201
|
Trenti C, Dyverfeldt P. Editorial for "Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi-Site, Multi-Vendor, and Multi-Label Dense U-Net". J Magn Reson Imaging 2021; 55:1681-1682. [PMID: 34816520 DOI: 10.1002/jmri.28005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Chiara Trenti
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
202
|
Korpela T, Kauhanen SP, Kariniemi E, Saari P, Liimatainen T, Jaakkola P, Vanninen R, Hedman M. Flow displacement and decreased wall shear stress might be associated with the growth rate of an ascending aortic dilatation. Eur J Cardiothorac Surg 2021; 61:395-402. [PMID: 34791134 PMCID: PMC8788001 DOI: 10.1093/ejcts/ezab483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Our goal was to evaluate whether four-dimensional (4D) flow magnetic resonance imaging (MRI) can predict the growth rate of dilatation of the ascending aorta (AA) in patients with a tricuspid, normally functioning aortic valve. METHODS In this prospective clinical study, aortic 4D flow MRI was performed at the Kuopio University Hospital on 30 patients diagnosed with AA dilatation (maximum diameter >40 mm) between August 2017 and July 2020. The MRI was repeated after a 1-year follow-up, with AA dimensions and 4D flow parameters analysed retrospectively at both time points. The standard error of measurement was used to assess the statistical significance of the growth rate of AA dilatation. Flow displacement (FD) was transformed to a class-scaled parameter using FD ≥5% as a threshold. RESULTS Statistically significant growth [median 2.1 mm (1.5–2.2 mm); P = 0.03] was detected in 6 male patients (20%); the AA diameter remained unchanged [0.2 mm (−0.3 to 0.9 mm)] in 24 patients (80%). An increased FD at the baseline was associated with significant growth during the 1-year follow-up in the proximal AA. An association was detected between decreased total wall shear stress and significant aortic growth in the inner curve of the sinotubular junction [529 mPa (449–664 mPa) vs 775 mPa (609–944 mPa); P = 0.03] and the anterior side of the proximal aortic arch [356 mPa (305–367 mPa) vs 493 mPa (390–586 mPa); P < 0.001]. CONCLUSIONS FD and decreased wall shear stress seem to be associated with significant growth of AA dilatation at the 1-year follow-up. Thus, 4D flow MRI might be useful in assessing risk for AA diameter growth in patients with a tricuspid aortic valve.
Collapse
Affiliation(s)
- Tarmo Korpela
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Finland.,Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Finland
| | - S Petteri Kauhanen
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Clinical Imaging Center, Finland
| | - Elina Kariniemi
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Clinical Imaging Center, Finland
| | - Petri Saari
- Department of Clinical Radiology, Kuopio University Hospital, Clinical Imaging Center, Finland
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Pekka Jaakkola
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Clinical Imaging Center, Finland
| | - Marja Hedman
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Finland.,Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Clinical Imaging Center, Finland
| |
Collapse
|
203
|
Dillinger H, McGrath C, Guenthner C, Kozerke S. Fundamentals of turbulent flow spectrum imaging. Magn Reson Med 2021; 87:1231-1249. [PMID: 34786764 PMCID: PMC9299145 DOI: 10.1002/mrm.29001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To introduce a mathematical framework and in-silico validation of turbulent flow spectrum imaging (TFSI) of stenotic flow using phase-contrast MRI, evaluate systematic errors in quantitative turbulence parameter estimation, and propose a novel method for probing the Lagrangian velocity spectra of turbulent flows. THEORY AND METHODS The spectral response of velocity-encoding gradients is derived theoretically and linked to turbulence parameter estimation including the velocity autocorrelation function spectrum. Using a phase-contrast MRI simulation framework, the encoding properties of bipolar gradient waveforms with identical first gradient moments but different duration are investigated on turbulent flow data of defined characteristics as derived from computational fluid dynamics. Based on theoretical insights, an approach using velocity-compensated gradient waveforms is proposed to specifically probe desired ranges of the velocity autocorrelation function spectrum with increased accuracy. RESULTS Practical velocity-encoding gradients exhibit limited encoding power of typical turbulent flow spectra, resulting in up to 50% systematic underestimation of intravoxel SD values. Depending on the turbulence level in fluids, the error due to a single encoding gradient spectral response can vary by 20%. When using tailored velocity-compensated gradients, improved quantification of the Lagrangian velocity spectrum on a voxel-by-voxel basis is achieved and used for quantitative correction of intravoxel SD values estimated with velocity-encoding gradients. CONCLUSION To address systematic underestimation of turbulence parameters using bipolar velocity-encoding gradients in phase-contrast MRI of stenotic flows with short correlation times, tailored velocity-compensated gradients are proposed to improve quantitative mapping of turbulent blood flow characteristics.
Collapse
Affiliation(s)
- Hannes Dillinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Charles McGrath
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
204
|
Schäfer M, Frank BS, Grady RM, Eghtesady P, Mitchell MB, Jaggers J, Ivy DD. Monitoring and evaluation of the surgical Potts shunt physiology using 4-dimensional flow magnetic resonance imaging. J Thorac Cardiovasc Surg 2021; 164:331-341. [PMID: 34872760 DOI: 10.1016/j.jtcvs.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/04/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The reversed Potts shunt is an increasingly applied mode of surgical palliation of severe pulmonary hypertension (PH). However, the long-term flow hemodynamic effect of the Potts shunt physiology and desirable long-term hemodynamic end points are not defined. The purpose of this descriptive study was to analyze a series of pediatric patients who underwent surgical Potts shunt as a part of end-stage PH palliation using 4-dimensional (4D)-flow magnetic resonance imaging (MRI) to (1) quantitate the flow through the anastomosis, (2) correlate the shunting pattern with phases of cardiac cycle and PH comorbidities, and (3) describe chronologic changes in shunting pattern. METHODS This was a 2-center study evaluating 4 patients seen in the Pulmonary Hypertension Clinic at Children's Hospital Colorado who were evaluated and selected to undergo surgical reverse Potts shunt at Washington University School of Medicine and were serially followed using comprehensive imaging including cardiac MRI and 4D-flow MRI. RESULTS After the procedure, each child underwent 2 4D-flow MRI evaluations. Pulmonary pressure offload was evident in all patients, as demonstrated by positive systolic right-to-left flow across the Potts shunt. All patients experienced some degree of the flow reversal, which occurs primarily in diastole. Interventricular dyssynchrony further contributed to flow reversal across the Potts shunt. Lastly, systemic and pulmonary blood mixing in the descending aorta results in secondary helical flow persisting throughout the diastole. CONCLUSIONS 4D-flow MRI demonstrates that children who have undergone a Potts shunt for severe PH can experience shunt flow reversal. Cumulatively, this left-to-right pulmonary shunt adds to right ventricular volume overload. We speculate that a valved conduit may decrease the left to right shunting and improve overall cardiac output.
Collapse
Affiliation(s)
- Michal Schäfer
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver
- Anschutz Medical Campus, Aurora, Colo.
| | - Benjamin S Frank
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver
- Anschutz Medical Campus, Aurora, Colo
| | - R Mark Grady
- Division of Cardiology, Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Pirooz Eghtesady
- Section of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Mo
| | - Max B Mitchell
- Section of Pediatric Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver
- Anschutz Medical Campus, Aurora, Colo
| | - James Jaggers
- Section of Pediatric Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver
- Anschutz Medical Campus, Aurora, Colo
| | - D Dunbar Ivy
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver
- Anschutz Medical Campus, Aurora, Colo
| |
Collapse
|
205
|
Hälvä R, Vaara SM, Peltonen JI, Kaasalainen TT, Holmström M, Lommi J, Suihko S, Rajala H, Kylmälä M, Kivistö S, Syväranta S. Peak flow measurements in patients with severe aortic stenosis: a prospective comparative study between cardiovascular magnetic resonance 2D and 4D flow and transthoracic echocardiography. J Cardiovasc Magn Reson 2021; 23:132. [PMID: 34775954 PMCID: PMC8591846 DOI: 10.1186/s12968-021-00825-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aortic valve stenosis (AS) is the most prevalent valvular disease in the developed countries. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is an emerging imaging technique, which has been suggested to improve the evaluation of AS severity compared to two-dimensional (2D) flow and transthoracic echocardiography (TTE). We investigated the reliability of CMR 2D flow and 4D flow techniques in measuring aortic transvalvular peak systolic flow in patients with severe AS. METHODS We prospectively recruited 90 patients referred for aortic valve replacement due to severe AS (73.3 ± 11.3 years, aortic valve area 0.7 ± 0.1 cm2, and 54/36 tricuspid/bicuspid), and 10 non-valvular disease controls. All the patients underwent echocardiography and 2D flow and 4D flow CMR. Peak flow velocity measurements were compared using Wilcoxon signed rank sum test and Bland-Altman analysis. RESULTS 4D flow underestimated peak flow velocity in the AS group when compared with TTE (bias - 1.1 m/s, limits of agreement ± 1.4 m/s) and 2D flow (bias - 1.2 m/s, limits of agreement ± 1.6 m/s). The differences between values obtained by TTE (median 4.3 m/s, range 2.7-6.1 m/s) and 2D flow (median 4.5 m/s, range 2.9-6.5 m/s) compared to 4D flow (median 3.1 m/s, range 1.7-5.1 m/s) were significant (p < 0.001). The difference between 2D flow and TTE were insignificant (bias 0.07 m/s, limits of agreement ± 1.5 m/s). In non-valvular disease controls, peak flow velocity was measured higher by 4D flow than 2D flow (1.4 m/s, 1.1-1.7 m/s and 1.3 m/s, 1.1-1.5 m/s, respectively; bias 0.2 m/s, limits of agreement ± 0.16 m/s). CONCLUSIONS CMR 4D flow significantly underestimates systolic peak flow velocity in patients with severe AS. 2D flow, in turn, estimated the AS velocity accurately, with measured peak flow velocities comparable to TTE.
Collapse
Affiliation(s)
- Reetta Hälvä
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu M. Vaara
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha I. Peltonen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Touko T. Kaasalainen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Miia Holmström
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jyri Lommi
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Suihko
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Helena Rajala
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Kylmälä
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sari Kivistö
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Suvi Syväranta
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
206
|
Holtackers RJ, Wildberger JE, Wintersperger BJ, Chiribiri A. Impact of Field Strength in Clinical Cardiac Magnetic Resonance Imaging. Invest Radiol 2021; 56:764-772. [PMID: 34261084 DOI: 10.1097/rli.0000000000000809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ABSTRACT Cardiac magnetic resonance imaging (MRI) is widely applied for the noninvasive assessment of cardiac structure and function, and for tissue characterization. For more than 2 decades, 1.5 T has been considered the field strength of choice for cardiac MRI. Although the number of 3-T systems significantly increased in the past 10 years and numerous new developments were made, challenges seem to remain that hamper a widespread clinical use of 3-T MR systems for cardiac applications. As the number of clinical cardiac applications is increasing, with each having their own benefits at both field strengths, no "holy grail" field strength exists for cardiac MRI that one should ideally use. This review describes the physical differences between 1.5 and 3 T, as well as the effect of these differences on major (routine) cardiac MRI applications, including functional imaging, edema imaging, late gadolinium enhancement, first-pass stress perfusion, myocardial mapping, and phase contrast flow imaging. For each application, the advantages and limitations at both 1.5 and 3 T are discussed. Solutions and alternatives are provided to overcome potential limitations. Finally, we briefly elaborate on the potential use of alternative field strengths (ie, below 1.5 T and above 3 T) for cardiac MRI and conclude with field strength recommendations for the future of cardiac MRI.
Collapse
|
207
|
Abstract
Coronary artery fistulas are uncommon but clinically important entities that may produce symptoms and significant complications such as angina, myocardial infarction, coronary artery aneurysm formation, and congestive heart failure. Multiple fistula types have been recognized, and classification uses factors such as etiology, coronary artery origin, and drainage site. Both invasive and noninvasive imaging play an important role in the management and treatment of these patients, and often times, more than one modality is necessary for comprehensive evaluation of coronary fistulas. Recent advances in both functional and anatomic imaging will likely also play a growing role in fistula evaluation. The purpose of this article is to review the classification, pathophysiology, clinical presentations, imaging findings, treatment, and future imaging directions of coronary artery fistulas.
