201
|
The Effects of Vitamin C on the Multiple Pathophysiological Stages of COVID-19. Life (Basel) 2021; 11:life11121341. [PMID: 34947872 PMCID: PMC8708699 DOI: 10.3390/life11121341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Currently available anti-viral drugs may be useful in reducing the viral load but are not providing the necessary physiological effects to reduce the SARS-CoV-2 complications efficiently. Treatments that provide better clinical outcomes are urgently needed. Vitamin C (ascorbic acid, AA) is an essential nutrient with many biological roles that have been proven to play an important part in immune function; it serves as an antioxidant, an anti-viral, and exerts anti-thrombotic effects among many other physiological benefits. Research has proven that AA at pharmacological doses can be beneficial to patients with acute respiratory distress syndrome (ARDS) and other respiratory illnesses, including sepsis. In addition, High-Dose Intravenous Vitamin C (HDIVC) has proven to be effective in patients with different viral diseases, such as influenza, chikungunya, Zika, and dengue. Moreover, HDIVC has been demonstrated to be very safe. Regarding COVID-19, vitamin C can suppress the cytokine storm, reduce thrombotic complications, and diminish alveolar and vascular damage, among other benefits. Due to these reasons, the use of HDIVC should be seriously considered in complicated COVID-19 patients. In this article, we will emphasize vitamin C’s multiple roles in the most prominent pathophysiological processes presented by the COVID-19 disease.
Collapse
|
202
|
Matsubara Y, Gonzalez L, Kiwan G, Liu J, Langford J, Gao M, Gao X, Taniguchi R, Yatsula B, Furuyama T, Matsumoto T, Komori K, Mori M, Dardik A. PD-L1 (Programmed Death Ligand 1) Regulates T-Cell Differentiation to Control Adaptive Venous Remodeling. Arterioscler Thromb Vasc Biol 2021; 41:2909-2922. [PMID: 34670406 PMCID: PMC8664128 DOI: 10.1161/atvbaha.121.316380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Patients with end-stage renal disease depend on hemodialysis for survival. Although arteriovenous fistulae (AVF) are the preferred vascular access for hemodialysis, the primary success rate of AVF is only 30% to 50% within 6 months, showing an urgent need for improvement. PD-L1 (programmed death ligand 1) is a ligand that regulates T-cell activity. Since T cells have an important role during AVF maturation, we hypothesized that PD-L1 regulates T cells to control venous remodeling that occurs during AVF maturation. Approach and results: In the mouse aortocaval fistula model, anti-PD-L1 antibody (200 mg, 3×/wk intraperitoneal) was given to inhibit PD-L1 activity during AVF maturation. Inhibition of PD-L1 increased T-helper type 1 cells and T-helper type 2 cells but reduced regulatory T cells to increase M1-type macrophages and reduce M2-type macrophages; these changes were associated with reduced vascular wall thickening and reduced AVF patency. Inhibition of PD-L1 also inhibited smooth muscle cell proliferation and increased endothelial dysfunction. The effects of anti-PD-L1 antibody on adaptive venous remodeling were diminished in nude mice; however, they were restored after T-cell transfer into nude mice, indicating the effects of anti-PD-L1 antibody on venous remodeling were dependent on T cells. CONCLUSIONS Regulation of PD-L1 activity may be a potential therapeutic target for clinical translation to improve AVF maturation.
Collapse
Affiliation(s)
- Yutaka Matsubara
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Department of Surgery and Sciences, Kyushu University, Fukuoka, Japan
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Gathe Kiwan
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Jia Liu
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - John Langford
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Mingjie Gao
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xixiang Gao
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Division of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Tadashi Furuyama
- Department of Surgery and Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Matsumoto
- Department of Vascular Surgery, Kyushu Central Hospital, Fukuoka, Japan
| | - Kimihiro Komori
- Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Mori
- Department of Surgery and Sciences, Kyushu University, Fukuoka, Japan
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Division of Vascular and Endovascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT
| |
Collapse
|
203
|
Al-Gburi S, Beissert S, Günther C. Molecular mechanisms of vasculopathy and coagulopathy in COVID-19. Biol Chem 2021; 402:1505-1518. [PMID: 34657406 DOI: 10.1515/hsz-2021-0245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 primarily affects the respiratory system and may lead to severe systemic complications, such as acute respiratory distress syndrome (ARDS), multiple organ failure, cytokine storm, and thromboembolic events. Depending on the immune status of the affected individual early disease control can be reached by a robust type-I-interferon (type-I-IFN) response restricting viral replication. If type-I-IFN upregulation is impaired, patients develop severe COVID-19 that involves profound alveolitis, endothelitis, complement activation, recruitment of immune cells, as well as immunothrombosis. In patients with proper initial disease control there can be a second flare of type-I-IFN release leading to post-COVID manifestation such as chilblain-like lesions that are characterized by thrombosis of small vessels in addition to an inflammatory infiltrate resembling lupus erythematosus (LE). Mechanistically, SARS-CoV-2 invades pneumocytes and endothelial cells by acting on angiotensin-II-converting enzyme 2 (ACE2). It is hypothesized, that viral uptake might downregulate ACE2 bioavailability and enhance angiotensin-II-derived pro-inflammatory and pro-thrombotic state. Since ACE2 is encoded on the X chromosome these conditions might also be influenced by gender-specific regulation. Taken together, SARS-CoV-2 infection affects the vascular compartment leading to variable thrombogenic or inflammatory response depending on the individual immune response status.
Collapse
Affiliation(s)
- Suzan Al-Gburi
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Stefan Beissert
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Claudia Günther
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|
204
|
Ma Z, Yang KY, Huang Y, Lui KO. Endothelial contribution to COVID-19: an update on mechanisms and therapeutic implications. J Mol Cell Cardiol 2021; 164:69-82. [PMID: 34838588 PMCID: PMC8610843 DOI: 10.1016/j.yjmcc.2021.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
The global propagation of SARS-CoV-2 leads to an unprecedented public health emergency. Despite that the lungs are the primary organ targeted by COVID-19, systemic endothelial inflammation and dysfunction is observed particularly in patients with severe COVID-19, manifested by elevated endothelial injury markers, endotheliitis, and coagulopathy. Here, we review the clinical characteristics of COVID-19 associated endothelial dysfunction; and the likely pathological mechanisms underlying the disease including direct cell entry or indirect immune overreactions after SARS-CoV-2 infection. In addition, we discuss potential biomarkers that might indicate the disease severity, particularly related to the abnormal development of thrombosis that is a fatal vascular complication of severe COVID-19. Furthermore, we summarize clinical trials targeting the direct and indirect pathological pathways after SARS-CoV-2 infection to prevent or inhibit the virus induced endothelial disorders.
Collapse
Affiliation(s)
- Zhangjing Ma
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
205
|
Xu Z, Cao J, Zhao Z, Qiao Y, Liu X, Zhong J, Wang B, Suo G. A functional extracellular matrix biomaterial enriched with VEGFA and bFGF as vehicle of human umbilical cord mesenchymal stem cells in skin wound healing. Biomed Mater 2021; 17. [PMID: 34749352 DOI: 10.1088/1748-605x/ac37b0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022]
Abstract
The construction of microvascular network is one of the greatest challenges for tissue engineering and cell therapy. Endothelial cells are essential for the construction of network of blood vessels. However, their application meets challenges in clinic due to the limited resource of autologous endothelium. Mesenchymal stem cells can effectively promote the angiogenesis in ischemic tissues for their abilities of endothelial differentiation and paracrine, and abundant sources. Extracellular matrix (ECM) has been widely used as an ideal biomaterial to mimic cellular microenvironment for tissue engineering due to its merits of neutrality, good biocompatibility, degradability, and controllability. In this study, a functional cell derived ECM biomaterial enriched with VEGFA and bFGF by expressing the collagen-binding domain fused factor genes in host cells was prepared. This material could induce endothelial differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) and promote angiogenesis, which may improve the healing effect of skin injury. Our research not only provides a functional ECM material to inducing angiogenesis by inducing endothelial differentiation of hUCMSCs, but also shed light on the ubiquitous approaches to endow ECM materials different functions by enriching different factors. This study will benefit tissue engineering and regenerative medicine researches.
Collapse
Affiliation(s)
- Zhongjuan Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, People's Republic of China
| | - Junjun Cao
- Livingchip Lnc., Nanjing 211112, Jiangsu, People's Republic of China
| | - Zhe Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yong Qiao
- Livingchip Lnc., Nanjing 211112, Jiangsu, People's Republic of China
| | - Xingzhi Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, People's Republic of China
| | - Junjie Zhong
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200041, People's Republic of China
| | - Bin Wang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, People's Republic of China
| |
Collapse
|
206
|
Bobrovsky P, Manuvera V, Baskova I, Nemirova S, Medvedev A, Lazarev V. Recombinant Destabilase from Hirudo medicinalis Is Able to Dissolve Human Blood Clots In Vitro. Curr Issues Mol Biol 2021; 43:2068-2081. [PMID: 34889897 PMCID: PMC8929072 DOI: 10.3390/cimb43030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Leeches are amazing animals that can be classified as conditionally poisonous animals since the salivary cocktail they produce is injected directly into the victim, and its components have strictly defined biological purposes, such as preventing blood clot formation. Thrombolytic drugs are mainly aimed at treating newly formed blood clots. Aged clots are stabilized by a large number of isopeptide bonds that prevent the action of thrombolytics. These bonds are destroyed by destabilase, an enzyme of the leech’s salivary glands. Here, we conducted a pilot study to evaluate the feasibility and effectiveness of the use of destabilase in relation to blood clots formed during real pathological processes. We evaluated the isopeptidase activity of destabilase during the formation of a stabilized fibrin clot. We showed that destabilase does not affect the internal and external coagulation cascades. We calculated the dose–response curve and tested the ability of destabilase to destroy isopeptide bonds in natural blood clots. The effect of aged and fresh clots dissolving ability after treatment with destabilase coincided with the morphological characteristics of clots during surgery. Thus, recombinant destabilase can be considered as a potential drug for the treatment of aged clots, which are difficult to treat with known thrombolytics.
Collapse
Affiliation(s)
- Pavel Bobrovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.M.); (V.L.)
- Correspondence: ; Tel.: +7-9166047849
| | - Valentin Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.M.); (V.L.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Izolda Baskova
- Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Svetlana Nemirova
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University” of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (S.N.); (A.M.)
| | - Alexandr Medvedev
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University” of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (S.N.); (A.M.)
