201
|
Jian B, Hu M, Cai W, Zhang B, Lu Z. Update of Immunosenescence in Cerebral Small Vessel Disease. Front Immunol 2020; 11:585655. [PMID: 33362768 PMCID: PMC7756147 DOI: 10.3389/fimmu.2020.585655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Aging of the central nervous system (CNS) is closely associated with chronic sterile low-grade inflammation in older organisms and related immune response. As an amplifier for neuro-inflammaging, immunosenescence remodels and deteriorates immune systems gradually with the passage of time, and finally contributes to severe outcomes like stroke, dementia and neurodegeneration in elderly adults. Cerebral small vessel disease (CSVD), one of the major causes of vascular dementia, has an intensive connection with the inflammatory response and immunosenescence plays a crucial role in the pathology of this disorder. In this review, we discuss the impact of immunosenescence on the development of CSVD and its underlying mechanism. Furthermore, the clinical practice significance of immunosenescence management and the diagnosis and treatment of CSVD will be also discussed.
Collapse
Affiliation(s)
- Banghao Jian
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyan Hu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center of Clinical Immunology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
202
|
Nwabo Kamdje AH, Seke Etet PF, Simo RT, Vecchio L, Lukong KE, Krampera M. Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects. Cancer Biol Med 2020; 17:828-841. [PMID: 33299638 PMCID: PMC7721102 DOI: 10.20892/j.issn.2095-3941.2020.0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 02/03/2023] Open
Abstract
After more than a decade of controversy on the role of stromal cells in the tumor microenvironment, the emerging data shed light on pro-tumorigenic and potential anti-cancer factors, as well as on the roots of the discrepancies. We discuss the pro-tumorigenic effects of stromal cells, considering the effects of tumor drivers like hypoxia and tumor stiffness on these cells, as well as stromal cell-mediated adiposity and immunosuppression in the tumor microenvironment, and cancer initiating cells' cellular senescence and adaptive metabolism. We summarize the emerging data supporting stromal cell therapeutic potential in cancer, discuss the possibility to reprogram stromal cells of the tumor microenvironment for anti-cancer effects, and explore some causes of discrepancies on the roles of stromal cells in cancer in the available literature.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Biomedical Sciences, University of Ngaoundere, Faculty of Science, Ngaoundere 454, Cameroon,Correspondence to: Armel Hervé Nwabo Kamdje, E-mail:
| | - Paul Faustin Seke Etet
- Department of Physiological Sciences and Biochemistry, University of Ngaoundéré, Garoua 454, Cameroon,Center for Sustainable Health and Development, Garoua 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Faculty of Science, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Center for Sustainable Health and Development, Garoua 454, Cameroon
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, College of Medicine, Saskatoon SK S7N 5E5, Canada
| | - Mauro Krampera
- Department of Medicine, University of Verona, Section of Hematology, Stem Cell Research Laboratory, Verona 37134, Italy
| |
Collapse
|
203
|
The pathogenesis of age-related macular degeneration is not inflammatory mediated but is instead due to immunosenescence-related failure of tissue repair. Med Hypotheses 2020; 146:110392. [PMID: 33246696 DOI: 10.1016/j.mehy.2020.110392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 01/13/2023]
Abstract
A natural consequence of everyday tissue metabolism is cell injury or stress. This injury activates a canonical immune-mediated inflammatory response in order to achieve tissue repair so that homeostasis is maintained. With aging there is increased tissue injury and therefore increasing demands placed on an immune system, which itself is aging (immunosenescence). Thus, the increased reparative demands are reflected by an increased inflammatory load both locally and systemically. Eventually, if the reparative demands are excessive, the aging immune system is overwhelmed and disease ensues. In the macula this age-related failure in repair gives rise to age-related macular degeneration (AMD). The hypothesis proposed herein is therefore, that AMD is due to age-related failure of tissue repair and the chronic inflammation associated with this failure ('inflammaging') is both a surrogate and biomarker of this reparative failure and not in itself the primary cause of disease. Such a hypothesis can be applied to all the diseases of aging and by extension suggests that effective therapies should be aimed at facilitating repair through immunotherapy, possibly and perhaps controversially, through the promotion of inflammation rather than the current approach of its inhibition (anti-inflammatory strategies), the latter which can ultimately only hinder the repair process and thereby lead to the persistence of disease.
Collapse
|
204
|
Batista MA, Calvo-Fortes F, Silveira-Nunes G, Camatta GC, Speziali E, Turroni S, Teixeira-Carvalho A, Martins-Filho OA, Neretti N, Maioli TU, Santos RR, Brigidi P, Franceschi C, Faria AMC. Inflammaging in Endemic Areas for Infectious Diseases. Front Immunol 2020; 11:579972. [PMID: 33262758 PMCID: PMC7688519 DOI: 10.3389/fimmu.2020.579972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Immunosenescence is marked by a systemic process named inflammaging along with a series of defects in the immunological activity that results in poor responses to infectious agents and to vaccination. Inflammaging, a state of low-grade chronic inflammation, usually leads to chronic inflammatory diseases and frailty in the elderly. However, some elderly escape from frailty and reach advanced age free of the consequences of inflammaging. This process has been called immunological remodeling, and it is the hallmark of healthy aging as described in the studies of centenarians in Italy. The biological markers of healthy aging are still a matter of debate, and the studies on the topic have focused on inflammatory versus remodeling processes and molecules. The sub-clinical inflammatory status associated with aging might be a deleterious event for populations living in countries where chronic infectious diseases are not prevalent. Nevertheless, in other parts of the world where they are, two possibilities may occur. Inflammatory responses may have a protective effect against these infectious agents. At the same time, the long-term consequences of protective immune responses during chronic infections may result in accelerated immunosenescence in these individuals. Therefore, the biological markers of healthy aging can vary according to environmental, cultural, and geographical settings that reflect worldwide, and in a non-biased, non-westernized perspective, the changes that we experience regarding our contacts with microorganisms and the outcomes of such contacts.