Collapse
|
208
|
Yao X, Hu L, Peng Y, Feng F, Ouyang R, Xie W, Wang Q, Sun A, Zhong Y. Right and left ventricular function and flow quantification in pediatric patients with repaired tetralogy of Fallot using four-dimensional flow magnetic resonance imaging. BMC Med Imaging 2021; 21:161. [PMID: 34719378 PMCID: PMC8559379 DOI: 10.1186/s12880-021-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background To assess the accuracy and reproducibility of right ventricular (RV) and left ventricular (LV) function and flow measurements in children with repaired tetralogy of Fallot (rTOF) using four-dimensional (4D) flow, compared with conventional two-dimensional (2D) magnetic resonance imaging (MRI) sequences. Methods Thirty pediatric patients with rTOF were retrospectively enrolled to undergo 2D balanced steady-state free precession cine (2D b-SSFP cine), 2D phase contrast (PC), and 4D flow cardiac MRI. LV and RV volumes and flow in the ascending aorta (AAO) and main pulmonary artery (MPA) were quantified. Pearson’s or Spearman’s correlation tests, paired t-tests, the Wilcoxon signed-rank test, Bland–Altman analysis, and intraclass correlation coefficients (ICC) were performed. Results The 4D flow scan time was shorter compared with 2D sequences (P < 0.001). The biventricular volumes between 4D flow and 2D b-SSFP cine had no significant differences (P > 0.05), and showed strong correlations (r > 0.90, P < 0.001) and good consistency. The flow measurements of the AAO and MPA between 4D flow and 2D PC showed moderate to good correlations (r > 0.60, P < 0.001). There was good internal consistency in cardiac output. There was good intraobserver and interobserver biventricular function agreement (ICC > 0.85). Conclusions RV and LV function and flow quantification in pediatric patients with rTOF using 4D flow MRI can be measured accurately and reproducibly compared to those with conventional 2D sequences.
Collapse
Affiliation(s)
- Xiaofen Yao
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Liwei Hu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Yafeng Peng
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Fei Feng
- AI Imaging, GE Healthcare, No. 1 Huatuo Road, Shanghai, 201203, China
| | - Rongzhen Ouyang
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Weihui Xie
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Qian Wang
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Aimin Sun
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Yumin Zhong
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
209
|
Ngo MT, Lee UY, Ha H, Jung J, Lee DH, Kwak HS. Improving Blood Flow Visualization of Recirculation Regions at Carotid Bulb in 4D Flow MRI Using Semi-Automatic Segmentation with ITK-SNAP. Diagnostics (Basel) 2021; 11:diagnostics11101890. [PMID: 34679588 PMCID: PMC8534781 DOI: 10.3390/diagnostics11101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
Assessment of carotid bulb hemodynamics using four-dimensional (4D) flow magnetic resonance imaging (MRI) requires accurate segmentation of recirculation regions that is frequently hampered by limited resolution. This study aims to improve the accuracy of 4D flow MRI carotid bulb segmentation and subsequent recirculation regions analysis. Time-of-flight (TOF) MRI and 4D flow MRI were performed on bilateral carotid artery bifurcations in seven healthy volunteers. TOF-MRI data was segmented into 3D geometry for computational fluid dynamics (CFD) simulations. ITK-SNAP segmentation software was included in the workflow for the semi-automatic generation of 4D flow MRI angiographic data. This study compared the velocities calculated at the carotid bifurcations and the 3D blood flow visualization at the carotid bulbs obtained by 4D flow MRI and CFD. By applying ITK-SNAP segmentation software, an obvious improvement in the 4D flow MRI visualization of the recirculation regions was observed. The 4D flow MRI images of the recirculation flow characteristics of the carotid artery bulbs coincided with the CFD. A reasonable agreement was found in terms of velocity calculated at the carotid bifurcation between CFD and 4D flow MRI. However, the dispersion of velocity data points relative to the local errors of measurement in 4D flow MRI remains. Our proposed strategy showed the feasibility of improving recirculation regions segmentation and the potential for reliable blood flow visualization in 4D flow MRI. However, quantitative analysis of recirculation regions in 4D flow MRI with ITK-SNAP should be enhanced for use in clinical situations.
Collapse
Affiliation(s)
- Minh Tri Ngo
- Department of Radiology of Hue Central Hospital, Hue, Thua Thien Hue 530000, Vietnam;
| | - Ui Yun Lee
- Division of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeon-ju 54896, Korea; (U.Y.L.); (J.J.)
| | - Hojin Ha
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Jinmu Jung
- Division of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeon-ju 54896, Korea; (U.Y.L.); (J.J.)
- Hemorheology Research Institute, Jeonbuk National University, Jeon-ju 54896, Korea
| | - Dong Hwan Lee
- Division of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeon-ju 54896, Korea; (U.Y.L.); (J.J.)
- Hemorheology Research Institute, Jeonbuk National University, Jeon-ju 54896, Korea
- Correspondence: (D.H.L.); (H.S.K.); Tel.: +82-63-270-3998 (D.H.L.); +82-63-250-2582 (H.S.K.)
| | - Hyo Sung Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea
- Correspondence: (D.H.L.); (H.S.K.); Tel.: +82-63-270-3998 (D.H.L.); +82-63-250-2582 (H.S.K.)
| |
Collapse
|
210
|
Falcão MBL, Di Sopra L, Ma L, Bacher M, Yerly J, Speier P, Rutz T, Prša M, Markl M, Stuber M, Roy CW. Pilot tone navigation for respiratory and cardiac motion-resolved free-running 5D flow MRI. Magn Reson Med 2021; 87:718-732. [PMID: 34611923 PMCID: PMC8627452 DOI: 10.1002/mrm.29023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/07/2022]
Abstract
Purpose In this work, we integrated the pilot tone (PT) navigation system into a reconstruction framework for respiratory and cardiac motion‐resolved 5D flow. We tested the hypotheses that PT would provide equivalent respiratory curves, cardiac triggers, and corresponding flow measurements to a previously established self‐gating (SG) technique while being independent from changes to the acquisition parameters. Methods Fifteen volunteers and 9 patients were scanned with a free‐running 5D flow sequence, with PT integrated. Respiratory curves and cardiac triggers from PT and SG were compared across all subjects. Flow measurements from 5D flow reconstructions using both PT and SG were compared to each other and to a reference electrocardiogram‐gated and respiratory triggered 4D flow acquisition. Radial trajectories with variable readouts per interleave were also tested in 1 subject to compare cardiac trigger quality between PT and SG. Results The correlation between PT and SG respiratory curves were 0.95 ± 0.06 for volunteers and 0.95 ± 0.04 for patients. Heartbeat duration measurements in volunteers and patients showed a bias to electrocardiogram measurements of, respectively, 0.16 ± 64.94 ms and 0.01 ± 39.29 ms for PT versus electrocardiogram and of 0.24 ± 63.68 ms and 0.09 ± 32.79 ms for SG versus electrocardiogram. No significant differences were reported for the flow measurements between 5D flow PT and from 5D flow SG. A decrease in the cardiac triggering quality of SG was observed for increasing readouts per interleave, whereas PT quality remained constant. Conclusion PT has been successfully integrated in 5D flow MRI and has shown equivalent results to the previously described 5D flow SG technique, while being completely acquisition‐independent.
Collapse
Affiliation(s)
- Mariana B L Falcão
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Liliana Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Mario Bacher
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Siemens Healthcare GmbH, Erlangen, Germany.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | | - Tobias Rutz
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque (CRMC), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Milan Prša
- Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
211
|
Grafton-Clarke C, Thornton G, Fidock B, Archer G, Hose R, van der Geest RJ, Zhong L, Swift AJ, Wild JM, De Gárate E, Bucciarelli-Ducci C, Plein S, Treibel TA, Flather M, Vassiliou VS, Garg P. Mitral regurgitation quantification by cardiac magnetic resonance imaging (MRI) remains reproducible between software solutions. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.17200.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The reproducibility of mitral regurgitation (MR) quantification by cardiovascular magnetic resonance (CMR) imaging using different software solutions remains unclear. This research aimed to investigate the reproducibility of MR quantification between two software solutions: MASS (version 2019 EXP, LUMC, Netherlands) and CAAS (version 5.2, Pie Medical Imaging). Methods: CMR data of 35 patients with MR (12 primary MR, 13 mitral valve repair/replacement, and ten secondary MR) was used. Four methods of MR volume quantification were studied, including two 4D-flow CMR methods (MRMVAV and MRJet) and two non-4D-flow techniques (MRStandard and MRLVRV). We conducted within-software and inter-software correlation and agreement analyses. Results: All methods demonstrated significant correlation between the two software solutions: MRStandard (r=0.92, p<0.001), MRLVRV (r=0.95, p<0.001), MRJet (r=0.86, p<0.001), and MRMVAV (r=0.91, p<0.001). Between CAAS and MASS, MRJet and MRMVAV, compared to each of the four methods, were the only methods not to be associated with significant bias. Conclusions: We conclude that 4D-flow CMR methods demonstrate equivalent reproducibility to non-4D-flow methods but greater levels of agreement between software solutions.
Collapse
|
212
|
Fevola E, Ballarin F, Jiménez‐Juan L, Fremes S, Grivet‐Talocia S, Rozza G, Triverio P. An optimal control approach to determine resistance-type boundary conditions from in-vivo data for cardiovascular simulations. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3516. [PMID: 34337877 PMCID: PMC9285750 DOI: 10.1002/cnm.3516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/26/2021] [Indexed: 06/01/2023]
Abstract
The choice of appropriate boundary conditions is a fundamental step in computational fluid dynamics (CFD) simulations of the cardiovascular system. Boundary conditions, in fact, highly affect the computed pressure and flow rates, and consequently haemodynamic indicators such as wall shear stress (WSS), which are of clinical interest. Devising automated procedures for the selection of boundary conditions is vital to achieve repeatable simulations. However, the most common techniques do not automatically assimilate patient-specific data, relying instead on expensive and time-consuming manual tuning procedures. In this work, we propose a technique for the automated estimation of outlet boundary conditions based on optimal control. The values of resistive boundary conditions are set as control variables and optimized to match available patient-specific data. Experimental results on four aortic arches demonstrate that the proposed framework can assimilate 4D-Flow MRI data more accurately than two other common techniques based on Murray's law and Ohm's law.
Collapse
Affiliation(s)
- Elisa Fevola
- Department of Electronics and TelecommunicationsPolitecnico di TorinoTorinoItaly
| | - Francesco Ballarin
- MathLab, Mathematics areaSISSA ‐ International School for Advanced StudiesTriesteItaly
- Department of Mathematics and PhysicsCatholic University of the Sacred HeartBresciaItaly
| | - Laura Jiménez‐Juan
- Department of Medical ImagingSt Michael's Hospital and Sunnybrook Research Institute, University of TorontoTorontoCanada
| | - Stephen Fremes
- Schulich Heart CentreSunnybrook Health Sciences Center and Sunnybrook Research Institute, University of TorontoTorontoCanada
| | | | - Gianluigi Rozza
- MathLab, Mathematics areaSISSA ‐ International School for Advanced StudiesTriesteItaly
| | - Piero Triverio
- Department of Electrical & Computer EngineeringInstitute of Biomedical Engineering, University of TorontoTorontoCanada
| |
Collapse
|
213
|
Zhao PF, Zeng R, Qiu XY, Ding HY, Lv H, Li XS, Wang GP, Li D, Gong SS, Wang ZC. Diploic vein as a newly treatable cause of pulsatile tinnitus: A case report. World J Clin Cases 2021; 9:8097-8103. [PMID: 34621867 PMCID: PMC8462196 DOI: 10.12998/wjcc.v9.i27.8097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulsatile tinnitus (PT) is an annoying sound that can be eliminated with targeted treatment of the cause. However, the causes of PT have not been fully elucidated.
CASE SUMMARY A 38-year-old woman with right-sided objective PT underwent preoperative computed tomography arteriography and venography (CTA/V). A 3.8 mm vine diploic vein (DV), which passed through the mastoid air cells posteriorly in a dehiscent canal and was continuous with the transverse-sigmoid sinus, was thought to be the causative finding. Four-dimensional flow magnetic resonance (4D flow MR) imaging showed that the blood in the DV flowed toward the transverse-sigmoid sinus. The closer the blood was to the transverse-sigmoid sinus, the higher the velocity. No vortex or turbulence was found in the DV or adjacent transverse sinus. The sound was eliminated immediately after ligation of the DV with no recurrence during a three-month follow-up. No flow signal of the DV was noted on postoperative 4D flow MR.
