201
|
A mechanistic approach to understanding oral drug absorption in pediatrics: an overview of fundamentals. Drug Discov Today 2014; 19:1322-36. [DOI: 10.1016/j.drudis.2014.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/18/2014] [Accepted: 03/14/2014] [Indexed: 01/04/2023]
|
202
|
Shan N, Perry ML, Weyna DR, Zaworotko MJ. Impact of pharmaceutical cocrystals: the effects on drug pharmacokinetics. Expert Opin Drug Metab Toxicol 2014; 10:1255-71. [PMID: 25089559 DOI: 10.1517/17425255.2014.942281] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Pharmaceutical cocrystallization has emerged in the past decade as a new strategy to enhance the clinical performance of orally administered drugs. A pharmaceutical cocrystal is a multi-component crystalline material in which the active pharmaceutical ingredient is in a stoichiometric ratio with a second compound that is generally a solid under ambient conditions. The resulting cocrystal exhibits different solid-state thermodynamics, leading to changes in physicochemical properties that offer the potential to significantly modify drug pharmacokinetics. AREAS COVERED The impact of cocrystallization upon drug pharmacokinetics has not yet been well delineated. Herein, we compile previously published data to address two salient questions: what effect does cocrystallization impart upon physicochemical properties of a drug substance and to what degree can those effects impact its pharmacokinetics. EXPERT OPINION Cocrystals can impact various aspects of drug pharmacokinetics, including, but not limited to, drug absorption. The diversity of solid forms offered through cocrystallization can facilitate drastic changes in solubility and pharmacokinetics. Therefore, it is unsurprising that cocrystal screening is now a routine step in early-stage drug development. With the increasing recognition of pharmaceutical cocrystals from clinical, regulatory and legal perspectives, the systematic commercialization of cocrystal containing drug products is just a matter of time.
Collapse
Affiliation(s)
- Ning Shan
- Thar Pharmaceuticals, Inc. , 3802 Spectrum Boulevard, Suite 120, Tampa, FL 33612 , USA +1 813 978 3980 ;
| | | | | | | |
Collapse
|
203
|
Felton LA, Popescu C, Wiley C, Esposito EX, Lefevre P, Hopfinger AJ. Experimental and computational studies of physicochemical properties influence NSAID-cyclodextrin complexation. AAPS PharmSciTech 2014; 15:872-81. [PMID: 24718709 DOI: 10.1208/s12249-014-0110-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/13/2014] [Indexed: 11/30/2022] Open
Abstract
The objective of this research was to investigate physicochemical properties of an active pharmaceutical ingredient (API) that influence cyclodextrin complexation through experimental and computational studies. Native β-cyclodextrin (B-CD) and two hydroxypropyl derivatives were first evaluated by conventional phase solubility experiments for their ability to complex four poorly water-soluble nonsteroidal anti-inflammatory drugs (NSAIDs). Differential scanning calorimetry was used to confirm complexation. Secondly, molecular modeling was used to estimate Log P and aqueous solubility (S o) of the NSAIDs. Molecular dynamics simulations (MDS) were used to investigate the thermodynamics and geometry of drug-CD cavity docking. NSAID solubility increased linearly with increasing CD concentration for the two CD derivatives (displaying an AL profile), whereas increases in drug solubility were low and plateaued in the B-CD solutions (type B profile). The calculated Log P and S o of the NSAIDs were in good concordance with experimental values reported in the literature. Side chain substitutions on the B-CD moiety did not significantly influence complexation. Explicitly, complexation and the associated solubility increase were mainly dependent on the chemical structure of the NSAID. MDS indicated that each NSAID-CD complex had a distinct geometry. Moreover, complexing energy had a large, stabilizing, and fairly constant hydrophobic component for a given CD across the NSAIDs, while electrostatic and solvation interaction complex energies were quite variable but smaller in magnitude.
Collapse
|
204
|
Batchelor H. Paediatric biopharmaceutics classification system: Current status and future decisions. Int J Pharm 2014; 469:251-3. [DOI: 10.1016/j.ijpharm.2014.02.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 11/29/2022]
|
205
|
Tuğcu-Demiröz F, Gonzalez-Alvarez I, Gonzalez-Alvarez M, Bermejo M. Validation of phenol red versus gravimetric method for water reabsorption correction and study of gender differences in Doluisio's absorption technique. Eur J Pharm Sci 2014; 62:105-10. [PMID: 24887261 DOI: 10.1016/j.ejps.2014.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to develop a method for water flux reabsorption measurement in Doluisio's Perfusion Technique based on the use of phenol red as a non-absorbable marker and to validate it by comparison with gravimetric procedure. The compounds selected for the study were metoprolol, atenolol, cimetidine and cefadroxil in order to include low, intermediate and high permeability drugs absorbed by passive diffusion and by carrier mediated mechanism. The intestinal permeabilities (Peff) of the drugs were obtained in male and female Wistar rats and calculated using both methods of water flux correction. The absorption rate coefficients of all the assayed compounds did not show statistically significant differences between male and female rats consequently all the individual values were combined to compare between reabsorption methods. The absorption rate coefficients and permeability values did not show statistically significant differences between the two strategies of concentration correction. The apparent zero order water absorption coefficients were also similar in both correction procedures. In conclusion gravimetric and phenol red method for water reabsorption correction are accurate and interchangeable for permeability estimation in closed loop perfusion method.