Collapse
Affiliation(s)
- Marina Andrade Batista
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Calvo-Fortes
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Silveira-Nunes
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Giovanna Caliman Camatta
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Speziali
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | - Nicola Neretti
- Departament of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Tatiani Uceli Maioli
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Ribeiro Santos
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Center for Biophysics, Bioinformatics, Biocomplexity, University of Bologna, Bologna, Italy.,Laboratory of Systems Biology of Healthy Aging, Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Ana Maria Caetano Faria
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
205
|
Hu B, Jadhav RR, Gustafson CE, Le Saux S, Ye Z, Li X, Tian L, Weyand CM, Goronzy JJ. Distinct Age-Related Epigenetic Signatures in CD4 and CD8 T Cells. Front Immunol 2020; 11:585168. [PMID: 33262764 PMCID: PMC7686576 DOI: 10.3389/fimmu.2020.585168] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Healthy immune aging is in part determined by how well the sizes of naïve T cell compartments are being maintained with advancing age. Throughout adult life, replenishment largely derives from homeostatic proliferation of existing naïve and memory T cell populations. However, while the subpopulation composition of CD4 T cells is relatively stable, the CD8 T cell compartment undergoes more drastic changes with loss of naïve CD8 T cells and accumulation of effector T cells, suggesting that CD4 T cells are more resilient to resist age-associated changes. To determine the epigenetic basis for these differences in behaviors, we compared chromatin accessibility maps of CD4 and CD8 T cell subsets from young and old individuals and related the results to the expressed transcriptome. The dominant age-associated signatures resembled hallmarks of differentiation, which were more pronounced for CD8 naïve and memory than the corresponding CD4 T cell subsets, indicating that CD8 T cells are less able to keep cellular quiescence upon homeostatic proliferation. In parallel, CD8 T cells from old adults, irrespective of their differentiation state, displayed greater reduced accessibility to genes of basic cell biological function, including genes encoding ribosomal proteins. One possible mechanism is the reduced expression of the transcription factors YY1 and NRF1. Our data suggest that chromatin accessibility signatures can be identified that distinguish CD4 and CD8 T cells from old adults and that may confer the higher resilience of CD4 T cells to aging.
Collapse
Affiliation(s)
- Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Rohit R Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Sabine Le Saux
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Zhongde Ye
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Xuanying Li
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| |
Collapse
|
206
|
Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol 2020; 13:151. [PMID: 33168037 PMCID: PMC7653700 DOI: 10.1186/s13045-020-00986-z] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Immunosenescence is a process of immune dysfunction that occurs with age and includes remodeling of lymphoid organs, leading to changes in the immune function of the elderly, which is closely related to the development of infections, autoimmune diseases, and malignant tumors. T cell-output decline is an important feature of immunosenescence as well as the production of senescence-associated secretory phenotype, increased glycolysis, and reactive oxygen species. Senescent T cells exhibit abnormal phenotypes, including downregulation of CD27, CD28, and upregulation of CD57, killer cell lectin-like receptor subfamily G, Tim-3, Tight, and cytotoxic T-lymphocyte-associated protein 4, which are tightly related to malignant tumors. The role of immunosenescence in tumors is sophisticated: the many factors involved include cAMP, glucose competition, and oncogenic stress in the tumor microenvironment, which can induce the senescence of T cells, macrophages, natural killer cells, and dendritic cells. Accordingly, these senescent immune cells could also affect tumor progression. In addition, the effect of immunosenescence on the response to immune checkpoint blocking antibody therapy so far is ambiguous due to the low participation of elderly cancer patients in clinical trials. Furthermore, many other senescence-related interventions could be possible with genetic and pharmacological methods, including mTOR inhibition, interleukin-7 recombination, and NAD+ activation. Overall, this review aims to highlight the characteristics of immunosenescence and its impact on malignant tumors and immunotherapy, especially the future directions of tumor treatment through senescence-focused strategies.