CONCLUSION A DV may be a treatable cause of PT. CTA/V and 4D flow MR could be utilized to determine the morphological and hemodynamic characteristics of the DV.
Collapse
Affiliation(s)
- Peng-Fei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Rong Zeng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiao-Yu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - He-Yu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiao-Shuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guo-Peng Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dong Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Langfang 076350, Hebei Province, China
| | - Shu-Sheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
214
|
Yang K, Wu S, Samuel OW, Zhang H, Ghista DN, Yang D, Wong KKL. A Hybrid Approach for Cardiac Blood Flow Vortex Ring Identification Based on Optical Flow and Lagrangian Averaged Vorticity Deviation. Front Physiol 2021; 12:698405. [PMID: 34539430 PMCID: PMC8440940 DOI: 10.3389/fphys.2021.698405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The measurement of cardiac blood flow vortex characteristics can help to facilitate the analysis of blood flow dynamics that regulates heart function. However, the complexity of cardiac flow along with other physical limitations makes it difficult to adequately identify the dominant vortices in a heart chamber, which play a significant role in regulating the heart function. Although the existing vortex quantification methods can achieve this goal, there are still some shortcomings: such as low precision, and ignoring the center of the vortex without the description of vortex deformation processes. To address these problems, an optical flow Lagrangian averaged vorticity deviation (Optical flow-LAVD) method is proposed. Methodology: We examined the flow within the right atrium (RA) of the participants’ hearts, by using a single set of scans pertaining to a slice at two-chamber short-axis orientation. Toward adequate extraction of the vortex ring characteristics, a novel approach driven by the Lagrangian averaged vorticity deviation (LAVD) was implemented and applied to characterize the trajectory integral associated with vorticity deviation and the spatial mean of rings, by using phase-contrast magnetic resonance imaging (PC-MRI) datasets as a case study. To interpolate the time frames between every larger discrete frame and minimize the error caused by constructing a continuous velocity field for the integral process of LAVD, we implemented the optical flow as an interpolator and introduced the backward warping as an intermediate frame synthesis basis, which is then used to generate higher quality continuous velocity fields. Results: Our analytical study results showed that the proposed Optical flow-LAVD method can accurately identify vortex ring and continuous velocity fields, based on optical flow information, for yielding high reconstruction outcomes. Compared with the linear interpolation and phased-based frame interpolation methods, our proposed algorithm can generate more accurate synthesized PC-MRI. Conclusion: This study has developed a novel Optical flow-LAVD model to accurately identify cardiac vortex rings, and minimize the associated errors caused by the construction of a continuous velocity field. Our paper presents a superior vortex characteristics detection method that may potentially aid the understanding of medical experts on the dynamics of blood flow within the heart.
Collapse
Affiliation(s)
- Ke Yang
- Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shiqian Wu
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Oluwarotimi W Samuel
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Zhang
- Ultrasound Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dhanjoo N Ghista
- University 2020 Foundation, Inc., California City, CA, United States
| | - Di Yang
- Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Kelvin K L Wong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
215
|
Liu CY. Editorial for "Whole-Heart 4D Flow MRI for Evaluation of Normal and Regurgitant Valvular Flow: A Quantitative Comparison Between Pseudo-Spiral Sampling and EPI Readout". J Magn Reson Imaging 2021; 55:1131-1132. [PMID: 34510636 DOI: 10.1002/jmri.27919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chia-Ying Liu
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara-shi, Tochigi, 324-8550, Japan
| |
Collapse
|
216
|
Mandell JG, Loke YH, Mass PN, Cleveland V, Delaney M, Opfermann J, Aslan S, Krieger A, Hibino N, Olivieri LJ. Altered hemodynamics by 4D flow cardiovascular magnetic resonance predict exercise intolerance in repaired coarctation of the aorta: an in vitro study. J Cardiovasc Magn Reson 2021; 23:99. [PMID: 34482836 PMCID: PMC8420072 DOI: 10.1186/s12968-021-00796-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Coarctation of the aorta (CoA) is associated with decreased exercise capacity despite successful repair. Altered flow patterns have been identified due to abnormal aortic arch geometry. Our previous work demonstrated aorta size mismatch to be associated with exercise intolerance in this population. In this study, we studied aortic flow patterns during simulations of exercise in repaired CoA using 4D flow cardiovascular magnetic resonance (CMR) using aortic replicas connected to an in vitro flow pump and correlated findings with exercise stress test results to identify biomarkers of exercise intolerance. METHODS Patients with CoA repair were retrospectively analyzed after CMR and exercise stress test. Each aorta was manually segmented and 3D printed. Pressure gradient measurements from ascending aorta (AAo) to descending aorta (DAo) and 4D flow CMR were performed during simulations of rest and exercise using a mock circulatory flow loop. Changes in wall shear stress (WSS) and secondary flow formation (vorticity and helicity) from rest to exercise were quantified, as well as estimated DAo Reynolds number. Parameters were correlated with percent predicted peak oxygen consumption (VO2max) and aorta size mismatch (DAAo/DDAo). RESULTS Fifteen patients were identified (VO2max 47 to 126% predicted). Pressure gradient did not correlate with VO2max at rest or exercise. VO2max correlated positively with the change in peak vorticity (R = 0.55, p = 0.03), peak helicity (R = 0.54, p = 0.04), peak WSS in the AAo (R = 0.68, p = 0.005) and negatively with peak WSS in the DAo (R = - 0.57, p = 0.03) from rest to exercise. DAAo/DDAo correlated strongly with change in vorticity (R = - 0.38, p = 0.01), helicity (R = - 0.66, p = 0.007), and WSS in the AAo (R = - 0.73, p = 0.002) and DAo (R = 0.58, p = 0.02). Estimated DAo Reynolds number negatively correlated with VO2max for exercise (R = - 0.59, p = 0.02), but not rest (R = - 0.28, p = 0.31). Visualization of streamline patterns demonstrated more secondary flow formation in aortic arches with better exercise capacity, larger DAo, and lower Reynolds number. CONCLUSIONS There are important associations between secondary flow characteristics and exercise capacity in repaired CoA that are not captured by traditional pressure gradient, likely due to increased turbulence and inefficient flow. These 4D flow CMR parameters are a target of investigation to identify optimal aortic arch geometry and improve long term clinical outcomes after CoA repair.
Collapse
Affiliation(s)
- Jason G Mandell
- Division of Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Yue-Hin Loke
- Division of Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Paige N Mass
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Vincent Cleveland
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Marc Delaney
- Division of Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Justin Opfermann
- Department of Mechanical Engineering, Johns Hopkins University, Latrobe Hall 223, 3400 North Charles St, Baltimore, MD, 21218, USA
| | - Seda Aslan
- Department of Mechanical Engineering, Johns Hopkins University, Latrobe Hall 223, 3400 North Charles St, Baltimore, MD, 21218, USA
| | - Axel Krieger
- Department of Mechanical Engineering, Johns Hopkins University, Latrobe Hall 223, 3400 North Charles St, Baltimore, MD, 21218, USA
| | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
- Section of Cardiac Surgery, Department of Surgery, Advocate Children's Hospital, 4440 West 95th Street, Oak Lawn, IL, 60453, USA
| | - Laura J Olivieri
- Division of Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| |
Collapse
|
217
|
Zhuang B, Sirajuddin A, Zhao S, Lu M. The role of 4D flow MRI for clinical applications in cardiovascular disease: current status and future perspectives. Quant Imaging Med Surg 2021; 11:4193-4210. [PMID: 34476199 DOI: 10.21037/qims-20-1234] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/23/2021] [Indexed: 11/06/2022]
Abstract
Magnetic resonance imaging (MRI) four-dimensional (4D) flow is a type of phase-contrast (PC) MRI that uses blood flow encoded in 3 directions, which is resolved relative to 3 spatial and temporal dimensions of cardiac circulation. It can be used to simultaneously quantify and visualize hemodynamics or morphology disorders. 4D flow MRI is more comprehensive and accurate than two-dimensional (2D) PC MRI and echocardiography. 4D flow MRI provides numerous hemodynamic parameters that are not limited to the basic 2D parameters, including wall shear stress (WSS), pulse wave velocity (PWV), kinetic energy, turbulent kinetic energy (TKE), pressure gradient, and flow component analysis. 4D flow MRI is widely used to image many parts of the body, such as the neck, brain, and liver, and has a wide application spectrum to cardiac diseases and large vessels. This present review aims to summarize the hemodynamic parameters of 4D flow MRI technology and generalize their usefulness in clinical practice in relation to the cardiovascular system. In addition, we note the improvements that have been made to 4D flow MRI with the application of new technologies. The application of new technologies can improve the speed of 4D flow, which would benefit clinical applications.
Collapse
Affiliation(s)
- Baiyan Zhuang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Arlene Sirajuddin
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
218
|
Pravdivtseva MS, Gaidzik F, Berg P, Hoffman C, Rivera-Rivera LA, Medero R, Bodart L, Roldan-Alzate A, Speidel MA, Johnson KM, Wieben O, Jansen O, Hövener JB, Larsen N. Pseudo-Enhancement in Intracranial Aneurysms on Black-Blood MRI: Effects of Flow Rate, Spatial Resolution, and Additional Flow Suppression. J Magn Reson Imaging 2021; 54:888-901. [PMID: 33694334 PMCID: PMC8403769 DOI: 10.1002/jmri.27587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vessel-wall enhancement (VWE) on black-blood MRI (BB MRI) has been proposed as an imaging marker for a higher risk of rupture and associated with wall inflammation. Whether VWE is causally linked to inflammation or rather induced by flow phenomena has been a subject of debate. PURPOSE To study the effects of slow flow, spatial resolution, and motion-sensitized driven equilibrium (MSDE) preparation on signal intensities in BB MRI of patient-specific aneurysm flow models. STUDY TYPE Prospective. SUBJECTS/FLOW ANEURYSM MODEL/VIRTUAL VESSELS Aneurysm flow models based on 3D rotational angiography datasets of three patients with intracranial aneurysms were 3D printed and perfused at two different flow rates, with and without Gd-containing contrast agent. FIELD STRENGTH/SEQUENCE Variable refocusing flip angle 3D fast-spin echo sequence at 3 T with and without MSDE with three voxel sizes ((0.5 mm)3 , (0.7 mm)3 , and (0.9 mm)3 ); time-resolved with phase-contrast velocity-encoding 3D spoiled gradient echo sequence (4D flow MRI). ASSESSMENT Three independent observers performed a qualitative visual assessment of flow patterns and signal enhancement. Quantitative analysis included voxel-wise evaluation of signal intensities and magnitude velocity distributions in the aneurysm. STATISTICAL TESTS Kruskal-Wallis test, potential regressions. RESULTS A hyperintense signal in the lumen and adjacent to the aneurysm walls on BB MRI was colocalized with slow flow. Signal intensities increased by a factor of 2.56 ± 0.68 (P < 0.01) after administering Gd contrast. After Gd contrast administration, the signal was suppressed most in conjunction with high flows and with MSDE (2.41 ± 2.07 for slow flow without MSDE, and 0.87 ± 0.99 for high flow with MSDE). A clear result was not achieved by modifying the spatial resolution . DATA CONCLUSIONS Slow-flow phenomena contribute substantially to aneurysm enhancement and vary with MRI parameters. This should be considered in the clinical setting when assessing VWE in patients with an unruptured aneurysm. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Mariya S. Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Franziska Gaidzik
- Lab. of Fluid Dynamics and Technical Flows, Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Philipp Berg
- Lab. of Fluid Dynamics and Technical Flows, Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Carson Hoffman
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Leonardo A. Rivera-Rivera
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Rafael Medero
- Department of Mechanical Engineering and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Lindsay Bodart
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Alejandro Roldan-Alzate
- Department of Mechanical Engineering and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Michael A. Speidel
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Kevin M. Johnson
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Oliver Wieben
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
219
|
Zhang G, Zhang S, Qin Y, Fang J, Tang X, Li L, Zhou Y, Wu D, Yan S, Liu WV, Zhu W. Differences in Wall Shear Stress Between High-Risk and Low-Risk Plaques in Patients With Moderate Carotid Artery Stenosis: A 4D Flow MRI Study. Front Neurosci 2021; 15:678358. [PMID: 34456667 PMCID: PMC8385133 DOI: 10.3389/fnins.2021.678358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
This study aimed to evaluate the difference in wall shear stress (WSS) (axial, circumferential, and 3D) between high-risk and low-risk plaques in patients with moderate carotid artery stenosis and to identify which time points and directions play the dominant roles in determining the risk associated with plaques. Forty carotid arteries in 30 patients were examined in this study. All patients underwent high-resolution vessel wall (HRVW) imaging, diffusion-weighted imaging (DWI), and 4D flow MRI; HRVW imaging and DWI were used to separate low- and high-risk plaque. Twenty-four high-risk plaques and 16 low-risk plaques were enrolled. An independent-sample t-test was used to compare WSS between low- and high-risk plaques in the whole cardiac cycle and at 20 different time points in the cardiac cycle. The study found that patients with high-risk plaques had higher WSS than those with low-risk plaques throughout the entire cardiac cycle (p < 0.05), but the changes varied at the 20 different time points. The number of non-significant differences (p > 0.05) was less in diastole than in systole across different time points. The axial WSS values were higher than the circumferential WSS values; the difference in axial WSS values between high- and low-risk plaques was more significant than the difference in circumferential WSS, whereas 3D WSS values best reflected the difference between high-risk and low-risk plaques because they showed significant differences at every time point. In conclusion, increased WSS, especially during the diastolic period and in the axial direction, may be a signal of a high-risk plaque and may cause cerebrovascular events in patients with moderate carotid artery stenosis. Additionally, WSS can provide hemodynamic information and help clinicians make more appropriate decisions for patients with plaques.
