section of Rheumatology, Institute of Infection and Immunity, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Ernest Choy
- CREATE Centre, Section of Rheumatology, Institute of Infection and Immunity, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
228
|
Abstract
Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.
Collapse
Affiliation(s)
- Bharath Wootla
- Departments of Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
229
|
Mohan T, Verma P, Rao DN. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res 2013; 138:779-95. [PMID: 24434331 PMCID: PMC3928709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Indexed: 11/29/2022] Open
Abstract
The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines.
Collapse
Affiliation(s)
- Teena Mohan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Verma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - D. Nageswara Rao
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
230
|
Adams KL, Castanon-Cervantes O, Evans JA, Davidson AJ. Environmental circadian disruption elevates the IL-6 response to lipopolysaccharide in blood. J Biol Rhythms 2013; 28:272-7. [PMID: 23929554 DOI: 10.1177/0748730413494561] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The immune system is regulated by circadian clocks within the brain and immune cells. Environmental circadian disruption (ECD), consisting of a 6-h phase advance of the light:dark cycle once a week for 4 weeks, elevates the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. This indicates that circadian disruption adversely affects immune function; however, it remains unclear how the circadian system regulates this response under ECD conditions. Here, we develop an assay using ex vivo whole-blood LPS challenge to investigate the circadian regulation of immune responses in mice and to determine the effects of ECD on these rhythms. LPS-induced IL-6 release in whole blood was regulated in a circadian manner, peaking during subjective day under both entrained and free-running conditions. This LPS-induced IL-6 release rhythm was associated with daily variation in both white blood cell counts and immune cell responsiveness. ECD increased the overall level of LPS-induced IL-6 release by increasing immune cell responsiveness and not by affecting immune cell number or the circadian regulation of this rhythm. This indicates that ECD produces pathological immune responses by increasing the proinflammatory responses of immune cells. Also, this newly developed whole blood assay can provide a noninvasive longitudinal method to quantify potential health consequences of circadian disruption in humans.
Collapse
Affiliation(s)
- Kandis L Adams
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | |
Collapse
|
231
|
Vis M, Güler-Yüksel M, Lems WF. Can bone loss in rheumatoid arthritis be prevented? Osteoporos Int 2013; 24:2541-53. [PMID: 23775419 DOI: 10.1007/s00198-013-2334-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/20/2013] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease that can lead to local joint deformations (bone erosions and joint space narrowing) and to extra-articular phenomena, including generalized osteoporosis. In addition, in patients with RA, the risk of vertebral and nonvertebral fractures is doubled. High disease activity (inflammation), immobility, and glucocorticoid use are common factors that substantially increase fracture risk in these patients, on top of the background fracture risk based on classical risk factors such as high age, low body mass, and female gender. New insights on the links between the immune system and the bone system, the field of osteoimmunology, have shown that local and generalized bone loss share common pathways. The receptor activator of nuclear factor κB ligand/osteoprotegerin pathway (RANKl/OPG) is one of the most important pathways, as it is (strongly) upregulated by inflammation. In modern treatment of RA with biologics, for example, TNFα-blocking agents and combination therapy of conventional disease-modifying antirheumatic drugs (DMARDs), clinical remission is a realistic treatment goal. As a consequence, in recent studies, it has been documented that both local and generalized bone loss is absent or minimal in those patients who are in clinical remission.