Collapse
Affiliation(s)
- Jingyao Lian
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China
| | - Ying Yue
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China.,Clinical Laboratory, Henan Medical College Hospital Workers, Zhengzhou, 450000, Henan, China
| | - Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
207
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
208
|
Cianci R, Franza L, Massaro MG, Borriello R, De Vito F, Gambassi G. The Interplay between Immunosenescence and Microbiota in the Efficacy of Vaccines. Vaccines (Basel) 2020; 8:vaccines8040636. [PMID: 33147686 PMCID: PMC7712068 DOI: 10.3390/vaccines8040636] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Vaccinations are among the most effective medical procedures and have had an incredible impact on almost everyone’s life. One of the populations that can benefit the most from them are elderly people. Unfortunately, in this group, vaccines are less effective than in other groups, due to immunosenescence. The immune system ages like the whole body and becomes less effective in responding to infections and vaccinations. At the same time, immunosenescence also favors an inflammatory microenvironment, which is linked to many conditions typical of the geriatrics population. The microbiota is one of the key actors in modulating the immune response and, in this review, we discuss the current evidence on the role of microbiota in regulating the immune response to vaccines, particularly in elderly people.
Collapse
Affiliation(s)
- Rossella Cianci
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
- Correspondence: ; Tel.: +39-06-3015-7597; Fax: +39-06-3550-2775
| | - Laura Franza
- Emergency Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy;
| | - Maria Grazia Massaro
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
| | - Raffaele Borriello
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
| | - Francesco De Vito
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
| | - Giovanni Gambassi
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
| |
Collapse
|
209
|
Chen YJ, Liao YJ, Tram VTN, Lin CH, Liao KC, Liu CL. Alterations of Specific Lymphocytic Subsets with Aging and Age-Related Metabolic and Cardiovascular Diseases. Life (Basel) 2020; 10:life10100246. [PMID: 33080827 PMCID: PMC7603042 DOI: 10.3390/life10100246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
To investigate the association of immunosenescence with aged-related morbidity in the elderly, a clinical study was conducted to analyze and compare the alterations in peripheral blood (PB) T-cell subsets among young healthy (YH) controls, elderly healthy (EH) controls, and age-matched elderly patients with metabolic diseases (E-MDs), with cardiovascular diseases (E-CVDs) or with both (E-MDs/E-CVDs). The frequencies of CD3T, CD8T and invariant natural killer T (iNKT) cells were decreased in the EH, E-MD and E-CVD cohorts, indicating a decline in defense function. Although CD4T and regulatory T (Treg) cell frequencies tended to increase with aging, they were lower in patients with E-MDs and E-CVDs. Subset analyses of T-cells consistently showed the accumulation of senescent T-cell in aging and in patients with E-MDs and E-CVDs, compared with YH volunteers. These accumulated senescent T-cells were undergoing apoptosis upon stimulation due to the replicative senescence stage of T-cells. In addition, serum levels of cytokines, including interferon (IF)-γ, transforming growth factor (TGF)-β and growth differentiation factor (GDF)-15, consistently reflected alterations in T-cell subsets. This study demonstrated that T-cell subset changes with paralleled alterations in cytokines were associated with aging and age-related pathogenesis. These altered T-cell subsets and/or cytokines can potentially serve as biomarkers for the prevention, diagnosis and treatment of age-related morbidities.
Collapse
Affiliation(s)
- Ying Jen Chen
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yi Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Van Thi Ngoc Tram
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung Hao Lin
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kuo Chen Liao
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chao Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
210
|
Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 2020; 42:521-536. [PMID: 32930852 PMCID: PMC7490574 DOI: 10.1007/s00281-020-00818-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Alterations in the immune system with aging are considered to underlie many age-related diseases. However, many elderly individuals remain healthy until even a very advanced age. There is also an increase in numbers of centenarians and their apparent fitness. We should therefore change our unilaterally detrimental consideration of age-related immune changes. Recent data taking into consideration the immunobiography concept may allow for meaningful distinctions among various aging trajectories. This implies that the aging immune system has a homeodynamic characteristic balanced between adaptive and maladaptive aspects. The survival and health of an individual depends from the equilibrium of this balance. In this article, we highlight which parts of the aging of the immune system may be considered adaptive in contrast to those that may be maladaptive.