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.M.); (V.L.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
207
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
208
|
Higashikuni Y, Liu W, Obana T, Sata M. Pathogenic Basis of Thromboinflammation and Endothelial Injury in COVID-19: Current Findings and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms222112081. [PMID: 34769508 PMCID: PMC8584434 DOI: 10.3390/ijms222112081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic with a great impact on social and economic activities, as well as public health. In most patients, the symptoms of COVID-19 are a high-grade fever and a dry cough, and spontaneously resolve within ten days. However, in severe cases, COVID-19 leads to atypical bilateral interstitial pneumonia, acute respiratory distress syndrome, and systemic thromboembolism, resulting in multiple organ failure with high mortality and morbidity. SARS-CoV-2 has immune evasion mechanisms, including inhibition of interferon signaling and suppression of T cell and B cell responses. SARS-CoV-2 infection directly and indirectly causes dysregulated immune responses, platelet hyperactivation, and endothelial dysfunction, which interact with each other and are exacerbated by cardiovascular risk factors. In this review, we summarize current knowledge on the pathogenic basis of thromboinflammation and endothelial injury in COVID-19. We highlight the distinct contributions of dysregulated immune responses, platelet hyperactivation, and endothelial dysfunction to the pathogenesis of COVID-19. In addition, we discuss potential therapeutic strategies targeting these mechanisms.
Collapse
Affiliation(s)
- Yasutomi Higashikuni
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (W.L.); (T.O.)
- Correspondence: (Y.H.); (M.S.)
| | - Wenhao Liu
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (W.L.); (T.O.)
| | - Takumi Obana
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (W.L.); (T.O.)
| | - Masataka Sata
- Department of Cardiovascular Medicine, The University of Tokushima, Tokushima 770-8503, Japan
- Correspondence: (Y.H.); (M.S.)
| |
Collapse
|
209
|
Iglesias MJ, Kruse LD, Sanchez-Rivera L, Enge L, Dusart P, Hong MG, Uhlén M, Renné T, Schwenk JM, Bergstrom G, Odeberg J, Butler LM. Identification of Endothelial Proteins in Plasma Associated With Cardiovascular Risk Factors. Arterioscler Thromb Vasc Biol 2021; 41:2990-3004. [PMID: 34706560 PMCID: PMC8608011 DOI: 10.1161/atvbaha.121.316779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: Endothelial cell (EC) dysfunction is a well-established response to cardiovascular disease risk factors, such as smoking and obesity. Risk factor exposure can modify EC signaling and behavior, leading to arterial and venous disease development. Here, we aimed to identify biomarker panels for the assessment of EC dysfunction, which could be useful for risk stratification or to monitor treatment response. Approach and Results: We used affinity proteomics to identify EC proteins circulating in plasma that were associated with cardiovascular disease risk factor exposure. Two hundred sixteen proteins, which we previously predicted to be EC-enriched across vascular beds, were measured in plasma samples (N=1005) from the population-based SCAPIS (Swedish Cardiopulmonary Bioimage Study) pilot. Thirty-eight of these proteins were associated with body mass index, total cholesterol, low-density lipoprotein, smoking, hypertension, or diabetes. Sex-specific analysis revealed that associations predominantly observed in female- or male-only samples were most frequently with the risk factors body mass index, or total cholesterol and smoking, respectively. We show a relationship between individual cardiovascular disease risk, calculated with the Framingham risk score, and the corresponding biomarker profiles. Conclusions: EC proteins in plasma could reflect vascular health status.
Collapse
Affiliation(s)
- Maria J Iglesias
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø (M.J.I., J.O.)
| | - Larissa D Kruse
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Laura Sanchez-Rivera
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Linnea Enge
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Philip Dusart
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Mun-Gwan Hong
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, Germany (T.R.).,Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland (T.R.).,Centre for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany (T.R.)
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Göran Bergstrom
- Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden (G.B.)
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø (M.J.I., J.O.).,Department of Clinical Medicine, The Arctic University of Norway, Tromsø (J.O., L.M.B.).,Coagulation Unit, Department of Hematology (J.O.), Karolinska University Hospital, Stockholm, Sweden
| | - Lynn M Butler
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.).,Department of Clinical Medicine, The Arctic University of Norway, Tromsø (J.O., L.M.B.).,Clinical Chemistry, Karolinska University Laboratory (L.M.B.), Karolinska University Hospital, Stockholm, Sweden.,Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.M.B.)
| |
Collapse
|
210
|
Jadaun PK, Chatterjee S. COVID-19 and dys-regulation of pulmonary endothelium: implications for vascular remodeling. Cytokine Growth Factor Rev 2021; 63:69-77. [PMID: 34728151 PMCID: PMC9611904 DOI: 10.1016/j.cytogfr.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19),
the disease caused by severe acute respiratory syndrome-coronavirus-2,
has claimed more than 4.4 million lives worldwide (as of 20 August 2021).
Severe cases of the disease often result in respiratory distress due to
cytokine storm, and mechanical ventilation is required. Although, the
lungs are the primary organs affected by the disease, more evidence on
damage to the heart, kidney, and liver is emerging. A common link in
these connections is the cardiovascular network. Inner lining of the
blood vessels, called endothelium, is formed by a single layer of
endothelial cells. Several clinical manifestations involving the
endothelium have been reported, such as its activation via
immunomodulation, endotheliitis, thrombosis, vasoconstriction, and
distinct intussusceptive angiogenesis (IA), a unique and rapid process of
blood-vessel formation by splitting a vessel into two lumens. In fact,
the virus directly infects the endothelium via TMPRSS2 spike glycoprotein
priming to facilitate ACE-2-mediated viral entry. Recent studies have
indicated a significant increase in remodeling of the pulmonary vascular
bed via intussusception in patients with COVID-19. However, the lack of
circulatory biomarkers for IA limits its detection in COVID-19
pathogenesis. In this review, we describe the implications of
angiogenesis in COVID-19, unique features of the pulmonary vascular bed
and its remodeling, and a rapid and non-invasive assessment of IA to
overcome the technical limitations in patients with
COVID-19.
Collapse
Affiliation(s)
- Pavitra K Jadaun
- Hepatology, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Suvro Chatterjee
- Department of Biotechnology, University of Burdwan, Golap Bag Campus, Burdwan, India.
| |
Collapse
|
211
|
Gorzelak-Pabis P, Broncel M, Wojdan K, Gajewski A, Chalubinski M, Gawrysiak M, Wozniak E. Rivaroxaban protects from the oxysterol-induced damage and inflammatory activation of the vascular endothelium. Tissue Barriers 2021; 9:1956284. [PMID: 34323663 PMCID: PMC8794498 DOI: 10.1080/21688370.2021.1956284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Rivaroxaban is one of the direct factor Xa inhibitors. Its function in the inactivated coagulation cascade is unclear. The aim of the study was to assess the effect of rivaroxaban on the endothelial integrity and inflammatory properties of endothelial cells stimulated by 25-hydroxycholesterol (25-OHC). METHODS HUVECs were stimulated with 25-OHC, rivaroxaban and 25-OHC+ rivaroxaban. HUVEC integrity and permeability were measured using the xCELLigence system and paracellular flux assay. The mRNA expression of tissue factor, ICAM-1, VEGF, IL-33, MCP-1, TNF-α was analyzed in the real-time PCR. Apoptosis and viability were measured by flow cytometry. The VEGF protein concentration was assessed by ELISA. The confocal microscope was used to evaluate the expression of VE-cadherin in endothelial cells. RESULTS 25-OHC decreased endothelial cell integrity and increased the mRNA expression of IL-33, tissue factor, ICAM-1, MCP-1, VEGF, TNF-α as compared to unstimulated controls. Following the stimulation with rivaroxaban, HUVEC restored integrity disrupted by 25-OHC (p < .01). In HUVECs pre-stimulated with oxysterol, rivaroxaban decreased mRNA expression of IL-33, TNF-α, chemokines MCP-1, ICAM-1, VEGF and tissue factor (p < .01). Rivaroxaban 100 mg/ml+25-OHC increased the VE-cadherin expression in endothelium as compared to 25-OHC (p < .05). CONCLUSION Our finding suggests that rivaroxaban may restore the endothelial barrier and inhibit the inflammatory activation caused by oxysterol in vitro.
Collapse
Affiliation(s)
- Paulina Gorzelak-Pabis
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Marlena Broncel
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Wojdan
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Ewelina Wozniak
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
212
|
Steadman E, Fandaros M, Yin W. SARS-CoV-2 and Plasma Hypercoagulability. Cell Mol Bioeng 2021; 14:513-522. [PMID: 34221178 PMCID: PMC8238024 DOI: 10.1007/s12195-021-00685-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Hypercoagulability has emerged as a prominent consequence of COVID-19. This presents challenges not only in the clinic, but also in thrombosis research. Health and safety considerations, the status of the blood and plasma supply, the infection status of individual donors, and the mechanisms by which SARS-CoV-2 activates coagulation are all of concern. In this review, we discuss these topics from the basic research perspective. As in other respiratory illnesses, blood and plasma from COVID-19 positive patients carries minimal to no risk of infection to practitioners or researchers. There are currently no special regulatory mandates directing individual donors (for research purposes), blood centers/services or vendors (for blood products for research) to test blood/plasma for SARS-CoV-2 or antibodies. We discuss current theories about how SARS-CoV-2 leads to hyper-coagulant state in severe cases of COVID-19. Our current understanding of the mechanisms behind COVID-19 associated thromboembolic events have centered around three different pathways: (1) direct activation of platelets, enhancing coagulation; (2) direct infection and indirect activation (e.g. cytokine storm) of endothelial cells by SARS-CoV-2, shifting endothelium from an anti-thrombotic to a pro-thrombotic state; and (3) direct activation of complement pathways, promoting thrombin generation. Further investigation on how SARS-CoV-2 affects thrombosis in COVID-19 patients may bring novel anti-thrombotic therapies to combat the disease.