Collapse
Affiliation(s)
- Fatmanur Tuğcu-Demiröz
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Carretera Alicante Valencia km 87, 03550 San Juan de Alicante, Alicante, Spain; Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey
| | - Isabel Gonzalez-Alvarez
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Carretera Alicante Valencia km 87, 03550 San Juan de Alicante, Alicante, Spain
| | - Marta Gonzalez-Alvarez
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Carretera Alicante Valencia km 87, 03550 San Juan de Alicante, Alicante, Spain
| | - Marival Bermejo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Carretera Alicante Valencia km 87, 03550 San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
206
|
Villoutreix BO, Kuenemann MA, Poyet JL, Bruzzoni-Giovanelli H, Labbé C, Lagorce D, Sperandio O, Miteva MA. Drug-Like Protein-Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology. Mol Inform 2014; 33:414-437. [PMID: 25254076 PMCID: PMC4160817 DOI: 10.1002/minf.201400040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Abstract
[Formula: see text] Fundamental processes in living cells are largely controlled by macromolecular interactions and among them, protein-protein interactions (PPIs) have a critical role while their dysregulations can contribute to the pathogenesis of numerous diseases. Although PPIs were considered as attractive pharmaceutical targets already some years ago, they have been thus far largely unexploited for therapeutic interventions with low molecular weight compounds. Several limiting factors, from technological hurdles to conceptual barriers, are known, which, taken together, explain why research in this area has been relatively slow. However, this last decade, the scientific community has challenged the dogma and became more enthusiastic about the modulation of PPIs with small drug-like molecules. In fact, several success stories were reported both, at the preclinical and clinical stages. In this review article, written for the 2014 International Summer School in Chemoinformatics (Strasbourg, France), we discuss in silico tools (essentially post 2012) and databases that can assist the design of low molecular weight PPI modulators (these tools can be found at www.vls3d.com). We first introduce the field of protein-protein interaction research, discuss key challenges and comment recently reported in silico packages, protocols and databases dedicated to PPIs. Then, we illustrate how in silico methods can be used and combined with experimental work to identify PPI modulators.
Collapse
Affiliation(s)
- Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Melaine A Kuenemann
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - Jean-Luc Poyet
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- IUH, Hôpital Saint-LouisParis, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Heriberto Bruzzoni-Giovanelli
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CIC, Clinical investigation center, Hôpital Saint-LouisParis, France
| | - Céline Labbé
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - David Lagorce
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - Olivier Sperandio
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Maria A Miteva
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| |
Collapse
|
207
|
In vivo evaluation and in-depth pharmaceutical characterization of a rapidly dissolving solid ocular matrix for the topical delivery of timolol maleate in the rabbit eye model. Int J Pharm 2014; 466:296-306. [DOI: 10.1016/j.ijpharm.2014.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 11/19/2022]
|
208
|
Zur M, Gasparini M, Wolk O, Amidon GL, Dahan A. The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol. Mol Pharm 2014; 11:1707-14. [PMID: 24735251 DOI: 10.1021/mp500152y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although recognized as overly conservative, metoprolol is currently the common low/high BCS permeability class boundary reference compound, while labetalol was suggested as a potential alternative. The purpose of this study was to identify the various characteristics that the optimal marker should exhibit, and to investigate the suitability of labetalol as the permeability class reference drug. Labetalol's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Labetalol was found to be unequivocally a high-solubility compound. In the pH range throughout the small intestine (6.5-7.5), labetalol exhibited pH-dependent permeability, with higher permeability at higher pH values. While in vitro octanol-buffer partitioning (Log D) values of labetalol were significantly higher than those of metoprolol, the opposite was evident in the in vitro PAMPA permeability assay. The results of the in vivo perfusion studies in rats lay between the two contradictory in vitro studies; metoprolol was shown to have moderately higher rat intestinal permeability than labetalol. Theoretical distribution of the ionic species of the drugs was in corroboration with the experimental in vitro and the in vivo data. We propose three characteristics that the optimal permeability class reference drug should exhibit: (1) fraction dose absorbed in the range of 90%; (2) the optimal marker drug should be absorbed largely via passive transcellular permeability, with no/negligible carrier-mediated active intestinal transport (influx or efflux); and (3) the optimal marker drug should preferably be nonionizable. The data presented in this paper demonstrate that neither metoprolol nor labetalol can be regarded as optimal low/high-permeability class boundary standard. While metoprolol is too conservative due to its complete absorption, labetalol has been shown to be a substrate for P-gp-mediated efflux transport, and both drugs exhibit significant segmental-dependent permeability along the gastrointestinal tract. Nevertheless, the use of metoprolol as the marker compound does not carry a risk of bioinequivalence: Peff value similar to or higher than metoprolol safely indicates high-permeability classification. On the other hand, a more careful data analysis is needed if labetalol is used as the reference compound.