Collapse
Affiliation(s)
- Guiling Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jicheng Fang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyin Vivian Liu
- Magnetic Resonance Research, General Electric Healthcare, Beijing, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
220
|
van der Woude SFS, Rijnberg FM, Hazekamp MG, Jongbloed MRM, Kenjeres S, Lamb HJ, Westenberg JJM, Roest AAW, Wentzel JJ. The Influence of Respiration on Blood Flow in the Fontan Circulation: Insights for Imaging-Based Clinical Evaluation of the Total Cavopulmonary Connection. Front Cardiovasc Med 2021; 8:683849. [PMID: 34422920 PMCID: PMC8374887 DOI: 10.3389/fcvm.2021.683849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Congenital heart disease is the most common birth defect and functionally univentricular heart defects represent the most severe end of this spectrum. The Fontan circulation provides an unique solution for single ventricle patients, by connecting both caval veins directly to the pulmonary arteries. As a result, the pulmonary circulation in Fontan palliated patients is characterized by a passive, low-energy circulation that depends on increased systemic venous pressure to drive blood toward the lungs. The absence of a subpulmonary ventricle led to the widely believed concept that respiration, by sucking blood to the pulmonary circulation during inspiration, is of great importance as a driving force for antegrade blood flow in Fontan patients. However, recent studies show that respiration influences pulsatility, but has a limited effect on net forward flow in the Fontan circulation. Importantly, since MRI examination is recommended every 2 years in Fontan patients, clinicians should be aware that most conventional MRI flow sequences do not capture the pulsatility of the blood flow as a result of the respiration. In this review, the unique flow dynamics influenced by the cardiac and respiratory cycle at multiple locations within the Fontan circulation is discussed. The impact of (not) incorporating respiration in different MRI flow sequences on the interpretation of clinical flow parameters will be covered. Finally, the influence of incorporating respiration in advanced computational fluid dynamic modeling will be outlined.
Collapse
Affiliation(s)
- Séline F S van der Woude
- Department of Cardiology, Biomedical Engineering, Biomechanics Laboratory, Rotterdam, Netherlands
| | - Friso M Rijnberg
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Mark G Hazekamp
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy, Embryology and Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Sasa Kenjeres
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J. M. Burgerscentrum Research School for Fluid Mechanics, Delft, Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Arno A W Roest
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Biomechanics Laboratory, Rotterdam, Netherlands
| |
Collapse
|
221
|
Doyle CM, Orr J, Greenwood JP, Plein S, Tsoumpas C, Bissell MM. Four-Dimensional Flow Magnetic Resonance Imaging in the Assessment of Blood Flow in the Heart and Great Vessels: A Systematic Review. J Magn Reson Imaging 2021; 55:1301-1321. [PMID: 34416048 DOI: 10.1002/jmri.27874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Four-dimensional (4D) flow magnetic resonance imaging (MRI) allows multidirectional quantification of blood flow in the heart and great vessels. Comparability of the technique to the current reference standards of flow assessment-two-dimensional (2D) flow MRI and Doppler echocardiography-varies in the literature. Image acquisition parameters likely impact upon the accuracy and reproducibility of 4D flow MRI. We therefore sought to review the current literature on 4D flow MRI in the heart and great vessels, in comparison to 2D flow MRI, Doppler echocardiography, and invasive catheterization. Using a predefined search strategy and inclusion and exclusion criteria, the databases EMBASE and Medline were searched in January 2021 for peer-reviewed research articles comparing cardiac 4D flow MRI to 2D flow MRI, Doppler echocardiography and/or invasive catheterization. The data from all relevant articles were assimilated and analyzed using Mann-Whitney U and chi χ2 test. Forty-four manuscripts met the eligibility criteria and were included in the review. The review showed agreement of 4D flow MRI to the reference standard methods of flow assessment, particular in the measurement of peak velocity and stroke volume in 55% of manuscripts. The use of valve tracking significantly improves agreement between 4D flow MRI and the reference modalities (79% matching with the use of valve tracking vs. 50% without, P = 0.04). This review highlights that the impact of acquisition parameters on 4D flow MRI accuracy is multifactorial. It is therefore important that each center conducts its own quality assurance prior to using 4D flow MRI for clinical decision-making. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ciara M Doyle
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| | - Jenny Orr
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| | - John P Greenwood
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| | - Charalampos Tsoumpas
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK.,Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| |
Collapse
|
222
|
Xu K, Wang XD, Yang ZG, Xu HY, Xu R, Xie LJ, Wen LY, Fu H, Yan WF, Guo YK. Quantification of peak blood flow velocity at the cardiac valve and great thoracic vessels by four-dimensional flow and two-dimensional phase-contrast MRI compared with echocardiography: a systematic review and meta-analysis. Clin Radiol 2021; 76:863.e1-863.e10. [PMID: 34404516 DOI: 10.1016/j.crad.2021.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023]
Abstract
AIM To objectively examine the agreement and correlation between four-dimensional (4D) flow magnetic resonance imaging (MRI) and traditional two-dimensional (2D) phase-contrast (PC) MRI with the reference standard of Doppler echocardiography for measuring peak blood velocity at the cardiac valve and great arteries, and to assess if 4D flow MRI offers an advantage over the traditional 2D method. MATERIALS AND METHODS The literature was searched systematically for studies that evaluate the degree of correlation and agreement between 4D flow MRI or 2D PC MRI and Doppler retrieved from PubMed, EMBASE, and the Cochrane Library. A meta-analysis was conducted to determine the peak velocity pooled bias with 95% limits of agreement (LoA) and correlation coefficient (r) for 4D flow MRI and 2D PC MRI compared with Doppler. RESULTS Ten studies that compared 4D flow MRI with Doppler and 12 studies that compared 2D PC MRI with Doppler were included. 4D flow MRI showed an underestimation with bias and 95% LoA of -0.09 (-0.41, 0.24) m/s (p=0.079) while 2D PC MRI showed a poorer agreement with a bias and 95% LoA of -0.25 (-0.53, 0.03), p=0.596. 4D flow MRI and 2D PC MRI showed a strong correlation with R=0.80 (95% CI 0.75, 0.84; p<0.001) and R=0.83 (95% CI 0.79, 0.87; p<0.001), respectively. CONCLUSION In this meta-analysis, 4D flow MRI provides improved assessment of peak velocity when compared with traditional 2D PC MRI. 4D flow MRI can be considered an important complement or substitute to Doppler echocardiography for peak velocity assessment.
Collapse
Affiliation(s)
- K Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - X D Wang
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Z G Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - H Y Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - R Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - L J Xie
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - L Y Wen
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - H Fu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - W F Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Y K Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
223
|
Sieren MM, Balks MF, Schlueter JK, Wegner F, Huellebrand M, Scharfschwerdt M, Barkhausen J, Frydrychowicz A, Gabbert DD, Oechtering TH. Comprehensive analysis of haemodynamics in patients with physiologically curved prostheses of the ascending aorta. Eur J Cardiothorac Surg 2021; 62:6354573. [PMID: 34409435 DOI: 10.1093/ejcts/ezab352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES This is a comprehensive analysis of haemodynamics after valve-sparing aortic root replacement (VSARR) with anatomically curved prosthesis (CP) compared to straight prosthesis (SP) and age-matched volunteers (VOL) using 4D flow MRI (time-resolved three-dimensional magnetic resonance phase-contrast imaging). METHODS Nine patients with 90° CP, nine patients with SP, and twelve VOL were examined with 4D flow MRI. Analyses included various characteristic anatomical, qualitative and quantitative haemodynamic parameters. RESULTS Grading of secondary flow patterns was lower in CP patients than in SP patients (P = 0.09) and more comparable to VOL, albeit not reaching statistical significance. However, it was easy to differentiate between VSARR patients and healthy volunteers: Patients more often had angular aortic arches (CP: 89%, SP: 100%; VOL: 17%; P ≤ 0.002), increased average curvature (CP: 0.17/cm [0.15, 0.18]; SP: 0.15/cm [0.14, 0.16]; VOL: 0.14/cm [0.13, 0.16]; P ≤ 0.007; values given as median [interquartile range]), and more secondary flow patterns (CP: 3 [2, 4] SP: 3 [2, 3] VOL: 2 [1, 2]; P < 0.01). Maximum circulation (CP: 142.7 cm2/s [116.1, 187.3]; SP: 101.8 cm2/s [77.7, 132.5]; VOL: 42.8cm2/s [39.3, 65.6]; P ≤ 0.002), maximum helicity density (CP: 9.6 m/s2 [9.3, 23.9]; SP: 9.7 m/s2 [8.6, 12.5]; VOL 4.9 m/s2 [4.2, 7.7]; P ≤ 0.007), and wall shear stress gradient (e.g., proximal ascending aorta CP: 0.97 N/m2 [0.54, 1.07]; SP: 1.08 N/m2 [0.74, 1.24]; VOL: 0.41 N/m2 [0.32, 0.60]; P ≤ 0.01) were increased in patients. One CP patient had a round aortic arch with physiological haemodynamic parameters. CONCLUSIONS The restoration of physiological aortic configuration and haemodynamics was not fully achieved with the curved prostheses in our study cohort. However, there was a tendency towards improved haemodynamic conditions in the patients with curved prostheses overall but without statistical significance. A single patient with a CP and near-physiological configuration of the thoracic aorta underlines the importance of optimizing postoperative geometric conditions for allowing for physiological haemodynamics and cardiovascular energetics after VSARR.