Collapse
Affiliation(s)
- Elisabeth Steadman
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, Stony Brook, NY 11794 USA
| | - Marina Fandaros
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, Stony Brook, NY 11794 USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, Stony Brook, NY 11794 USA
| |
Collapse
|
213
|
Gonias SL. Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation. Am J Physiol Cell Physiol 2021; 321:C721-C734. [PMID: 34406905 DOI: 10.1152/ajpcell.00269.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are serine proteases and major activators of fibrinolysis in mammalian systems. Because fibrinolysis is an essential component of the response to tissue injury, diverse cells, including cells that participate in the response to injury, have evolved receptor systems to detect tPA and uPA and initiate appropriate cell-signaling responses. Formation of functional receptor systems for the plasminogen activators requires assembly of diverse plasma membrane proteins, including but not limited to: the urokinase receptor (uPAR); integrins; N-formyl peptide receptor-2 (FPR2), receptor tyrosine kinases (RTKs), the N-methyl-d-aspartate receptor (NMDA-R), and low-density lipoprotein receptor-related protein-1 (LRP1). The cell-signaling responses elicited by tPA and uPA impact diverse aspects of cell physiology. This review describes rapidly evolving knowledge regarding the structure and function of plasminogen activator receptor assemblies. How these receptor assemblies regulate innate immunity and inflammation is then considered.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California, San Diego, California
| |
Collapse
|
214
|
Effect of Nitinol on Metabolic and Coagulation Activity of Endothelial Cells Culture. Bull Exp Biol Med 2021; 171:480-482. [PMID: 34542754 DOI: 10.1007/s10517-021-05255-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 10/20/2022]
Abstract
We studied the effect of nitinol, the most prevalent material for endovascular stents, on metabolic and coagulation activity of a primary culture of human umbilical vein endothelial cells (HUVEC). Metabolic activity was evaluated using MTS-test and by the level of stable NO metabolites in the conditioned medium, coagulation activity was assessed by activity of von Willebrand factor (vWF) and levels of plasminogen activator inhibitor-1 (PAI-1) and soluble endothelial protein C receptors (sEPCR). Exposure to nitinol reduced metabolic activity of the cell culture by 11.1% in comparison with the control (p<0.001). Although absolute activity of vWF and absolute level of sEPCR were elevated, incubation with nitinol did not lead to a statistically significant elevation of these parameters in comparison with the control, which can indicate the absence of substantial hypercoagulation effects of nitinol.
Collapse
|
215
|
Molecular Proteomics and Signalling of Human Platelets in Health and Disease. Int J Mol Sci 2021; 22:ijms22189860. [PMID: 34576024 PMCID: PMC8468031 DOI: 10.3390/ijms22189860] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate blood cells that play vital roles in haemostasis and thrombosis, besides other physiological and pathophysiological processes. These roles are tightly regulated by a complex network of signalling pathways. Mass spectrometry-based proteomic techniques are contributing not only to the identification and quantification of new platelet proteins, but also reveal post-translational modifications of these molecules, such as acetylation, glycosylation and phosphorylation. Moreover, target proteomic analysis of platelets can provide molecular biomarkers for genetic aberrations with established or non-established links to platelet dysfunctions. In this report, we review 67 reports regarding platelet proteomic analysis and signalling on a molecular base. Collectively, these provide detailed insight into the: (i) technical developments and limitations of the assessment of platelet (sub)proteomes; (ii) molecular protein changes upon ageing of platelets; (iii) complexity of platelet signalling pathways and functions in response to collagen, rhodocytin, thrombin, thromboxane A2 and ADP; (iv) proteomic effects of endothelial-derived mediators such as prostacyclin and the anti-platelet drug aspirin; and (v) molecular protein changes in platelets from patients with congenital disorders or cardiovascular disease. However, sample sizes are still low and the roles of differentially expressed proteins are often unknown. Based on the practical and technical possibilities and limitations, we provide a perspective for further improvements of the platelet proteomic field.
Collapse
|
216
|
Pepe M, Peruzzi M, Biondi-Zoccai G, Giordano A. Antithrombotic Therapy for Vascular Disease and Intervention: The Best Is Yet to Come? J Cardiovasc Pharmacol 2021; 78:334-335. [PMID: 34173809 DOI: 10.1097/fjc.0000000000001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Martino Pepe
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy ; and
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy ; and
| | - Arturo Giordano
- Interventional Cardiology Unit, Pineta Grande Hospital, Castel Volturno, Italy
| |
Collapse
|
217
|
Salva O, Alasino R, Giller C, Borello J, Doresky A, Karayan G, Beltramo D. Nebulization with alkaline hipertonic ibuprofen induces a rapid increase in platelets circulating in COVID-19 patients but not in healthy subjects. Platelets 2021; 33:471-478. [PMID: 34423724 DOI: 10.1080/09537104.2021.1967918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We analyze changes in circulating platelets in COVID-19 positive patients who received conventional treatment Dexamethasone and Enoxaparin (Dexa-Enoxa) compared to patients treated with conventional therapy plus nebulization with alkaline hypertonic ibuprofenate (AHI). Results show that after 24 h of nebulization with AHI, circulating platelets shows an increase about 40% at 24 h and reach 65% at 96 h. In patients with platelets content below 200,000 by microliter the increase was 49% and 79% at 24 and 96 h respectively. In patients with platelets above 200,000 by microliter the increase was 24% and 31% at 24 and 96 h, respectively. The increase of platelets via AHI was similar in both, men and women.To evaluate whether this action of AHI was related to platelets from COVID-19 positive patients or also for healthy people, two controls were included: one of them with 10 healthy volunteers and another one with COVID-19 positive patients hospitalized and treated only with Dexa-Enoxa. Results show that, in healthy volunteers, the number of circulating platelets remains unchanged even after 7 days of treatment with AHI. In COVID-19 positive patients treated only with Dexa-Enoxa for 4 days, platelets increased only 16%.
Collapse
Affiliation(s)
- Oscar Salva
- Departamento de Clínica Médica, Clínica Independencia, Ciudad de Munro, Provincia de Buenos Aires, Argentina
| | - Roxana Alasino
- Programa de Biociencias, Centro De Excelencias En Productos Y Procesos (CEPROCOR), Ministerio de Ciencia y Tecnología de la Provincia de Córdoba, Cordoba, Argentina.,Consejo Nacional de Investigaciones Científicas (CONICET), Ministerio de Ciencia Tecnología e Innovación de la República Argentina, Provincia de Buenos Aires, Argentina
| | - Celia Giller
- Departamento de Clínica Médica, Clínica Independencia, Ciudad de Munro, Provincia de Buenos Aires, Argentina
| | - Julieta Borello
- Programa de Biociencias, Centro De Excelencias En Productos Y Procesos (CEPROCOR), Ministerio de Ciencia y Tecnología de la Provincia de Córdoba, Cordoba, Argentina
| | - Alexis Doresky
- Departamento de Investiagación Clinica, Fundación Respirar, Ciudad Autónoma de Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Galia Karayan
- Departamento de Investiagación Clinica, Fundación Respirar, Ciudad Autónoma de Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Dante Beltramo
- Programa de Biociencias, Centro De Excelencias En Productos Y Procesos (CEPROCOR), Ministerio de Ciencia y Tecnología de la Provincia de Córdoba, Cordoba, Argentina.,Consejo Nacional de Investigaciones Científicas (CONICET), Ministerio de Ciencia Tecnología e Innovación de la República Argentina, Provincia de Buenos Aires, Argentina
| |
Collapse
|
218
|
Fayon A, Menu P, El Omar R. Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard. NPJ Regen Med 2021; 6:46. [PMID: 34385472 PMCID: PMC8361171 DOI: 10.1038/s41536-021-00155-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the lack of efficacy of synthetic vascular substitutes in the replacement of small-caliber arteries, vascular tissue engineering (VTE) has emerged as a promising solution to produce viable small-caliber tissue-engineered vascular grafts (TEVG). Previous studies have shown the importance of a cellular intimal layer at the luminal surface of TEVG to prevent thrombotic events. However, the cellularization of a TEVG seems to be a critical approach to consider in the development of a TEVG. To date, no standard cellularization method or cell type has been established to create the ideal TEVG by promoting its long-term patency and function. In this review, advances in VTE are described and discussed with a particular focus on the construction approaches of cellularized small-caliber TEVGs, the cell types used, as well as their preclinical and clinical applications.
Collapse
Affiliation(s)
- Adrien Fayon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Patrick Menu
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France.
| | - Reine El Omar
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France
| |
Collapse
|
219
|
Nicosia RF, Ligresti G, Caporarello N, Akilesh S, Ribatti D. COVID-19 Vasculopathy: Mounting Evidence for an Indirect Mechanism of Endothelial Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1374-1384. [PMID: 34033751 PMCID: PMC8141344 DOI: 10.1016/j.ajpath.2021.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Patients with coronavirus disease 2019 (COVID-19) who are critically ill develop vascular complications characterized by thrombosis of small, medium, and large vessels. Dysfunction of the vascular endothelium due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated in the pathogenesis of the COVID-19 vasculopathy. Although initial reports suggested that endothelial injury was caused directly by the virus, recent studies indicate that endothelial cells do not express angiotensin-converting enzyme 2, the receptor that SARS-CoV-2 uses to gain entry into cells, or express it at low levels and are resistant to the infection. These new findings, together with the observation that COVID-19 triggers a cytokine storm capable of injuring the endothelium and disrupting its antithrombogenic properties, favor an indirect mechanism of endothelial injury mediated locally by an augmented inflammatory reaction to infected nonendothelial cells, such as the bronchial and alveolar epithelium, and systemically by the excessive immune response to infection. Herein we review the vascular pathology of COVID-19 and critically discuss the potential mechanisms of endothelial injury in this disease.