Collapse
Affiliation(s)
- Moran Zur
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
209
|
Sosnik A. Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art. ISRN PHARMACEUTICS 2014; 2014:926157. [PMID: 25101184 PMCID: PMC4004034 DOI: 10.1155/2014/926157] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
Abstract
Pharmaceutical research and development aims to design products with ensured safety, quality, and efficacy to treat disease. To make the process more rational, coherent, efficient, and cost-effective, the field of Pharmaceutical Materials Science has emerged as the systematic study of the physicochemical properties and behavior of materials of pharmaceutical interest in relation to product performance. The oral route is the most patient preferred for drug administration. The presence of a mucus layer that covers the entire gastrointestinal tract has been exploited to expand the use of the oral route by developing a mucoadhesive drug delivery system that showed a prolonged residence time. Alginic acid and sodium and potassium alginates have emerged as one of the most extensively explored mucoadhesive biomaterials owing to very good cytocompatibility and biocompatibility, biodegradation, sol-gel transition properties, and chemical versatility that make possible further modifications to tailor their properties. The present review overviews the most relevant applications of alginate microparticles and nanoparticles for drug administration by the oral route and discusses the perspectives of this biomaterial in the future.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Group of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology De-Jur Building, Office 607, Technion City, 32000 Haifa, Israel
| |
Collapse
|
210
|
Pandey P, Hamey R, Bindra DS, Huang Z, Mathias N, Eley T, Crison J, Yan B, Perrone R, Vemavarapu C. From bench to humans: formulation development of a poorly water soluble drug to mitigate food effect. AAPS PharmSciTech 2014; 15:407-16. [PMID: 24442773 DOI: 10.1208/s12249-013-0069-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022] Open
Abstract
This study presents a formulation approach that was shown to mitigate the dramatic food effect observed for a BCS Class II drug. In vitro (dissolution), in vivo (dog), and in silico (GastroPlus®) models were developed to understand the food effect and design strategies to mitigate it. The results showed that such models can be used successfully to mimic the clinically observed food effect. GastroPlus® modeling showed that food effect was primarily due to the extensive solubilization of the drug into the dietary lipid content of the meal. Several formulations were screened for dissolution rate using the biorelevant dissolution tests. Surfactant type and binder amount were found to play a significant role in the dissolution rate of the tablet prototypes that were manufactured using a high-shear wet granulation process. The performance of the lead prototypes (exhibiting best in vitro dissolution performance) was tested in dogs and human subjects. A new formulation approach, where vitamin E TPGS was included in the tablet formulation, was found to mitigate the food effect in humans.
Collapse
|
211
|
Larregieu CA, Benet LZ. Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery. Mol Pharm 2014; 11:1335-44. [PMID: 24628254 PMCID: PMC3983369 DOI: 10.1021/mp4007858] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The biopharmaceutics classification
system (BCS) and biopharmaceutics
drug distribution classification system (BDDCS) are complementary
classification systems that can improve, simplify, and accelerate
drug discovery, development, and regulatory processes. Drug permeability
has been widely accepted as a screening tool for determining intestinal
absorption via the BCS during the drug development and regulatory
approval processes. Currently, predicting clinically significant drug
interactions during drug development is a known challenge for industry
and regulatory agencies. The BDDCS, a modification of BCS that utilizes
drug metabolism instead of intestinal permeability, predicts drug
disposition and potential drug–drug interactions in the intestine,
the liver, and most recently the brain. Although correlations between
BCS and BDDCS have been observed with drug permeability rates, discrepancies
have been noted in drug classifications between the two systems utilizing
different permeability models, which are accepted as surrogate models
for demonstrating human intestinal permeability by the FDA. Here,
we recommend the most applicable permeability models for improving
the prediction of BCS and BDDCS classifications. We demonstrate that
the passive transcellular permeability rate, characterized by means
of permeability models that are deficient in transporter expression
and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately
predict BDDCS metabolism. These systems will inaccurately predict
BCS classifications for drugs that particularly are substrates of
highly expressed intestinal transporters. Moreover, in this latter
case, a system more representative of complete human intestinal permeability
is needed to accurately predict BCS absorption.