Collapse
Affiliation(s)
- M Vis
- Department of Rheumatology, Erasmus MC, Dr. Molewaterplein 50, 3015, GE, Rotterdam, the Netherlands,
| | | | | |
Collapse
|
232
|
Jin J, Zhang X, Lu Z, Perry DM, Li Y, Russo SB, Cowart LA, Hannun YA, Huang Y. Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages. Am J Physiol Endocrinol Metab 2013; 305:E853-67. [PMID: 23921144 PMCID: PMC3798699 DOI: 10.1152/ajpendo.00251.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Periodontal disease is more prevalent and severe in patients with diabetes than in nondiabetic patients. In addition to diabetes, a large number of studies have demonstrated an association between obesity and chronic periodontal disease. However, the underlying mechanisms have not been well understood. Since plasma free fatty acids (FAs) are elevated in obese patients and saturated FAs such as palmitic acid (PA) have been shown to increase host inflammatory response, we sought to find out how PA interacts with lipopolysaccharide (LPS), an important pathological factor involved in periodontal disease, to enhance inflammation. We found that whereas low concentration of LPS (1 ng/ml) stimulated interleukin (IL)-6 expression in RAW 264.7 macrophages, PA further augmented it fourfold. Besides IL-6, PA amplified the stimulatory effect of LPS on a large amount of Toll-like receptor (TLR)4-mediated expression of proinflammatory signaling molecules such as IL-1 receptor-associated kinase-like 2 and proinflammatory molecules, including monocyte chemotactic protein-1 and colony-stimulating factor. We also observed that PA augmented TLR4 but not TLR2 signal, and the augmentation was mediated by nuclear factor-κB (NF-κB) pathways. To further elucidate the regulatory mechanism whereby PA amplifies LPS signal, our studies showed that PA and LPS synergistically increased hydrolysis of sphingomyelin by stimulating acid sphingomyelinase (ASMase) activity, which contributed to a marked increase in ceramide production and IL-6 upregulation. Taken together, this study has demonstrated that PA markedly augments TLR4-mediated proinflammatory signaling triggered by low concentration of LPS in macrophages, and ASMase plays a key role in the augmentation.
Collapse
Affiliation(s)
- Junfei Jin
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Yousefian E, Novin MG, Fathabadi FF, Farahani RM, Kachouei EY. The expression of IL-6Rα and Gp130 in fallopian tubes bearing an ectopic pregnancy. Anat Cell Biol 2013; 46:177-82. [PMID: 24179692 PMCID: PMC3811854 DOI: 10.5115/acb.2013.46.3.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 11/27/2022] Open
Abstract
Women with tubal ectopic pregnancies have high levels of circulating interleukin 6 (IL-6). IL-6 treatment in vitro significantly reduces the ciliary activity of tubal epithelium. The effects of IL-6 on target cells occur via the formation of a high-affinity complex with its receptors IL-6Rα and glycoprotein 130 (Gp130). IL-6Rα is specifically expressed in the cilia of the epithelial cells. In this study, we performed a quantitative reverse transcriptase polymerase chain reaction to determine the mRNA expression of IL-6Rα and Gp130 in the fallopian tubes obtained from 12 women with ectopic pregnancies, 12 women with normal pregnancies, and 12 healthy nonpregnant women in the luteal phase of their menstrual cycle. Fallopian tubes were evaluated from specimens taken during tubal ligation in normal pregnancies and nonpregnant fertile women or during tubal surgery in ectopic pregnancies. We observed that IL-6Rα mRNA expression in fallopian tubes was increased in ectopic pregnancy compared with that in the midluteal phase. We also found that the Gp130 mRNA expression was significantly lower in fallopian tubes from ectopic pregnancies than in those from nonpregnant women during the midluteal phase of their menstrual cycle, although its expression was noticeably high in fallopian tubes in the midluteal phase, which suggests that high Gp130 levels may possibly contribute to embryo transport into the uterus.
Collapse
Affiliation(s)
- Elham Yousefian
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
234
|
Yao X, Huang J, Zhong H, Shen N, Faggioni R, Fung M, Yao Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther 2013; 141:125-39. [PMID: 24076269 DOI: 10.1016/j.pharmthera.2013.09.004] [Citation(s) in RCA: 475] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with significant functions in the regulation of the immune system. As a potent pro-inflammatory cytokine, IL-6 plays a pivotal role in host defense against pathogens and acute stress. However, increased or deregulated expression of IL-6 significantly contributes to the pathogenesis of various human diseases. Numerous preclinical and clinical studies have revealed the pathological roles of the IL-6 pathway in inflammation, autoimmunity, and cancer. Based on the rich body of studies on biological activities of IL-6 and its pathological roles, therapeutic strategies targeting the IL-6 pathway are in development for cancers, inflammatory and autoimmune diseases. Several anti-IL-6/IL-6 receptor monoclonal antibodies developed for targeted therapy have demonstrated promising results in both preclinical studies and clinical trials. Tocilizumab, an anti-IL-6 receptor antibody, is effective in the treatment of various autoimmune and inflammatory conditions notably rheumatoid arthritis. It is the only IL-6 pathway targeting agent approved by the regulatory agencies for clinical use. Siltuximab, an anti-IL-6 antibody, has been shown to have potential benefits treating various human cancers either as a single agent or in combination with other chemotherapy drugs. Several other anti-IL-6-based therapies are also under clinical development for various diseases. IL-6 antagonism has been shown to be a potential therapy for these disorders refractory to conventional drugs. New strategies, such as combination of IL-6 blockade with inhibition of other signaling pathways, may further improve IL-6-targeted immunotherapy of human diseases.