Collapse
Affiliation(s)
- Roberto F Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neuroscienze e Organi di Senso (SMBNOS), Universita' degli Studi Aldo Moro, Policlinico, Bari, Italy
| |
Collapse
|
220
|
Nguyen DT, Smith AF, Jiménez JM. Stent strut streamlining and thickness reduction promote endothelialization. J R Soc Interface 2021; 18:20210023. [PMID: 34404229 PMCID: PMC8371379 DOI: 10.1098/rsif.2021.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Stent thrombosis (ST) carries a high risk of myocardial infarction and death. Lack of endothelial coverage is an important prognostic indicator of ST after stenting. While stent strut thickness is a critical factor in ST, a mechanistic understanding of its effect is limited and the role of haemodynamics is unclear. Endothelialization was tested using a wound-healing assay and five different stent strut models ranging in height between 50 and 150 µm for circular arc (CA) and rectangular (RT) geometries and a control without struts. Under static conditions, all stent strut surfaces were completely endothelialized. Reversing pulsatile disturbed flow caused full endothelialization, except for the stent strut surfaces of the 100 and 150 µm RT geometries, while fully antegrade pulsatile undisturbed flow with a higher mean wall shear stress caused only the control and the 50 µm CA geometries to be fully endothelialized. Modest streamlining and decrease in height of the stent struts improved endothelial coverage of the peri-strut and stent strut surfaces in a haemodynamics dependent manner. This study highlights the impact of the stent strut height (thickness) and geometry (shape) on the local haemodynamics, modulating reendothelialization after stenting, an important factor in reducing the risk of stent thrombosis.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander F. Smith
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
221
|
Protective Treatments against Endothelial Glycocalyx Degradation in Surgery: A Systematic Review and Meta-Analysis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aim was to explore the body of literature focusing on protective treatments against endothelial glycocalyx degradation in surgery. A comprehensive systematic review of relevant articles was conducted across databases. Inclusion criteria: (1) treatments for the protection of the endothelial glycocalyx in surgery; (2) syndecan-1 used as a biomarker for endothelial glycocalyx degradation. Outcomes analysed: (1) mean difference of syndecan-1 (2) correlation between glycocalyx degradation and inflammation; (3) correlation between glycocalyx degradation and extravasation. A meta-analysis was used to present mean differences and 95% confidence intervals. Seven articles with eight randomised controlled trials were included. The greatest change from baseline values in syndecan-1 concentrations was generally from the first timepoint measured post-operatively. Interventions looked to either dampen the inflammatory response or fluid therapy. Methylprednisolone had the highest mean difference in plasma syndecan-1 concentrations. Ulinastatin showed correlations between alleviation of degradation and preserving vascular permeability. In this systematic review of 385 patients, those treated were more likely than those treated with placebo to exhibit less shedding of the endothelial glycocalyx. Methylprednisolone has been shown to specifically target the transient increase of glycocalyx degradation immediately post-operation and has displayed anti-inflammatory effects. We have proposed suggestions for improved uniformity and enhanced confidence for future randomised controlled trials.
Collapse
|
222
|
Plasmatic Coagulation Capacity Correlates With Inflammation and Abacavir Use During Chronic HIV Infection. J Acquir Immune Defic Syndr 2021; 87:711-719. [PMID: 33492017 DOI: 10.1097/qai.0000000000002633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND D-dimer concentrations in people living with HIV (PLHIV) on combination antiretroviral therapy (cART) are increased and have been linked to mortality. D-dimer is a biomarker of in vivo coagulation. In contrast to reports on D-dimer, data on coagulation capacity in PLHIV are conflicting. In this study, we assessed the effect of cART and inflammation on coagulation capacity. SETTING We explored coagulation capacity using calibrated thrombin generation (TG) and linked this to persistent inflammation and cART in a cross-sectional study including PLHIV with viral suppression and uninfected controls. METHODS We used multivariate analyses to identify independent factors influencing in vivo coagulation (D-dimer) and ex vivo coagulation capacity (TG). RESULTS Among 208 PLHIV, 94 (45%) were on an abacavir-containing regimen. D-dimer levels (219.1 vs 170.5 ng/mL, P = 0.001) and inflammatory makers (sCD14, sCD163, and high-sensitive C-reactive protein) were increased in PLHIV compared with those in controls (n = 56). PLHIV experienced lower TG (reflected by endogenous thrombin potential [ETP]) when compared with controls, after correction for age, sex, and antiretroviral therapy. Abacavir use was independently associated with increased ETP. Prothrombin concentrations were strongly associated with ETP and lower in PLHIV on a non-abacavir-containing regimen compared with those in controls, suggesting consumption as a possible mechanism for HIV-associated reduction in TG. D-dimer concentrations were associated with inflammation, but not TG. CONCLUSIONS Abacavir use was associated with increased TG and could serve as an additional factor in the reported increase in thrombotic events during abacavir use. Increased exposure to triggers that propagate coagulation, such as inflammation, likely underlie increased D-dimer concentrations found in most PLHIV.
Collapse
|
223
|
Martinez-Majander N, Gordin D, Joutsi-Korhonen L, Salopuro T, Adeshara K, Sibolt G, Curtze S, Pirinen J, Liebkind R, Soinne L, Sairanen T, Sinisalo J, Lehto M, Groop PH, Tatlisumak T, Putaala J. Endothelial Dysfunction is Associated With Early-Onset Cryptogenic Ischemic Stroke in Men and With Increasing Age. J Am Heart Assoc 2021; 10:e020838. [PMID: 34227391 PMCID: PMC8483459 DOI: 10.1161/jaha.121.020838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The aim of this study was to assess the association between endothelial function and early‐onset cryptogenic ischemic stroke (CIS), with subgroup analyses stratified by sex and age groups. Methods and Results We prospectively enrolled 136 consecutive patients aged 18 to 49 years (median age, 41 years; 44% women) with a recent CIS and 136 age‐ and sex‐matched (±5 years) stroke‐free controls. Endothelial function was measured with an EndoPAT 2000 device and analyzed as tertiles of natural logarithm of reactive hyperemia index with lower values reflecting dysfunction. We used conditional logistic regression adjusting for age, education, hypertension, diabetes mellitus, dyslipidemia, current smoking, heavy drinking, obesity, and diet score to assess the independent association between endothelial function and CIS. Patients in the lowest tertile of natural logarithm of reactive hyperemia index were more often men and they more frequently had a history of dyslipidemia; they were also more often obese, had a lower diet score, and lower high‐density lipoprotein cholesterol. In the entire cohort, we found no association in patients with endothelial function and CIS compared with stroke‐free controls. In sex‐ and age‐specific analyses, endothelial dysfunction was associated with CIS in men (adjusted odds ratio [OR], 3.50 for lowest versus highest natural logarithm of reactive hyperemia index tertile; 95% CI, 1.22–10.07) and in patients ≥41 years (OR, 5.78; 95% CI, 1.52–21.95). These associations remained significant when dyslipidemia was replaced with the ratio of total to high‐density lipoprotein cholesterol. Conclusions Endothelial dysfunction appears to be an independent player in early‐onset CIS in men and patients approaching middle age.
Collapse
Affiliation(s)
- Nicolas Martinez-Majander
- Department of Neurology Helsinki University Hospital and Clinical NeurosciencesUniversity of Helsinki Finland
| | - Daniel Gordin
- Abdominal Center Nephrology University of Helsinki and Helsinki University Central Hospital Helsinki Finland.,Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Joslin Diabetes Center Harvard Medical School Boston MA
| | - Lotta Joutsi-Korhonen
- Coagulation Disorders Unit Department of Clinical Chemistry HUSLAB Laboratory ServicesHelsinki University Hospital Helsinki Finland
| | - Titta Salopuro
- Coagulation Disorders Unit Department of Clinical Chemistry HUSLAB Laboratory ServicesHelsinki University Hospital Helsinki Finland
| | - Krishna Adeshara
- Abdominal Center Nephrology University of Helsinki and Helsinki University Central Hospital Helsinki Finland.,Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Clinical and Molecular Metabolism Faculty of Medicine Research Programs University of Helsinki Finland
| | - Gerli Sibolt
- Department of Neurology Helsinki University Hospital and Clinical NeurosciencesUniversity of Helsinki Finland
| | - Sami Curtze
- Department of Neurology Helsinki University Hospital and Clinical NeurosciencesUniversity of Helsinki Finland
| | - Jani Pirinen
- Department of Neurology Helsinki University Hospital and Clinical NeurosciencesUniversity of Helsinki Finland.,Department of Cardiology, Heart and Lung Center Helsinki University Hospital and University of Helsinki Finland.,Department of Clinical Physiology and Nuclear Medicine HUS Medical Imaging CenterHelsinki University Central Hospital and University of Helsinki Finland
| | - Ron Liebkind
- Department of Neurology Helsinki University Hospital and Clinical NeurosciencesUniversity of Helsinki Finland
| | - Lauri Soinne
- Department of Neurology Helsinki University Hospital and Clinical NeurosciencesUniversity of Helsinki Finland
| | - Tiina Sairanen
- Department of Neurology Helsinki University Hospital and Clinical NeurosciencesUniversity of Helsinki Finland
| | - Juha Sinisalo
- Department of Cardiology, Heart and Lung Center Helsinki University Hospital and University of Helsinki Finland
| | - Mika Lehto
- Department of Cardiology, Heart and Lung Center Helsinki University Hospital and University of Helsinki Finland
| | - Per-Henrik Groop
- Abdominal Center Nephrology University of Helsinki and Helsinki University Central Hospital Helsinki Finland.,Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland
| | - Turgut Tatlisumak
- Department of Neurology Helsinki University Hospital and Clinical NeurosciencesUniversity of Helsinki Finland.,Department of Clinical Neuroscience Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Sweden.,Department of Neurology Sahlgrenska University Hospital Gothenburg Sweden
| | - Jukka Putaala
- Department of Neurology Helsinki University Hospital and Clinical NeurosciencesUniversity of Helsinki Finland
| |
Collapse
|
224
|
Campello E, Zanetto A, Radu CM, Bulato C, Truma A, Spiezia L, Senzolo M, Garcia-Tsao G, Simioni P. Acute kidney injury is associated with increased levels of circulating microvesicles in patients with decompensated cirrhosis. Dig Liver Dis 2021; 53:879-888. [PMID: 33431230 PMCID: PMC11090178 DOI: 10.1016/j.dld.2020.12.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microvesicles (MVs) play a role in inflammation, coagulation, and vascular homeostasis in liver disease. AIM To characterize circulating plasma MVs profile in patients with decompensated cirrhosis and acute kidney injury (AKI). METHODS We measured the levels of total, endothelial, platelet, tissue factor (TF)+, leukocyte and hepatocyte MVs by new generation flow-cytometry in a prospective cohort of patients with decompensated cirrhosis with and without AKI. RESULTS Eighty patients with decompensated cirrhosis were recruited (40 each with and without AKI). Patients with cirrhosis with AKI had significantly higher calcein+ (total), endothelial, and platelet-MVs. Conversely, TF+, leukocyte, and hepatocyte-MVs were comparable between groups. Resolution of AKI was associated with significantly decreased total and endothelial-MVs that became comparable with those in patients without AKI. Platelet MVs significantly decreased but remained higher compared to patients without AKI. TF+MVs significantly decreased and became lower than patients without AKI. Leukocyte and hepatocyte-MVs remained unchanged. Creatinine (OR 4.3 [95%CI 1.8-10.7]), MELD (OR 1.13 [95%CI 1.02-1.27]), any bleeding (OR 9.07 [95%CI 2.02-40.6]), and hepatocyte-MVs (OR 1.04 [95%CI 1.02-1.07]) were independently associated with 30-day mortality. CONCLUSION AKI worsened vascular and cellular homeostasis in patients with cirrhosis, particularly by inducing endothelial dysfunction and platelet activation. AKI did not worsen systemic inflammation and hepatocytes activation.