Collapse
Affiliation(s)
- Malte Maria Sieren
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Lübeck, Germany
| | | | | | - Franz Wegner
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Lübeck, Germany
| | | | | | - Jörg Barkhausen
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Lübeck, Germany
| | - Alex Frydrychowicz
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Lübeck, Germany
| | - Dominik Daniel Gabbert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Thekla Helene Oechtering
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Lübeck, Germany.,Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
224
|
Ramaekers MJFG, Adriaans BP, Juffermans JF, van Assen HC, Bekkers SCAM, Scholte AJHA, Kenjeres S, Lamb HJ, Wildberger JE, Westenberg JJM, Schalla S. Characterization of Ascending Aortic Flow in Patients With Degenerative Aneurysms: A 4D Flow Magnetic Resonance Study. Invest Radiol 2021; 56:494-500. [PMID: 33653992 DOI: 10.1097/rli.0000000000000768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Degenerative thoracic aortic aneurysm (TAA) patients are known to be at risk of life-threatening acute aortic events. Guidelines recommend preemptive surgery at diameters of greater than 55 mm, although many patients with small aneurysms show only mild growth rates and more than half of complications occur in aneurysms below this threshold. Thus, assessment of hemodynamics using 4-dimensional flow magnetic resonance has been of interest to obtain more insights in aneurysm development. Nonetheless, the role of aberrant flow patterns in TAA patients is not yet fully understood. MATERIALS AND METHODS A total of 25 TAA patients and 22 controls underwent time-resolved 3-dimensional phase contrast magnetic resonance imaging with 3-directional velocity encoding (ie, 4-dimensional flow magnetic resonance imaging). Hemodynamic parameters such as vorticity, helicity, and wall shear stress (WSS) were calculated from velocity data in 3 anatomical segments of the ascending aorta (root, proximal, and distal). Regional WSS distribution was assessed for the full cardiac cycle. RESULTS Flow vorticity and helicity were significantly lower for TAA patients in all segments. The proximal ascending aorta showed a significant increase in peak WSS in the outer curvature in TAA patients, whereas WSS values at the inner curvature were significantly lower as compared with controls. Furthermore, positive WSS gradients from sinotubular junction to midascending aorta were most prominent in the outer curvature, whereas from midascending aorta to brachiocephalic trunk, the outer curvature showed negative WSS gradients in the TAA group. Controls solely showed a positive gradient at the inner curvature for both segments. CONCLUSIONS Degenerative TAA patients show a decrease in flow vorticity and helicity, which is likely to cause perturbations in physiological flow patterns. The subsequent differing distribution of WSS might be a contributor to vessel wall remodeling and aneurysm formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sasa Kenjeres
- Department of Chemical Engineering, Transport Phenomena Section, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center
| | | | | | | |
Collapse
|
225
|
Grafton-Clarke C, Crandon S, Westenberg JJM, Swoboda PP, Greenwood JP, van der Geest RJ, Swift AJ, Vassiliou VS, Plein S, Garg P. Reproducibility of left ventricular blood flow kinetic energy measured by four-dimensional flow CMR. BMC Res Notes 2021; 14:289. [PMID: 34315510 PMCID: PMC8314539 DOI: 10.1186/s13104-021-05697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Four-dimensional flow CMR allows for a comprehensive assessment of the blood flow kinetic energy of the ventricles of the heart. In comparison to standard two-dimensional image acquisition, 4D flow CMR is felt to offer superior reproducibility, which is important when repeated examinations may be required. The objective was to evaluate the inter-observer and intra-observer reproducibility of blood flow kinetic energy assessment using 4D flow of the left ventricle in 20 healthy volunteers across two centres in the United Kingdom and the Netherlands. DATA DESCRIPTION This dataset contains 4D flow CMR blood flow kinetic energy data for 20 healthy volunteers with no known cardiovascular disease. Presented is kinetic energy data for the entire cardiac cycle (global), the systolic and diastolic components, in addition to blood flow kinetic energy for both early and late diastolic filling. This data is available for reuse and would be valuable in supporting other research, such as allowing for larger sample sizes with more statistical power for further analysis of these variables.
Collapse
Affiliation(s)
- Ciaran Grafton-Clarke
- George Davies Centre, School of Medicine, University of Leicester, Lancaster Road, Leicester, LE1 7HA UK
| | - Saul Crandon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Jos J. M. Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter P. Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John P. Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Rob J. van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew J. Swift
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Pankaj Garg
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
226
|
Abstract
Aortic valve stenosis has become the most common valvular heart disease on account of aging population and increasing life expectancy. Echocardiography is the primary diagnosis tool for this, but it still has many flaws. Therefore, advanced cardiovascular multimodal imaging techniques are continuously being developed in order to overcome these limitations. Cardiac magnetic resonance imaging (CMR) allows a comprehensive morphological and functional evaluation of the aortic valve and provides important data for the diagnosis and risk stratification in patients with aortic stenosis. CMR can functionally assess the aortic flow using two-dimensional and time-resolved three-dimensional velocity-encoded phase-contrast techniques. Furthermore, by late gadolinium enhancement and T1-mapping, CMR can reveal the presence of both irreversible replacement and diffuse interstitial myocardial fibrosis. Moreover, its role in guiding aortic valve replacement procedures is beginning to take shape. Recent studies have rendered the importance of active and passive biomechanics in risk stratification and prognosis prediction in patients with aortic stenosis, but more work is required is just in its infancy, but data are promising. In addition, cardiac computed tomography is particularly useful for the diagnosis of aortic valve stenosis, and in preprocedural evaluation of the aorta, while positron emission tomography can be also used to assess valvular inflammation and active calcification. The purpose of this review is to provide a comprehensive overview of current available data regarding advanced cardiovascular multimodal imaging in aortic stenosis.
Collapse
|
227
|
Avesani M, Degrelle B, Di Salvo G, Thambo JB, Iriart X. Vector flow mapping: A review from theory to practice. Echocardiography 2021; 38:1405-1413. [PMID: 34259359 DOI: 10.1111/echo.15154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The interest in intra-cardiac blood flow analysis is rapidly growing, and it has encouraged the development of different non-invasive imaging techniques. Among these, Vector Flow Mapping (VFM), combing Color-Doppler imaging and speckle tracking data, seems to be a promising approach, feasible in adult and children population. AIM OF THE REVIEW The aim of this review is to give a historical perspective on the development of VFM method and a summary of the current algorithms and parameters potentially evaluable. Then, we will present the current state-of-the-art of VFM with an overview of clinical studies and applications of this technique.
Collapse
Affiliation(s)
- Martina Avesani
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.,Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Bastien Degrelle
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France
| | - Giovanni Di Salvo
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Jean-Benoit Thambo
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.,Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, Bordeaux, France
| | - Xavier Iriart
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.,Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, Bordeaux, France
| |
Collapse
|
228
|
Velvaluri P, Pravdivtseva MS, Hensler J, Wodarg F, Jansen O, Quandt E, Hövener JB. A realistic way to investigate the design, and mechanical properties of flow diverter stents. Expert Rev Med Devices 2021; 18:569-579. [PMID: 33890849 DOI: 10.1080/17434440.2021.1920923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Braided flow diverters (FD) are highly sophisticated, delicate, and intricate mechanical devices used to treat intracranial aneurysms. Testing such devices in vitro, however, remains an unsolved challenge. Here, we evaluate methods to measure flow, design and mechanical properties in vitro. METHODS Flow properties, cell porosity, pore density, and cell area were evaluated under geometrically realistic conditions by placing FDs in patient-derived, 3D-printed models of human vasculature. 4D flow MRI was used to measure fluid dynamics. Laser microscopy was used to measure the design properties of the FDs. New methods were developed to investigate the bending, circumferential, and longitudinal radial force of the FDs continuously over varying diameters. RESULTS The placement and flow properties of the FD in the vasculature models were successfully measured by MRI, although artifacts occurred. Likewise, the porosity, pore density, and cell area were successfully measured inside of the models using a laser microscope. The newly developed mechanical methods allowed to measure the indicated forces - to our knowledge for the first time - continuously. CONCLUSION Modern and specifically tailored techniques, some of which were presented here for the first time, allow detailed insights into the flow, design, and mechanical properties of braided flow diverter stents.
Collapse
Affiliation(s)
| | - Mariya S Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Johannes Hensler
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Fritz Wodarg
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Eckhard Quandt
- Chair of Inorganic Functional Materials, Kiel University, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| |
Collapse
|
229
|
Spampinato RA, Jahnke C, Crelier G, Lindemann F, Fahr F, Czaja-Ziolkowska M, Sieg F, Strotdrees E, Hindricks G, Borger MA, Paetsch I. Quantification of regurgitation in mitral valve prolapse with four-dimensional flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2021; 23:87. [PMID: 34233708 PMCID: PMC8265147 DOI: 10.1186/s12968-021-00783-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Four-dimensional cardiovascular magnetic resonance (CMR) flow assessment (4D flow) allows to derive volumetric quantitative parameters in mitral regurgitation (MR) using retrospective valve tracking. However, prior studies have been conducted in functional MR or in patients with congenital heart disease, thus, data regarding the usefulness of 4D flow CMR in case of a valve pathology like mitral valve prolapse (MVP) are scarce. This study aimed to evaluate the clinical utility of cine-guided valve segmentation of 4D flow CMR in assessment of MR in MVP when compared to standardized routine CMR and transthoracic echocardiography (TTE). METHODS Six healthy subjects and 54 patients (55 ± 16 years; 47 men) with MVP were studied. TTE severity grading used a multiparametric approach resulting in mild/mild-moderate (n = 12), moderate-severe (n = 12), and severe MR (n = 30). Regurgitant volume (RVol) and regurgitant fraction (RF) were also derived using standard volumetric CMR and 4D flow CMR datasets with direct measurement of regurgitant flow (4DFdirect) and indirect calculation using the formula: mitral valve forward flow - left ventricular outflow tract stroke volume (4DFindirect). RESULTS There was moderate to strong correlation between methods (r = 0.59-0.84, p < 0.001), but TTE proximal isovelocity surface area (PISA) method showed higher RVol as compared with CMR techniques (PISA vs. CMR, mean difference of 15.8 ml [95% CI 9.9-21.6]; PISA vs. 4DFindirect, 17.2 ml [8.4-25.9]; PISA vs. 4DFdirect, 27.9 ml [19.1-36.8]; p < 0.001). Only indirect CMR methods (CMR vs. 4DFindirect) showed moderate to substantial agreement (Lin's coefficient 0.92-0.97) without significant bias (mean bias 1.05 ± 26 ml [- 50 to 52], p = 0.757). Intra- and inter-observer reliability were good to excellent for all methods (ICC 0.87-0.99), but with numerically lower coefficient of variation for indirect CMR methods (2.5 to 12%). CONCLUSIONS In the assessment of patients with MR and MVP, cine-guided valve segmentation 4D flow CMR is feasible and comparable to standard CMR, but with lower RVol when TTE is used as reference. 4DFindirect quantification has higher intra- and inter-technique agreement than 4DFdirect quantification and might be used as an adjunctive technique for cross-checking MR quantification in MVP.
Collapse
Affiliation(s)
- Ricardo A Spampinato
- Department of Cardiac Surgery, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany.
| | - Cosima Jahnke
- Department of Cardiology and Electrophysiology, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Gerard Crelier
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Frank Lindemann
- Department of Cardiology and Electrophysiology, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Florian Fahr
- Department of Cardiac Surgery, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Monika Czaja-Ziolkowska
- Department of Cardiology and Electrophysiology, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Franz Sieg
- Department of Cardiac Surgery, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Elfriede Strotdrees
- Department of Cardiac Surgery, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Cardiology and Electrophysiology, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Ingo Paetsch
- Department of Cardiology and Electrophysiology, Heart Center Leipzig at University of Leipzig, Struempellstrasse 39, 04289, Leipzig, Germany
| |
Collapse
|
230
|
Paddock S, Tsampasian V, Assadi H, Mota BC, Swift AJ, Chowdhary A, Swoboda P, Levelt E, Sammut E, Dastidar A, Broncano Cabrero J, Del Val JR, Malcolm P, Sun J, Ryding A, Sawh C, Greenwood R, Hewson D, Vassiliou V, Garg P. Clinical Translation of Three-Dimensional Scar, Diffusion Tensor Imaging, Four-Dimensional Flow, and Quantitative Perfusion in Cardiac MRI: A Comprehensive Review. Front Cardiovasc Med 2021; 8:682027. [PMID: 34307496 PMCID: PMC8292630 DOI: 10.3389/fcvm.2021.682027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is a versatile tool that has established itself as the reference method for functional assessment and tissue characterisation. CMR helps to diagnose, monitor disease course and sub-phenotype disease states. Several emerging CMR methods have the potential to offer a personalised medicine approach to treatment. CMR tissue characterisation is used to assess myocardial oedema, inflammation or thrombus in various disease conditions. CMR derived scar maps have the potential to inform ablation therapy—both in atrial and ventricular arrhythmias. Quantitative CMR is pushing boundaries with motion corrections in tissue characterisation and first-pass perfusion. Advanced tissue characterisation by imaging the myocardial fibre orientation using diffusion tensor imaging (DTI), has also demonstrated novel insights in patients with cardiomyopathies. Enhanced flow assessment using four-dimensional flow (4D flow) CMR, where time is the fourth dimension, allows quantification of transvalvular flow to a high degree of accuracy for all four-valves within the same cardiac cycle. This review discusses these emerging methods and others in detail and gives the reader a foresight of how CMR will evolve into a powerful clinical tool in offering a precision medicine approach to treatment, diagnosis, and detection of disease.