Collapse
Affiliation(s)
- Xin Yao
- MedImmune, LLC, Gaithersburg, MD 20878, USA
| | | | | | - Nan Shen
- Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai, China
| | | | | | - Yihong Yao
- MedImmune, LLC, Gaithersburg, MD 20878, USA.
| |
Collapse
|
235
|
Khosravi R, Ka K, Huang T, Khalili S, Nguyen BH, Nicolau B, Tran SD. Tumor necrosis factor- α and interleukin-6: potential interorgan inflammatory mediators contributing to destructive periodontal disease in obesity or metabolic syndrome. Mediators Inflamm 2013; 2013:728987. [PMID: 24068858 PMCID: PMC3771422 DOI: 10.1155/2013/728987] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/25/2022] Open
Abstract
Obesity has become a worldwide health burden in the last two decades. Obesity has been associated with increased comorbidities, such as coronary artery disease, diabetes, and destructive periodontal disease. Obesity is also part of a group of risk factors occurring together in an individual, which is referred to as metabolic syndrome. Clinical studies have shown higher risk for destructive periodontal disease in obesity and metabolic syndrome. However, the role of obesity and metabolic syndrome in the onset and development of destructive periodontal disease has not yet been fully understood. In this review, we discuss a working model, which focuses on interorgan inflammation as a common etiological factor for destructive periodontal disease associated with obesity and metabolic syndrome. Specifically, we suggest that elevated levels of tumor necrosis factor- α (TNF- α ) or interleukin 6 (IL-6)--both adipokines and known risk factors for destructive periodontal disease--in obesity and metabolic syndrome contribute to the onset and development of destructive periodontal disease. The connections between destructive periodontal disease and systemic conditions, such as obesity or metabolic syndrome, are complex and potentially multidirectional. This review largely focuses on TNF- α and IL-6, inflammatory mediators, as potential common risk factors and does not exclude other biological mechanisms.
Collapse
Affiliation(s)
- Roozbeh Khosravi
- Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, Quebec, Canada H3A 0C7
| | - Khady Ka
- Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, Quebec, Canada H3A 0C7
| | - Ting Huang
- Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, Quebec, Canada H3A 0C7
| | - Saeed Khalili
- Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, Quebec, Canada H3A 0C7
- University of Toronto, Toronto, Canada
| | - Bich Hong Nguyen
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, 3175 Cote-Ste-Catherine, Montreal, Quebec, Canada H3T 1C5
| | - Belinda Nicolau
- Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, Quebec, Canada H3A 0C7
| | - Simon D. Tran
- Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, Quebec, Canada H3A 0C7
| |
Collapse
|
236
|
Nguyen NT, Nakahama T, Kishimoto T. Aryl hydrocarbon receptor and experimental autoimmune arthritis. Semin Immunopathol 2013; 35:637-44. [DOI: 10.1007/s00281-013-0392-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/01/2013] [Indexed: 12/31/2022]
|
237
|
Masson E, Vidal C, Deschamps M, Bongain S, Thevenin C, Dupont I, Rietmulher D, Pouthier F, Mongaillard G, Chabod J, Ferrand C, Tiberghien P, Rebibou JM. Incidence and risk factors of anti-HLA immunization after pregnancy. Hum Immunol 2013; 74:946-51. [DOI: 10.1016/j.humimm.2013.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 03/01/2013] [Accepted: 04/10/2013] [Indexed: 12/23/2022]
|
238
|