Collapse
Affiliation(s)
- Elena Campello
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Alberto Zanetto
- Digestive Disease Section, Internal Medicine, Yale School of Medicine, New Haven, CT, USA; VA-Connecticut Healthcare System, West Haven, CT, USA; Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Claudia M Radu
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Cristiana Bulato
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Addolorata Truma
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Luca Spiezia
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Marco Senzolo
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Guadalupe Garcia-Tsao
- Digestive Disease Section, Internal Medicine, Yale School of Medicine, New Haven, CT, USA; VA-Connecticut Healthcare System, West Haven, CT, USA
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy.
| |
Collapse
|
225
|
COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis 2021; 24:755-788. [PMID: 34184164 PMCID: PMC8238037 DOI: 10.1007/s10456-021-09805-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 β [IL-1β] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.
Collapse
|
226
|
Shao Y, Saredy J, Xu K, Sun Y, Saaoud F, Drummer C, Lu Y, Luo JJ, Lopez-Pastrana J, Choi ET, Jiang X, Wang H, Yang X. Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Front Immunol 2021; 12:653110. [PMID: 34248940 PMCID: PMC8269631 DOI: 10.3389/fimmu.2021.653110] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
To characterize transcriptomic changes in endothelial cells (ECs) infected by coronaviruses, and stimulated by DAMPs, the expressions of 1311 innate immune regulatomic genes (IGs) were examined in 28 EC microarray datasets with 7 monocyte datasets as controls. We made the following findings: The majority of IGs are upregulated in the first 12 hours post-infection (PI), and maintained until 48 hours PI in human microvascular EC infected by middle east respiratory syndrome-coronavirus (MERS-CoV) (an EC model for COVID-19). The expressions of IGs are modulated in 21 human EC transcriptomic datasets by various PAMPs/DAMPs, including LPS, LPC, shear stress, hyperlipidemia and oxLDL. Upregulation of many IGs such as nucleic acid sensors are shared between ECs infected by MERS-CoV and those stimulated by PAMPs and DAMPs. Human heart EC and mouse aortic EC express all four types of coronavirus receptors such as ANPEP, CEACAM1, ACE2, DPP4 and virus entry facilitator TMPRSS2 (heart EC); most of coronavirus replication-transcription protein complexes are expressed in HMEC, which contribute to viremia, thromboembolism, and cardiovascular comorbidities of COVID-19. ECs have novel trained immunity (TI), in which subsequent inflammation is enhanced. Upregulated proinflammatory cytokines such as TNFα, IL6, CSF1 and CSF3 and TI marker IL-32 as well as TI metabolic enzymes and epigenetic enzymes indicate TI function in HMEC infected by MERS-CoV, which may drive cytokine storms. Upregulated CSF1 and CSF3 demonstrate a novel function of ECs in promoting myelopoiesis. Mechanistically, the ER stress and ROS, together with decreased mitochondrial OXPHOS complexes, facilitate a proinflammatory response and TI. Additionally, an increase of the regulators of mitotic catastrophe cell death, apoptosis, ferroptosis, inflammasomes-driven pyroptosis in ECs infected with MERS-CoV and the upregulation of pro-thrombogenic factors increase thromboembolism potential. Finally, NRF2-suppressed ROS regulate innate immune responses, TI, thrombosis, EC inflammation and death. These transcriptomic results provide novel insights on the roles of ECs in coronavirus infections such as COVID-19, cardiovascular diseases (CVD), inflammation, transplantation, autoimmune disease and cancers.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jin J Luo
- Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jahaira Lopez-Pastrana
- Psychiatry and Behavioral Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Eric T Choi
- Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
227
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021; 73:924-967. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Citation(s) in RCA: 421] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1β monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peter J Little
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Hong Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Danielle Kamato
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Zhuoming Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peiqing Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jihong Han
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Ian C Harding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Eno E Ebong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Scott J Cameron
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Alastair G Stewart
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| |
Collapse
|
228
|
Abstract
The association between inflammation, infection, and venous thrombosis has long been recognized; yet, only in the last decades have we begun to understand the mechanisms through which the immune and coagulation systems interact and reciprocally regulate one another. These interconnected networks mount an effective response to injury and pathogen invasion, but if unregulated can result in pathological thrombosis and organ damage. Neutrophils, monocytes, and platelets interact with each other and the endothelium in host defense and also play critical roles in the formation of venous thromboembolism. This knowledge has advanced our understanding of both human physiology and pathophysiology, as well as identified mechanisms of anticoagulant resistance and novel therapeutic targets for the prevention and treatment of thrombosis. In this review, we discuss the contributions of inflammation and infection to venous thromboembolism.
Collapse
Affiliation(s)
- Meaghan E. Colling
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Benjamin E. Tourdot
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
229
|
Mandrycky CJ, Howard CC, Rayner SG, Shin YJ, Zheng Y. Organ-on-a-chip systems for vascular biology. J Mol Cell Cardiol 2021; 159:1-13. [PMID: 34118217 DOI: 10.1016/j.yjmcc.2021.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Organ-on-a-chip (OOC) platforms involve the miniaturization of cell culture systems and enable a variety of novel experimental approaches. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living systems, the incorporation of vascular structure is a key feature common to almost all organ-on-a-chip systems. In this review we highlight recent advances in organ-on-a-chip technologies with a focus on the vasculature. We first present the developmental process of the blood vessels through which vascular cells assemble into networks and remodel to form complex vascular beds under flow. We then review self-assembled vascular models and flow systems for the study of vascular development and biology as well as pre-patterned vascular models for the generation of perfusable microvessels for modeling vascular and tissue function. We finally conclude with a perspective on developing future OOC approaches for studying different aspects of vascular biology. We highlight the fit for purpose selection of OOC models towards either simple but powerful testbeds for therapeutic development, or complex vasculature to accurately replicate human physiology for specific disease modeling and tissue regeneration.
Collapse
Affiliation(s)
- Christian J Mandrycky
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| | - Caitlin C Howard
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| | - Samuel G Rayner
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA; Department of Medicine; Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Yu Jung Shin
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| | - Ying Zheng
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
230
|
Galván NTN, Paulsen SJ, Kinstlinger IS, Marini JC, Didelija IC, Yoeli D, Grigoryan B, Miller JS. Blood Flow Within Bioengineered 3D Printed Vascular Constructs Using the Porcine Model. Front Cardiovasc Med 2021; 8:629313. [PMID: 34164438 PMCID: PMC8215112 DOI: 10.3389/fcvm.2021.629313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Recently developed biofabrication technologies are enabling the production of three-dimensional engineered tissues containing vascular networks which can deliver oxygen and nutrients across large tissue volumes. Tissues at this scale show promise for eventual regenerative medicine applications; however, the implantation and integration of these constructs in vivo remains poorly studied. Here, we introduce a surgical model for implantation and direct in-line vascular connection of 3D printed hydrogels in a porcine arteriovenous shunt configuration. Utilizing perfusable poly(ethylene glycol) diacrylate (PEGDA) hydrogels fabricated through projection stereolithography, we first optimized the implantation procedure in deceased piglets. Subsequently, we utilized the arteriovenous shunt model to evaluate blood flow through implanted PEGDA hydrogels in non-survivable studies. Connections between the host femoral artery and vein were robust and the patterned vascular channels withstood arterial pressure, permitting blood flow for 6 h. Our study demonstrates rapid prototyping of a biocompatible and perfusable hydrogel that can be implanted in vivo as a porcine arteriovenous shunt, suggesting a viable surgical approach for in-line implantation of bioprinted tissues, along with design considerations for future in vivo studies. We further envision that this surgical model may be broadly applicable for assessing whether biomaterials optimized for 3D printing and cell function can also withstand vascular cannulation and arterial blood pressure. This provides a crucial step toward generated transplantable engineered organs, demonstrating successful implantation of engineered tissues within host vasculature.
Collapse
Affiliation(s)
- Nhu Thao N Galván
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Samantha J Paulsen
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Ian S Kinstlinger
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Juan C Marini
- Department of Pediatrics-Critical Care, Baylor College of Medicine, Houston, TX, United States
| | - Inka C Didelija
- Department of Pediatrics-Critical Care, Baylor College of Medicine, Houston, TX, United States
| | - Dor Yoeli
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Bagrat Grigoryan
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
231
|
Soumya RS, Unni TG, Raghu KG. Impact of COVID-19 on the Cardiovascular System: A Review of Available Reports. Cardiovasc Drugs Ther 2021; 35:411-425. [PMID: 32926272 PMCID: PMC7487338 DOI: 10.1007/s10557-020-07073-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
The recent emergence of the coronavirus disease 19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China is now a global health emergency. The transmission of SARS-CoV-2 is mainly via human-to-human contact. This virus is expected to be of zoonotic origin and has a high genome identity to that of bat derived SARS-like coronavirus. Various stringent measures have been implemented to lower person-to-person transmission of COVID-19. Particular observations and attempts have been made to reduce transmission in vulnerable populations, including older adults, children, and healthcare providers. This novel CoV enters the cells through the angiotensin-converting enzyme 2 (ACE2) receptor. There is a higher risk of COVID-19 infection among those with preexisting cardiovascular diseases (CVD), and it has been connected with various direct and indirect complications, including myocarditis, acute myocardial injury, venous thromboembolism, and arrhythmias. This article summarizes the various cardiovascular complications and mechanisms responsible for the same with COVID-19 infection. For the benefit of the scientific community and public, the effect of COVID-19 on major vital organs such as the kidneys, liver, and intestines has been briefly discussed. In this review, we also discuss drugs in different stages of clinical trials and their associated complications, as well as the details of vaccines in various stages of development.
Collapse
Affiliation(s)
- R S Soumya
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - T Govindan Unni
- Department of Cardiology, Jubilee Mission Medical College & Research Centre, Thrissur, Kerala, 680005, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India.
| |
Collapse
|
232
|
Xing Y, Gu Y, Guo L, Guo J, Xu Z, Xiao Y, Fang Z, Wang C, Feng ZG, Wang Z. Gelatin coating promotes in situ endothelialization of electrospun polycaprolactone vascular grafts. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1161-1181. [PMID: 33830866 DOI: 10.1080/09205063.2021.1909413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rapid endothelialization is crucial for in situ tissue engineering vascular grafts to prevent graft failure in the long-term. Gelatin is a promising nature material that can promote endothelial cells (ECs) adhesion, proliferation, and migration. In this study, the internal surface of electrospun polycaprolactone (PCL) vascular grafts was coated with gelatin. Endothelialization and vascular wall remolding were investigated by imaging and histological studies in the rat abdominal aorta replacement model. The endothelialization of heparinized gelatin-coated PCL (GP-H) vascular grafts was more rapid and complete than heparinized PCL (P-H) grafts. Intimal hyperplasia was milder in the GP-H vascular grafts than the P-H vascular grafts in the long-term. Meanwhile, smooth muscle cells (SMCs) and extracellular matrix (ECM) regeneration were better in the GP-H vascular grafts. By comparison, an aneurysm was observed in the P-H group in 6 months. Calcification was observed in both groups. All vascular grafts were patient after implantation in both groups. Our results showed that gelatin coating on the internal surface of PCL grafts is a simple and effective way to promote endothelialization. A more rapid endothelialization and complete endothelium can inhibit intimal hyperplasia in the long-term.