Collapse
Affiliation(s)
- Caroline A Larregieu
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco , San Francisco, California 94143-0912, United States
| | | |
Collapse
|
212
|
Kis O, Walmsley SL, Bendayan R. In Vitro and In Situ Evaluation of pH-Dependence of Atazanavir Intestinal Permeability and Interactions with Acid-Reducing Agents. Pharm Res 2014; 31:2404-19. [DOI: 10.1007/s11095-014-1336-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/08/2014] [Indexed: 12/12/2022]
|
213
|
Encinas L, O'Keefe H, Neu M, Remuiñán MJ, Patel AM, Guardia A, Davie CP, Pérez-Macías N, Yang H, Convery MA, Messer JA, Pérez-Herrán E, Centrella PA, Alvarez-Gómez D, Clark MA, Huss S, O'Donovan GK, Ortega-Muro F, McDowell W, Castañeda P, Arico-Muendel CC, Pajk S, Rullás J, Angulo-Barturen I, Alvarez-Ruíz E, Mendoza-Losana A, Ballell Pages L, Castro-Pichel J, Evindar G. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA. J Med Chem 2014; 57:1276-88. [PMID: 24450589 DOI: 10.1021/jm401326j] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB) is one of the world's oldest and deadliest diseases, killing a person every 20 s. InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, is the target of the frontline antitubercular drug isoniazid (INH). Compounds that directly target InhA and do not require activation by mycobacterial catalase peroxidase KatG are promising candidates for treating infections caused by INH resistant strains. The application of the encoded library technology (ELT) to the discovery of direct InhA inhibitors yielded compound 7 endowed with good enzymatic potency but with low antitubercular potency. This work reports the hit identification, the selected strategy for potency optimization, the structure-activity relationships of a hundred analogues synthesized, and the results of the in vivo efficacy studies performed with the lead compound 65.
Collapse
Affiliation(s)
- Lourdes Encinas
- ELT Boston, Platform Technology & Science, GlaxoSmithKline , Waltham, Massachusetts 02451, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Murillo-Cremaes N, Subra-Paternault P, Domingo C, Roig A. Preparation and study of naproxen in silica and lipid/polymer hybrid composites. RSC Adv 2014. [DOI: 10.1039/c3ra46947f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
215
|
Shah AK, Wyandt CM. Factors affecting solubilization of a poorly soluble novel tubulin-binding agent. Pharm Dev Technol 2013; 18:1319-28. [DOI: 10.3109/10837450.2012.685656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
216
|
Zur M, Hanson AS, Dahan A. The complexity of intestinal permeability: Assigning the correct BCS classification through careful data interpretation. Eur J Pharm Sci 2013; 61:11-7. [PMID: 24262076 DOI: 10.1016/j.ejps.2013.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/24/2013] [Accepted: 11/08/2013] [Indexed: 01/04/2023]
Abstract
While the solubility parameter is fairly straightforward when assigning BCS classification, the intestinal permeability (Peff) is more complex than generally recognized. In this paper we emphasize this complexity through the analysis of codeine, a commonly used antitussive/analgesic drug. Codeine was previously classified as a low-permeability compound, based on its lower LogP compared to metoprolol, a marker for the low-high permeability class boundary. In contrast, high fraction of dose absorbed (Fabs) was reported for codeine, which challenges the generally recognized Peff-Fabs correlation. The purpose of this study was to clarify this ambiguity through elucidation of codeine's BCS solubility/permeability class membership. Codeine's BCS solubility class was determined, and its intestinal permeability throughout the small intestine was investigated, both in vitro and in vivo in rats. Codeine was found to be unequivocally a high-solubility compound. All in vitro studies indicated that codeine's permeability is higher than metoprolol's. In vivo studies in rats showed similar permeability for both drugs throughout the entire small-intestine. In conclusion, codeine was found to be a BCS Class I compound. No Peff-Fabs discrepancy is involved in its absorption; rather, it reflects the risk of assigning BCS classification based on merely limited physicochemical characteristics. A thorough investigation using multiple experimental methods is prudent before assigning a BCS classification, to avoid misjudgment in various settings, e.g., drug discovery, formulation design, drug development and regulation.
