201
|
Shemshaki G, Najafi M, Niranjana Murthy AS, Malini SS. Novel association of PhosphoSerine PHosphatase (PSPH) gene mutations with male infertility identified through whole exome sequencing of South Indians. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
202
|
Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacol Res 2021; 173:105834. [PMID: 34450321 DOI: 10.1016/j.phrs.2021.105834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Epigenetic modification is a fundamental biological process in living organisms, which has significant impact on health and behavior. Metabolism refers to a set of life-sustaining chemical reactions, including the uptake of nutrients, the subsequent conversion of nutrients into energy or building blocks for organism growth, and finally the clearance of redundant or toxic substances. It is well established that epigenetic modifications govern the metabolic profile of a cell by modulating the expression of metabolic enzymes. Strikingly, almost all the epigenetic modifications require substrates produced by cellular metabolism, and a large proportion of metabolic enzymes can transfer into nucleus to locally produce substrates for epigenetic modification, thereby providing an alternative link between metabolism, epigenetic modification and gene expression. Here, we summarize the recent literature pertinent to metabolic enzymes functioning as epigenetic modulators in the regulation of chromatin architecture and gene expression.
Collapse
|
203
|
Apostolidi M, Vathiotis IA, Muthusamy V, Gaule P, Gassaway BM, Rimm DL, Rinehart J. Targeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes. Cancer Res 2021; 81:4346-4359. [PMID: 34185676 PMCID: PMC8373815 DOI: 10.1158/0008-5472.can-20-4190] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 01/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with low survival rate and a lack of biomarkers and targeted treatments. Here, we target pyruvate kinase M2 (PKM2), a key metabolic component of oncogenesis. In patients with TNBC, PKM2pS37 was identified as a prominent phosphoprotein corresponding to the aggressive breast cancer phenotype that showed a characteristic nuclear staining pattern and prognostic value. Phosphorylation of PKM2 at S37 was connected with a cyclin-dependent kinase (CDK) pathway in TNBC cells. In parallel, pyruvate kinase activator TEPP-46 bound PKM2pS37 and reduced its nuclear localization. In a TNBC mouse xenograft model, treatment with either TEPP-46 or the potent CDK inhibitor dinaciclib reduced tumor growth and diminished PKM2pS37. Combinations of dinaciclib with TEPP-46 reduced cell invasion, impaired redox balance, and triggered cancer cell death. Collectively, these data support an approach to identify PKM2pS37-positive TNBC and target the PKM2 regulatory axis as a potential treatment. SIGNIFICANCE: PKM2 phosphorylation marks aggressive breast cancer cell phenotypes and targeting PKM2pS37 could be an effective therapeutic approach for treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
- Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Ioannis A Vathiotis
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Viswanathan Muthusamy
- Yale Center for Precision Cancer Modeling, Yale University School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Patricia Gaule
- Specialized Translational Services Laboratory, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Brandon M Gassaway
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
- Systems Biology Institute, Yale University, West Haven, Connecticut
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.
- Systems Biology Institute, Yale University, West Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
204
|
Lin J, Wu S, Shen Q, Liu J, Huang S, Peng G, Qiao Y. Base editing-mediated perturbation of endogenous PKM1/2 splicing facilitates isoform-specific functional analysis in vitro and in vivo. Cell Prolif 2021; 54:e13096. [PMID: 34240779 PMCID: PMC8349652 DOI: 10.1111/cpr.13096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/02/2021] [Accepted: 06/27/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES PKM1 and PKM2, which are generated from the alternative splicing of PKM gene, play important roles in tumourigenesis and embryonic development as rate-limiting enzymes in glycolytic pathway. However, because of the lack of appropriate techniques, the specific functions of the 2 PKM splicing isoforms have not been clarified endogenously yet. MATERIALS AND METHODS In this study, we used CRISPR-based base editors to perturbate the endogenous alternative splicing of PKM by introducing mutations into the splicing junction sites in HCT116 cells and zebrafish embryos. Sanger sequencing, agarose gel electrophoresis and targeted deep sequencing assays were utilized for identifying mutation efficiencies and detecting PKM1/2 splicing isoforms. Cell proliferation assays and RNA-seq analysis were performed to describe the effects of perturbation of PKM1/2 splicing in tumour cell growth and zebrafish embryo development. RESULTS The splicing sites of PKM, a 5' donor site of GT and a 3' acceptor site of AG, were efficiently mutated by cytosine base editor (CBE; BE4max) and adenine base editor (ABE; ABEmax-NG) with guide RNAs (gRNAs) targeting the splicing sites flanking exons 9 and 10 in HCT116 cells and/or zebrafish embryos. The mutations of the 5' donor sites of GT flanking exons 9 or 10 into GC resulted in specific loss of PKM1 or PKM2 expression as well as the increase in PKM2 or PKM1 respectively. Specific loss of PKM1 promoted cell proliferation of HCT116 cells and upregulated the expression of cell cycle regulators related to DNA replication and cell cycle phase transition. In contrast, specific loss of PKM2 suppressed cell growth of HCT116 cells and resulted in growth retardation of zebrafish. Meanwhile, we found that mutation of PKM1/2 splicing sites also perturbated the expression of non-canonical PKM isoforms and produced some novel splicing isoforms. CONCLUSIONS This work proved that CRISPR-based base editing strategy can be used to disrupt the endogenous alternative splicing of genes of interest to study the function of specific splicing isoforms in vitro and in vivo. It also reminded us to notice some novel or undesirable splicing isoforms by targeting the splicing junction sites using base editors. In sum, we establish a platform to perturbate endogenous RNA splicing for functional investigation or genetic correction of abnormal splicing events in human diseases.
Collapse
Affiliation(s)
- Jianxiang Lin
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Susu Wu
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Qingmei Shen
- Centre for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Jie Liu
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Shisheng Huang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Guangdun Peng
- Centre for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yunbo Qiao
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
205
|
Koo H, Byun S, Seo J, Jung Y, Lee DC, Cho JH, Park YS, Yeom YI, Park KC. PKM2 Regulates HSP90-Mediated Stability of the IGF-1R Precursor Protein and Promotes Cancer Cell Survival during Hypoxia. Cancers (Basel) 2021; 13:cancers13153850. [PMID: 34359752 PMCID: PMC8345735 DOI: 10.3390/cancers13153850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Generally, IGF-1R is overexpressed in most solid tumors, and its expression is significantly associated with poor prognosis in cancer patients. However, IGF-1R gene amplification events are extremely rare in tumors. It is, therefore, necessary to define the mechanism underlying IGR-1R overexpression to elucidate potential therapeutic targets. Our study, specifically, aimed to define the potential mechanisms associated with PKM2 function in regulating IGF-1R protein expression. PKM2 was found to be a non-metabolic protein that regulates HSP90 binding to and stabilizing the precursor IGF-1R protein, thereby promoting the basal level of mature IGF-1R protein. Consequently, PKM2 knockdown inhibits the activation of AKT, a downstream effector of IGF-1R signaling, and increases apoptosis during hypoxia. Our findings reveal a novel mechanism for regulating IGF-1R protein expression, thus suggesting PKM2 as a potential therapeutic target in cancers associated with aberrant IGF signaling. Abstract Insulin-like growth factor-1 receptor (IGF-1R), an important factor in promoting cancer cell growth and survival, is commonly upregulated in cancer cells. However, amplification of the IGF1R gene is extremely rare in tumors. Here, we have provided insights into the mechanisms underlying the regulation of IGF-1R protein expression. We found that PKM2 serves as a non-metabolic protein that binds to and increases IGF-1R protein expression by promoting the interaction between IGF-1R and heat-shock protein 90 (HSP90). PKM2 depletion decreases HSP90 binding to IGF-1R precursor, thereby reducing IGF-1R precursor stability and the basal level of mature IGF-1R. Consequently, PKM2 knockdown inhibits the activation of AKT, the key downstream effector of IGF-1R signaling, and increases apoptotic cancer cell death during hypoxia. Notably, we clinically verified the PKM2-regulated expression of IGF-1R through immunohistochemical staining in a tissue microarray of 112 lung cancer patients, demonstrating a significant positive correlation (r = 0.5208, p < 0.0001) between PKM2 and IGF-1R expression. Together, the results of a previous report demonstrated that AKT mediates PKM2 phosphorylation at serine-202; these results suggest that IGF-1R signaling and PKM2 mutually regulate each other to facilitate cell growth and survival, particularly under hypoxic conditions, in solid tumors with dysregulated IGF-1R expression.
Collapse
Affiliation(s)
- Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Sangwon Byun
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Jieun Seo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Yuri Jung
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Jung Hee Cho
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Young Soo Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.I.Y.); (K.C.P.); Tel.: +82-42-879-8115 (K.C.P.); Fax: +82-42-879-8119 (Y.I.Y.)
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (S.B.); (J.S.); (Y.J.); (D.C.L.); (J.H.C.); (Y.S.P.)