Taher TE, Muhammad HA, Rahim A, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA. Aberrant B-lymphocyte responses in lupus: inherent or induced and potential therapeutic targets. Eur J Clin Invest 2013; 43:866-80. [PMID: 23701475 DOI: 10.1111/eci.12111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lupus is a prototype autoimmune disease of unknown aetiology. The disease is complex; manifest diverse clinical symptoms and disease mechanisms. This complexity has provided many leads to explore: from disease mechanisms to approaches for therapy. B-lymphocytes play a central role in the pathogenesis of the disease. However, the cause of aberrant B-lymphocyte responses in patients and, indeed, its causal relationship with the disease remain unclear. DESIGN This article provides a synopsis of current knowledge of immunological abnormalities in lupus with an emphasis on abnormalities in the B-lymphocyte compartment. RESULTS There is evidence for abnormalities in most compartments of the immune system in animal models and patients with lupus including an ever expanding list of abnormalities within the B-lymphocyte compartment. In addition, recent genome-wide linkage analyses in large cohorts of patients have identified new sets of genetic association factors some with potential links with defective B-lymphocyte responses although their full pathophysiological effects remain to be determined. The accumulating knowledge may help in the identification and application of new targeted therapies for treating lupus disease. CONCLUSIONS Cellular, molecular and genetic studies have provided significant insights into potential causes of immunological defects associated with lupus. Most of this insight relate to defects in B- and T-lymphocyte tolerance, signalling and responses. For B-lymphocytes, there is evidence for altered regulation of inter and intracellular signalling pathways at multiple levels. Some of these abnormalities will be discussed within the context of potential implications for disease pathogenesis and targeted therapies.
Collapse
Affiliation(s)
- Taher E Taher
- Bone & Joint Research Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
239
|
Franchini AM, Hunt D, Melendez JA, Drake JR. FcγR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species. J Biol Chem 2013; 288:25098-25108. [PMID: 23857584 DOI: 10.1074/jbc.m113.474106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of the FcγR via antigen containing immune complexes can lead to the generation of reactive oxygen species, which are potent signal transducing molecules. However, whether ROS contribute to FcγR signaling has not been studied extensively. We set out to elucidate the role of NADPH oxidase-generated ROS in macrophage activation following FcγR engagement using antigen-containing immune complexes. We hypothesized that NOX2 generated ROS is necessary for propagation of downstream FcγR signaling and initiation of the innate immune response. Following exposure of murine bone marrow-derived macrophages (BMDMs) to inactivated Francisella tularensis (iFt)-containing immune complexes, we observed a significant increase in the innate inflammatory cytokine IL-6 at 24 h compared with macrophages treated with Ft LVS-containing immune complexes. Ligation of the FcγR by opsonized Ft also results in significant ROS production. Macrophages lacking the gp91(phox) subunit of NOX2 fail to produce ROS upon FcγR ligation, resulting in decreased Akt phosphorylation and a reduction in the levels of IL-6 compared with wild type macrophages. Similar results were seen following infection of BMDMs with catalase deficient Ft that fail to scavenge hydrogen peroxide. In conclusion, our findings demonstrate that ROS participate in elicitation of an effective innate immune in response to antigen-containing immune complexes through FcγR.
Collapse
Affiliation(s)
- Anthony M Franchini
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and
| | - Danielle Hunt
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and
| | - J Andres Melendez
- the College of Nanoscale Science and Engineering, University at Albany-State University of New York, Albany, New York 12203
| | - James R Drake
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and.