Collapse
Affiliation(s)
- Sophie Paddock
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vasiliki Tsampasian
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hosamadin Assadi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Bruno Calife Mota
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter Swoboda
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva Sammut
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Amardeep Dastidar
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Jordi Broncano Cabrero
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Javier Royuela Del Val
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Paul Malcolm
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Julia Sun
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Alisdair Ryding
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Chris Sawh
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Richard Greenwood
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - David Hewson
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vassilios Vassiliou
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
231
|
Petersen J, Lenz A, Adam G, Reichenspurner H, Bannas P, Girdauskas E. Changes in transvalvular flow patterns after aortic valve repair: comparison of symmetric versus asymmetric aortic valve geometry. Eur J Cardiothorac Surg 2021; 59:1087-1094. [PMID: 33284970 DOI: 10.1093/ejcts/ezaa445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The aim of this study was to compare the effect of asymmetric versus symmetric bicuspid aortic valve (BAV) repair on transvalvular flow patterns and aortic wall shear stress (WSS). METHODS Four-dimensional flow magnetic resonance imaging was prospectively and consecutively performed in patients with congenital aortic valve (AV) disease before and after AV repair. The following MRI-based parameters were assessed: (i) flow eccentricity index, (ii) backward flow across the AV, (iii) grading of vortical and helical flow, and (iv) WSS (N/m2) in the proximal aorta. MRI-derived flow parameters were compared between patients who underwent 'asymmetric BAV repair' (n = 13) and 'symmetric BAV repair' (n = 7). RESULTS A total of 20 patients (39 ± 12 years, 80% male), who underwent BAV repair, were included. In the asymmetric BAV repair group, circumferential WSS reduction was found at the level of the aortic arch (P = 0.015). In the symmetric BAV repair group, postoperative circumferential WSS was significantly reduced compared to baseline at all levels of the proximal aorta (all P < 0.05). Postoperative circumferential WSS was significantly higher in the asymmetric versus symmetric BAV repair group at the level of the sinotubular junction (0.45 ± 0.15 vs 0.30 ± 0.09 N/m2; P = 0.028), ascending aorta (0.59 ± 0.19 vs 0.44 ± 0.08 N/m2; P = 0.021) and aortic arch (0.59 ± 0.25 vs 0.40 ± 0.08 N/m2; P = 0.017). Segmental WSS analysis showed significantly higher postoperative WSS after asymmetric versus symmetric BAV repair, especially in the anterior aortic segment (P = 0.004). CONCLUSIONS Symmetric BAV repair results in more physiological flow patterns and significantly reduces WSS, as compared to asymmetric BAV repair. From a haemodynamic point of view, symmetric AV geometry should be attempted in every congenital AV repair.
Collapse
Affiliation(s)
- Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, UKE, Hamburg, Germany
| | - Alexander Lenz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, UKE, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, UKE, Hamburg, Germany
| |
Collapse
|
232
|
Stone ML, Schäfer M, DiMaria MV, von Alvensleben JC, Campbell DN, Jaggers J, Mitchell MB. Diastolic inflow is associated with inefficient ventricular flow dynamics in Fontan patients. J Thorac Cardiovasc Surg 2021; 163:1195-1207. [DOI: 10.1016/j.jtcvs.2021.06.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
|
233
|
Corrado PA, Medero R, Johnson KM, François CJ, Roldán-Alzate A, Wieben O. A phantom study comparing radial trajectories for accelerated cardiac 4D flow MRI against a particle imaging velocimetry reference. Magn Reson Med 2021; 86:363-371. [PMID: 33547658 PMCID: PMC8109233 DOI: 10.1002/mrm.28698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase-contrast vastly undersampled isotropic projection, PC-VIPR) versus stack of stars (phase-contrast stack of stars, PC-SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard. METHODS The study contained three steps: (1) Construction of an MRI- and PIV-compatible LV model from a healthy adult's CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual-Venc 4D flow MRI using PC-VIPR and PC-SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root-mean-square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS). RESULTS RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC-SOS images than PC-VIPR images in 30-min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5-min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat-to-beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel-wise in 30-min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS. CONCLUSIONS PIV is feasible for application-specific 4D flow MRI protocol optimization. PC-VIPR is better-suited to dual-Venc LV imaging with short scan times.
Collapse
Affiliation(s)
- Philip A Corrado
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rafael Medero
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Alejandro Roldán-Alzate
- Departments of Mechanical and Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Oliver Wieben
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
234
|
Annio G, Torii R, Ducci A, Muthurangu V, Tsang V, Burriesci G. Experimental Validation of Enhanced Magnetic Resonance Imaging (EMRI) Using Particle Image Velocimetry (PIV). Ann Biomed Eng 2021; 49:3481-3493. [PMID: 34181130 DOI: 10.1007/s10439-021-02811-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022]
Abstract
Flow-sensitive four-dimensional Cardiovascular Magnetic Resonance Imaging (4D Flow CMR) has increasingly been utilised to characterise patients' blood flow, in association with patiens' state of health and disease, even though spatial and temporal resolutions still constitute a limit. Computational fluid dynamics (CFD) is a powerful tool that could expand these information and, if integrated with experimentally-obtained velocity fields, would enable to derive a large variety of the flow descriptors of interest. However, the accuracy of the flow parameters is highly influenced by the quality of the input data such as the anatomical model and boundary conditions typically derived from medical images including 4D Flow CMR. We previously proposed a novel approach in which 4D Flow CMR and CFD velocity fields are integrated to obtain an Enhanced 4D Flow CMR (EMRI), allowing to overcome the spatial-resolution limitation of 4D Flow CMR, and enable an accurate quantification of flow. In this paper, the proposed approach is validated in a U bend channel, an idealised model of the human aortic arch. The flow patterns were studied with 4D Flow CMR, CFD and EMRI, and compared with high resolution 2D PIV experiments obtained in pulsatile conditions. The main strengths and limitations of 4D Flow CMR and CFD were illustrated by exploiting the accuracy of PIV by comparing against PIV velocity fields. EMRI flow patterns showed a better qualitative and quantitative agreement with PIV results than the other techniques. EMRI enables to overcome the experimental limitations of MRI-based velocity measurements and the modelling simplifications of CFD, allowing an accurate prediction of complex flow patterns observed experimentally, while satisfying mass and momentum balance equations.
Collapse
Affiliation(s)
- Giacomo Annio
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK.
| | - Andrea Ducci
- Department of Mechanical Engineering, University College London, London, UK
| | - Vivek Muthurangu
- Centre for Cardiovascular Imaging and Physics, University College London, London, UK
| | - Victor Tsang
- Cardiothoracic Surgery Unit, Great Ormond Street Hospital, London, UK
| | - Gaetano Burriesci
- Department of Mechanical Engineering, University College London, London, UK.
- Ri.MED Foundation, Palermo, Italy.
| |
Collapse
|
235
|
Komoriyama H, Kamiya K, Nagai T, Oyama-Manabe N, Tsuneta S, Kobayashi Y, Kato Y, Sarashina M, Omote K, Konishi T, Sato T, Tsujinaga S, Iwano H, Shingu Y, Wakasa S, Anzai T. Blood flow dynamics with four-dimensional flow cardiovascular magnetic resonance in patients with aortic stenosis before and after transcatheter aortic valve replacement. J Cardiovasc Magn Reson 2021; 23:81. [PMID: 34176516 PMCID: PMC8237445 DOI: 10.1186/s12968-021-00771-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pre- and post-procedural hemodynamic changes which could affect adverse outcomes in aortic stenosis (AS) patients who undergo transcatheter aortic valve replacement (TAVR) have not been well investigated. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) enables accurate analysis of blood flow dynamics such as flow velocity, flow pattern, wall shear stress (WSS), and energy loss (EL). We sought to examine the changes in blood flow dynamics of patients with severe AS who underwent TAVR. METHODS We examined 32 consecutive severe AS patients who underwent TAVR between May 2018 and June 2019 (17 men, 82 ± 5 years, median left ventricular ejection fraction 61%, 6 self-expanding valve), after excluding those without CMR because of a contraindication or inadequate imaging from the analyses. We analyzed blood flow patterns, WSS and EL in the ascending aorta (AAo), and those changes before and after TAVR using 4D flow CMR. RESULTS After TAVR, semi-quantified helical flow in the AAo was significantly decreased (1.4 ± 0.6 vs. 1.9 ± 0.8, P = 0.002), whereas vortical flow and eccentricity showed no significant changes. WSS along the ascending aortic circumference was significantly decreased in the left (P = 0.038) and left anterior (P = 0.033) wall at the basal level, right posterior (P = 0.011) and left (P = 0.010) wall at the middle level, and right (P = 0.012), left posterior (P = 0.019) and left anterior (P = 0.028) wall at the upper level. EL in the AAo was significantly decreased (15.6 [10.8-25.1 vs. 25.8 [18.6-36.2]] mW, P = 0.012). Furthermore, a significant negative correlation was observed between EL and effective orifice area index after TAVR (r = - 0.38, P = 0.034). CONCLUSIONS In severe AS patients undergoing TAVR, 4D flow CMR demonstrates that TAVR improves blood flow dynamics, especially when a larger effective orifice area index is obtained.