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.I.Y.); (K.C.P.); Tel.: +82-42-879-8115 (K.C.P.); Fax: +82-42-879-8119 (Y.I.Y.)
| |
Collapse
|
206
|
Lee YB, Min JK, Kim JG, Cap KC, Islam R, Hossain AJ, Dogsom O, Hamza A, Mahmud S, Choi DR, Kim YS, Koh YH, Kim HA, Chung WS, Suh SW, Park JB. Multiple functions of pyruvate kinase M2 in various cell types. J Cell Physiol 2021; 237:128-148. [PMID: 34311499 DOI: 10.1002/jcp.30536] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
Glucose metabolism is a mechanism by which energy is produced in form of adenosine triphosphate (ATP) by mitochondria and precursor metabolites are supplied to enable the ultimate enrichment of mature metabolites in the cell. Recently, glycolytic enzymes have been shown to have unconventional but important functions. Among these enzymes, pyruvate kinase M2 (PKM2) plays several roles including having conventional metabolic enzyme activity, and also being a transcriptional regulator and a protein kinase. Compared with the closely related PKM1, PKM2 is highly expressed in cancer cells and embryos, whereas PKM1 is dominant in mature, differentiated cells. Posttranslational modifications such as phosphorylation and acetylation of PKM2 change its cellular functions. In particular, PKM2 can translocate to the nucleus, where it regulates the transcription of many target genes. It is notable that PKM2 also acts as a protein kinase to phosphorylate several substrate proteins. Besides cancer cells and embryonic cells, astrocytes also highly express PKM2, which is crucial for lactate production via expression of lactate dehydrogenase A (LDHA), while mature neurons predominantly express PKM1. The lactate produced in cancer cells promotes tumor progress and that in astrocytes can be supplied to neurons and may act as a major source for neuronal ATP energy production. Thereby, we propose that PKM2 along with its different posttranslational modifications has specific purposes for a variety of cell types, performing unique functions.
Collapse
Affiliation(s)
- Yoon-Beom Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung K Min
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kim Cuong Cap
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea.,Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Rokibul Islam
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - Abu J Hossain
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Oyungerel Dogsom
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Amir Hamza
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Shohel Mahmud
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,National Institute of Biotechnology, Ganakbari, Savar, Dhaka, Bangladesh
| | - Dae R Choi
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Young-Ho Koh
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Hyun-A Kim
- Department of Internal Medicine, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Ahnyang, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang W Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
207
|
Yang M, Chen X, Zhang J, Xiong E, Wang Q, Fang W, Li L, Fei F, Gong A. ME2 Promotes Proneural-Mesenchymal Transition and Lipogenesis in Glioblastoma. Front Oncol 2021; 11:715593. [PMID: 34381734 PMCID: PMC8351415 DOI: 10.3389/fonc.2021.715593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Malic enzyme 2 (ME2) catalyzes the formation of pyruvate from malic acid and is abnormally expressed in some tumors. However, the exact effects of ME2 on proneural–mesenchymal transition (PMT) and lipogenesis in glioblastoma multiforme (GBM) remain unexplored. Here, we found that ME2 expression was significantly higher in GBM than in normal brain tissues and negatively correlated with overall survival of patients with GBM. Furthermore, we demonstrated that ME2 was positively correlated with mesenchymal features in GBM and promoted proliferation, migration, and invasion of glioma cells. Moreover, ME2 upregulated the expression of mesenchymal markers (N-cadherin, vimentin, YKL40, and MET), whereas it inhibited the expression of proneural maker OLIG2, indicating that ME2 might promote PMT in GBM. We also found that ME2 inhibited the production of mitochondrial reactive oxygen species and AMPK phosphorylation, resulting in SREBP-1 maturation and nuclear localization and enhancing the ACSS2 lipogenesis pathway. Taken together, these results suggest that ME2 promotes PMT and is linked with reprogramming of lipogenesis via AMPK–SREBP-1–ACSS2 signaling in GBM. Therefore, ME2 has potential as a new classification marker in GBM and could provide a new approach to glioma treatment.
Collapse
Affiliation(s)
- Mengting Yang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xi Chen
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Junyao Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ermeng Xiong
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Qianqian Wang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenjing Fang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Fei
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
208
|
Rathod B, Chak S, Patel S, Shard A. Tumor pyruvate kinase M2 modulators: a comprehensive account of activators and inhibitors as anticancer agents. RSC Med Chem 2021; 12:1121-1141. [PMID: 34355179 PMCID: PMC8292966 DOI: 10.1039/d1md00045d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate. It plays a central role in the metabolic reprogramming of cancer cells and is expressed in most human tumors. It is essential in indiscriminate proliferation, survival, and tackling apoptosis in cancer cells. This positions PKM2 as a hot target in cancer therapy. Despite its well-known structure and several reported modulators targeting PKM2 as activators or inhibitors, a comprehensive review focusing on such modulators is lacking. Herein we summarize modulators of PKM2, the assays used to detect their potential, the preferable tense (T) and relaxed (R) states in which the enzyme resides, lacunae in existing modulators, and several strategies that may lead to effective anticancer drug development targeting PKM2.
Collapse
Affiliation(s)
- Bhagyashri Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad Opposite Air Force Station Gandhinagar Gujarat 382355 India
| | - Shivam Chak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad Opposite Air Force Station Gandhinagar Gujarat 382355 India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad Opposite Air Force Station Gandhinagar Gujarat 382355 India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad Opposite Air Force Station Gandhinagar Gujarat 382355 India
| |
Collapse
|
209
|
Zou J, Huang R, Chen Y, Huang X, Li H, Liang P, Chen S. Dihydropyrimidinase Like 2 Promotes Bladder Cancer Progression via Pyruvate Kinase M2-Induced Aerobic Glycolysis and Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2021; 9:641432. [PMID: 34295887 PMCID: PMC8291048 DOI: 10.3389/fcell.2021.641432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/06/2021] [Indexed: 01/06/2023] Open
Abstract
Background Aerobic glycolysis and epidermal–mesenchymal transition (EMT) play key roles in the development of bladder cancer. This study aimed to investigate the function and the underlying mechanism of dihydropyrimidinase like 2 (DPYSL2) in bladder cancer progression. Methods The expression pattern of DPYSL2 in bladder cancer and the correlation of DPYSL2 expression with clinicopathological characteristics of bladder cancer patients were analyzed using the data from different databases and tissue microarray. Gain- and loss-of-function assays were performed to explore the role of DPYSL2 in bladder cancer progression in vitro and in mice. Proteomic analysis was performed to identify the interacting partner of DPYSL2 in bladder cancer cells. Findings The results showed that DPYSL2 expression was upregulated in bladder cancer tissue compared with adjacent normal bladder tissue and in more aggressive cancer stages compared with lower stages. DPYSL2 promoted malignant behavior of bladder cancer cells in vitro, as well as tumor growth and distant metastasis in mice. Mechanistically, DPYSL2 interacted with pyruvate kinase M2 (PKM2) and promoted the conversion of PKM2 tetramers to PKM2 dimers. Knockdown of PKM2 completely blocked DPYSL2-induced enhancement of the malignant behavior, glucose uptake, lactic acid production, and epithelial–mesenchymal transition in bladder cancer cells. Interpretation In conclusion, the results suggest that DPYSL2 promotes aerobic glycolysis and EMT in bladder cancer via PKM2, serving as a potential therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Jun Zou
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiyan Huang
- State Key Laboratory of Oncology in South China, Department of Ultrasonography and Electrocardiograms, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanfei Chen
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Huang
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajun Li
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Liang
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Chen
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
210
|
Xie M, Pei DS. Serine hydroxymethyltransferase 2: a novel target for human cancer therapy. Invest New Drugs 2021; 39:1671-1681. [PMID: 34215932 DOI: 10.1007/s10637-021-01144-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Serine and glycine are the primary sources of one-carbon units that are vital for cell proliferation. Their abnormal metabolism is known to be associated with cancer progression. As the key enzyme of serine metabolism, Serine Hydroxymethyltransferase 2 (SHMT2) has been a research hotspot in recent years. SHMT2 is a PLP-dependent tetrameric enzyme that catalyzes the reversible transition from serine to glycine, thus promoting the production of one-carbon units that are indispensable for cell growth and regulation of the redox and epigenetic states of cells. Under a hypoxic environment, SHMT2 can be upregulated and could promote the generation of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione for maintaining the redox balance. Accumulating evidence confirmed that SHMT2 facilitates cell proliferation and tumor growth and is tightly associated with poor prognosis. In this review, we present insights into the function and research development of SHMT2 and summarize the possible molecular mechanisms of SHMT2 in promoting tumor growth, in the hope that it could provide clues to more effective clinical treatment of cancer.
Collapse
Affiliation(s)
- Min Xie
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
211
|
Chen W, Huang F, Huang J, Li Y, Peng J, Zhuang Y, Huang X, Lu L, Zhu Z, Zhang S. SLC45A4 promotes glycolysis and prevents AMPK/ULK1-induced autophagy in TP53 mutant pancreatic ductal adenocarcinoma. J Gene Med 2021; 23:e3364. [PMID: 34010493 PMCID: PMC8459293 DOI: 10.1002/jgm.3364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background Somatic mutations of the TP53 gene occur frequently in pancreatic ductal adenocarcinoma (PDA). Solute carrier family 45 member A4 (SLC45A4) is a H+‐dependent sugar cotransporter. The role of SLC45A4 in PDA, especially in TP53 mutant PDA, remains poorly understood. Methods We explored the TCGA datasets to identify oncogenes in TP53 mutant PDA. MTS [3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium], colony formation and 5‐ethynyl‐2′‐deoxyuridine (Edu) assays were performed to investigate the function of SLC45A4 in vitro. Glucose consumption, lactate production and ATP production were detected to evaluate glucose utilization. Extracellular acidification rate and oxygen consumption rate assays were used to evaluate glycolysis and oxidative phosphorylation. The subcutaneous xenotransplantation models were conducted to explore the function of SLC45A4 in vivo. RNA‐sequencing and gene set enrichment analysis were employed to explore the biological alteration caused by SLC45A4 knockdown. Western blotting was performed to evaluate the activation of glycolysis, as well as the AMPK pathway and autophagy. Results SLC45A4 was overexpressed in PDA for which the expression was significantly higher in TP53 mutant PDA than that in wild‐type PDA tissues. Moreover, high level of SLC45A4 expression was tightly associated with poor clinical outcomes in PDA patients. Silencing SLC45A4 inhibited proliferation in TP53 mutant PDA cells. Knockdown of SLC45A4 reduced glucose uptake and ATP production, which led to activation of autophagy via AMPK/ULK1 pathway. Deleting SLC45A4 in TP53 mutant HPAF‐II cells inhibited the growth of xenografts in nude mice. Conclusions The present study found that SLC45A4 prevents autophagy via AMPK/ULK1 axis in TP53 mutant PDA, which may be a promising biomarker and therapeutic target in TP53 mutant PDA.