| |
Collapse
|
240
|
Műzes G, Sipos F, Csomor J, Sréter L. Multicentric Castleman's disease: a challenging diagnosis. Pathol Oncol Res 2013; 19:345-351. [PMID: 23516126 DOI: 10.1007/s12253-013-9619-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/22/2013] [Indexed: 02/06/2023]
Abstract
Multicentric Castleman's disease (MCD) is a sytemic disorder with flares of non-specific symptoms suggestive of a chronic inflammatory syndrome. It is typically accompanied by generalized lymphadenopathy and multiorgan involvement. Histologically, two main variants of Castleman's disease exist, the hyalin vascular type and the plasma cell variant. Upon localization unicentric (localized), and multicentric (diffuse, systemic) subtypes can be distinguished with more different disease outcomes. Patients often exhibit acute phase reactions and several autoimmune phenomena, and are at high risk for developing malignancies. Both the idiopathic and the HHV-8-driven infectious forms of MCD represent distinct disease entities with a less favorable prognosis. The induction of human IL-6 excess via yet unknown upstream mechanisms, and overexpression of viral IL-6 by HHV-8 can pivotally influence MCD biology. Based on the role of IL-6 in pathogenesis, MCD is also designated as IL-6 lymphadenopathy. To date there are no direct therapeutic evidences, but having been translated to daily practice the main regulatory factors may serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Györgyi Műzes
- 2nd Department of Medicine, Semmelweis University, 1088 Budapest, Szentkirályi u. 46., Hungary.
| | | | | | | |
Collapse
|
241
|
Ara T, Nakata R, Sheard MA, Shimada H, Buettner R, Groshen SG, Ji L, Yu H, Jove R, Seeger RC, DeClerck YA. Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma. Cancer Res 2013. [PMID: 23633489 DOI: 10.1158/0008-5472.can-12-2353.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug resistance is a major cause of treatment failure in cancer. Here, we have evaluated the role of STAT3 in environment-mediated drug resistance (EMDR) in human neuroblastoma. We determined that STAT3 was not constitutively active in most neuroblastoma cell lines but was rapidly activated upon treatment with interleukin (IL)-6 alone and in combination with the soluble IL-6 receptor (sIL-6R). Treatment of neuroblastoma cells with IL-6 protected them from drug-induced apoptosis in a STAT3-dependent manner because the protective effect of IL-6 was abrogated in the presence of a STAT3 inhibitor and upon STAT3 knockdown. STAT3 was necessary for the upregulation of several survival factors such as survivin (BIRC5) and Bcl-xL (BCL2L1) when cells were exposed to IL-6. Importantly, IL-6-mediated STAT3 activation was enhanced by sIL-6R produced by human monocytes, pointing to an important function of monocytes in promoting IL-6-mediated EMDR. Our data also point to the presence of reciprocal activation of STAT3 between tumor cells and bone marrow stromal cells including not only monocytes but also regulatory T cells (Treg) and nonmyeloid stromal cells. Thus, the data identify an IL-6/sIL-6R/STAT3 interactive pathway between neuroblastoma cells and their microenvironment that contributes to drug resistance.
Collapse
Affiliation(s)
- Tasnim Ara
- Division of Hematology-Oncology, Department of Pediatrics, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Taher TE, Muhammad HA, Bariller E, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA. B-lymphocyte signalling abnormalities and lupus immunopathology. Int Rev Immunol 2013; 32:428-44. [PMID: 23768155 DOI: 10.3109/08830185.2013.788648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lupus is a complex autoimmune rheumatic disease of unknown aetiology. The disease is associated with diverse features of immunological abnormality in which B-lymphocytes play a central role. However, the cause of atypical B-lymphocyte responses remains unclear. In this article, we provide a synopsis of current knowledge on intracellular signalling abnormalities in B-lymphocytes in lupus and their potential effects on the response of these cells in mouse models and in patients. There are numerous reported defects in the regulation of intracellular signalling proteins and pathways in B-lymphocytes in lupus that, potentially, affect critical biological responses. Most of the evidence for these defects comes from studies of disease models and genetically engineered mice. However, there is also increasing evidence from studying B-lymphocytes from patients and from genome-wide linkage analyses for parallel defects to those observed in mice. These studies provide molecular and genetic explanations for the key immunological abnormalities associated with lupus. Most of the new information appears to relate to defects in intracellular signalling that impact B-lymphocyte tolerance, cytokine production and responses to infections. Some of these abnormalities will be discussed within the context of disease pathogenesis.