Collapse
Affiliation(s)
- Moran Zur
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Allison S Hanson
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
217
|
Markopoulos C, Thoenen F, Preisig D, Symillides M, Vertzoni M, Parrott N, Reppas C, Imanidis G. Biorelevant media for transport experiments in the Caco-2 model to evaluate drug absorption in the fasted and the fed state and their usefulness. Eur J Pharm Biopharm 2013; 86:438-48. [PMID: 24184673 DOI: 10.1016/j.ejpb.2013.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/28/2013] [Accepted: 10/27/2013] [Indexed: 11/19/2022]
Abstract
In this work we developed and characterized transport media that simulate the composition of micellar phase of intestinal fluids in the fasted and, especially, in the fed state and are appropriate for evaluating intestinal drug permeability characteristics using the Caco-2 model (FaSSIF-TM(Caco) and FeSSIF-TM(Caco), respectively). Media composition was based on FaSSIF-V2 and FeSSIF-V2 and recently reported data on total lipid concentrations in the micellar phase of contents of the upper small intestine in the fasted and the fed state and was adapted for cell culture compatibility. Permeation data were evaluated by compartmental kinetic modeling. Permeability coefficients, P, of hydrophilic drugs were not affected by media composition. In contrast, P values of a series of lipophilic compounds measured with FaSSIF-TM(Caco) and FeSSIF-TM(Caco), and reflecting transport by diffusion were smaller than those obtained with a purely aqueous reference transport medium, aq-TM(Caco), following the rank order aq-TM(Caco)>FaSSIF-TM(Caco)>FeSSIF-TM(Caco). The decline of permeability values was stronger as lipophilicity of the compounds increased. Compared with values estimated using aq-TM(Caco), permeability was reduced, depending on the compound, by more than 20- to 100-fold when measured with FeSSIF-TM(Caco) whereas compound ranking in regard to the permeability characteristics was also affected. The impact of reduced P value on flux through the mucosa, hence on drug absorption, in combination with the drug amount loaded on colloidal particles needs to be taken into consideration in PBPK modeling especially when the food effect is evaluated.
Collapse
Affiliation(s)
- C Markopoulos
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Switzerland; Laboratory of Biopharmaceutics and Pharmacokinetics, National and Kapodistrian University of Athens, Greece
| | - F Thoenen
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Switzerland
| | - D Preisig
- Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - M Symillides
- Laboratory of Biopharmaceutics and Pharmacokinetics, National and Kapodistrian University of Athens, Greece
| | - M Vertzoni
- Laboratory of Biopharmaceutics and Pharmacokinetics, National and Kapodistrian University of Athens, Greece
| | - N Parrott
- F. Hoffmann-La Roche, Inc., Basel, Switzerland
| | - C Reppas
- Laboratory of Biopharmaceutics and Pharmacokinetics, National and Kapodistrian University of Athens, Greece
| | - G Imanidis
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Switzerland.
| |
Collapse
|
218
|
Dahan A, Wolk O, Kim YH, Ramachandran C, Crippen GM, Takagi T, Bermejo M, Amidon GL. Purely in Silico BCS Classification: Science Based Quality Standards for the World’s Drugs. Mol Pharm 2013; 10:4378-90. [DOI: 10.1021/mp400485k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy,
Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Omri Wolk
- Department of Clinical Pharmacology, School of Pharmacy,
Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Young Hoon Kim
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Korea Food and Drug Administration, Seoul, South Korea
| | - Chandrasekharan Ramachandran
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gordon M. Crippen
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Toshihide Takagi
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marival Bermejo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain
| | - Gordon L. Amidon
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
219
|
Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv 2013; 4:1027-45. [PMID: 23919477 DOI: 10.4155/tde.13.67] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary drug delivery is an effective route for local or systemic drug administration. However, compared with other routes of administration, there is a scarcity of information on how drugs are absorbed from the lung. The different cell composition lining the airways and alveoli makes this task extremely complicated. Lung cell lines and primary culture cells are useful in studying the absorption mechanisms. However, it is imperative that these cell cultures express essential features required to study these mechanisms such as intact tight junctions and transporters. In vivo, the drug has to face defensive physical and immunological barriers such as mucociliary clearance and alveolar macrophages. Knowledge of the physicochemical properties of the drug and aerosol formulation is required. All of these factors interact together leading to either successful drug deposition followed by absorption or drug elimination. These aspects concerning drug transport in the lung are addressed in this review.
Collapse
|
220
|
Lennernäs H. Regional intestinal drug permeation: biopharmaceutics and drug development. Eur J Pharm Sci 2013; 57:333-41. [PMID: 23988845 DOI: 10.1016/j.ejps.2013.08.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/28/2022]
Abstract
Over the last 25 years, profound changes have been seen in both the development and regulation of pharmaceutical dosage forms, due primarily to the extensive use of the biopharmaceutical classification system (BCS) in both academia and industry. The BCS and the FDA scale-up and post-approval change guidelines were both developed during the 1990s and both are currently widely used to claim biowaivers. The development of the BCS and its wide acceptance were important steps in pharmaceutical science that contributed to the more rational development of oral dosage forms. The effective permeation (Peff) of drugs through the intestine often depends on the combined outcomes of passive diffusion and multiple parallel transport processes. Site-specific jejunal Peff cannot reflect the permeability of the whole intestinal tract, since this varies along the length of the intestine, but is a useful approximation of the fraction of the oral dose that is absorbed. It appears that drugs with a jejunal Peff>1.5×10(-4)cm/s will be completely absorbed no matter which transport mechanisms are utilized. In this paper, historical clinical data originating from earlier open, single-pass perfusion studies have been used to calculate the Peff of different substances from sites in the jejunum and ileum. More exploratory in vivo studies are required in order to obtain reliable data on regional intestinal drug absorption. The development of experimental and theoretical methods of assessing drug absorption from both small intestine and various sites in the colon is encouraged. Some of the existing human in vivo data are discussed in relation to commonly used cell culture models. It is crucial to accurately determine the input parameters, such as the regional intestinal Peff, as these will form the basis for the expected increase in modeling and simulation of all the processes involved in GI drug absorption, thus facilitating successful pharmaceutical development in the future. It is suggested that it would be feasible to use open, single-pass perfusion studies for the in vivo estimation of regional intestinal Peff, but that care should be taken in the study design to optimize the absorption conditions.