Collapse
Affiliation(s)
- Wenying Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fengting Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Huang
- Department of General Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanhua Li
- Department of Gastroenterology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, China
| | - Juanfei Peng
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanyan Zhuang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xianxian Huang
- Center of Digestive Endoscopy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liting Lu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhe Zhu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shineng Zhang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
212
|
Gao F, Zhang X, Wang S, Zheng L, Sun Y, Wang G, Song Z, Bao Y. TSP50 promotes the Warburg effect and hepatocyte proliferation via regulating PKM2 acetylation. Cell Death Dis 2021; 12:517. [PMID: 34016961 PMCID: PMC8138007 DOI: 10.1038/s41419-021-03782-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming is a hallmark of malignancy. Testes-specific protease 50 (TSP50), a newly identified oncogene, has been shown to play an important role in tumorigenesis. However, its role in tumor cell metabolism remains unclear. To investigate this issue, LC-MS/MS was employed to identify TSP50-binding proteins and pyruvate kinase M2 isoform (PKM2), a known key enzyme of aerobic glycolysis, was identified as a novel binding partner of TSP50. Further studies suggested that TSP50 promoted aerobic glycolysis in HCC cells by maintaining low pyruvate kinase activity of the PKM2. Mechanistically, TSP50 promoted the Warburg effect by increasing PKM2 K433 acetylation level and PKM2 acetylation site (K433R) mutation remarkably abrogated the TSP50-induced aerobic glycolysis, cell proliferation in vitro and tumor formation in vivo. Our findings indicate that TSP50-mediated low PKM2 pyruvate kinase activity is an important determinant for Warburg effect in HCC cells and provide a mechanistic link between TSP50 and tumor metabolism.
Collapse
Affiliation(s)
- Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaojun Zhang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ying Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Guannan Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| | - Yongli Bao
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China.
| |
Collapse
|
213
|
Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D. The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J Diabetes Investig 2021; 12:697-709. [PMID: 33314682 PMCID: PMC8089020 DOI: 10.1111/jdi.13478] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS/INTRODUCTION Tubulointerstitial fibrosis is a hallmark of diabetic nephropathy and is associated with an epithelial-to-mesenchymal transition (EMT) program and aberrant glycolysis. Dimeric pyruvate kinase (PK) M2 (PKM2) acts as a key protein kinase in aberrant glycolysis by promoting the accumulation of hypoxia-inducible factor (HIF)-1α, while tetrameric PKM2 functions as a pyruvate kinase in oxidative phosphorylation. The aim of the research is to study the effect of PKM2 tetramer activation on preventing kidney fibrosis via suppression of aberrant glycolysis and the EMT program. MATERIALS AND METHODS In vivo: Streptozotocin (STZ) was utilized to induce diabetes in 8-week-old CD-1 mice; 4 weeks after diabetes induction, proteinuria-induced kidney fibrosis was developed by intraperitoneal injection of bovine serum albumin (BSA: 0.3 g/30 g BW) for 14 days; The PKM2 activator TEPP-46 was also administered orally simultaneously. In vitro: HK2 cells were co-treated with high-glucose media or/and TGF-β1 and TEPP46 for 48 h, cellular protein was extracted for evaluation. RESULTS Diabetic mice developed kidney fibrosis associated with aberrant glycolysis and EMT; BSA injection accelerated kidney fibrosis in both the control and diabetic mice; TEPP-46 rescued the kidney fibrosis. In HK2 cells, TEPP-46 suppressed the EMT program induced by TGF-β1 and/or high-glucose incubation. TEPP-46-induced PKM2 tetramer formation and PK activity resulted in suppression of HIF-1α and lactate accumulation. Specific siRNA-mediated knockdown of HIF-1α expression diminished high glucose-induced mesenchymal protein levels. CONCLUSION PKM2 activation could restore the tubular phenotype via suppression of the EMT program and aberrant glycolysis, providing an alternative target to mitigate fibrosis in diabetic kidneys.
Collapse
Affiliation(s)
- Haijie Liu
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaIshikawaJapan
| | - Yuta Takagaki
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaIshikawaJapan
| | - Asako Kumagai
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaIshikawaJapan
- Department of Obstetrics and GynecologyJuntendo Medical UniversityBunkyoTokyoJapan
| | - Keizo Kanasaki
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaIshikawaJapan
- Division of Anticipatory Molecular Food Science and TechnologyMedical Research InstituteKanazawa Medical UniversityUchinadaIshikawaJapan
- Department of Internal Medicine 1Faculty of MedicineShimane UniversityIzumoJapan
| | - Daisuke Koya
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaIshikawaJapan
- Division of Anticipatory Molecular Food Science and TechnologyMedical Research InstituteKanazawa Medical UniversityUchinadaIshikawaJapan
| |
Collapse
|
214
|
Ma R, Wu Y, Li S, Yu X. Interplay Between Glucose Metabolism and Chromatin Modifications in Cancer. Front Cell Dev Biol 2021; 9:654337. [PMID: 33987181 PMCID: PMC8110832 DOI: 10.3389/fcell.2021.654337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cells reprogram glucose metabolism to meet their malignant proliferation needs and survival under a variety of stress conditions. The prominent metabolic reprogram is aerobic glycolysis, which can help cells accumulate precursors for biosynthesis of macromolecules. In addition to glycolysis, recent studies show that gluconeogenesis and TCA cycle play important roles in tumorigenesis. Here, we provide a comprehensive review about the role of glycolysis, gluconeogenesis, and TCA cycle in tumorigenesis with an emphasis on revealing the novel functions of the relevant enzymes and metabolites. These functions include regulation of cell metabolism, gene expression, cell apoptosis and autophagy. We also summarize the effect of glucose metabolism on chromatin modifications and how this relationship leads to cancer development. Understanding the link between cancer cell metabolism and chromatin modifications will help develop more effective cancer treatments.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
215
|
Chen M, Liu H, Li Z, Ming AL, Chen H. Mechanism of PKM2 affecting cancer immunity and metabolism in Tumor Microenvironment. J Cancer 2021; 12:3566-3574. [PMID: 33995634 PMCID: PMC8120184 DOI: 10.7150/jca.54430] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
PKM2 is the enzyme that regulates the final rate-limiting step of glycolysis. PKM2 expression can reinforce the utilization of oxygen and synthesis of growth substances in cancer cells by enhancing OXPHOS and the Warburg effect. In cancer immunity, PKM2 can modulate the expression of PD-L1 in M2 macrophage and decrease the amount and activity of CD8+ T cells. This affects cancer cell killing and immune escape sequentially. How PKM2 regulates PD-L1 expression through immunometabolism is summarized. PKM2 builds a bridge between energy metabolism and cancer immunity. The activator and inhibitor of PKM2 both promote the anti-cancer immune response and inhibit cancer growth and metastasis by regulating the metabolism of cancer cells and immune cells in the tumor microenvironment through HIF-1α/PKM2 pathway. This review focuses on the precise role of PKM2 modulating immunometabolism, providing valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Mengxi Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Huan Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Zhang Li
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Alex Lau Ming
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
216
|
Shin N, Lee HJ, Sim DY, Im E, Park JE, Park WY, Cho AR, Shim BS, Kim SH. Apoptotic effect of compound K in hepatocellular carcinoma cells via inhibition of glycolysis and Akt/mTOR/c-Myc signaling. Phytother Res 2021; 35:3812-3820. [PMID: 33856720 DOI: 10.1002/ptr.7087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023]
Abstract
Since the AKT/mammalian target of rapamycin (mTOR)/c-Myc signaling plays a pivotal role in the modulation of aerobic glycolysis and tumor growth, in the present study, the role of AKT/mTOR/c-Myc signaling in the apoptotic effect of Compound K (CK), an active ginseng saponin metabolite, was explored in HepG2 and Huh7 human hepatocellular carcinoma cells (HCCs). Here, CK exerted significant cytotoxicity, increased sub-G1, and attenuated the expression of pro-Poly (ADP-ribose) polymerase (pro-PARP) and Pro-cysteine aspartyl-specific protease (pro-caspase3) in HepG2 and Huh7 cells. Consistently, CK suppressed AKT/mTOR/c-Myc and their downstreams such as Hexokinase 2 (HK2) and pyruvate kinase isozymes M2 (PKM2) in HepG2 and Huh7 cells. Additionally, CK reduced c-Myc stability in the presence or absence of cycloheximide in HepG2 cells. Furthermore, AKT inhibitor LY294002 blocked the expression of p-AKT, c-Myc, HK2, PKM2, and pro-cas3 in HepG2 cells. Pyruvate blocked the ability of CK to inhibit p-AKT, p-mTOR, HK2, and pro-Cas3 in treated HepG2 cells. Overall, these findings provide evidence that CK induces apoptosis via inhibition of glycolysis and AKT/mTOR/c-Myc signaling in HCC cells as a potent anticancer candidate for liver cancer clinical translation.