Collapse
Affiliation(s)
- Taher E Taher
- Bone & Joint Research Unit, William Harvey Research Institute, Barts
| | | | | | | | | | | | | |
Collapse
|
243
|
Ren G, Fan X, Liang Q, Wang Y, Luo G. Screening and evaluation of traditional Chinese medicine by microarray expression analysis. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:564-569. [PMID: 23557601 DOI: 10.1016/j.jep.2013.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/26/2012] [Accepted: 03/07/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza is a Chinese medicinal herb, which is widely used for the treatment of cardiovascular disorders. In this article, we investigated the effects of Salvia miltiorrhiza and its hydrophilic and lipophilic components (HCS and LCS) on human umbilical vein endothelial cells (HUVECs), and the molecular mechanism was explored by microarray gene expression profiling. MATERIALS AND METHODS Cell proliferation and migration were used to evaluate the angiogenic effects of HCS, LCS and total extract of Salvia miltiorrhiza (TES). Microarray technology was applied to detect the gene expression of HUVECs treated with TES, HCS and LCS. Besides, quantitative real-time PCR was used to verify the microarray results. RESULTS Our results showed that LCS inhibited the proliferation and migration of HUVECs, HCS promoted the proliferation and migration of HUVECs, and TES did not affect the viability of HUVECs at the concentration of 5 µg/mL. From the result of principle component analysis (PCA) of microarray data, the effect of LCS on HUVECs was significantly different from the other components. Moreover, there were more differentially expression genes in LCS group than in the other groups, which meant LCS had a strong influence on HUVECs. Compared with untreated cells, 511 significantly changed genes had been detected in LCS treated cells and 236 (approximately 46%) of them were up-regulated. The mRNA expression of IL-6 was found to be increased significantly in LCS group. CONCLUSIONS In Salvia miltiorrhiza, HCS and LCS had opposite effects on HUVECs. LCS showed significantly inhibitory action on HUVECs proliferation and migration. It was proposed that LCS could apply in the diseases caused by vascular anomaly hyperplasia. In the mechanism of action of LCS on HUVECs, the pathways of ErbB, MAPK, p53, oxidative phosphorylation and inflammatory response were involved.
Collapse
Affiliation(s)
- Guixiang Ren
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|
244
|
Moriasi C, Subramaniam D, Awasthi S, Ramalingam S, Anant S. Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor. Anticancer Agents Med Chem 2013; 12:1221-38. [PMID: 22583410 DOI: 10.2174/187152012803833080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 12/17/2022]
Abstract
The risk of developing colorectal cancer increases in patients with inflammatory bowel disease (IBD) and a growing body of evidence shows the critical role of interleukin (IL-6) in this process. IL-6 is both a pro- and anti-inflammatory cytokine whose effects are mediated through activation of STAT3. Recent studies have also demonstrated that IL-6 trans-signaling through its soluble receptor occurs in IBD and cancer. IL-6 trans-signaling therefore is emerging as an attractive approach to diminish the inflammatory signals in conditions of chronic inflammation. The purpose of cancer chemoprevention is to either delay the onset or progression from precancerous lesions. Natural compounds because of their low toxicity render themselves excellent candidates that can be administered over the lifetime of an individual. With the focus of managing IBD over a long time and preventing onset of colitis-associated cancer, we believe that there should be increased research focus on identifying chemopreventive compounds that can render themselves to long term use possibly for the lifetime of predisposed individuals. Here, we review the role of IL-6 signaling in IBD and colitis-associated cancer and underscore the importance of searching for natural compounds that would target the IL-6 trans-signaling pathway as a way to diminish chronic inflammatory conditions in the gastrointestinal tract and possibly hamper the progression to colon cancer. We propose that effective screening and identification of natural chemopreventive compounds that target IL-6 trans-signaling has important implications for the development of optimal strategies against cancer development triggered by inflammation.