Collapse
Affiliation(s)
- Hans Lennernäs
- Department of Pharmaceutics, Uppsala University, Sweden.
| |
Collapse
|
221
|
Beig A, Agbaria R, Dahan A. Oral delivery of lipophilic drugs: the tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations. PLoS One 2013; 8:e68237. [PMID: 23874557 PMCID: PMC3712970 DOI: 10.1371/journal.pone.0068237] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 01/20/2023] Open
Abstract
The purpose of this study was to investigate the impact of oral cyclodextrin-based formulation on both the apparent solubility and intestinal permeability of lipophilic drugs. The apparent solubility of the lipophilic drug dexamethasone was measured in the presence of various HPβCD levels. The drug’s permeability was measured in the absence vs. presence of HPβCD in the rat intestinal perfusion model, and across Caco-2 cell monolayers. The role of the unstirred water layer (UWL) in dexamethasone’s absorption was studied, and a simplified mass-transport analysis was developed to describe the solubility-permeability interplay. The PAMPA permeability of dexamethasone was measured in the presence of various HPβCD levels, and the correlation with the theoretical predictions was evaluated. While the solubility of dexamethasone was greatly enhanced by the presence of HPβCD (K1∶1 = 2311 M−1), all experimental models showed that the drug’s permeability was significantly reduced following the cyclodextrin complexation. The UWL was found to have no impact on the absorption of dexamethasone. A mass transport analysis was employed to describe the solubility-permeability interplay. The model enabled excellent quantitative prediction of dexamethasone’s permeability as a function of the HPβCD level. This work demonstrates that when using cyclodextrins in solubility-enabling formulations, a tradeoff exists between solubility increase and permeability decrease that must not be overlooked. This tradeoff was found to be independent of the unstirred water layer. The transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption.
Collapse
Affiliation(s)
- Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Riad Agbaria
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
222
|
Brough C, Williams RO. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 2013; 453:157-66. [PMID: 23751341 DOI: 10.1016/j.ijpharm.2013.05.061] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Poor water-solubility is a common characteristic of drug candidates in pharmaceutical development pipelines today. Various processes have been developed to increase the solubility, dissolution rate and bioavailability of these active ingredients belonging to BCS II and IV classifications. Over the last decade, nano-crystal delivery forms and amorphous solid dispersions have become well established in commercially available products and industry literature. This article is a comparative analysis of these two methodologies primarily for orally delivered medicaments. The thermodynamic and kinetic theories relative to these technologies are presented along with marketed product evaluations and a survey of commercial relevant scientific literature.
Collapse
Affiliation(s)
- Chris Brough
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, 1 University Station, Campus Mail Code A1902, Austin, TX 78712, United States.
| | | |
Collapse
|
223
|
Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013; 65:315-499. [PMID: 23383426 DOI: 10.1124/pr.112.005660] [Citation(s) in RCA: 1003] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.