Collapse
Affiliation(s)
- T Fulop
- Department of Geriatrics, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - A Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - K Hirokawa
- Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Department of Pathology, Tokyo Med. Dent. University, Tokyo, Japan
| | - A A Cohen
- Department of Family Medicine, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - J M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
211
|
Hall BM, Gleiberman AS, Strom E, Krasnov PA, Frescas D, Vujcic S, Leontieva OV, Antoch MP, Kogan V, Koman IE, Zhu Y, Tchkonia T, Kirkland JL, Chernova OB, Gudkov AV. Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. Aging Cell 2020; 19:e13219. [PMID: 32856419 PMCID: PMC7576241 DOI: 10.1111/acel.13219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is recognized as a major source of systemic inflammation with age, driving age-related tissue dysfunction and pathogenesis. Macrophages (Mφ) are central to these changes yet adipose tissue Mφ (ATMs) from aged mice remain poorly characterized. To identify biomarkers underlying changes in aged adipose tissue, we performed an unbiased RNA-seq analysis of ATMs from young (8-week-old) and healthy aged (80-week-old) mice. One of the genes identified, V-set immunoglobulin-domain-containing 4 (VSIG4/CRIg), encodes a Mφ-associated complement receptor and B7 family-related immune checkpoint protein. Here, we demonstrate that Vsig4 expression is highly upregulated with age in perigonadal white adipose tissue (gWAT) in two mouse strains (inbred C57BL/6J and outbred NIH Swiss) independent of gender. The accumulation of VSIG4 was mainly attributed to a fourfold increase in the proportion of VSIG4+ ATMs (13%-52%). In a longitudinal study, VSIG4 expression in gWAT showed a strong correlation with age within a cohort of male and female mice and correlated strongly with physiological frailty index (PFI, a multi-parameter assessment of health) in male mice. Our results indicate that VSIG4 is a novel biomarker of aged murine ATMs. VSIG4 expression was also found to be elevated in other aging tissues (e.g., thymus) and was strongly induced in tumor-adjacent stroma in cases of spontaneous and xenograft lung cancer models. VSIG4 expression was recently associated with cancer and several inflammatory diseases with diagnostic and prognostic potential in both mice and humans. Further investigation is required to determine whether VSIG4-positive Mφ contribute to immunosenescence and/or systemic age-related deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga V. Leontieva
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Marina P. Antoch
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Valeria Kogan
- Institute for Translational ResearchAriel UniversityArielIsrael
| | - Igor E. Koman
- Institute for Translational ResearchAriel UniversityArielIsrael
| | - Yi Zhu
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | | | | | - Andrei V. Gudkov
- Everon Biosciences IncBuffaloNYUSA
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
- Genome Protection IncBuffaloNYUSA
| |
Collapse
|
212
|
Ciabattini A, Garagnani P, Santoro F, Rappuoli R, Franceschi C, Medaglini D. Shelter from the cytokine storm: pitfalls and prospects in the development of SARS-CoV-2 vaccines for an elderly population. Semin Immunopathol 2020; 42:619-634. [PMID: 33159214 PMCID: PMC7646713 DOI: 10.1007/s00281-020-00821-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 pandemic urgently calls for the development of effective preventive tools. COVID-19 hits greatly the elder and more fragile fraction of the population boosting the evergreen issue of the vaccination of older people. The development of a vaccine against SARS-CoV-2 tailored for the elderly population faces the challenge of the poor immune responsiveness of the older population due to immunosenescence, comorbidities, and pharmacological treatments. Moreover, it is likely that the inflammaging phenotype associated with age could both influence vaccination efficacy and exacerbate the risk of COVID-19-related "cytokine storm syndrome" with an overlap between the factors which impact vaccination effectiveness and those that boost virulence and worsen the prognosis of SARS-CoV-2 infection. The complex and still unclear immunopathological mechanisms of SARS-CoV-2 infection, together with the progressive age-related decline of immune responses, and the lack of clear correlates of protection, make the design of vaccination strategies for older people extremely challenging. In the ongoing effort in vaccine development, different SARS-CoV-2 vaccine candidates have been developed, tested in pre-clinical and clinical studies and are undergoing clinical testing, but only a small fraction of these are currently being tested in the older fraction of the population. Recent advances in systems biology integrating clinical, immunologic, and omics data can help to identify stable and robust markers of vaccine response and move towards a better understanding of SARS-CoV-2 vaccine responses in the elderly.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paolo Garagnani
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Huddinge University Hospital, SE-171 77, Stockholm, Sweden
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40139, Bologna, Italy
- Interdepartmental Centre 'L. Galvan' (CIG), University of Bologna, Via G. Petroni 26, 40139, Bologna, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rino Rappuoli
- GSK, Siena, Italy
- vAMRes Lab, Toscana Life Sciences, Siena, Italy
- Faculty of Medicine, Imperial College, London, UK
| | | | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| |
Collapse
|
213
|
Kavianpour M, Saleh M, Verdi J. The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Res Ther 2020; 11:404. [PMID: 32948252 PMCID: PMC7499002 DOI: 10.1186/s13287-020-01849-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) pandemic is quickly spreading all over the world. This virus, which is called SARS-CoV-2, has infected tens of thousands of people. Based on symptoms, the pathogenesis of acute respiratory illness is responsible for highly homogenous coronaviruses as well as other pathogens. Evidence suggests that high inflammation rates, oxidation, and overwhelming immune response probably contribute to pathology of COVID-19. COVID-19 causes cytokine storm, which subsequently leads to acute respiratory distress syndrome (ARDS), often ending up in the death of patients. Mesenchymal stem cells (MSCs) are multipotential stem cells that are recognized via self-renewal capacity, generation of clonal populations, and multilineage differentiation. MSCs are present in nearly all tissues of the body, playing an essential role in repair and generation of tissues. Furthermore, MSCs have broad immunoregulatory properties through the interaction of immune cells in both innate and adaptive immune systems, leading to immunosuppression of many effector activities. MSCs can reduce the cytokine storm produced by coronavirus infection. In a number of studies, the administration of these cells has been beneficial for COVID-19 patients. Also, MSCs may be able to improve pulmonary fibrosis and lung function. In this review, we will review the newest research findings regarding MSC-based immunomodulation in patients with COVID-19.
Collapse
Affiliation(s)
- Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Saleh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Javad Verdi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
214
|
The conundrum of human immune system "senescence". Mech Ageing Dev 2020; 192:111357. [PMID: 32949594 PMCID: PMC7494491 DOI: 10.1016/j.mad.2020.111357] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
Biomarkers of human immunosenescence are discussed. Longitudinal studies are essential. Associations of immune markers in older adults with clinical outcome are context-dependent. There are no universal biomarkers of human immunosenescence. There are common age-associated changes to peripheral immune markers in humans.