Collapse
Affiliation(s)
- Yuehao Xing
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zeqin Xu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhonggao Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
233
|
Hritzo B, Legesse B, Ward JM, Kaur A, Holmes-Hampton GP, Moroni M. Investigating the Multi-Faceted Nature of Radiation-Induced Coagulopathies in a Göttingen Minipig Model of Hematopoietic Acute Radiation Syndrome. Radiat Res 2021; 196:156-174. [PMID: 34019667 DOI: 10.1667/rade-20-00073.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2021] [Indexed: 11/03/2022]
Abstract
Coagulopathies are well documented after acute radiation exposure at hematopoietic doses, and radiation-induced bleeding is notably one of the two main causes of mortality in the hematopoietic acute radiation syndrome. Despite this, understanding of the mechanisms by which radiation alters hemostasis and induces bleeding is still lacking. Here, male Göttingen minipigs received hematopoietic doses of 60Co gamma irradiation (total body) and coagulopathies were characterized by assessing bleeding, blood cytopenia, fibrin deposition, changes in hemostatic properties, coagulant/anticoagulant enzyme levels, and markers of inflammation, endothelial dysfunction, and barrier integrity to understand if a relationship exists between bleeding, hemostatic defects, bone marrow aplasia, inflammation, endothelial dysfunction and loss of barrier integrity. Acute radiation exposure induced coagulopathies in the Göttingen minipig model of hematopoietic acute radiation syndrome; instances of bleeding were not dependent upon thrombocytopenia. Neutropenia, alterations in hemostatic parameters and damage to the glycocalyx occurred in all animals irrespective of occurrence of bleeding. Radiation-induced bleeding was concurrent with simultaneous thrombocytopenia, anemia, neutropenia, inflammation, increased heart rate, decreased nitric oxide bioavailability and endothelial dysfunction; bleeding was not observed with the sole occurrence of a single aforementioned parameter in the absence of the others. Alteration of barrier function or clotting proteins was not observed in all cases of bleeding. Additionally, fibrin deposition was observed in the heart and lungs of decedent animals but no evidence of DIC was noted, suggesting a unique pathophysiology of radiation-induced coagulopathies. These findings suggest radiation-induced coagulopathies are the result of simultaneous damage to several key organs and biological functions, including the immune system, the inflammatory response, the bone marrow and the cardiovasculature.
Collapse
Affiliation(s)
- Bernadette Hritzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Betre Legesse
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | | | - Amandeep Kaur
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| |
Collapse
|
234
|
Norooznezhad AH, Mansouri K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc Res 2021; 137:104188. [PMID: 34022205 PMCID: PMC8135191 DOI: 10.1016/j.mvr.2021.104188] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been led to a pandemic emergency. So far, different pathological pathways for SARS-CoV-2 infection have been introduced in which the excess release of pro-inflammatory cytokines (such as interleukin 1 β [IL-1β], IL-6, and tumor necrosis factor α [TNFα]) has earned most of the attentions. However, recent studies have identified new pathways with at least the same level of importance as cytokine storm in which endothelial cell (EC) dysfunction is one of them. In COVID-19, two main pathologic phenomena have been seen as a result of EC dysfunction: hyper-coagulation state and pathologic angiogenesis. The EC dysfunction-induced hypercoagulation state seems to be caused by alteration in the levels of different factors such as plasminogen activator inhibitor 1 (PAI-1), von Willebrand factor (vWF) antigen, soluble thrombomodulin, and tissue factor pathway inhibitor (TFPI). As data have shown, these thromboembolic events are associated with severity of disease severity or even death in COVID-19 patients. Other than thromboembolic events, pathologic angiogenesis is among the recent findings. Furthermore, over-expression/higher levels of different proangiogenic factors such as vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1 α (HIF-1α), IL-6, TNF receptor super family 1A and 12, and angiotensin-converting enzyme 2 (ACE2) have been found in the lung biopsies/sera of both survived and non-survived COVID-19 patients. Also, there are some hypotheses regarding the role of nitric oxide in EC dysfunction and acute respiratory distress syndrome (ARDS) in SARS-CoV-2 infection. It has been demonstrated that different pathways involved in inflammation are generally common with EC dysfunction and angiogenesis. Altogether, considering the common possible upstream pathways in cytokine storm, pathologic angiogenesis, and EC dysfunction, it seems that targeting these molecules (such as nuclear factor κB) could be more effective in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
235
|
Kobayashi M, Ohara M, Hashimoto Y, Nakamura N, Fujisato T, Kimura T, Kishida A. Effect of luminal surface structure of decellularized aorta on thrombus formation and cell behavior. PLoS One 2021; 16:e0246221. [PMID: 33999919 PMCID: PMC8128234 DOI: 10.1371/journal.pone.0246221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Due to an increasing number of cardiovascular diseases, artificial heart valves and blood vessels have been developed. Although cardiovascular applications using decellularized tissue have been studied, the mechanisms of their functionality remain unknown. To determine the important factors for preparing decellularized cardiovascular prostheses that show good in vivo performance, the effects of the luminal surface structure of the decellularized aorta on thrombus formation and cell behavior were investigated. Various luminal surface structures of a decellularized aorta were prepared by heating, drying, and peeling. The luminal surface structure and collagen denaturation were evaluated by immunohistological staining, collagen hybridizing peptide (CHP) staining, and scanning electron microscopy (SEM) analysis. To evaluate the effects of luminal surface structure of decellularized aorta on thrombus formation and cell behavior, blood clotting tests and recellularization of endothelial cells and smooth muscle cells were performed. The results of the blood clotting test showed that the closer the luminal surface structure is to the native aorta, the higher the anti-coagulant property. The results of the cell seeding test suggest that vascular cells recognize the luminal surface structure and regulate adhesion, proliferation, and functional expression accordingly. These results provide important factors for preparing decellularized cardiovascular prostheses and will lead to future developments in decellularized cardiovascular applications.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Masako Ohara
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Naoko Nakamura
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Toshiya Fujisato
- Department of Biomedical Engineering, Osaka Institute of Technology, Asahi-ku, Osaka, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
236
|
Bontekoe E, Brailovsky Y, Hoppensteadt D, Bontekoe J, Siddiqui F, Newman J, Iqbal O, Reed T, Fareed J, Darki A. Upregulation of Inflammatory Cytokines in Pulmonary Embolism Using Biochip-Array Profiling. Clin Appl Thromb Hemost 2021; 27:10760296211013107. [PMID: 33969714 PMCID: PMC8113361 DOI: 10.1177/10760296211013107] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complex pathophysiology of pulmonary embolism (PE) involves hemostatic activation, inflammatory processes, cellular dysfunction, and hemodynamic derangements. Due to the heterogeneity of this disease, risk stratification and diagnosis remains challenging. Biochip-array technology provides an integrated high throughput method for analyzing blood plasma samples for the simultaneous measurement of multiple biomarkers for potential risk stratification. Using biochip-array method, this study aimed to quantify the inflammatory biomarkers such as interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and epidermal growth factor (EGF) in 109 clinically confirmed PE patients in comparison to the control group comprised of plasma samples collected from 48 healthy subjects. Cytokines IL-4, IL-6, IL-8, IL-10, IL-1β, and MCP-1 demonstrated varying level of significant increase (P < 0.05) in massive-risk PE patients compared to submassive- and low-risk PE patients. The upregulation of inflammatory cytokines in PE patients observed in this study suggest that inflammation plays an important role in the overall pathophysiology of this disease. The application of biochip-array technology may provide a useful approach to evaluate these biomarkers to understand the pathogenesis and risk stratification of PE patients.
Collapse
Affiliation(s)
- Emily Bontekoe
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Hemostasis and Thrombosis Research Division, Loyola University Medical Center, Health Sciences Division, Maywood, IL, USA
| | - Yevgeniy Brailovsky
- Advanced Heart Failure, Mechanical Circulatory Support, Heart Transplant, Jefferson Heart Institute, Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine and Department of Pharmacology and Neuroscience, Cardiovascular Research Institute, Hemostasis and Thrombosis Research Division, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Jack Bontekoe
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Hemostasis and Thrombosis Research Division, Loyola University Medical Center, Health Sciences Division, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Hemostasis and Thrombosis Research Division, Loyola University Medical Center, Health Sciences Division, Maywood, IL, USA
| | - Joshua Newman
- Division of Cardiovascular Medicine, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Omer Iqbal
- Department of Pathology and Laboratory Medicine and Department of Ophthalmology, Cardiovascular Research Institute, Loyola University Medical Center, Maywood, IL, USA
| | - Trent Reed
- Department of Emergency Medicine, Loyola University Medical Center, Stritch School of Medicine, Maywood, IL, USA
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine and Department of Pharmacology and Neuroscience, Cardiovascular Research Institute, Hemostasis and Thrombosis Research Division, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Amir Darki
- Division of Cardiology, Department of Medicine, Loyola University Medical Center, Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
237
|
Chen X, Geng X, Jin S, Xu J, Guo M, Shen D, Ding X, Liu H, Xu X. The Association of Syndecan-1, Hypercoagulable State and Thrombosis and in Patients With Nephrotic Syndrome. Clin Appl Thromb Hemost 2021; 27:10760296211010256. [PMID: 33942670 PMCID: PMC8114750 DOI: 10.1177/10760296211010256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study is to investigate whether Syndecan-1 (SDC-1), an indicator of endothelial glycocalyx injury, would increase the risk of hypercoagulable state and thrombosis in patients with nephrotic syndrome (NS). The prospective study was conducted among patients undergoing renal biopsy in the Department of Nephrology in our hospital from May to September 2018. We enrolled in patients with NS as the experimental group and patients with normal serum creatinine and proteinuria less than 1 g as the control group. Patients’ characteristics including age, sex, laboratory test results and blood samples were collected for each patient. The blood samples were taken before the renal biopsy. The samples were immediately processed and frozen at −80°C for later measurement of Syndecan-1. One hundred and thirty-six patients were enrolled in the study. Patients with NS and hypercoagulability had a higher level of SDC-1 compared with control group. Patients with membranous nephropathy occupied the highest SDC-1 level (P = 0.012). Logistic regression showed that highly increased level of SDC-1 (>53.18 ng/ml) was an independent predicator for predicting hypercoagulable state. The elevated level of SDC-1 indicated that endothelial injury, combined with its role of accelerating hypercoagulable state, might be considered of vital importance in the pathophysiological progress of thrombosis formation in patients with NS.