Collapse
Affiliation(s)
- Cate Moriasi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
245
|
Carroll CJ, Sayan BS, Bailey SG, McCormick J, Stephanou A, Latchman DS, Townsend PA. Regulation of myocardial interleukin-6 expression by p53 and STAT1. J Interferon Cytokine Res 2013; 33:542-8. [PMID: 23675777 DOI: 10.1089/jir.2012.0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cardiovascular diseases are a major cause of morbidity and mortality worldwide. The interferon inducible transcriptional activator signal transducer and activator of transcription-1 (STAT1) and p53 are two critical transcriptional factors that have pivotal roles in cardiac biology and pathology. Here we describe a novel interplay between these two key players that critically regulate the levels of the pleiotropic interleukin 6 (IL6) in the heart. We provide in vivo evidence to demonstrate that, in cardiac tissues, STAT1 is a positive regulator of IL6 expression and it competes with the suppressive effect of p53 to sustain basal IL6 levels. Induction of IL6 expression in response to interferon gamma (IFNγ), a well-characterized activator of STAT1, parallels that of STAT1 phosphorylation and induction of STAT1 target genes, such as the interferon regulatory factor-1 (IRF-1), major histocompatibility complex class II transactivator (C2ta), and β2-microglobulin (B2m). Furthermore, hearts from STAT1 knockout mice fail to induce IL6 expression in response to IFNγ. More importantly, we showed that this regulatory system is not functional in mouse embryonic fibroblasts, suggesting that activation of IL6 expression by STAT1 may be tissue specific. IL6 is a major effector of inflammation and cardiac hypertrophy, two major processes involved in heart failure, and therefore, understanding the molecular mechanisms regulating IL6 expression will enable better therapies and treatments for cardiovascular disease patients.
Collapse
Affiliation(s)
- Christopher J Carroll
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
246
|
Ara T, Nakata R, Sheard MA, Shimada H, Buettner R, Groshen SG, Ji L, Yu H, Jove R, Seeger RC, DeClerck YA. Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma. Cancer Res 2013; 73:3852-64. [PMID: 23633489 DOI: 10.1158/0008-5472.can-12-2353] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug resistance is a major cause of treatment failure in cancer. Here, we have evaluated the role of STAT3 in environment-mediated drug resistance (EMDR) in human neuroblastoma. We determined that STAT3 was not constitutively active in most neuroblastoma cell lines but was rapidly activated upon treatment with interleukin (IL)-6 alone and in combination with the soluble IL-6 receptor (sIL-6R). Treatment of neuroblastoma cells with IL-6 protected them from drug-induced apoptosis in a STAT3-dependent manner because the protective effect of IL-6 was abrogated in the presence of a STAT3 inhibitor and upon STAT3 knockdown. STAT3 was necessary for the upregulation of several survival factors such as survivin (BIRC5) and Bcl-xL (BCL2L1) when cells were exposed to IL-6. Importantly, IL-6-mediated STAT3 activation was enhanced by sIL-6R produced by human monocytes, pointing to an important function of monocytes in promoting IL-6-mediated EMDR. Our data also point to the presence of reciprocal activation of STAT3 between tumor cells and bone marrow stromal cells including not only monocytes but also regulatory T cells (Treg) and nonmyeloid stromal cells. Thus, the data identify an IL-6/sIL-6R/STAT3 interactive pathway between neuroblastoma cells and their microenvironment that contributes to drug resistance.