There is a great deal of debate on the question of whether or not we know what ageing is (Ref. Cohen et al., 2020). Here, we consider what we believe to be the especially confused and confusing case of the ageing of the human immune system, commonly referred to as “immunosenescence”. But what exactly is meant by this term? It has been used loosely in the literature, resulting in a certain degree of confusion as to its definition and implications. Here, we argue that only those differences in immune parameters between younger and older adults that are associated in some definitive manner with detrimental health outcomes and/or impaired survival prospects should be classed as indicators of immunosenescence in the strictest sense of the word, and that in humans we know remarkably little about their identity. Such biomarkers of immunosenescence may nonetheless indicate beneficial effects in other contexts, consistent with the notion of antagonistic pleiotropy. Identifying what could be true immunosenescence in this respect requires examining: (1) what appears to correlate with age, though generality across human populations is not yet confirmed; (2) what clearly is part of a suite of canonical changes in the immune system that happen with age; (3) which subset of those changes accelerates rather than slows aging; and (4) all changes, potentially population-specific, that accelerate agig. This remains an immense challenge. These questions acquire an added urgency in the current SARS-CoV-2 pandemic, given the clearly greater susceptibility of older adults to COVID-19.
Collapse
|
215
|
Oh J, Wang W, Thomas R, Su DM. Thymic rejuvenation via FOXN1-reprogrammed embryonic fibroblasts (FREFs) to counteract age-related inflammation. JCI Insight 2020; 5:140313. [PMID: 32790650 PMCID: PMC7526556 DOI: 10.1172/jci.insight.140313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Age-associated systemic, chronic inflammation is partially attributed to increased self-autoreactivity, resulting from disruption of central tolerance in the aged, involuted thymus. This involution causally results from gradually decreased expression of the transcription factor FOXN1 in thymic epithelial cells (TECs), whereas exogenous FOXN1 in TECs can partially rescue age-related thymic involution. TECs induced from FOXN1-overexpressing embryonic fibroblasts can generate an ectopic de novo thymus under the kidney capsule, and intrathymic injection of naturally young TECs can lead to middle-aged thymus regrowth. Therefore, as a thymic rejuvenation strategy, we extended these 2 findings by combining them with 2 types of promoter-driven (Rosa26CreERT and FoxN1Cre) Cre-mediated FOXN1-reprogrammed embryonic fibroblasts (FREFs). We engrafted these FREFs directly into the aged murine thymus. We found substantial regrowth of the native aged thymus with rejuvenated architecture and function in both males and females, exhibiting increased thymopoiesis and reinforced thymocyte negative selection, along with reduced senescent T cells and autoreactive T cell–mediated inflammation in old mice. Therefore, this approach has preclinical significance and presents a strategy to potentially rescue decreased thymopoiesis and perturbed negative selection to substantially, albeit partially, restore defective central tolerance and reduce subclinical autoimmune symptoms in elderly people. Engrafting FOXN1-reprogrammed embryonic fibroblast directly into the aged murine thymus promoted regrowth of the native thymus with rejuvenated architecture and function.
Collapse
|
216
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
217
|
Bossù P, Toppi E, Sterbini V, Spalletta G. Implication of Aging Related Chronic Neuroinflammation on COVID-19 Pandemic. J Pers Med 2020; 10:E102. [PMID: 32858874 PMCID: PMC7563730 DOI: 10.3390/jpm10030102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, leads to a respiratory syndrome and other manifestations. Most affected people show no or mild symptoms, but the risk of severe disease and death increases in older people. Here, we report a narrative review on selected studies targeting aging-related chronic neuroinflammation in the COVID-19 pandemic. A hyperactivation of the innate immune system with elevated levels of pro-inflammatory cytokines occurs during severe COVID-19, pointing to an important role of the innate immune dysregulation in the disease outcome. Aging is characterized by a general condition of low-grade inflammation, also connected to chronic inflammation of the brain (neuroinflammation), which is involved in frailty syndrome and contributes to several age-associated diseases, including neurodegenerative and neuropsychiatric disorders. Since neuroinflammation can be induced or worsened by the virus infection itself, as well as by stressful conditions like those linked to the recent pandemic, the role of neuroinflammatory mechanisms could be central in a vicious circle leading to an increase in the mortality risk in aged COVID-19 patients. Furthermore, triggered neuroinflammatory pathways and consequent neurodegenerative and neuropsychiatric conditions might be potential long-term complications of COVID-19. In order to provide insights to help clinicians in identifying patients who progress to a more severe case of the disease, this review underlines the potential implications of aging-related neuroinflammation in COVID-19 pandemic.