Collapse
Affiliation(s)
- Hirokazu Komoriyama
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kiwamu Kamiya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Toshiyuki Nagai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Noriko Oyama-Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Satonori Tsuneta
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Yuta Kobayashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshiya Kato
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Miwa Sarashina
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takao Konishi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takuma Sato
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shingo Tsujinaga
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hiroyuki Iwano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasushige Shingu
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoru Wakasa
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
236
|
Demir A, Wiesemann S, Erley J, Schmitter S, Trauzeddel RF, Pieske B, Hansmann J, Kelle S, Schulz-Menger J. Traveling Volunteers: A Multi-Vendor, Multi-Center Study on Reproducibility and Comparability of 4D Flow Derived Aortic Hemodynamics in Cardiovascular Magnetic Resonance. J Magn Reson Imaging 2021; 55:211-222. [PMID: 34173297 DOI: 10.1002/jmri.27804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Implementation of four-dimensional flow magnetic resonance (4D Flow MR) in clinical routine requires awareness of confounders. PURPOSE To investigate inter-vendor comparability of 4D Flow MR derived aortic hemodynamic parameters, assess scan-rescan repeatability, and intra- and interobserver reproducibility. STUDY TYPE Prospective multicenter study. POPULATION Fifteen healthy volunteers (age 24.5 ± 5.3 years, 8 females). FIELD STRENGTH/SEQUENCE 3 T, vendor-provided and clinically used 4D Flow MR sequences of each site. ASSESSMENT Forward flow volume, peak velocity, average, and maximum wall shear stress (WSS) were assessed via nine planes (P1-P9) throughout the thoracic aorta by a single observer (AD, 2 years of experience). Inter-vendor comparability as well as scan-rescan, intra- and interobserver reproducibility were examined. STATISTICAL TESTS Equivalence was tested setting the 95% confidence interval of intraobserver and scan-rescan difference as the limit of clinical acceptable disagreement. Intraclass correlation coefficient (ICC) and Bland-Altman plots were used for scan-rescan reproducibility and intra- and interobserver agreement. A P-value <0.05 was considered statistically significant. ICCs ≥ 0.75 indicated strong correlation (>0.9: excellent, 0.75-0.9: good). RESULTS Ten volunteers finished the complete study successfully. 4D flow derived hemodynamic parameters between scanners of three different vendors are not equivalent exceeding the equivalence range. P3-P9 differed significantly between all three scanners for forward flow (59.1 ± 13.1 mL vs. 68.1 ± 12.0 mL vs. 55.4 ± 13.1 mL), maximum WSS (1842.0 ± 190.5 mPa vs. 1969.5 ± 398.7 mPa vs. 1500.6 ± 247.2 mPa), average WSS (1400.0 ± 149.3 mPa vs. 1322.6 ± 211.8 mPa vs. 1142.0 ± 198.5 mPa), and peak velocity between scanners I vs. III (114.7 ± 12.6 cm/s vs. 101.3 ± 15.6 cm/s). Overall, the plane location at the sinotubular junction (P1) presented most inter-vendor stability (forward: 78.5 ± 15.1 mL vs. 80.3 ± 15.4 mL vs. 79.5 ± 19.9 mL [P = 0.368]; peak: 126.4 ± 16.7 cm/s vs. 119.7 ± 13.6 cm/s vs. 111.2 ± 22.6 cm/s [P = 0.097]). Scan-rescan reproducibility and intra- and interobserver variability were good to excellent (ICC ≥ 0.8) with best agreement for forward flow (ICC ≥ 0.98). DATA CONCLUSION The clinical protocol used at three different sites led to differences in hemodynamic parameters assessed by 4D flow. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Aylin Demir
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Stephanie Wiesemann
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jennifer Erley
- Department of Internal Medicine/Cardiology, German Heart Institute Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Ralf Felix Trauzeddel
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Burkert Pieske
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, German Heart Institute Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Jochen Hansmann
- Department of Radiology, Theresienkrankenhaus und St. Hedwig-Klinik, Mannheim, Germany
| | - Sebastian Kelle
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, German Heart Institute Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
237
|
Ding H, Zhao P, Lv H, Li X, Qiu X, Zeng R, Wang G, Yang Z, Gong S, Jin L, Wang Z. Correlation Between Trans-Stenotic Blood Flow Velocity Differences and the Cerebral Venous Pressure Gradient in Transverse Sinus Stenosis: A Prospective 4-Dimensional Flow Magnetic Resonance Imaging Study. Neurosurgery 2021; 89:549-556. [PMID: 34171923 PMCID: PMC8440065 DOI: 10.1093/neuros/nyab222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The relationship between trans-stenotic blood flow velocity differences and the cerebral venous pressure gradient (CVPG) in transverse sinus (TS) stenosis (TSS) has not been studied. OBJECTIVE To evaluate the hemodynamic manifestations of TSS and the relationship between trans-stenotic blood flow velocity differences and the CVPG. METHODS Thirty-three patients with idiopathic intracranial hypertension (IIH) or pulsatile tinnitus (PT) and TSS who had undergone diagnostic venography using venous manometry were included in the patient group. Thirty-three volunteers with no stenosis and symptoms were included in the control group. All the 2 groups underwent prospective venous sinus 4-dimensional (4D) flow magnetic resonance imaging (MRI). The average velocity (Vavg) difference and maximum velocity (Vmax) difference between downstream and upstream of the TS in 2 groups were measured and compared. Correlations between the CVPG and trans-stenotic Vavg difference/Vmax difference/index of transverse sinus stenosis (ITSS) were assessed in the patient group. RESULTS The differences in Vavg difference and Vmax difference between the patient and control groups showed a statistical significance (P < .001). The Vavg difference and Vmax difference had a strong correlation with CVPG (R = 0.675 and 0.701, respectively, P < .001) in the patient group. Multivariate linear regression using the stepwise method showed that the Vmax difference and ITSS were correlated with the CVPG (R = 0.752 and R2 = 0.537, respectively; P < .001). CONCLUSION The trans-stenotic blood flow velocity difference significantly correlates with the CVPG in TSS. As a noninvasive imaging modality, 4D flow MRI may be a suitable screening or complimentary tool to decide which TSS may benefit from invasive venous manometry.
Collapse
Affiliation(s)
| | | | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rong Zeng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guopeng Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Long Jin
- Long Jin, MD, Department of Intervention, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Rd, Xicheng District, Beijing 100050, China.
| | - Zhenchang Wang
- Correspondence: Zhenchang Wang, MD, Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Rd, Xicheng District, Beijing 100050, China.
| |
Collapse
|
238
|
Pushparajah K. Non-invasive Imaging in the Evaluation of Cardiac Shunts for Interventional Closure. Front Cardiovasc Med 2021; 8:651726. [PMID: 34222361 PMCID: PMC8253251 DOI: 10.3389/fcvm.2021.651726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Multimodality imaging provides important information to guide patient selection and pre-procedural decision making for shunt lesions in CHD. While echocardiography, CT, and CMR are well-established, 3D printing and now virtual reality imaging are beginning to show promise.
Collapse
Affiliation(s)
- Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom.,Department of Paediatric Cardiology, Evelina London Children's Hospital, London, United Kingdom
| |
Collapse
|
239
|
Demirkiran A, van Ooij P, Westenberg JJM, Hofman MBM, van Assen HC, Schoonmade LJ, Asim U, Blanken CPS, Nederveen AJ, van Rossum AC, Götte MJW. Clinical intra-cardiac 4D flow CMR: acquisition, analysis, and clinical applications. Eur Heart J Cardiovasc Imaging 2021; 23:154-165. [PMID: 34143872 PMCID: PMC8787996 DOI: 10.1093/ehjci/jeab112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of flow patterns within the heart has long been recognized as a potential contribution to the understanding of physiological and pathophysiological processes of cardiovascular diseases. Although the pulsatile flow itself is multi-dimensional and multi-directional, current available non-invasive imaging modalities in clinical practice provide calculation of flow in only 1-direction and lack 3-dimensional volumetric velocity information. Four-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR) has emerged as a novel tool that enables comprehensive and critical assessment of flow through encoding velocity in all 3 directions in a volume of interest resolved over time. Following technical developments, 4D flow CMR is not only capable of visualization and quantification of conventional flow parameters such as mean/peak velocity and stroke volume but also provides new hemodynamic parameters such as kinetic energy. As a result, 4D flow CMR is being extensively exploited in clinical research aiming to improve understanding of the impact of cardiovascular disease on flow and vice versa. Of note, the analysis of 4D flow data is still complex and accurate analysis tools that deliver comparable quantification of 4D flow values are a necessity for a more widespread adoption in clinic. In this article, the acquisition and analysis processes are summarized and clinical applications of 4D flow CMR on the heart including conventional and novel hemodynamic parameters are discussed. Finally, clinical potential of other emerging intra-cardiac 4D flow imaging modalities is explored and a near-future perspective on 4D flow CMR is provided.
Collapse
Affiliation(s)
- Ahmet Demirkiran
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Pim van Ooij
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mark B M Hofman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Linda J Schoonmade
- Medical Library, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Usman Asim
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Carmen P S Blanken
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
240
|
Left Atrial Flow Stasis in Patients Undergoing Pulmonary Vein Isolation for Paroxysmal Atrial Fibrillation Using 4D-Flow Magnetic Resonance Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Atrial fibrillation (AF) is associated with systemic thrombo-embolism and stroke events, which do not appear significantly reduced following successful pulmonary vein (PV) ablation. Prior studies supported that thrombus formation is associated with left atrial (LA) flow alterations, particularly flow stasis. Recently, time-resolved three-dimensional phase-contrast (4D-flow) showed the ability to quantify LA stasis. This study aims to demonstrate that LA stasis, derived from 4D-flow, is a useful biomarker of LA recovery in patients with AF. Our hypothesis is that LA recovery will be associated with a reduction in LA stasis. We recruited 148 subjects with paroxysmal AF (40 following 3–4 months PV ablation and 108 pre-PV ablation) and 24 controls (CTL). All subjects underwent a cardiac magnetic resonance imaging (MRI) exam, inclusive of 4D-flow. LA was isolated within the 4D-flow dataset to constrain stasis maps. Control mean LA stasis was lower than in the pre-ablation cohort (30 ± 12% vs. 47 ± 18%, p < 0.001). In addition, mean LA stasis was reduced in the post-ablation cohort compared with pre-ablation (36 ± 15% vs. 47 ± 18%, p = 0.002). This study demonstrated that 4D flow-derived LA stasis mapping is clinically relevant and revealed stasis changes in the LA body pre- and post-pulmonary vein ablation.
Collapse
|
241
|
Editorial Comment: Toward Implementation of 4D Flow MRI in Clinical Workflow. AJR Am J Roentgenol 2021; 217:1333. [PMID: 34106759 DOI: 10.2214/ajr.21.26333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This Editorial Comment discusses the following AJR article: Structural Heart 4D Flow MRI for Hemodynamic Assessment: How We Do It.
Collapse
|
242
|
Circulation derived from 4D flow MRI correlates with right ventricular dysfunction in patients with tetralogy of Fallot. Sci Rep 2021; 11:11623. [PMID: 34079023 PMCID: PMC8172849 DOI: 10.1038/s41598-021-91125-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
We used 4D-flow MRI to investigate circulation, an area integral of vorticity, in the main pulmonary artery (MPA) as a new hemodynamic parameter for assessing patients with a repaired Tetralogy of Fallot (TOF). We evaluated the relationship between circulation, right ventricular (RV) function and the pulmonary regurgitant fraction (PRF). Twenty patients with a repaired TOF underwent cardiac MRI. Flow-sensitive 3D-gradient sequences were used to obtain 4D-flow images. Vortex formation in the MPA was visualized, with short-axis and longitudinal vorticities calculated by software specialized for 4D flow. The RV indexed end-diastolic/end-systolic volumes (RVEDVi/RVESVi) and RV ejection fraction (RVEF) were measured by cine MRI. The PR fraction (PRF) and MPA area were measured by 2D phase-contrast MRI. Spearman ρ values were determined to assess the relationships between circulation, RV function, and PRF. Vortex formation in the MPA occurred in 15 of 20 patients (75%). The longitudinal circulation (11.7 ± 5.1 m2/s) was correlated with the RVEF (ρ = − 0.85, p = 0.0002), RVEDVi (ρ = 0.62, p = 0.03), and RVESVi (ρ = 0.76, p = 0.003) after adjusting for the MPA size. The short-axis circulation (9.4 ± 3.4 m2/s) in the proximal MPA was positively correlated with the MPA area (ρ = 0.61, p = 0.004). The relationships between the PRF and circulation or RV function were not significant. Increased longitudinal circulation in the MPA, as demonstrated by circulation analysis using 4D flow MRI, was related to RV dysfunction in patients with a repaired TOF.
Collapse
|
243
|
Abstract
MRI is an essential diagnostic tool in the anatomic and functional evaluation of cardiovascular disease. In many practices, 2D phase-contrast (2D-PC) has been used for blood flow quantification. 4D Flow MRI is a time-resolved volumetric acquisition that captures the vector field of blood flow along with anatomic images. 4D Flow MRI provides a simpler acquisition compared to 2D-PC and facilitates a more accurate and comprehensive hemodynamic assessment. Advancements in accelerated imaging have significantly shortened scan times of 4D Flow MRI while preserving image quality, enabling this technology to transition from the research arena to routine clinical practice. In this article, we review technical optimization based on our clinical experience of over 10 years with 4D Flow MRI. We also present pearls and pitfalls in the practical application of 4D Flow MRI, including how to quantify cardiovascular shunts, valvular or vascular stenosis, and valvular regurgitation. As experience increases, and as 4D Flow sequences and post-processing software become more broadly available, 4D Flow MRI will likely become an essential component of cardiac imaging for practices involved in the management of congenital and acquired structural heart disease.