Collapse
Affiliation(s)
- Nari Shin
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Ah Reum Cho
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| |
Collapse
|
217
|
Luo J, Zhang L, Guo L, Yang S. PKM2 regulates proliferation and apoptosis through the Hippo pathway in oral tongue squamous cell carcinoma. Oncol Lett 2021; 21:461. [PMID: 33907571 PMCID: PMC8063272 DOI: 10.3892/ol.2021.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/16/2021] [Indexed: 12/26/2022] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) is a highly malignant type of tumor. The 5-year survival rate of patients with advanced tongue squamous cell carcinoma is only ~50%. Pyruvate kinase M2 (PKM2) is the key rate-limiting enzyme of glycolysis, maintaining the Warburg effect in tumor cells. The present study aimed to investigate the relationship between PKM2 expression and the poor prognosis of patients with OTSCC and to determine oral squamous carcinoma tumor cell proliferation and apoptosis. Reverse transcription-quantitative (RT-q) PCR, western blotting and immunohistochemistry were used to analyze the expression levels of PKM2 in OTSCC, and the clinicopathological characteristics and prognosis of patients with OTSCC were further analyzed by statistical analysis. The results from RT-qPCR and immunohistochemistry demonstrated that PKM2 was upregulated in OTSCC tissues and highly expressed in advanced stage OTSCC tissues compared with paired adjacent tissues and lower stage OTSCC tissues. Patients with OTSCC and high PKM2 expression had shorter overall survival (OS) compared with those with low PKM2 expression. Furthermore, high expression of PKM2 was significantly associated with Tumor-Node-Metastasis (TNM) stage. TNM stage and PKM2 expression were independent predictive factors for OS in patients with OTSCC. In addition, PKM2 knockdown inhibited the proliferation and increased the apoptosis of oral squamous carcinoma tumor cells. Furthermore, PKM2 knockdown could regulate the expression of cell cycle and apoptosis-related proteins by activating Hippo signaling pathway, as confirmed by the decreased expression of yes-associated protein 1 (YAP), Bcl-2 and Ki-67 and the increased expression of large tumor suppressor kinase 1, phosphorylated YAP and Bax. Taken together, the findings from this study demonstrated that PKM2 may be considered as a potential target for the diagnosis and treatment of OTSCC.
Collapse
Affiliation(s)
- Jia Luo
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Lei Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lijuan Guo
- Medical Beauty Department, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Sen Yang
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| |
Collapse
|
218
|
Matte A, Federti E, Kung C, Kosinski PA, Narayanaswamy R, Russo R, Federico G, Carlomagno F, Desbats MA, Salviati L, Leboeuf C, Valenti MT, Turrini F, Janin A, Yu S, Beneduce E, Ronseaux S, Iatcenko I, Dang L, Ganz T, Jung CL, Iolascon A, Brugnara C, De Franceschi L. The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a β-thalassemia mouse model. J Clin Invest 2021; 131:144206. [PMID: 33822774 DOI: 10.1172/jci144206] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Anemia in β-thalassemia is related to ineffective erythropoiesis and reduced red cell survival. Excess free heme and accumulation of unpaired α-globin chains impose substantial oxidative stress on β-thalassemic erythroblasts and erythrocytes, impacting cell metabolism. We hypothesized that increased pyruvate kinase activity induced by mitapivat (AG-348) in the Hbbth3/+ mouse model for β-thalassemia would reduce chronic hemolysis and ineffective erythropoiesis through stimulation of red cell glycolytic metabolism. Oral mitapivat administration ameliorated ineffective erythropoiesis and anemia in Hbbth3/+ mice. Increased ATP, reduced reactive oxygen species production, and reduced markers of mitochondrial dysfunction associated with improved mitochondrial clearance suggested enhanced metabolism following mitapivat administration in β-thalassemia. The amelioration of responsiveness to erythropoietin resulted in reduced soluble erythroferrone, increased liver Hamp expression, and diminished liver iron overload. Mitapivat reduced duodenal Dmt1 expression potentially by activating the pyruvate kinase M2-HIF2α axis, representing a mechanism additional to Hamp in controlling iron absorption and preventing β-thalassemia-related liver iron overload. In ex vivo studies on erythroid precursors from patients with β-thalassemia, mitapivat enhanced erythropoiesis, promoted erythroid maturation, and decreased apoptosis. Overall, pyruvate kinase activation as a treatment modality for β-thalassemia in preclinical model systems had multiple beneficial effects in the erythropoietic compartment and beyond, providing a strong scientific basis for further clinical trials.
Collapse
Affiliation(s)
- Alessandro Matte
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Enrica Federti
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Charles Kung
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | | | | | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, and CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Giorgia Federico
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, and CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, and CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Christophe Leboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université Paris 7 - Denis Diderot, Paris, France.,AP-HP, Hôpital Saint-Louis, Paris, France
| | - Maria Teresa Valenti
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | | | - Anne Janin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université Paris 7 - Denis Diderot, Paris, France.,AP-HP, Hôpital Saint-Louis, Paris, France
| | - Shaoxia Yu
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Elisabetta Beneduce
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | | | - Iana Iatcenko
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Lenny Dang
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Chun-Ling Jung
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, and CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucia De Franceschi
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
219
|
Papadopoulou G, Xanthou G. Metabolic rewiring: a new master of Th17 cell plasticity and heterogeneity. FEBS J 2021; 289:2448-2466. [PMID: 33794075 DOI: 10.1111/febs.15853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023]
Abstract
T helper type 17 (Th17) cells are characterized by inherent plasticity and heterogeneity displaying both pathogenic and tissue-protective functions. Emerging evidence has illuminated a pivotal role for metabolic reprogramming in shaping Th17 cell fate determination. Metabolic responses are regulated by a constellation of factors and environmental triggers, including cytokines, nutrients, oxygen levels, and metabolites. Dysregulation of metabolic pathways not only influences Th17 cell plasticity and effector function but also affects the outcome of Th17-linked autoimmune, inflammatory, and antitumor responses. Understanding the molecular mechanisms underpinning metabolic reprogramming can allow the enhancement of protective Th17 cell-mediated responses during infections and cancer, concomitant with the suppression of detrimental Th17 processes during autoimmune and inflammatory diseases. In the present review, we describe major metabolic pathways underlying the differentiation of Th17 cells and their crosstalk with intracellular signaling mediators, we discuss how metabolic reprogramming affects Th17 cell plasticity and functions, and, finally, we outline current advances in the exploitation of metabolic checkpoints for the development of novel therapeutic interventions for the management of tissue inflammation, autoimmune disorders, and cancer.
Collapse
Affiliation(s)
- Gina Papadopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
220
|
Sun W, Ge Y, Cui J, Yu Y, Liu B. Scutellarin resensitizes oxaliplatin-resistant colorectal cancer cells to oxaliplatin treatment through inhibition of PKM2. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:87-97. [PMID: 33981825 PMCID: PMC8065260 DOI: 10.1016/j.omto.2021.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Although oxaliplatin is an effective chemotherapeutic drug commonly used for colorectal cancer (CRC) treatment, drug resistance usually occurs during the long-term use of it. It is urgent to create strategies to reduce the resistance of CRC cells to oxaliplatin. Oxaliplatin-resistant CRC cells (OR-SW480 and OR-HT29) were acquired through long-term exposure of CRC cells to oxaliplatin. It was found that OR-SW480 and OR-HT29 cells exhibited obvious lower sensitivity and a higher metabolism rate of glucose compared to their parental SW480 and HT29 cells, respectively. However, combination with scutellarin significantly resensitized the OR-SW480 and OR-HT29 cells to oxaliplatin-induced cytotoxicity. Mechanically, overexpression of pyruvate kinase isoenzyme M2 (PKM2) was responsible for the resistance to oxaliplatin in OR-SW480 and OR-HT29. Combination with scutellarin was able to inhibit the PKM2 activity and thus reduced the production of adenosine triphosphate (ATP) to sensitize the oxaliplatin-induced mitochondrial apoptosis pathway in both OR-SW480 and OR-HT29 cells. It was indicated that scutellarin resensitizes oxaliplatin-resistant CRC cells to oxaliplatin treatment through inhibition of PKM2.
Collapse
Affiliation(s)
- Wei Sun
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Ge
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Junpeng Cui
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yifan Yu
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Baolin Liu
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
221
|
The Role of the Pathogen Dose and PI3Kγ in Immunometabolic Reprogramming of Microglia for Innate Immune Memory. Int J Mol Sci 2021; 22:ijms22052578. [PMID: 33806610 PMCID: PMC7961448 DOI: 10.3390/ijms22052578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.
Collapse
|
222
|
Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol 2021; 21:151-161. [PMID: 32839570 DOI: 10.1038/s41577-020-0406-2] [Citation(s) in RCA: 379] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
The microenvironment in cancerous tissues is immunosuppressive and pro-tumorigenic, whereas the microenvironment of tissues affected by chronic inflammatory disease is pro-inflammatory and anti-resolution. Despite these opposing immunological states, the metabolic states in the tissue microenvironments of cancer and inflammatory diseases are similar: both are hypoxic, show elevated levels of lactate and other metabolic by-products and have low levels of nutrients. In this Review, we describe how the bioavailability of lactate differs in the microenvironments of tumours and inflammatory diseases compared with normal tissues, thus contributing to the establishment of specific immunological states in disease. A clear understanding of the metabolic signature of tumours and inflammatory diseases will enable therapeutic intervention aimed at resetting the bioavailability of metabolites and correcting the dysregulated immunological state, triggering beneficial cytotoxic, inflammatory responses in tumours and immunosuppressive responses in chronic inflammation.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chin-Hsien Tsai
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne, Switzerland.