Collapse
Affiliation(s)
- Paola Bossù
- Experimental Neuropsycho-Biology Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via del Fosso d Fiorano 64, 00143 Rome, Italy; (E.T.); (V.S.)
| | - Elisa Toppi
- Experimental Neuropsycho-Biology Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via del Fosso d Fiorano 64, 00143 Rome, Italy; (E.T.); (V.S.)
| | - Valentina Sterbini
- Experimental Neuropsycho-Biology Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via del Fosso d Fiorano 64, 00143 Rome, Italy; (E.T.); (V.S.)
| | - Gianfranco Spalletta
- Neuropsychiatry Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via Adeatina 306, 00179 Rome, Italy;
| |
Collapse
|
218
|
Kinsella S, Dudakov JA. When the Damage Is Done: Injury and Repair in Thymus Function. Front Immunol 2020; 11:1745. [PMID: 32903477 PMCID: PMC7435010 DOI: 10.3389/fimmu.2020.01745] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jarrod A. Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
219
|
Wang JH. Why the Outcome of Anti-Tumor Immune Responses is Heterogeneous: A Novel Idea in the Context of Immunological Heterogeneity in Cancers. Bioessays 2020; 42:e2000024. [PMID: 32767371 DOI: 10.1002/bies.202000024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/12/2020] [Indexed: 12/12/2022]
Abstract
The question as to why some hosts can eradicate their tumors while others succumb to tumor-progression remains unanswered. Here, a provocative concept is proposed that intrinsic differences in the T cell receptor (TCR) repertoire of individuals may influence the outcome of anti-tumor immunity by affecting the frequency and/or variety of tumor-reactive CD8 and/or CD4 tumor-infiltrating lymphocytes. This idea implicates that the TCR repertoire in a given patient might not provide sufficiently different TCR clones that can recognize tumor antigens, namely, "a hole in the TCR repertoire" might exist. This idea may provide a novel perspective to further dissect the mechanisms underlying heterogeneous anti-tumor immune responses in different hosts. Besides tumor-intrinsic heterogeneity and host microbiome, the various factors that may constantly shape the dynamic TCR repertoire are also discussed. Elucidating mechanistic differences in different individuals' immune systems will allow to better harness immune system to design new personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Jing H Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
220
|
Down syndrome, accelerated aging and immunosenescence. Semin Immunopathol 2020; 42:635-645. [PMID: 32705346 PMCID: PMC7666319 DOI: 10.1007/s00281-020-00804-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Down syndrome is the most common chromosomal disorder, associated with moderate to severe intellectual disability. While life expectancy of Down syndrome population has greatly increased over the last decades, mortality rates are still high and subjects are facing prematurely a phenomenon of atypical and accelerated aging. The presence of an immune impairment in Down syndrome subjects is suggested for a long time by the existence of an increased incidence of infections, the incomplete efficacy of vaccinations, and a high prevalence of autoimmunity. Immunologic abnormalities have been described since many years in this population, both from a numerical and a functional points of view, and these abnormalities can mirror the ones observed during normal aging. In this review, we summarize our knowledge on immunologic disturbances commonly observed in subjects with Down syndrome, and in innate and adaptive immunity, as well as regarding chronic inflammation. We then discuss the role of accelerated aging in these observed abnormalities and finally review the potential age-associated molecular and cellular mechanisms involved.
Collapse
|
221
|
Faridar A, Thome AD, Zhao W, Thonhoff JR, Beers DR, Pascual B, Masdeu JC, Appel SH. Restoring regulatory T-cell dysfunction in Alzheimer's disease through ex vivo expansion. Brain Commun 2020; 2:fcaa112. [PMID: 32954348 PMCID: PMC7472911 DOI: 10.1093/braincomms/fcaa112] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/30/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a significant component of Alzheimer’s disease pathology. While neuroprotective microglia are important for containment/clearance of Amyloid plaques and maintaining neuronal survival, Alzheimer inflammatory microglia may play a detrimental role by eliciting tau pathogenesis and accelerating neurotoxicity. Regulatory T cells have been shown to suppress microglia-mediated inflammation. However, the role of regulatory T cells in ameliorating the proinflammatory immune response in Alzheimer’s disease requires further investigation. Forty-six patients with Alzheimer disease, 42 with mild cognitive impairment and 41 healthy controls were studied. The phenotypes of peripheral regulatory T cells were assessed with multicolour flow cytometry. Regulatory T cells were co-cultured with responder T cells and proliferation was determined by 3H-thymidine incorporation. In separate experiments, regulatory T cells were added to induced pluripotent stem cell-derived pro-inflammatory macrophages and changes in interleukin-6/tumour necrosis-alpha transcripts and protein levels were measured. Freshly isolated regulatory T cells were expanded ex vivo in the presence of CD3/CD28 expander beads, interleukin-2 and rapamycin to promote their suppressive function. We found that the suppressive function of regulatory T cells on responder T-cell proliferation was compromised at the Alzheimer disease stage, compared with mild cognitive impairment and healthy controls. CD25 mean fluorescence intensity in regulatory T-cell population was also reduced in Alzheimer dementia patients. Regulatory T cells did not suppress pro-inflammatory macrophages at baseline. Following ex vivo expansion, regulatory T-cell suppression of responder T-cell proliferation and pro-inflammatory macrophage activation increased in both patients and controls. Expanded regulatory T cells exerted their immunoregulatory function on pro-inflammatory macrophages through a contact-mediated mechanism. In conclusion, regulatory T-cell immunophenotype and function are compromised in Alzheimer’s disease. Following ex vivo expansion, the immunomodulatory function of regulatory T cells is enhanced even at advanced stages of Alzheimer’s disease. Restoration of regulatory T-cell function could be explored as a means to modulate the inflammatory status of Alzheimer’s disease.