Collapse
Affiliation(s)
- Hywel D Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
224
|
Pham-The H, Garrigues T, Bermejo M, González-Álvarez I, Monteagudo MC, Cabrera-Pérez MÁ. Provisional classification and in silico study of biopharmaceutical system based on caco-2 cell permeability and dose number. Mol Pharm 2013; 10:2445-61. [PMID: 23675957 DOI: 10.1021/mp4000585] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Today, early characterization of drug properties by the Biopharmaceutics Classification System (BCS) has attracted significant attention in pharmaceutical discovery and development. In this direction, the present report provides a systematic study of the development of a BCS-based provisional classification (PBC) for a set of 322 oral drugs. This classification, based on the revised aqueous solubility and the apparent permeability across Caco-2 cell monolayers, displays a high correlation (overall 76%) with the provisional BCS classification published by World Health Organization (WHO). Current database contains 91 (28.3%) PBC class I drugs, 76 (23.6%) class II drugs, 97 (31.1%) class III drugs, and 58 (18.0%) class IV drugs. Other approaches for provisional classification of drugs have been surveyed. The use of a calculated polar surface area with a labetalol value as a high permeable cutoff limit and aqueous solubility higher than 0.1 mg/mL could be used as alternative criteria for provisionally classifying BCS permeability and solubility in early drug discovery. To develop QSPR models that allow screening PBC and BCS classes of new molecular entities (NMEs), 18 statistical linear and nonlinear models have been constructed based on 803 0-2D Dragon and 126 Volsurf+ molecular descriptors to classify the PBC solubility and permeability. The voting consensus model of solubility (VoteS) showed a high accuracy of 88.7% in training and 92.3% in the test set. Likewise, for the permeability model (VoteP), accuracy was 85.3% in training and 96.9% in the test set. A combination of VoteS and VoteP appropriately predicts the PBC class of drugs (overall 73% with class I precision of 77.2%). This consensus system predicts an external set of 57 WHO BCS classified drugs with 87.5% of accuracy. Interestingly, computational assignments of the PBC class reasonably correspond to the Biopharmaceutics Drug Disposition Classification System (BDDCS) allocations of drugs (accuracy of 63.3-69.8%). A screening assay has been simulated using a large data set of compounds in different drug development phases (1, 2, 3, and launched) and NMEs. Distributions of PBC forecasts illustrate the current status in drug discovery and development. It is anticipated that a combination of the QSPR approach and well-validated in vitro experimentations could offer the best estimation of BCS for NMEs in the early stages of drug discovery.
Collapse
Affiliation(s)
- Hai Pham-The
- Molecular Simulation & Drug Design Group, Centre of Chemical Bioactive, Central University of Las Villas, Santa Clara 54830, Villa Clara, Cuba
| | | | | | | | | | | |
Collapse
|
225
|
Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Impact of Polymers on Crystal Growth Rate of Structurally Diverse Compounds from Aqueous Solution. Mol Pharm 2013; 10:2381-93. [DOI: 10.1021/mp400029v] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grace A. Ilevbare
- Department of Industrial and
Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haoyu Liu
- Department of Sustainable Biomaterials,
College of Natural Resources and Environment, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Department of Sustainable Biomaterials,
College of Natural Resources and Environment, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lynne S. Taylor
- Department of Industrial and
Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
226
|
Dong F, Xie Y, Qi J, Hu F, Lu Y, Li S, Wu W. Bile salt/phospholipid mixed micelle precursor pellets prepared by fluid-bed coating. Int J Nanomedicine 2013; 8:1653-63. [PMID: 23641154 PMCID: PMC3639718 DOI: 10.2147/ijn.s42349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bile salt/phospholipid mixed micelles (MMs) are potent carriers used for oral absorption of drugs that are poorly soluble in water; however, there are many limitations associated with liquid formulations. In the current study, the feasibility of preparing bile salt/phospholipid MM precursor (preMM) pellets with high oral bioavailability, using fluid-bed coating technology, was examined. In this study, fenofibrate (FB) and sodium deoxycholate (SDC) were used as the model drug and the bile salt, respectively. To prepare the MMs and to serve as the micellular carrier, a weight ratio of 4:6 was selected for the sodium deoxycholate/phospholipids based on the ternary phase diagram. Polyethylene glycol (PEG) 6000 was selected as the dispersion matrix for precipitation of the MMs onto pellets, since it can enhance the solubilizing ability of the MMs. Coating of the MMs onto the pellets using the fluid-bed coating technology was efficient and the pellets were spherical and intact. MMs could be easily reconstituted from preMM pellets in water. Although they existed in a crystalline state in the preMM pellets, FB could be encapsulated into the reconstituted MMs, and the MMs were redispersed better than solid dispersion pellets (FB:PEG = 1:3) and Lipanthyl®. The redispersibility of the preMM pellets increased with the increase of the FB/PEG/micellar carrier. PreMM pellets with a FB:PEG:micellar carrier ratio of 1:1.5:1.5 showed 284% and 145% bioavailability relative to Lipanthyl® and solid dispersion pellets (FB:PEG = 1:3), respectively. Fluid-bed coating technology has considerable potential for use in preparing sodium deoxycholate/phospholipid preMM pellets, with enhanced oral bioavailability for poorly water-soluble drugs.
Collapse
Affiliation(s)
- Fuxia Dong
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
227
|
Fairstein M, Swissa R, Dahan A. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine. AAPS JOURNAL 2013; 15:589-97. [PMID: 23440549 DOI: 10.1208/s12248-013-9462-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/30/2013] [Indexed: 12/19/2022]
Abstract
Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.