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
223
|
Ho KH, Huang TW, Shih CM, Lee YT, Liu AJ, Chen PH, Chen KC. Glycolysis-associated lncRNAs identify a subgroup of cancer patients with poor prognoses and a high-infiltration immune microenvironment. BMC Med 2021; 19:59. [PMID: 33627136 PMCID: PMC7905662 DOI: 10.1186/s12916-021-01925-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long noncoding (lnc)RNAs and glycolysis are both recognized as key regulators of cancers. Some lncRNAs are also reportedly involved in regulating glycolysis metabolism. However, glycolysis-associated lncRNA signatures and their clinical relevance in cancers remain unclear. We investigated the roles of glycolysis-associated lncRNAs in cancers. METHODS Glycolysis scores and glycolysis-associated lncRNA signatures were established using a single-sample gene set enrichment analysis (GSEA) of The Cancer Genome Atlas pan-cancer data. Consensus clustering assays and genomic classifiers were used to stratify patient subtypes and for validation. Fisher's exact test was performed to investigate genomic mutations and molecular subtypes. A differentially expressed gene analysis, with GSEA, transcription factor (TF) activity scoring, cellular distributions, and immune cell infiltration, was conducted to explore the functions of glycolysis-associated lncRNAs. RESULTS Glycolysis-associated lncRNA signatures across 33 cancer types were generated and used to stratify patients into distinct clusters. Patients in cluster 3 had high glycolysis scores and poor survival, especially in bladder carcinoma, low-grade gliomas, mesotheliomas, pancreatic adenocarcinomas, and uveal melanomas. The clinical significance of lncRNA-defined groups was validated using external datasets and genomic classifiers. Gene mutations, molecular subtypes associated with poor prognoses, TFs, oncogenic signaling such as the epithelial-to-mesenchymal transition (EMT), and high immune cell infiltration demonstrated significant associations with cluster 3 patients. Furthermore, five lncRNAs, namely MIR4435-2HG, AC078846.1, AL157392.3, AP001273.1, and RAD51-AS1, exhibited significant correlations with glycolysis across the five cancers. Except MIR4435-2HG, the lncRNAs were distributed in nuclei. MIR4435-2HG was connected to glycolysis, EMT, and immune infiltrations in cancers. CONCLUSIONS We identified a subgroup of cancer patients stratified by glycolysis-associated lncRNAs with poor prognoses, high immune infiltration, and EMT activation, thus providing new directions for cancer therapy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ting Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
224
|
Abstract
Metabolic reprogramming with heterogeneity is a hallmark of cancer and is at the basis of malignant behaviors. It supports the proliferation and metastasis of tumor cells according to the low nutrition and hypoxic microenvironment. Tumor cells frantically grab energy sources (such as glucose, fatty acids, and glutamine) from different pathways to produce a variety of biomass to meet their material needs via enhanced synthetic pathways, including aerobic glycolysis, glutaminolysis, fatty acid synthesis (FAS), and pentose phosphate pathway (PPP). To survive from stress conditions (e.g., metastasis, irradiation, or chemotherapy), tumor cells have to reprogram their metabolism from biomass production towards the generation of abundant adenosine triphosphate (ATP) and antioxidants. In addition, cancer cells remodel the microenvironment through metabolites, promoting an immunosuppressive microenvironment. Herein, we discuss how the metabolism is reprogrammed in cancer cells and how the tumor microenvironment is educated via the metabolic products. We also highlight potential metabolic targets for cancer therapies.
Collapse
Affiliation(s)
- Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
225
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
226
|
Luvanda MK, Posch W, Vosper J, Zaderer V, Noureen A, Lass-Flörl C, Wilflingseder D. Dexamethasone Promotes Aspergillus fumigatus Growth in Macrophages by Triggering M2 Repolarization via Targeting PKM2. J Fungi (Basel) 2021; 7:70. [PMID: 33498318 PMCID: PMC7909285 DOI: 10.3390/jof7020070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
Since long-term corticosteroid treatment is associated with emerging opportunistic fungal infections causing high morbidity and mortality in immune-suppressed individuals, here we characterized the impact of dexamethasone (Dex) treatment on Aspergillus fumigatus-related immune modulation. We found by high content screening and flow cytometric analyses that during monocyte-to-macrophage differentiation, as little as 0.1 µg/mL Dex resulted in a shift in macrophage polarization from M1 to M2-like macrophages. This macrophage repolarization mediated via Dex was characterized by significant upregulation of the M2 marker CD163 and downmodulation of M1 markers CD40 and CD86 as well as changes in phenotypic properties and adherence. These Dex-mediated phenotypic alterations were furthermore associated with a metabolic switch in macrophages orchestrated via PKM2. Such treated macrophages lost their ability to prevent Aspergillus fumigatus germination, which was correlated with accelerated fungal growth, destruction of macrophages, and induction of an anti-inflammatory cytokine profile. Taken together, repolarization of macrophages following corticosteroid treatment and concomitant switch to an anti-inflammatory phenotype might play a prominent role in triggering invasive aspergillosis (IA) due to suppression of innate immunological responses necessary to combat extensive fungal outgrowth.
Collapse
Affiliation(s)
- Maureen K. Luvanda
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Jonathan Vosper
- Institute of Medical Biochemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Asma Noureen
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| |
Collapse
|
227
|
Yi Z, Wu Y, Zhang W, Wang T, Gong J, Cheng Y, Miao C. Activator-Mediated Pyruvate Kinase M2 Activation Contributes to Endotoxin Tolerance by Promoting Mitochondrial Biogenesis. Front Immunol 2021; 11:595316. [PMID: 33542713 PMCID: PMC7851049 DOI: 10.3389/fimmu.2020.595316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/03/2020] [Indexed: 02/03/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is a key glycolysis enzyme, and its effect on macrophages has not been entirely elucidated. Here, we identified that the PKM2 small-molecule agonist TEPP-46 mediated PKM2 activation by inducing the formation of PKM2 tetramer and promoted macrophage endotoxin tolerance. Lipopolysaccharide (LPS)-tolerant mice had higher expression of the PKM2 tetramer, which was associated with a reduced in vivo immune response to LPS. Pretreatment of macrophages with TEPP-46 resulted in tolerance to LPS stimulation, as demonstrated by a significant reduction in the production of TNF-α and IL-6. We found that TEPP-46 induced mitochondrial biogenesis in macrophages. Inhibition of mitochondrial biogenesis by mtTFA knockdown effectively inhibited TEPP-46-mediated macrophage tolerance to endotoxins. We discovered that TEPP-46 promoted the expression of PGC-1α and that PGC-1α was the key regulator of mitochondrial biogenesis in macrophages induced by TEPP-46. PGC-1α was negatively regulated by the PI3K/Akt signaling pathway. Knockdown of PKM2 or PGC-1α uniformly inhibited TEPP-46-mediated endotoxin tolerance by inhibiting mitochondrial biogenesis. In addition, TEPP-46 protected mice from lethal endotoxemia and sepsis. Collectively, these findings reveal novel mechanisms for the metabolic control of inflammation and for the induction of endotoxin tolerance by promoting mitochondrial biogenesis. Targeting PKM2 appears to be a new therapeutic option for the treatment of sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunmu Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
228
|
Alghamdi MA, AL-Eitan LN, Tarkhan AH, Al-Qarqaz FA. Global gene methylation profiling of common warts caused by human papillomaviruses infection. Saudi J Biol Sci 2021; 28:612-622. [PMID: 33424347 PMCID: PMC7783806 DOI: 10.1016/j.sjbs.2020.10.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Infection with the human papillomaviruses (HPV) often involves the epigenetic modification of the host genome. Despite its prevalence among the population, host genome methylation in HPV-induced warts is not clearly understood. In this study, genome-wide methylation profiling was carried out on paired healthy skin and wart samples in order to investigate the effects that benign HPV infection has on gene methylation status. To overcome this gap in knowledge, paired wart (n = 12) and normal skin (n = 12) samples were obtained from Arab males in order to perform DNA extraction and subsequent genome-wide methylation profiling on the Infinium Methylation EPIC Bead Chip microarray. Analysis of differential methylation revealed a clear pattern of discrimination between the wart and normal skin samples. In warts, the most differentially methylated (DM) genes included long non-coding RNAs (AC005884, AL049646.2, AC126121.2, AP001790.1, and AC107959.3), microRNAs (MIR374B, MIR596, MIR1255B1, MIR26B, and MIR196A2),snoRNAs (SNORD114-22, SNORD70, and SNORD114-31), pseudogenes (AC069366.1, RNU4ATAC11P, AC120057.1, NANOGP3, AC106038.2, TPT1P2, SDC4P, PKMP3, and VN2R3P), and protein-coding genes (AREG, GJB2, C12orf71, AC020909.2, S100A8, ZBED2, FABP7, and CYSLTR1). In addition, pathway analysis revealed that, among the most differentially methylated genes, STAT5A, RARA, MEF2D, MAP3K8, and THRA were the common regulators. It can be observed that HPV-induced warts involve a clear and unique epigenetic alteration to the host genome.