Collapse
Affiliation(s)
- Alireza Faridar
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Aaron D Thome
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Weihua Zhao
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Jason R Thonhoff
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - David R Beers
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Belen Pascual
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Stanley H Appel
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| |
Collapse
|
222
|
Napoli C, Tritto I, Mansueto G, Coscioni E, Ambrosio G. Immunosenescence exacerbates the COVID-19. Arch Gerontol Geriatr 2020; 90:104174. [PMID: 32653765 PMCID: PMC7333612 DOI: 10.1016/j.archger.2020.104174] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Claudio Napoli
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology, Immunohematology, and Transplantation and University Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy.
| | - Isabella Tritto
- Cardiology and Cardiovascular Pathophysiology, Azienda Ospedaliero-Universitaria "S. Maria della Misericordia", University of Perugia, Perugia, Italy
| | - Gelsomina Mansueto
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology, Immunohematology, and Transplantation and University Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Enrico Coscioni
- Department of Cardiac Surgery, Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | - Giuseppe Ambrosio
- Cardiology and Cardiovascular Pathophysiology, Azienda Ospedaliero-Universitaria "S. Maria della Misericordia", University of Perugia, Perugia, Italy; Cardiovascular Department, MultiMedica IRCCS, Sesto San Giovanni, Milan, Italy
| |
Collapse
|
223
|
Hamilton SE, Badovinac VP, Beura LK, Pierson M, Jameson SC, Masopust D, Griffith TS. New Insights into the Immune System Using Dirty Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3-11. [PMID: 32571979 PMCID: PMC7316151 DOI: 10.4049/jimmunol.2000171] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The mouse (Mus musculus) is the dominant organism used to investigate the mechanisms behind complex immunological responses because of their genetic similarity to humans and our ability to manipulate those genetics to understand downstream function. Indeed, our knowledge of immune system development, response to infection, and ways to therapeutically manipulate the immune response to combat disease were, in large part, delineated in the mouse. Despite the power of mouse-based immunology research, the translational efficacy of many new therapies from mouse to human is far from ideal. Recent data have highlighted how the naive, neonate-like immune system of specific pathogen-free mice differs dramatically in composition and function to mice living under barrier-free conditions (i.e., "dirty" mice). In this review, we discuss major findings to date and challenges faced when using dirty mice and specific areas of immunology research that may benefit from using animals with robust and varied microbial exposure.
Collapse
Affiliation(s)
- Sara E Hamilton
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Mark Pierson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - David Masopust
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455;
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Urology, University of Minnesota, Minneapolis, MN 55455; and
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417
| |
Collapse
|
224
|
Gentile P, Sterodimas A. Adipose-derived stromal stem cells (ASCs) as a new regenerative immediate therapy combating coronavirus (COVID-19)-induced pneumonia. Expert Opin Biol Ther 2020; 20:711-716. [PMID: 32329380 PMCID: PMC7196919 DOI: 10.1080/14712598.2020.1761322] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Pietro Gentile
- Department of Surgical Sciences, B-Researcher and Professor of Plastic and Reconstructive Surgery, University of Rome “Tor Vergata” School of Medicine, Rome, Italy
- Founder and Scientific Director of AIRMESS, Academy of International Regenerative Medicine & Surgery Societies, Geneva, Switzerland
- Top Italian Scientist, Geneva, Switzerland
| | - Aris Sterodimas
- Chief of Department of Plastic and Reconstructive Surgery, Metropolitan General Hospital, Athens, Greece
| |
Collapse
|
225
|
Battram AM, Bachiller M, Martín-Antonio B. Senescence in the Development and Response to Cancer with Immunotherapy: A Double-Edged Sword. Int J Mol Sci 2020; 21:ijms21124346. [PMID: 32570952 PMCID: PMC7352478 DOI: 10.3390/ijms21124346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence was first described as a physiological tumor cell suppressor mechanism that leads to cell growth arrest with production of the senescence-associated secretory phenotype known as SASP. The main role of SASP in physiological conditions is to attract immune cells to clear senescent cells avoiding tumor development. However, senescence can be damage-associated and, depending on the nature of these stimuli, additional types of senescence have been described. In the context of cancer, damage-associated senescence has been described as a consequence of chemotherapy treatments that were initially thought of as a tumor suppressor mechanism. However, in certain contexts, senescence after chemotherapy can promote cancer progression, especially when immune cells become senescent and cannot clear senescent tumor cells. Moreover, aging itself leads to continuous inflammaging and immunosenescence which are responsible for rewiring immune cells to become defective in their functionality. Here, we define different types of senescence, pathways that activate them, and functions of SASP in these events. Additionally, we describe the role of senescence in cancer and its treatments, including how aging and chemotherapy contribute to senescence in tumor cells, before focusing on immune cell senescence and its role in cancer. Finally, we discuss potential therapeutic interventions to reverse cell senescence.