Collapse
Affiliation(s)
- Tasnim Ara
- Division of Hematology-Oncology, Department of Pediatrics, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Nazariah SSN, Juliana J, Abdah MA. Interleukin-6 via sputum induction as biomarker of inflammation for indoor particulate matter among primary school children in Klang Valley, Malaysia. Glob J Health Sci 2013; 5:93-105. [PMID: 23777726 PMCID: PMC4776807 DOI: 10.5539/gjhs.v5n4p93] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 01/05/2023] Open
Abstract
In the last few years, air within homes have been indicates by various and emerging body as more serious polluted than those outdoor. Prevalence of respiratory inflammation among school children aged 8 and 10 years old attending national primary schools in urban and rural area were conducted in Klang Valley. Two population studies drawn from the questionnaires were used to investigate the association between indoor particulate matter (PM2.5 & PM10) in a home environment and respiratory implication through the understanding of biological responses. Approximately 430 healthy school children of Standard 2 and Standard 5 were selected. Indication of respiratory symptoms using adaptation questionnaire from American Thoracic Society (1978). Sputum sample collection taken for biological analysis. IL-6 then was analyse by using ELISA techniques. Indoor PM2.5 and PM10 were measured using Dust Trak Aerosol Monitor. The mean concentration of PM2.5 (45.38 µg/m3) and PM10 (80.07 µg/m3) in urban home environment is significantly higher compared to those in rural residential area (p=0.001). Similar trend also shows by the prevalence of respiratory symptom. Association were found with PM2.5 and PM10 with the level of IL-6 among school children. A greater exposure to PM2.5 and PM10 are associated with higher expression of IL-6 level suggesting that the concentration of indoor particulate in urban density area significantly influence the health of children.
Collapse
Affiliation(s)
- S S N Nazariah
- Department of Environmental and Occupational Health, Universiti Putra, Malaysia
| | | | | |
Collapse
|
248
|
El Serafi TI, Awad MM, Tag Eldeen LA, El Serafi AT, Husin M. Effect of interleukin-6 and insulin resistance on early virological response of Egyptian chronic hepatitis C patients to combined pegylated interferon plus ribavirin therapy. EGYPTIAN LIVER JOURNAL 2013; 3:21-27. [DOI: 10.1097/01.elx.0000427103.05494.6c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
249
|
Roy A, Mould DR, Wang XF, Tay L, Raymond R, Pfister M. Modeling and Simulation of Abatacept Exposure and Interleukin-6 Response in Support of Recommended Doses for Rheumatoid Arthritis1. J Clin Pharmacol 2013; 47:1408-20. [DOI: 10.1177/0091270007307573] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
250
|
Kurtz SL, Foreman O, Bosio CM, Anver MR, Elkins KL. Interleukin-6 is essential for primary resistance to Francisella tularensis live vaccine strain infection. Infect Immun 2013; 81:585-97. [PMID: 23230288 PMCID: PMC3553820 DOI: 10.1128/iai.01249-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/03/2012] [Indexed: 11/20/2022] Open
Abstract
We employed Francisella tularensis live vaccine strain (LVS) to study mechanisms of protective immunity against intracellular pathogens and, specifically, to understand protective correlates. One potential molecular correlate identified previously was interleukin-6 (IL-6), a cytokine with pleotropic roles in immunity, including influences on T and B cell functions. Given its role as an immune modulator and the correlation with successful anti-LVS vaccination, we examined the role IL-6 plays in the host response to LVS. IL-6-deficient (IL-6 knockout [KO]) mice infected with LVS intradermally or intranasally or anti-IL-6-treated mice, showed greatly reduced 50% lethal doses compared to wild-type (WT) mice. Increased susceptibility was not due to altered splenic immune cell populations during infection or decreased serum antibody production, as IL-6 KO mice had similar compositions of each compared to WT mice. Although LVS-infected IL-6 KO mice produced much less serum amyloid A and haptoglobin (two acute-phase proteins) than WT mice, there were no other obvious pathophysiological differences between LVS-infected WT and IL-6 KO mice. IL-6 KO or WT mice that survived primary LVS infection also survived a high-dose LVS secondary challenge. Using an in vitro overlay assay that measured T cell activation, cytokine production, and abilities of primed splenocytes to control intracellular LVS growth, we found that IL-6 KO total splenocytes or purified T cells were slightly defective in controlling intracellular LVS growth but were equivalent in cytokine production. Taken together, IL-6 is an integral part of a successful immune response to primary LVS infection, but its exact role in precipitating adaptive immunity remains elusive.
Collapse
Affiliation(s)
- Sherry L. Kurtz
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Oded Foreman
- The Jackson Laboratory, Sacramento, California, USA
| | - Catharine M. Bosio
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Miriam R. Anver
- Pathology/Histotechnology Laboratory, SAIC—Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Karen L. Elkins
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland, USA
| |
Collapse
|