Collapse
Affiliation(s)
- Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Firas A. Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
229
|
Wang D, Zhao C, Xu F, Zhang A, Jin M, Zhang K, Liu L, Hua Q, Zhao J, Liu J, Yang H, Huang G. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics 2021; 11:2860-2875. [PMID: 33456577 PMCID: PMC7806469 DOI: 10.7150/thno.51797] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is commonly observed in solid tumors and contributes to the resistance of DNA damage drugs. However, the mechanisms behind this resistance are still unclear. In this study, we aimed to explore the effects of hypoxia-induced exosomes on non-small cell lung cancer (NSCLC). Methods: NSCLC cells were subjected to either normoxic or hypoxic conditions to assess cell survival and changes in the expression levels of key proteins. Comparative proteomics were performed to identify exosomal PKM2 in normoxic or hypoxic cisplatin-resistant NSCLC cells-derived exosomes. Functions of hypoxia induced-exosomal PKM2 in promoting cisplatin resistance to NSCLC cells were evaluated both in vitro and in vivo experiments and the molecular mechanisms of hypoxia induced-exosomal PKM2 were demonstrated using flow cytometry, immunoblotting, oxidative stress detection and histological examination. A series of in vitro experiments were performed to evaluate the function of hypoxia-induced exosomes on cancer-associated fibroblasts (CAFs). Results: Hypoxia exacerbated the cisplatin resistance in lung cancer cells due to the increased expression of PKM2 that was observed in the exosomes secreted by hypoxic cisplatin-resistance cells. We identified that hypoxia-induced exosomal PKM2 transmitted cisplatin-resistance to sensitive NSCLC cells in vitro and in vivo. Mechanistically, hypoxia-induced exosomal PKM2 promoted glycolysis in NSCLC cells to produce reductive metabolites, which may neutralize reactive oxygen species (ROS) induced by cisplatin. Additionally, hypoxia-induced exosomal PKM2 inhibited apoptosis in a PKM2-BCL2-dependent manner. Moreover, hypoxia-induced exosomal PKM2 reprogrammed CAFs to create an acidic microenvironment promoting NSCLC cells proliferation and cisplatin resistance. Conclusions: Our findings revealed that hypoxia-induced exosomes transmit cisplatin resistance to sensitive NSCLC cells by delivering PKM2. Exosomal PKM2 may serve as a promising biomarker and therapeutic target for cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Dongliang Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Chaoshuai Zhao
- Department of Dermatology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Fei Xu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Aimi Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Kunchi Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Hua
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jian Zhao
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
230
|
Wang JY, Chen LJ, Qiang P. The Potential Role of N6-Methyladenosine (m6A) Demethylase Fat Mass and Obesity-Associated Gene (FTO) in Human Cancers. Onco Targets Ther 2020; 13:12845-12856. [PMID: 33364780 PMCID: PMC7751723 DOI: 10.2147/ott.s283417] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) demethylase fat mass and obesity-associated gene(FTO), previously recognized to be related with obesity and diabetes, was gradually discovered to be dysregulated in multiple cancers and plays an oncogenic or tumor-suppressive role. However, the specific expression and pro- or anti-cancer role of FTO in various cancers remained controversial. In this review, through summarizing the available literature, we found that FTO single nucleotide polymorphisms (SNPs) were closely related with cancer risk. Additionally, the dysregulation of FTO was implicated in multiple biological processes, such as cancer cell apoptosis, proliferation, migration, invasion, metastasis, cell-cycle, differentiation, stem cell self-renewal and so on. These modulations mostly relied on the communications between FTO and specific signaling pathways, including PI3K/AKT, MAPK and mTOR signaling pathways. Furthermore, FTO had great potential for clinical application by serving as a prognostic biomarker.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Department of Obstetrics and Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Jiangsu 215600, People's Republic of China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Li-Juan Chen
- Department of Obstetrics and Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Jiangsu 215600, People's Republic of China
| | - Ping Qiang
- Department of Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, People's Republic of China
| |
Collapse
|
231
|
Zhang R, Shen M, Wu C, Chen Y, Lu J, Li J, Zhao L, Meng H, Zhou X, Huang G, Zhao X, Liu J. HDAC8-dependent deacetylation of PKM2 directs nuclear localization and glycolysis to promote proliferation in hepatocellular carcinoma. Cell Death Dis 2020; 11:1036. [PMID: 33279948 PMCID: PMC7719180 DOI: 10.1038/s41419-020-03212-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/11/2023]
Abstract
Pyruvate kinase M2 (PKM2) is not only a key rate-limiting enzyme that guides glycolysis, but also acts as a non-metabolic protein in regulating gene transcription. In recent years, a series of studies have confirmed that post-translational modification has become an important mechanism for regulating the function of PKM2, which in turn affects tumorigenesis. In this study, we found that K62 residues were deacetylated, which is related to the prognosis of HCC. Further studies indicate that HDAC8 binds and deacetylates the K62 residue of PKM2. Mechanistically, K62 deacetylation facilitate PKM2 transport into the nucleus and bind β-catenin, thereby promoting CCND1 gene transcription and cell cycle progression. In addition, the deacetylation of K62 affects the enzyme activity of PKM2 and the flux of glucose metabolism. Therefore, these results suggest that HDAC8 / PKM2 signaling may become a new target for the treatment of HCC.
Collapse
Affiliation(s)
- Ruixue Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengqin Shen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chunhua Wu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yumei Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiani Lu
- Division of Physical Therapy Education, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jiajin Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huannan Meng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Division of Physical Therapy Education, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
232
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
233
|
Kikuchi T, Tohda C, Suyama M. Recovery of motor function of chronic spinal cord injury by extracellular pyruvate kinase isoform M2 and the underlying mechanism. Sci Rep 2020; 10:19475. [PMID: 33173148 PMCID: PMC7656253 DOI: 10.1038/s41598-020-76629-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
In our previous study, we found that pyruvate kinase isoform M2 (PKM2) was secreted from the skeletal muscle and extended axons in the cultured neuron. Indirect evidence suggested that secreted PKM2 might relate to the recovery of motor function in spinal cord injured (SCI) mice. However, in vivo direct evidence has not been obtained, showing that extracellular PKM2 improved axonal density and motor function in SCI mice. In addition, the signal pathway of extracellular PKM2 underlying the increase in axons remained unknown. Therefore, this study aimed to identify a target molecule of extracellular PKM2 in neurons and investigate the critical involvement of extracellular PKM2 in functional recovery in the chronic phase of SCI. Recombinant PKM2 infusion to the lateral ventricle recovered motor function in the chronic phase of SCI mice. The improvement of motor function was associated with axonal increase, at least of raphespinal tracts connecting to the motor neurons directly or indirectly. Target molecules of extracellular PKM2 in neurons were identified as valosin-containing protein (VCP) by the drug affinity responsive target stability method. ATPase activation of VCP mediated the PKM2-induced axonal increase and recovery of motor function in chronic SCI related to the increase in axonal density. It is a novel finding that axonal increase and motor recovery are mediated by extracellular PKM2-VCP-driven ATPase activity.
Collapse
Affiliation(s)
- Takahiro Kikuchi
- Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Chihiro Tohda
- Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Masato Suyama
- Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
234
|
Regulation of trophoblast cell invasion by Pyruvate Kinase isozyme M2 (PKM2). Placenta 2020; 103:24-32. [PMID: 33070034 DOI: 10.1016/j.placenta.2020.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
The Pyruvate kinase isozymes M2 (PKM2) protein is a metabolic enzyme that regulates the final step of glycolysis. This enzyme is present in highly proliferating cells and is expressed in the placenta. We recently demonstrated upregulated placental PKM2 during human intrauterine growth restriction (IUGR). Our current objective was to determine PKM2 regulation of trophoblast invasion, trophoblast PKM2 localization as well as mTOR protein expression, and to determine effects of activation of PKM2 during IUGR. Human placental tissues were obtained and analyzed by immunohistochemistry and western blot. Trophoblast cells were cultured in normoxic and hypoxic conditions and real time cell invasion and PKM2 protein were determined during activation (Fructose-6-bisphosphate; FBP6) or inhibition (Shikonin) of PKM2. In vivo studies determined the effects of PKM2 activation on placental and fetal weights. IUGR samples had elevated levels of p-PKM2. Different trophoblast PKM2 localization and expression was observed during normoxia and hypoxia. Decreased trophoblast invasion and PKM2 expression was observed during mTOR inhibition. Protection from decreased placental and fetal weights was observed by PKM2 activation. We conclude that PKM2 regulates trophoblast cell invasion depending on its subcellular location. Our results suggest that PKM2 regulation in trophoblast cells is more directly affected during hypoxia and its expression is regulated by mTOR activity. Additionally, we conclude that activation of PKM2 could reverse and/or rescue the deceased placental and fetal weights observed during IUGR. These results suggest that PKM2 could be a mediator of trophoblast cell invasion and its abundance influences the development of complicated pregnancies like IUGR.
Collapse
|
235
|
Verbrugge SAJ, Gehlert S, Stadhouders LEM, Jacko D, Aussieker T, M. J. de Wit G, Vogel ISP, Offringa C, Schönfelder M, Jaspers RT, Wackerhage H. PKM2 Determines Myofiber Hypertrophy In Vitro and Increases in Response to Resistance Exercise in Human Skeletal Muscle. Int J Mol Sci 2020; 21:E7062. [PMID: 32992783 PMCID: PMC7583908 DOI: 10.3390/ijms21197062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Nearly 100 years ago, Otto Warburg investigated the metabolism of growing tissues and discovered that tumors reprogram their metabolism. It is poorly understood whether and how hypertrophying muscle, another growing tissue, reprograms its metabolism too. Here, we studied pyruvate kinase muscle (PKM), which can be spliced into two isoforms (PKM1, PKM2). This is of interest, because PKM2 redirects glycolytic flux towards biosynthetic pathways, which might contribute to muscle hypertrophy too. We first investigated whether resistance exercise changes PKM isoform expression in growing human skeletal muscle and found that PKM2 abundance increases after six weeks of resistance training, whereas PKM1 decreases. Second, we determined that Pkm2 expression is higher in fast compared to slow fiber types in rat skeletal muscle. Third, by inducing hypertrophy in differentiated C2C12 cells and by selectively silencing Pkm1 and/or Pkm2 with siRNA, we found that PKM2 limits myotube growth. We conclude that PKM2 contributes to hypertrophy in C2C12 myotubes and indicates a changed metabolic environment within hypertrophying human skeletal muscle fibers. PKM2 is preferentially expressed in fast muscle fibers and may partly contribute to the increased potential for hypertrophy in fast fibers.