Collapse
Affiliation(s)
- Anthony M. Battram
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Mireia Bachiller
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
- Department of Hematology, Hospital Clinic, IDIBAPS/Josep Carreras Leukaemia Research Institute, Carrer Rosselló 149-153, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-45-28; Fax: +34-93-312-94-07
| |
Collapse
|
226
|
de Almeida Brasiel PG. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin Nutr ESPEN 2020; 38:65-66. [PMID: 32690179 PMCID: PMC7297178 DOI: 10.1016/j.clnesp.2020.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023]
Abstract
Background & aims The COVID-19 infection can lead to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mainly affecting patients aged 60 and older. Preliminary data suggest that the nutritional status can change the course of the infection, and on the matter, zinc is crucial for growth, development, and the maintenance of immune function. In the absence of treatment for this virus, there is an urgent need to find alternative methods that can contribute to control of disease. The aim of this paper is to establish the relation between zinc and COVID-19. Methods and results From the prior scientific knowledge, we have performed a review of the literature and examine the role of zinc in immune function in the infection by COVID-19. Our findings are that the zinc as an anti-inflammatory agent may help to optimize immune function and reduce the risk of infection. Conclusions Zinc supplementation can be a useful strategy to reduce the global burden of infection in the elderly, there is a need the increased reporting to improve our understanding of COVID-19 and the care of affected patients.
Collapse
|
227
|
Wang W, Thomas R, Sizova O, Su DM. Thymic Function Associated With Cancer Development, Relapse, and Antitumor Immunity - A Mini-Review. Front Immunol 2020; 11:773. [PMID: 32425946 PMCID: PMC7203483 DOI: 10.3389/fimmu.2020.00773] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The thymus is the central lymphoid organ for T cell development, a cradle of T cells, and for central tolerance establishment, an educator of T cells, maintaining homeostatic cellular immunity. T cell immunity is critical to control cancer occurrence, relapse, and antitumor immunity. Evidence on how aberrant thymic function influences cancer remains largely insufficient, however, there has been recent progress. For example, the involuted thymus results in reduced output of naïve T cells and a restricted T cell receptor (TCR) repertoire, inducing immunosenescence and potentially dampening immune surveillance of neoplasia. In addition, the involuted thymus relatively enhances regulatory T (Treg) cell generation. This coupled with age-related accumulation of Treg cells in the periphery, potentially provides a supportive microenvironment for tumors to escape T cell-mediated antitumor responses. Furthermore, acute thymic involution from chemotherapy can create a tumor reservoir, resulting from an inflammatory microenvironment in the thymus, which is suitable for disseminated tumor cells to hide, survive chemotherapy, and become dormant. This may eventually result in cancer metastatic relapse. On the other hand, if thymic involution is wisely taken advantage of, it may be potentially beneficial to antitumor immunity, since the involuted thymus increases output of self-reactive T cells, which may recognize certain tumor-associated self-antigens and enhance antitumor immunity, as demonstrated through depletion of autoimmune regulator (AIRE) gene in the thymus. Herein, we briefly review recent research progression regarding how altered thymic function modifies T cell immunity against tumors.
Collapse
Affiliation(s)
- Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Olga Sizova
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
228
|
Uremia-Associated Ageing of the Thymus and Adaptive Immune Responses. Toxins (Basel) 2020; 12:toxins12040224. [PMID: 32260178 PMCID: PMC7232426 DOI: 10.3390/toxins12040224] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Progressive loss of renal function is associated with a series of changes of the adaptive immune system which collectively constitute premature immunological ageing. This phenomenon contributes significantly to the mortality and morbidity of end-stage renal disease (ESRD) patients. In this review, the effect of ESRD on the T cell part of the adaptive immune system is highlighted. Naïve T cell lymphopenia, in combination with the expansion of highly differentiated memory T cells, are the hallmarks of immunological ageing. The decreased production of newly formed T cells by the thymus is critically involved. This affects both the CD4 and CD8 T cell compartment and may contribute to the expansion of memory T cells. The expanding populations of memory T cells have a pro-inflammatory phenotype, add to low-grade inflammation already present in ESRD patients and destabilize atherosclerotic plaques. The effect of loss of renal function on the thymus is not reversed after restoring renal function by kidney transplantation and constitutes a long-term mortality risk factor. Promising results from animal experiments have shown that rejuvenation of the thymus is a possibility, although not yet applicable in humans.
Collapse
|
229
|
Shetty AK. Mesenchymal Stem Cell Infusion Shows Promise for Combating Coronavirus (COVID-19)- Induced Pneumonia. Aging Dis 2020; 11:462-464. [PMID: 32257554 PMCID: PMC7069463 DOI: 10.14336/ad.2020.0301] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
A new study published by the journal Aging & Disease reported that intravenous administration of clinical-grade human mesenchymal stem cells (MSCs) into patients with coronavirus disease 2019 (COVID-19) resulted in improved functional outcomes (Leng et al., Aging Dis, 11:216-228, 2020). This study demonstrated that intravenous infusion of MSCs is a safe and effective approach for treating patients with COVID-19 pneumonia, including elderly patients displaying severe pneumonia. COVID-19 is a severe acute respiratory illness caused by a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, treating COVID-19 patients, particularly those afflicted with severe pneumonia, is challenging as no specific drugs or vaccines against SARS-CoV-2 are available. Therefore, MSC therapy inhibiting the overactivation of the immune system and promoting endogenous repair by improving the lung microenvironment after the SARS-CoV-2 infection found in this study is striking. Additional studies in a larger cohort of patients are needed to validate this therapeutic intervention further, however.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| |
Collapse
|