Collapse
|
244
|
Corrado PA, Barton GP, Francois CJ, Wieben O, Goss KN. Sildenafil administration improves right ventricular function on 4D flow MRI in young adults born premature. Am J Physiol Heart Circ Physiol 2021; 320:H2295-H2304. [PMID: 33861148 PMCID: PMC8289359 DOI: 10.1152/ajpheart.00824.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Extreme preterm birth conveys an elevated risk of heart failure by young adulthood. Smaller biventricular chamber size, diastolic dysfunction, and pulmonary hypertension may contribute to reduced ventricular-vascular coupling. However, how hemodynamic manipulations may affect right ventricular (RV) function and coupling remains unknown. As a pilot study, 4D flow MRI was used to assess the effect of afterload reduction and heart rate reduction on cardiac hemodynamics and function. Young adults born premature were administered sildenafil (a pulmonary vasodilator) and metoprolol (a β blocker) on separate days, and MRI with 4D flow completed before and after each drug administration. Endpoints include cardiac index (CI), direct flow fractions, and ventricular kinetic energy including E/A wave kinetic energy ratio. Sildenafil resulted in a median CI increase of 0.24 L/min/m2 (P = 0.02), mediated through both an increase in heart rate (HR) and stroke volume. Although RV ejection fraction improved only modestly, there was a significant increase (4% of end diastolic volume) in RV direct flow fraction (P = 0.04), consistent with hemodynamic improvement. Metoprolol administration resulted in a 5-beats/min median decrease in HR (P = 0.01), a 0.37 L/min/m2 median decrease in CI (P = 0.04), and a reduction in time-averaged kinetic energy (KE) in both ventricles (P < 0.01), despite increased RV diastolic E/A KE ratio (P = 0.04). Despite reduced right atrial workload, metoprolol significantly depressed overall cardiac systolic function. Sildenafil, however, increased CI and improved RV function, as quantified by the direct flow fraction. The preterm heart appears dependent on HR but sensitive to RV afterload manipulations.NEW & NOTEWORTHY We assessed the effect of right ventricular afterload reduction with sildenafil and heart rate reduction with metoprolol on cardiac hemodynamics and function in young adults born premature using 4D flow MRI. Metoprolol depressed cardiac function, whereas sildenafil improved cardiac function including right ventricular direct flow fraction by 4D flow, consistent with hemodynamic improvement. This suggests that the preterm heart is dependent on heart rate and sensitive to right ventricular afterload changes.
Collapse
Affiliation(s)
- Philip A Corrado
- Department of Medical Physics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Gregory P Barton
- Department of Medical Physics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Texas Southwestern, Dallas, Texas
| | - Christopher J Francois
- Department of Radiology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kara N Goss
- Department of Medicine, University of Texas Southwestern, Dallas, Texas
- Department of Pediatrics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine. University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
245
|
Zhao X, Tan RS, Garg P, Chai P, Leng S, Bryant J, Teo LLS, Ong CC, Geest RJVD, Allen JC, Yip JW, Tan JL, Plein S, Westenberg JJW, Zhong L. Impact of age, sex and ethnicity on intra-cardiac flow components and left ventricular kinetic energy derived from 4D flow CMR. Int J Cardiol 2021; 336:105-112. [PMID: 34044022 DOI: 10.1016/j.ijcard.2021.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) allows quantification of left ventricular (LV) blood flow. We aimed to 1) establish reference ranges for 4D flow CMR-derived LV relative flow components and kinetic energy parameters indexed to end-diastolic volume (KEiEDV) among healthy Asian subjects, 2) assess effects of age and sex on these parameters, and 3) compare these parameters between Asian and Caucasian subjects. METHODS 74 healthy Asian subjects underwent cine and 4D flow CMR. Relative flow components (direct flow, retained inflow, delayed ejection flow, residual volume) and multiple phasic KEiEDV (LV global, peak systolic, systolic, diastolic, peak E-wave, peak A-wave) were analyzed. Sex- and age-specific reference ranges were reported. RESULTS Relative flow components and systolic phase KEiEDV did not vary with age. Women had higher retained inflow and peak E-wave KEiEDV, lower residual volume, peak systolic and systolic KEiEDV than men. Peak A-wave KEiEDV increased significantly (r = 0.474) whereas peak E-wave KEiEDV (r = -0.458) and E-wave/A-wave ratio (r = -0.528) decreased with age. A sub-population (n = 44) was compared with 44 sex- and age-matched Caucasian subjects: no significant group differences were observed for all 4D flow CMR parameters. CONCLUSION Asian sex- and age-specific 4D flow CMR reference ranges were established. Sex differences in retained inflow, residual volume, peak systolic, systolic KEiEDV and peak E-wave KEiEDV were observed. Ageing influenced diastolic KEiEDV but not systolic phase KEiEDV or relative flow components. All studied parameters were similar between sex- and age-matched Asian and Caucasian subjects, implying generalizability of the ranges.
Collapse
Affiliation(s)
- Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Road, 169857, Singapore
| | - Pankaj Garg
- University of Sheffield, C Floor, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Ping Chai
- National University Hospital Singapore, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | - Jennifer Bryant
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | - Lynette L S Teo
- National University Hospital Singapore, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Ching Ching Ong
- National University Hospital Singapore, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - John C Allen
- Duke-NUS Medical School, National University of Singapore, 8 College Road, 169857, Singapore
| | - James W Yip
- National University Hospital Singapore, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Ju Le Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Road, 169857, Singapore
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Jos J W Westenberg
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Road, 169857, Singapore.
| |
Collapse
|
246
|
Abnormal pulmonary flow is associated with impaired right ventricular coupling in patients with COPD. Int J Cardiovasc Imaging 2021; 37:3039-3048. [PMID: 34021434 DOI: 10.1007/s10554-021-02285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 01/31/2023]
Abstract
Cor Pulmonale or right ventricular (RV) dysfunction due to pulmonary disease is an expected complication of COPD resulting primarily from increased afterload mediated by chronic alveolar hypoxemia and resulting hypoxic pulmonary vasoconstriction. Early detection of elevated RV afterload has been previously demonstrated by visualization of abnormal flow patterns in the proximal pulmonary arteries. Prior analysis of helicity in the pulmonary arteries in pulmonary hypertension patients has demonstrated a strong association between helicity and increased RV afterload. However, these flow hemodynamics have yet to be fully explored in patients with COPD. We hypothesized that patients with COPD will have abnormal pulmonary flow as evaluated by 4D-Flow MRI and associated with RV function and pulmonary arterial stiffness. Patients with COPD (n = 15) (65 years ± 6) and controls (n = 10) (58 years ± 9) underwent 4D-Flow MRI to calculate helicity. The helicity was calculated in the main pulmonary artery (MPA) and along the RV outflow tract (RVOT)-MPA axis. Main pulmonary arterial stiffness was measured using the relative area change (RAC). We found COPD patients had decreased helicity relative to healthy controls in the MPA (19.4 ± 7.8vs 32.8 ± 15.9, P = 0.007) and reduced helicity along the RVOT-MPA axis (33.2 ± 9.0 vs 43.5 ± 8.3, P = 0.010). Our investigation indicates a strong association between helicity along the MPA-RV outflow tract axis and RV function and suggests that 4D-Flow MRI might be a sensitive tool in evaluating RV-pulmonary arterial coupling in COPD.
Collapse
|
247
|
Elsayed A, Gilbert K, Scadeng M, Cowan BR, Pushparajah K, Young AA. Four-dimensional flow cardiovascular magnetic resonance in tetralogy of Fallot: a systematic review. J Cardiovasc Magn Reson 2021; 23:59. [PMID: 34011372 PMCID: PMC8136126 DOI: 10.1186/s12968-021-00745-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with repaired Tetralogy of Fallot (rTOF) often develop cardiovascular dysfunction and require regular imaging to evaluate deterioration and time interventions such as pulmonary valve replacement. Four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) enables detailed assessment of flow characteristics in all chambers and great vessels. We performed a systematic review of intra-cardiac 4D flow applications in rTOF patients, to examine clinical utility and highlight optimal methods for evaluating rTOF patients. METHODS A comprehensive literature search was undertaken in March 2020 on Google Scholar and Scopus. A modified version of the Critical Appraisal Skills Programme (CASP) tool was used to assess and score the applicability of each study. Important clinical outcomes were assessed including similarities and differences. RESULTS Of the 635 articles identified, 26 studies met eligibility for systematic review. None of these were below 59% applicability on the modified CASP score. Studies could be broadly classified into four groups: (i) pilot studies, (ii) development of new acquisition methods, (iii) validation and (vi) identification of novel flow features. Quantitative comparison with other modalities included 2D phase contrast CMR (13 studies) and echocardiography (4 studies). The 4D flow study applications included stroke volume (18/26;69%), regurgitant fraction (16/26;62%), relative branch pulmonary artery flow(4/26;15%), systolic peak velocity (9/26;35%), systemic/pulmonary total flow ratio (6/26;23%), end diastolic and end systolic volume (5/26;19%), kinetic energy (5/26;19%) and vorticity (2/26;8%). CONCLUSIONS 4D flow CMR shows potential in rTOF assessment, particularly in retrospective valve tracking for flow evaluation, velocity profiling, intra-cardiac kinetic energy quantification, and vortex visualization. Protocols should be targeted to pathology. Prospective, randomized, multi-centered studies are required to validate these new characteristics and establish their clinical use.
Collapse
Affiliation(s)
- Ayah Elsayed
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Kathleen Gilbert
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Miriam Scadeng
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Brett R. Cowan
- Institute of Environmental Science and Research, Auckland, New Zealand
| | | | - Alistair A. Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King’s College London, London, UK
| |
Collapse
|
248
|
Rutkowski DR, Roldán-Alzate A, Johnson KM. Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data. Sci Rep 2021; 11:10240. [PMID: 33986368 PMCID: PMC8119419 DOI: 10.1038/s41598-021-89636-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.
Collapse
Affiliation(s)
- David R Rutkowski
- Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Radiology, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Radiology, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA
| | - Kevin M Johnson
- Radiology, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA.
- Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA.
| |
Collapse
|
249
|
Chowdhary A, Garg P, Das A, Nazir MS, Plein S. Cardiovascular magnetic resonance imaging: emerging techniques and applications. Heart 2021; 107:697-704. [PMID: 33402364 PMCID: PMC7611390 DOI: 10.1136/heartjnl-2019-315669] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023] Open
Abstract
This review gives examples of emerging cardiovascular magnetic resonance (CMR) techniques and applications that have the potential to transition from research to clinical application in the near future. Four-dimensional flow CMR (4D-flow CMR) allows time-resolved three-directional, three-dimensional (3D) velocity-encoded phase-contrast imaging for 3D visualisation and quantification of valvular or intracavity flow. Acquisition times of under 10 min are achievable for a whole heart multidirectional data set and commercial software packages are now available for data analysis, making 4D-flow CMR feasible for inclusion in clinical imaging protocols. Diffusion tensor imaging (DTI) is based on the measurement of molecular water diffusion and uses contrasting behaviour in the presence and absence of boundaries to infer tissue structure. Cardiac DTI is capable of non-invasively phenotyping the 3D micro-architecture within a few minutes, facilitating transition of the method to clinical protocols. Hybrid positron emission tomography-magnetic resonance (PET-MR) provides quantitative PET measures of biological and pathological processes of the heart combined with anatomical, morphological and functional CMR imaging. Cardiac PET-MR offers opportunities in ischaemic, inflammatory and infiltrative heart disease.
Collapse
Affiliation(s)
- Amrit Chowdhary
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Pankaj Garg
- Cardiovascular and Metabolic Medicine Group, University of East Anglia, Norwich, UK
| | - Arka Das
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
250
|
Haarbye SO, Nielsen MB, Hansen AE, Lauridsen CA. Four-Dimensional Flow MRI of Abdominal Veins: A Systematic Review. Diagnostics (Basel) 2021; 11:767. [PMID: 33923366 PMCID: PMC8146887 DOI: 10.3390/diagnostics11050767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this systematic review is to provide an overview of the use of Four-Dimensional Magnetic Resonance Imaging of vector blood flow (4D Flow MRI) in the abdominal veins. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in MEDLINE, Cochrane Library, EMBASE, and Web of Science. Quality assessment of the included studies was performed using the QUADAS-2 tool. The initial search yielded 781 studies and 21 studies were included. All studies successfully applied 4D Flow MRI in abdominal veins. Four-Dimensional Flow MRI was capable of discerning between healthy subjects and patients with cirrhosis and/or portal hypertension. The visual quality and inter-observer agreement of 4D Flow MRI were rated as excellent and good to excellent, respectively, and the studies utilized several different MRI data sampling strategies. By applying spiral sampling with compressed sensing to 4D Flow MRI, the blood flow of several abdominal veins could be imaged simultaneously in 18-25 s, without a significant loss of visual quality. Four-Dimensional Flow MRI might be a useful alternative to Doppler sonography for the diagnosis of cirrhosis and portal hypertension. Further clinical studies need to establish consensus regarding MRI sampling strategies in patients and healthy subjects.
Collapse
Affiliation(s)
- Simon O. Haarbye
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, DK-2100 Copenhagen, Denmark
| | - Michael B. Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Clinical Medicine, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Adam E. Hansen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Clinical Medicine, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Carsten A. Lauridsen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, DK-2100 Copenhagen, Denmark
| |
Collapse
|