Collapse
Affiliation(s)
- Sander A. J. Verbrugge
- Department for Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München/Munich, Germany; (S.A.J.V.); (M.S.)
| | - Sebastian Gehlert
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (T.A.)
| | - Lian E. M. Stadhouders
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Daniel Jacko
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (T.A.)
| | - Thorben Aussieker
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (T.A.)
| | - Gerard M. J. de Wit
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Ilse S. P. Vogel
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Carla Offringa
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Martin Schönfelder
- Department for Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München/Munich, Germany; (S.A.J.V.); (M.S.)
| | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Henning Wackerhage
- Department for Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München/Munich, Germany; (S.A.J.V.); (M.S.)
| |
Collapse
|
236
|
Morita M, Kanasaki K. Sodium-glucose cotransporter-2 inhibitors for diabetic kidney disease: Targeting Warburg effects in proximal tubular cells. DIABETES & METABOLISM 2020; 46:353-361. [PMID: 32891754 DOI: 10.1016/j.diabet.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022]
Abstract
Inhibitors of sodium-glucose cotransporter 2 (SGLT2) have undoubtedly shifted the paradigm for diabetes medicine and research and, especially, diabetic kidney disease (DKD). The pharmacological action of SGLT2 inhibitors is simply the release of glucose into urine; however, precisely how SGLT2 inhibitors contribute to the health of those with diabetes has still not been completely elucidated. Towards this end, the present review provides a novel insight into the action of SGLT2 inhibitors by highlighting a neglected fuel-burning system found in proximal tubular cells-'glycolysis'. In addition, exploring the details of the molecular mechanisms and clinical biomarkers of the organ protection conferred by SGLT2 inhibitors is now required to prepare for the next stage of clinical diabetes medicine-the 'post-SGLT2 inhibitor era'.
Collapse
Affiliation(s)
- Miwa Morita
- Department of Internal Medicine 1, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Keizo Kanasaki
- Department of Internal Medicine 1, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| |
Collapse
|
237
|
Walls JF, Subleski JJ, Palmieri EM, Gonzalez-Cotto M, Gardiner CM, McVicar DW, Finlay DK. Metabolic but not transcriptional regulation by PKM2 is important for natural killer cell responses. eLife 2020; 9:59166. [PMID: 32812866 PMCID: PMC7467725 DOI: 10.7554/elife.59166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/15/2020] [Indexed: 12/25/2022] Open
Abstract
Natural Killer (NK) cells have an important role in immune responses to viruses and tumours. Integrating changes in signal transduction pathways and cellular metabolism is essential for effective NK cells responses. The glycolytic enzyme Pyruvate Kinase Muscle 2 (PKM2) has described roles in regulating glycolytic flux and signal transduction, particularly gene transcription. While PKM2 expression is robustly induced in activated NK cells, mice lacking PKM2 in NK cells showed no defect in NK cell metabolism, transcription or antiviral responses to MCMV infection. NK cell metabolism was maintained due to compensatory PKM1 expression in PKM2-null NK cells. To further investigate the role of PKM2, we used TEPP-46, which increases PKM2 catalytic activity while inhibiting any PKM2 signalling functions. NK cells activated with TEPP-46 had reduced effector function due to TEPP-46-induced increases in oxidative stress. Overall, PKM2-regulated glycolytic metabolism and redox status, not transcriptional control, facilitate optimal NK cells responses.
Collapse
Affiliation(s)
- Jessica F Walls
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - Jeff J Subleski
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - Erika M Palmieri
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - Marieli Gonzalez-Cotto
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniel W McVicar
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
238
|
Chen J, Wu D, Dong Z, Chen A, Liu S. The expression and role of glycolysis-associated molecules in infantile hemangioma. Life Sci 2020; 259:118215. [PMID: 32768579 DOI: 10.1016/j.lfs.2020.118215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023]
Abstract
AIMS Infantile hemangioma (IH) is one of the most common tumors in infancy, which etiology and pathogenesis has not been fully elucidated, hypoxia and abnormal glucose metabolism is regarded as critical pathogenic factors. This study investigated the expression and function of glycolysis-associated molecules (GLUT1, HK2, PFKFB3, PKM2, and LDHA) under normoxic and hypoxic conditions to further understand the pathogenesis of IH. MAIN METHODS Hemangioma-derived endothelial cells (HemECs) were isolated from proliferating phase infantile hemangiomas and identified by immunofluorescence. HemECs and human umbilical vein endothelial cells (HUVECs) were cultured under normoxic and hypoxic conditions. RNA and protein expression of glycolysis-associated molecules were analyzed by quantitative real-time RT-PCR, western blotting, and immunohistochemistry. Glucose consumption, ATP production and lactate production were measured. Glycolysis-associated molecules were inhibited by WZB117, 3BP, 3PO, SKN, and GSK 2837808A and the resulting effects on HemECs proliferation, migration, and tube formation were quantified. KEY FINDINGS Glycolysis-associated molecules were highly expressed at both mRNA and protein levels in HemECs compared with HUVECs (P < 0.05). Glucose consumption and ATP production were higher in HemECs than in HUVECs, while lactate production in HemECs was lower than in HUVECs (P < 0.05). Inhibition of some glycolysis-associated molecules reduced the proliferation, migration, and tube formation capacity of HemECs (P < 0.05). SIGNIFICANCE Our study revealed that glycolysis-associated molecules were highly expressed in IH. Glucose metabolismin HemECs differed from normal endothelial cells. Altering the expression of glycolysis-associated molecules may influence the phenotype of HemECs and provide new therapeutic approaches to the successful treatment of IH.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Dan Wu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Zuoqing Dong
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Anwei Chen
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Shaohua Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
239
|
Zhang X, Yang J, Shi D, Cao Z. TET2 suppresses nasopharyngeal carcinoma progression by inhibiting glycolysis metabolism. Cancer Cell Int 2020; 20:363. [PMID: 32774157 PMCID: PMC7397601 DOI: 10.1186/s12935-020-01456-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignant tumor. Ten-eleven translocation (TET) protein 2 (TET2), an evolutionarily conserved dioxygenases, is reported to be involved in various malignant tumor developments. Here, we aim to investigate the effect of TET2 on NPC progress in vitro and in vivo, and its detailed underlying mechanism. Methods Real-time PCR and western blotting were used to determine the expression levels of TET1/2/3 in NPC cell lines. The effects of TET2 on NPC progression were evaluated using CCK8 and invasion assays in vitro. Proteins interacted with TET2 in NPC cells were detected by immunoprecipitation and mass spectrometry. The effects of TET2 or pyruvate kinase, muscle (PKM) on glycolysis in NPC cells were examined by detecting glucose uptake and lactate production. The effects of TET2 on NPC progression were evaluated using xenograft tumor model in vivo. Results TET2 expression was decreased in NPC cells, and TET2 overexpression inhibited proliferation and invasion of NPC cells, which is independent on TET2’s catalytic activity. In mechanism, TET2 N-terminal domain interacts with PKM in cytoplasm to prevent PKM dimers from translocating into nucleus, suppressing glycolysis in NPC cells, thereby inhibiting proliferation and invasion of NPC cells. Moreover, using xenograft tumor model, we found that TET2 knockout promoted NPC progression and decreased survival rate. However, administration with the inhibitor of PKM, shikonin, decreased the tumor volume of TET2-cas9 group, and increased the survival rate. Conclusion TET2 suppresses NPC development through interacting with PKM to inhibit glycolysis.
Collapse
Affiliation(s)
- Xixia Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| | - Dong Shi
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| |
Collapse
|
240
|
Lee HJ, Han HJ, Lee JY, Son WC. PKM2 in Canine Mammary Tumors: Parallels to Human Breast Cancer. Comp Med 2020; 70:349-354. [PMID: 32718384 PMCID: PMC7446644 DOI: 10.30802/aalas-cm-20-000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PKM2 is a pyruvate kinase isoform that is the final and rate-limiting step in aerobic glycolysis in tumor cells. Increased expression of PKM2 has been detected in human cancers. The present study examined the expression of PKM2 in canine mammary tumors and assessed its prognostic significance. Paraffin sections of 5 adenomas, 67 carcinomas, and 5 samples of nonneoplastic hyperplasia from 77 dogs, aged 8 to 18 y, were evaluated. Significantly higher levels of PKM2 were detected among the carcinomas compared with all other tissues examined. The level of PKM2 expression in carcinoma tissue correlated positively with the tumor grade. These findings suggest that PKM2 may have a similar role in canine mammary tumors to its role in human breast cancer. As such, canine mammary tumors may be useful models for studies focused on the progression of human neoplastic disease.