Collapse
Affiliation(s)
- Xin Chen
- Department of Nephrology, 92323Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Xuemei Geng
- Department of Nephrology, 92323Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Shi Jin
- Department of Nephrology, 92323Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Jiarui Xu
- Department of Nephrology, 92323Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Man Guo
- Department of Nephrology, 92323Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Daoqi Shen
- Department of Nephrology, 92323Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Xiaoqiang Ding
- Department of Nephrology, 92323Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Hong Liu
- Department of Nephrology, 92323Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Xialian Xu
- Department of Nephrology, 92323Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| |
Collapse
|
238
|
Chen S, Lv K, Sharda A, Deng J, Zeng W, Zhang C, Hu Q, Jin P, Yao G, Xu X, Ming Z, Fang C. Anti-thrombotic effects mediated by dihydromyricetin involve both platelet inhibition and endothelial protection. Pharmacol Res 2021; 167:105540. [PMID: 33711433 DOI: 10.1016/j.phrs.2021.105540] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023]
Abstract
Classical antithrombotics and antiplatelets are associated with high frequencies of bleeding complications or treatment failure when used as single agents. The platelet-independent fibrin generation by activated endothelium highlights the importance of vascular protection in addition to platelet inhibition in thrombosis prevention. Dihydromyricetin (DHM), the most abundant flavonoid in Ampelopsis grossedentata, has unique vasoprotective effects. This study aims to characterize the antithrombotic potential of DHM. The effects of DHM on the activation of platelets and endothelial cells were evaluated in vitro. Calcium mobilization and activation of mitogen-activated protein kinases (MAPKs) were examined as the potential targets of DHM based on molecular docking analysis. The in vivo effects of DHM were determined in FeCl3-injured carotid arteries and laser-injured cremasteric arterioles. The results showed that DHM suppressed a range of platelet responses including aggregation, secretion, adhesion, spreading and integrin activation, and inhibited exocytosis, phosphatidylserine exposure and tissue factor expression in activated endothelial cells. Mechanistically, DHM attenuated thrombin-induced calcium mobilization and phosphorylation of ERK1/2 and p38 both in platelets and endothelial cells. Intravenous treatment with DHM delayed FeCl3-induced carotid arterial thrombosis. Furthermore, DHM treatment inhibited both platelet accumulation and fibrin generation in the presence or absence of eptifibatide in the laser injury-induced thrombosis model, without prolonging ex vivo plasma coagulation or tail bleeding time. DHM represents a novel antithrombotic agent whose effects involve both inhibition of platelet activation and reduction of fibrin generation as a result of endothelial protection.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Pharmacology, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Anish Sharda
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Deng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wanjiang Zeng
- Department of Perinatal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory for Respiratory Diseases, Health Ministry of China, Wuhan, Hubei 430030, China
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhangyin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Hubei 430030, China.
| |
Collapse
|
239
|
Bahouth MN, Venkatesan A. Acute Viral Illnesses and Ischemic Stroke: Pathophysiological Considerations in the Era of the COVID-19 Pandemic. Stroke 2021; 52:1885-1894. [PMID: 33794653 PMCID: PMC8078120 DOI: 10.1161/strokeaha.120.030630] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 or coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the correlation with this viral illness and increased risk of stroke. Although it is too early in the pandemic to know the strength of the association between COVID-19 and stroke, it is an opportune time to review the relationship between acute viral illnesses and stroke. Here, we summarize pathophysiological principles and available literature to guide understanding of how viruses may contribute to ischemic stroke. After a review of inflammatory mechanisms, we summarize relevant pathophysiological principles of vasculopathy, hypercoagulability, and hemodynamic instability. We will end by discussing mechanisms by which several well-known viruses may cause stroke in an effort to inform our understanding of the relationship between COVID-19 and stroke.
Collapse
Affiliation(s)
- Mona N. Bahouth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
240
|
McCully BH, Wade CE, Fox EE, Inaba K, Cohen MJ, Holcomb JB, Schreiber MA. Temporal profile of the pro- and anti-inflammatory responses to severe hemorrhage in patients with venous thromboembolism: Findings from the PROPPR trial. J Trauma Acute Care Surg 2021; 90:845-852. [PMID: 33797501 PMCID: PMC8068582 DOI: 10.1097/ta.0000000000003088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The Pragmatic Randomized Optimal Platelet and Plasma Ratios (PROPPR) trial showed that 15% of patients developed venous thromboembolism (VTE) following hemorrhage, but the mechanisms are unknown. Since inflammation is associated with hypercoagulability and thrombosis, our goal was to compare the temporal inflammatory profile following hemorrhagic shock in patients with and without VTE. STUDY DESIGN Secondary analysis was performed on data collected from PROPPR. Blood samples collected at 0 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, and 72 hours following admission were assayed on a 27-target cytokine panel, and compared between VTE (n = 83) and non-VTE (n = 475) patients. p < 0.05 indicated significance. RESULTS Over time, both groups exhibited elevations in proinflammatory mediators interleukin (IL)-6, IL-8, IL-10, granulocyte colony-stimulating factor 57, monocyte chemoattractant protein 1 and macrophage inflammatory protein 1β, and anti-inflammatory mediators IL-1ra and IL-10 (p < 0.05 vs. admission). Venous thromboembolism patients showed amplified responses for IL-6 (6-72 hours) and IL-8 (6-24 hours), which peaked at later time points, and granulocyte colony-stimulating factor 57 (12-24 hours), monocyte chemoattractant protein 1 (6-72 hours), and macrophage inflammatory protein-1 β (2-12 hours) (p < 0.05 vs. non-VTE per time point) that peaked at similar time points to non-VTE patients. The anti-inflammatory responses were similar between groups, but the interleukin-mediated proinflammatory responses continued to rise after the peak anti-inflammatory response in the VTE group. The occurrence rate of adverse events was higher in VTE (97%) versus non-VTE (87%, p = 0.009) and was associated with higher inflammation. CONCLUSION Patients with VTE following hemorrhagic shock exhibited a prolonged and amplified proinflammatory responses mediated by select interleukin, chemotactic, and glycoprotein cytokines that are not antagonized by anti-inflammatory mediators. This response is not related to randomization group, injury severity or degree of shock, but may be linked to adverse events. LEVEL OF EVIDENCE Prognostic, level III.
Collapse
Affiliation(s)
- Belinda H. McCully
- Division of Trauma, Critical Care & Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland OR
| | - Charlie E. Wade
- Center for Translational Injury Research, Division of Acute Care Surgery, Department of Surgery, University of Texas Health Science Center, Houston, TX
| | - Erin E. Fox
- Center for Translational Injury Research, Division of Acute Care Surgery, Department of Surgery, University of Texas Health Science Center, Houston, TX
| | - Kenji Inaba
- Divison of Acute Care Surgery, Department of Surgery, University of Southern California, Los Angeles, CA
| | - Mitchell J. Cohen
- Department of Surgery, Denver Health Medical Center and the University of Colorado; Denver, CO
| | - John B. Holcomb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Martin A. Schreiber
- Division of Trauma, Critical Care & Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland OR
| | | |
Collapse
|
241
|
Cacciapuoti F, Cacciapuoti F. Could Low Doses Acetylsalicylic Acid Prevent Thrombotic Complications in COVID-19 Patients? Clin Appl Thromb Hemost 2021; 27:10760296211014592. [PMID: 33928791 PMCID: PMC8114739 DOI: 10.1177/10760296211014592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) can induce inflammatory and thrombotic complications of pulmonary district (interstitial pneumonia), sometimes evolving toward acute respiratory failure. In adults, Acetylsalicylic Acid (ASA) is widely employed at low doses for primary and secondary prevention of cardiovascular diseases (CVD). Apart their anti-thrombotic effect, low ASA doses also exert an anti-inflammatory action. So, when these are assumed for CVD prevention, could prevent both inflammatory reaction and pro-coagulant tendency of Coronavirus-2019 (COVID-19) infection. In addition, some patients receiving ASA are simultaneously treated with Statins, to correct dyslipidemia. But, for their pleiotropic effects, Statins can also be useful to antagonize pulmonary thrombo-inflammation induced by COVID-19. Thus ASA, with or without Statins, employed for CVD prevention, could be useful to avoid or minimize inflammatory reaction and thrombotic complications of COVID-19. But, further studies performed in a wide range are requested to validate this hypothesis.
Collapse
Affiliation(s)
- Federico Cacciapuoti
- Department of Internal Medicine, "L. Vanvitelli" Campania University, Naples, Italy
| | - Fulvio Cacciapuoti
- Department of Cardiology and Coronary Intensive Care Unit, "V. Monaldi" Hospital, Naples, Italy
| |
Collapse
|
242
|
Dubey AK, Kalita J, Chaudhary SK, Misra UK. Impact of anticoagulation status on recanalization and outcome of cerebral venous thrombosis. J Clin Neurosci 2021; 89:43-50. [PMID: 34119293 DOI: 10.1016/j.jocn.2021.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022]
Abstract
Effective anticoagulation status may determine the recanalization and outcome of cerebral venous thrombosis (CVT). We report impact of anticoagulation status on recanalization and outcome of CVT. This is a retrospective study on 126 patients with CVT diagnosed on magnetic resonance venography (MRV). Their clinical features and risk factors were noted. The data were retrieved from a prospectively maintained registry, and international normalized ratio (INR) was noted after discharge till 3 months. All the patients were on acenocoumarol. Based on INR value, patients were categorized as Group A (effective anticoagulation INR within the therapeutic range or above) and Group B (ineffective anticoagulation INR > 50% below the therapeutic range). A repeat MRV at 3 months was done for recanalization. Outcome at 3 months was evaluated using modified Rankin Scale (mRS), and categorized as good (mRS ≤ 2) and poor (mRS 2 or more) 101(80.2%) patients were in group A and 25(19.8%) in group B. Their demographic, risk factors, magnetic resonance imaging (MRI) and MRV findings were comparable. On repeat MRV, recanalization occurred in 22/24(91.7%); 15(88%) in group A and 7(100%) in group B. Recanalization was independent of coagulation status. Seven (5.6%) patients died and 107(84.9%) had good outcome; 85(84.2%) in group A and 22(88%) in group B. Kaplan Meier analysis also did not reveal survival or good outcome benefits between the groups. In CVT, outcome and recanalization at 3 months are not dependent on coagulation status. Further prospective studies are needed regarding duration of anticoagulant and its impact on recanalization and outcome.
Collapse
Affiliation(s)
- Ashish K Dubey
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, Uttar Pradesh 226014, India.
| | - Sarvesh K Chaudhary
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Usha K Misra
- Apollo Medics Super-specialty Hospitals and Senior consultant neurologist, Vivekanand Polyclinic, and Institute of Medical science, Lucknow 226001, India
| |
Collapse
|
243
|
Rani V, Prabhu A. Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment. Curr Pharm Des 2021; 27:919-931. [PMID: 33006535 DOI: 10.2174/1381612826666201002145454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radiation therapy is a widely employed modality that is used to destroy cancer cells, but it also tends to induce changes in the tumor microenvironment and promote angiogenesis. Radiation, when used as a sole means of therapeutic approach to treat cancer, tends to trigger the angiogenic pathways, leading to the upregulation of several angiogenic growth factors such as VEGF, bFGF, PDGF and angiogenin. This uncontrolled angiogenesis leads to certain angiogenic disorders like vascular outgrowth and an increase in tumor progression that can pose a serious threat to patients. OBJECTIVE This review emphasizes on various components of the tumor microenvironment, angiogenic growth factors and biological effects of radiation on tumors in provoking the relapse. It also describes the angiogenic mechanisms that trigger the tumor relapse after radiation therapy and how angiogenesis inhibitors can help in overcoming this phenomenon. It gives an overview of various angiogenesis inhibitors in pre-clinical as well as in clinical trials. CONCLUSION The review focuses on the beneficial effects of the combinatorial therapeutic approach of anti-angiogenesis therapy and radiation in tumor management.
Collapse
Affiliation(s)
- Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| |
Collapse
|
244
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
245
|
Páramo JA. [Microvascular thrombosis and clinical implications]. Med Clin (Barc) 2021; 156:609-614. [PMID: 33875227 DOI: 10.1016/j.medcli.2020.12.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/10/2023]
Abstract
Thrombosis is often present in the microcirculation in a variety of significant human diseases, such as disseminated intravascular coagulation, thrombotic microangiopathy, sickle cell disease, and others. Microvascular thrombosis has also recently been demonstrated in patients with COVID-19 and has been proposed to mediate the pathogenesis of organ injury in the lung and other organs. In many of these conditions, microvascular thrombosis is accompanied by inflammation, an association referred to as thromboinflammation or immunothrombosis. A greater understanding of the links between inflammation and thrombosis in the microcirculation will provide new therapeutic options for human diseases accompanied by microvascular thrombosis.
Collapse
Affiliation(s)
- José A Páramo
- Servicio de Hematología, Clínica Universidad de Navarra, IdiSNA, CIBERCV, Pamplona, Navarra, España.
| |
Collapse
|
246
|
Transcriptional Regulation of Thrombin-Induced Endothelial VEGF Induction and Proangiogenic Response. Cells 2021; 10:cells10040910. [PMID: 33920990 PMCID: PMC8071415 DOI: 10.3390/cells10040910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/08/2023] Open
Abstract
Thrombin, the ligand of the protease-activated receptor 1 (PAR1), is a well-known stimulator of proangiogenic responses in vascular endothelial cells (ECs), which are mediated through the induction of vascular endothelial growth factor (VEGF). However, the transcriptional events underlying this thrombin-induced VEGF induction and angiogenic response are less well understood at present. As reported here, we conducted detailed promotor activation and signal transduction pathway studies in human microvascular ECs, to decipher the transcription factors and the intracellular signaling events underlying the thrombin and PAR-1-induced endothelial VEGF induction. We found that c-FOS is a key transcription factor controlling thrombin-induced EC VEGF synthesis and angiogenesis. Upon the binding and internalization of its G-protein-coupled PAR-1 receptor, thrombin triggers ERK1/2 signaling and activation of the nuclear AP-1/c-FOS transcription factor complex, which then leads to VEGF transcription, extracellular secretion, and concomitant proangiogenic responses of ECs. In conclusion, exposure of human microvascular ECs to thrombin triggers signaling through the PAR-1–ERK1/2–AP-1/c-FOS axis to control VEGF gene transcription and VEGF-induced angiogenesis. These observations offer a greater understanding of endothelial responses to thromboinflammation, which may help to interpret the results of clinical trials tackling the conditions associated with endothelial injury and thrombosis.
Collapse
|
247
|
An Integrated Approach of the Potential Underlying Molecular Mechanistic Paradigms of SARS-CoV-2-Mediated Coagulopathy. Indian J Clin Biochem 2021; 36:387-403. [PMID: 33875909 PMCID: PMC8047580 DOI: 10.1007/s12291-021-00972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (Covid-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic disease which has affected more than 6.2 million people globally, with numbers mounting considerably daily. However, till date, no specific treatment modalities are available for Covid-19 and also not much information is known about this disease. Recent studies have revealed that SARS-CoV-2 infection is associated with the generation of thrombosis and coagulopathy. Fundamentally, it has been believed that a diverse array of signalling pathways might be responsible for the activation of coagulation cascade during SARS-CoV-2 infection. Henceforth, a detailed understanding of these probable underlying molecular mechanistic pathways causing thrombosis in Covid-19 disease deserves an urgent exploration. Therefore, in this review, the hypothetical crosstalk between distinct signalling pathways including apoptosis, inflammation, hypoxia and angiogenesis attributable for the commencement of thrombotic events during SARS-CoV-2 infection has been addressed which might further unravel promising therapeutic targets in Covid-19 disease.
Collapse
|
248
|
High Magnesium and Sirolimus on Rabbit Vascular Cells-An In Vitro Proof of Concept. MATERIALS 2021; 14:ma14081970. [PMID: 33919969 PMCID: PMC8070902 DOI: 10.3390/ma14081970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022]
Abstract
Drug-eluting bioresorbable scaffolds represent the last frontier in the field of angioplasty and stenting to treat coronary artery disease, one of the leading causes of morbidity and mortality worldwide. In particular, sirolimus-eluting magnesium-based scaffolds were recently introduced in clinical practice. Magnesium alloys are biocompatible and dissolve in body fluids, thus determining high concentrations of magnesium in the local microenvironment. Since magnesium regulates cell growth, we asked whether high levels of magnesium might interfere with the antiproliferative action of sirolimus. We performed in vitro experiments on rabbit coronary artery endothelial and smooth muscle cells (rCAEC and rSMC, respectively). The cells were treated with sirolimus in the presence of different concentrations of extracellular magnesium. Sirolimus inhibits rCAEC proliferation only in physiological concentrations of magnesium, while high concentrations prevent this effect. On the contrary, high extracellular magnesium does not rescue rSMC growth arrest by sirolimus and accentuates the inhibitory effect of the drug on cell migration. Importantly, sirolimus and magnesium do not impair rSMC response to nitric oxide. If translated into a clinical setting, these results suggest that, in the presence of sirolimus, local increases of magnesium concentration maintain normal endothelial proliferative capacity and function without affecting rSMC growth inhibition and response to vasodilators.
Collapse
|
249
|
Implications of SARS-Cov-2 infection on eNOS and iNOS activity: Consequences for the respiratory and vascular systems. Nitric Oxide 2021; 111-112:64-71. [PMID: 33831567 PMCID: PMC8021449 DOI: 10.1016/j.niox.2021.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Symptoms of COVID-19 range from asymptomatic/mild symptoms to severe illness and death, consequence of an excessive inflammatory process triggered by SARS-CoV-2 infection. The diffuse inflammation leads to endothelium dysfunction in pulmonary blood vessels, uncoupling eNOS activity, lowering NO production, causing pulmonary physiological alterations and coagulopathy. On the other hand, iNOS activity is increased, which may be advantageous for host defense, once NO plays antiviral effects. However, overproduction of NO may be deleterious, generating a pro-inflammatory effect. In this review, we discussed the role of endogenous NO as a protective or deleterious agent of the respiratory and vascular systems, the most affected in COVID-19 patients, focusing on eNOS and iNOS roles. We also reviewed the currently available NO therapies and pointed out possible alternative treatments targeting NO metabolism, which could help mitigate health crises in the present and future CoV's spillovers.
Collapse
|
250
|
Down-regulation of miR-361-5p promotes the viability, migration and tube formation of endothelial progenitor cells via targeting FGF1. Biosci Rep 2021; 40:226529. [PMID: 32985665 PMCID: PMC7569154 DOI: 10.1042/bsr20200557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Transplantion of bone marrow-derived endothelial progenitor cells (EPCs) may be a novel treatment for deep venous thrombosis (DVT). The present study probed into the role of microRNA (miR)-361-5p in EPCs and DVT recanalization. EPCs were isolated from male Sprague-Dawley (SD) rats and identified using confocal microscopy and flow cytometry. The viability, migration and tube formation of EPCs were examined using MTT assay, wound-healing assay and tube formation assay, respectively. Target gene and potential binding sites between miR-361-5p and fibroblast growth factor 1 (FGF1) were predicted by StarBase and confirmed by dual-luciferase reporter assay. Relative expressions of miR-361-5p and FGF1 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. A DVT model in SD rats was established to investigate the role of EPC with miR-361-5p antagomir in DVT by Hematoxylin-Eosin (H&E) staining. EPC was identified as 87.1% positive for cluster of difference (CD)31, 2.17% positive for CD133, 85.6% positive for von Willebrand factor (vWF) and 94.8% positive for vascular endothelial growth factor receptor-2 (VEGFR2). MiR-361-5p antagomir promoted proliferation, migration and tube formation of EPCs and up-regulated FGF1 expression, thereby dissolving thrombus in the vein of DVT rats. FGF1 was the target of miR-361-5p, and overexpressed FGF1 reversed the effects of up-regulating miR-361-5p on suppressing EPCs. Down-regulation of miR-361-5p enhanced thrombus resolution in vivo and promoted EPC viability, migration and angiogenesis in vitro through targeting FGF1. Therefore, miR-361-5p may be a potential therapeutic target for DVT recanalization.
Collapse
|