Collapse
Affiliation(s)
- Hyo-Ju Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hyo-Jeong Han
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Ji-Young Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Woo-Chan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea;,
| |
Collapse
|
241
|
Han W, Shi J, Cao J, Dong B, Guan W. Emerging Roles and Therapeutic Interventions of Aerobic Glycolysis in Glioma. Onco Targets Ther 2020; 13:6937-6955. [PMID: 32764985 PMCID: PMC7371605 DOI: 10.2147/ott.s260376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most common type of intracranial malignant tumor, with a great recurrence rate due to its infiltrative growth, treatment resistance, intra- and intertumoral genetic heterogeneity. Recently, accumulating studies have illustrated that activated aerobic glycolysis participated in various cellular and clinical activities of glioma, thus influencing the efficacy of radiotherapy and chemotherapy. However, the glycolytic process is too complicated and ambiguous to serve as a novel therapy for glioma. In this review, we generalized the implication of key enzymes, glucose transporters (GLUTs), signalings and transcription factors in the glycolytic process of glioma. In addition, we summarized therapeutic interventions via the above aspects and discussed promising clinical applications for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
242
|
Yamaguchi H, Taouk GM. A Potential Role of YAP/TAZ in the Interplay Between Metastasis and Metabolic Alterations. Front Oncol 2020; 10:928. [PMID: 32596154 PMCID: PMC7300268 DOI: 10.3389/fonc.2020.00928] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) are the downstream effectors of the Hippo signaling pathway that play a crucial role in various aspects of cancer progression including metastasis. Metastasis is the multistep process of disseminating cancer cells in a body and responsible for the majority of cancer-related death. Emerging evidence has shown that cancer cells reprogram their metabolism to gain proliferation, invasion, migration, and anti-apoptotic abilities and adapt to various environment during metastasis. Moreover, it has increasingly been recognized that YAP/TAZ regulates cellular metabolism that is associated with the phenotypic changes, and recent studies suggest that the YAP/TAZ-mediated metabolic alterations contribute to metastasis. In this review, we will introduce the latest knowledge of YAP/TAZ regulation and function in cancer metastasis and metabolism, and discuss possible links between the YAP/TAZ-mediated metabolic reprogramming and metastasis.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Cancer Research Center, College of Health and Life Sciences, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ghina M Taouk
- Cancer Research Center, College of Health and Life Sciences, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
243
|
Rajala RVS. Aerobic Glycolysis in the Retina: Functional Roles of Pyruvate Kinase Isoforms. Front Cell Dev Biol 2020; 8:266. [PMID: 32426353 PMCID: PMC7203425 DOI: 10.3389/fcell.2020.00266] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022] Open
Abstract
One hundred years ago, Otto Heinrich Warburg observed that postmitotic retinal cells are the highest oxygen-consuming cells in the body. He compared these cells to actively growing mitotic tumor cells since both cells reprogram glucose for anabolic processes, which include lipid, protein, and RNA/DNA synthesis, and for antioxidant metabolism. To achieve this metabolic reprogramming, cancer cells preferentially express a less active dimeric form, the M2 isoform of pyruvate kinase (PKM2), which shuttles glucose toward the accumulation of glycolytic intermediates that redirect cell activities into anabolic processes. Similar to cancer cells, retinal photoreceptors predominantly express the M2 isoform of PKM2. This isoform performs both metabolic and non-metabolic functions in photoreceptor cells. This review focuses on the metabolic and non-metabolic roles of pyruvate kinases in photoreceptor cell functions.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
244
|
Zhang E, Ryu J, Levi SR, Oh JK, Hsu CW, Cui X, Lee TT, Wang NK, Lima de Carvalho JR, Tsang SH. PKM2 ablation enhanced retinal function and survival in a preclinical model of retinitis pigmentosa. Mamm Genome 2020; 31:77-85. [PMID: 32342224 DOI: 10.1007/s00335-020-09837-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a neurodegenerative disorder that causes irreversible vision loss in over 1.5 million individuals world-wide. The genetic heterogeneity of RP necessitates a broad therapy that is able to provide treatment in a gene- and mutation- non-specific manner. In this study, we identify the therapeutic benefits of metabolic reprogramming by targeting pyruvate kinase M2 (PKM2) in a Pde6β preclinical model of RP. The genetic contributions of PKM2 inhibition in retinal degeneration were evaluated through histology and electroretinogram (ERG) followed by a statistical analysis using a linear regression model. Notably, PKM2 ablation resulted in thicker retinal layers in Pde6β-mutated mice as compared to the controls, suggesting greater photoreceptor survival. Consistent with these anatomical findings, ERG analyses revealed that the maximum b-wave is on average greater in Pkm2 knockout mice than in mice with intact Pkm2, indicating enhanced photoreceptor function. These rescue phenotypes from Pkm2 ablation in a preclinical model of RP indicate that a metabolome reprogramming may be useful in treating RP.
Collapse
Affiliation(s)
- Ethan Zhang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Joseph Ryu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Sarah R Levi
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Jin Kyun Oh
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- State University of New York At Downstate Medical Center, Brooklyn, NY, USA
| | - Chun Wei Hsu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Xuan Cui
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- The College of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Tianjin, China
| | - Ting-Ting Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nan-Kai Wang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Brazil
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.
- Department of Pathology & Cell Biology, Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.
| |
Collapse
|
245
|
Zhang Q, Guo D, Wang Y, Wang X, Wang Q, Wu Y, Li C, Wang W, Wang Y. Danqi Pill Protects Against Heart Failure Post-Acute Myocardial Infarction via HIF-1α/PGC-1α Mediated Glucose Metabolism Pathway. Front Pharmacol 2020; 11:458. [PMID: 32372956 PMCID: PMC7187888 DOI: 10.3389/fphar.2020.00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/24/2020] [Indexed: 12/28/2022] Open
Abstract
AIM Heart failure (HF) post-acute myocardial infarction (AMI) leads to a large number of hospitalizations and deaths worldwide. Danqi pill (DQP) is included in the 2015 national pharmacopoeia and widely applied in the treatment of HF in clinics in China. We examined whether DQP acted on glucose metabolism to protect against HF post-AMI via hypoxia inducible factor-1 alpha (HIF-1α)/peroxisome proliferator-activated receptor α co-activator (PGC-1α) pathway. METHODS AND RESULTS In this study, left anterior descending (LAD) artery ligation induced HF post-AMI rats and oxygen-glucose deprivation-reperfusion (OGD/R)-induced H9C2 cell model were structured to explore the efficacy and mechanism of DQP. Here we showed that DQP protected the heart against ischemic damage as evidenced by improved cardiac functions and attenuated inflammatory infiltration. The expressions of critical proteins involved in glucose intake and transportation such as GLUT4 and PKM2 were up-regulated, while negative regulatory proteins involved in oxidative phosphorylation were attenuated in the treatment of DQP. Moreover, DQP up-regulated NRF1 and TFAM, promoted mitochondrial biogenesis and increased myocardial adenosine triphosphate (ATP) level. The protection effects of DQP were significantly compromised by HIF-1α siRNA, suggesting that HIF-1α signaling pathway was the potential target of DQP on HF post-AMI. CONCLUSIONS DQP exhibits the efficacy to improve myocardial glucose metabolism, mitochondrial oxidative phosphorylation and biogenesis by regulating HIF-1α/PGC-1α signaling pathway in HF post-AMI rats.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- The School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- The School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- The School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wu
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- The School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
246
|
Hong J, Jing S, Zhang Y, Chen R, Owusu-Ansah KG, Chen B, Xie H, Zhou L, Zheng S, Jiang D. Y-320, a novel immune-modulator, sensitizes multidrug-resistant tumors to chemotherapy. Am J Transl Res 2020; 12:551-562. [PMID: 32194903 PMCID: PMC7061851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Y-320, a novel immune-modulator, inhibits IL-17 production by CD4+ T cells stimulated with IL-15. Its use in autoimmune diseases such as rheumatoid arthritis has been documented. However, no studies have be conducted to evaluate its application in cancer treatment either as mono or combined therapy. This study demonstrated that while Y-320 had little effect on multidrug resistance (MDR) cell lines, it induced remarkable injury to MDR tumor cells when concurrently administered with other chemotherapeutic agents. Concomitant use of Y-320 with a low dose of paclitaxel significantly sensitized MDR tumors by inducing G2/M phase arrest and apoptosis. Further analyses indicated that Y-320 was a substrate of P-glycoprotein (P-gp). It could inhibit P-gp efflux function without altering P-gp expression, and subsequently reverse P-gp mediated drug resistance in MDR cells. The co-administration of Y-320 and paclitaxel suppressed tumor growth remarkably with an inhibition rate of 77.1% compared to 6.5% in the paclitaxel monotherapy group in vivo. This co-treatment did not increase extra complications in MDR tumor xenograft models. Particularly, no significant changes in body weight and hepatorenal serology were observed with the co-treatment. In conclusion, our results confirm that Y-320 is a promising chemotherapy sensitizer for the first time. The co-administration of Y-320 and chemotherapeutic agents might be an effective and low-toxicity chemotherapeutic regime for the MDR tumor patients.
Collapse
Affiliation(s)
- Jiawei Hong
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
| | - Shilei Jing
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
| | - Yanpeng Zhang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
| | - Ronggao Chen
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
| | - Kwabena Gyabaah Owusu-Ansah
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
| | - Bingjie Chen
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
| | - Haiyang Xie
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
- Key Laboratory of The Diagnosis and Treatment of Organ Transplantation, CAMSBeijing, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious DiseasesHangzhou 310000, China
| | - Lin Zhou
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
- Key Laboratory of The Diagnosis and Treatment of Organ Transplantation, CAMSBeijing, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious DiseasesHangzhou 310000, China
| | - Shusen Zheng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
- Key Laboratory of The Diagnosis and Treatment of Organ Transplantation, CAMSBeijing, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious DiseasesHangzhou 310000, China
| | - Donghai Jiang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310000, China
- Key Laboratory of The Diagnosis and Treatment of Organ Transplantation, CAMSBeijing, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious DiseasesHangzhou 310000, China
| |
Collapse
|
247
|
mTOR Regulation of Metabolism in Hematologic Malignancies. Cells 2020; 9:cells9020404. [PMID: 32053876 PMCID: PMC7072383 DOI: 10.3390/cells9020404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Neoplastic cells rewire their metabolism, acquiring a selective advantage over normal cells and a protection from therapeutic agents. The mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase involved in a variety of cellular activities, including the control of metabolic processes. mTOR is hyperactivated in a large number of tumor types, and among them, in many hematologic malignancies. In this article, we summarized the evidence from the literature that describes a central role for mTOR in the acquisition of new metabolic phenotypes for different hematologic malignancies, in concert with other metabolic modulators (AMPK, HIF1α) and microenvironmental stimuli, and shows how these features can be targeted for therapeutic purposes.
Collapse
|
248
|
Liu Y, Liang S, Ding R, Hou Y, Deng F, Ma X, Song T, Yan D. BCG-induced trained immunity in macrophage: reprograming of glucose metabolism. Int Rev Immunol 2020; 39:83-96. [DOI: 10.1080/08830185.2020.1712379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuntong Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Shu Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Ru Ding
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Yuyang Hou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Feier Deng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Xiaohui Ma
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Tiantian Song
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
249
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. Correction to: PKM2, function and expression and regulation. Cell Biosci 2019; 9:59. [PMID: 31347610 PMCID: PMC6636031 DOI: 10.1186/s13578-019-0321-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/10/2022] Open
Abstract
[This corrects the article DOI: 10.1186/s13578-019-0317-8.].
Collapse
Affiliation(s)
- Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xinyue Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041 China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|