Collapse
Affiliation(s)
- Moran Fairstein
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653 Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
228
|
Regueiro-Ren A, Simmermacher-Mayer J, Sinz M, Johnson KA, Huang XS, Jenkins S, Parker D, Rahematpura S, Zheng M, Meanwell NA, Kadow JF. Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Attachment 13. Synthesis and Profiling of a Novel Amminium Prodrug of the HIV-1 Attachment Inhibitor BMS-585248. J Med Chem 2013; 56:1670-6. [DOI: 10.1021/jm301638a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alicia Regueiro-Ren
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jean Simmermacher-Mayer
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael Sinz
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kim A. Johnson
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Xiaohua Stella Huang
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Susan Jenkins
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Dawn Parker
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Sandhya Rahematpura
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ming Zheng
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas A. Meanwell
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John F. Kadow
- Departments
of Medicinal Chemistry and ‡Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
229
|
Regueiro-Ren A, Xue QM, Swidorski JJ, Gong YF, Mathew M, Parker DD, Yang Z, Eggers B, D'Arienzo C, Sun Y, Malinowski J, Gao Q, Wu D, Langley DR, Colonno RJ, Chien C, Grasela DM, Zheng M, Lin PF, Meanwell NA, Kadow JF. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 12. Structure-activity relationships associated with 4-fluoro-6-azaindole derivatives leading to the identification of 1-(4-benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1h-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248). J Med Chem 2013; 56:1656-69. [PMID: 23360431 DOI: 10.1021/jm3016377] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of highly potent HIV-1 attachment inhibitors with 4-fluoro-6-azaindole core heterocycles that target the viral envelope protein gp120 has been prepared. Substitution in the 7-position of the azaindole core with amides (12a,b), C-linked heterocycles (12c-l), and N-linked heterocycles (12m-u) provided compounds with subnanomolar potency in a pseudotype infectivity assay and good pharmacokinetic profiles in vivo. A predictive model was developed from the initial SAR in which the potency of the analogues correlated with the ability of the substituent in the 7-position of the azaindole to adopt a coplanar conformation by either forming internal hydrogen bonds or avoiding repulsive substitution patterns. 1-(4-Benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248, 12m) exhibited much improved in vitro potency and pharmacokinetic properties than the previous clinical candidate BMS-488043 (1). The predicted low clearance in humans, modest protein binding, and good potency in the presence of 40% human serum for 12m led to its selection for human clinical studies.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Department of Medicinal Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Dahan A, Beig A, Ioffe-Dahan V, Agbaria R, Miller JM. The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds: increased apparent solubility and drug flux through the intestinal membrane. AAPS JOURNAL 2012; 15:347-53. [PMID: 23242514 DOI: 10.1208/s12248-012-9445-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022]
Abstract
The purposes of this study were to assess the efficiency of different nifedipine amorphous solid dispersions (ASDs) in achieving and maintaining supersaturation and to investigate the solubility-permeability interplay when increasing the apparent solubility via ASD formulations. Spray-dried ASDs of nifedipine in three different hydrophilic polymers, hydroxypropyl methylcellulose acetate succinate (HPMC-AS), copovidone, and polyvinylpyrrolidone (PVP), were prepared and characterized by powder X-ray diffraction and differential scanning calorimetry. The ability of these formulations to achieve and maintain supersaturation over 24 h was assessed. Then, nifedipine's apparent intestinal permeability was investigated as a function of increasing supersaturation in the parallel artificial membrane permeability assay model and in the single-pass rat intestinal perfusion model. The efficiency of the different ASDs to achieve and maintain supersaturation of nifedipine was found to be highly polymer dependent; while a dispersion in HPMC-AS enabled supersaturation 20× that of the crystalline aqueous solubility, a dispersion in copovidone enabled 10×, and PVP allowed supersaturation of only 5× that of the crystalline solubility. Nifedipine flux across the intestine from supersaturated solutions was increased, and the apparent intestinal permeability was constant, irrespective of the degree of supersaturation or the polymer being used. In conclusion, while with other solubility-enabling approaches (e.g., surfactants, cyclodextrins, cosolvents), it is not enough to increase the apparent solubility, but to strike the optimal solubility-permeability balance, which limits the chances for successful drug delivery, the amorphous form emerges as a more advantageous strategy, in which higher apparent solubility (i.e., supersaturation) will be readily translated into higher drug flux and overall absorption.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.
| | | | | | | | | |
Collapse
|
231
|
Abstract
Analysis of drugs, biomarkers and their metabolites in tissue samples has always been an important aspect of the drug-development process. In the last decade, significant improvements in equipment and processes have made handling such samples far more efficient, with higher precision, accuracy and ruggedness. The purpose of this paper is to provide a primer for best practices of tissue analysis, including brief but specific tutorials on basic principles and laboratory operation. Included will be a discussion of what to consider when designing a study, tools available to make appropriate pre-study decisions, approaches for tissue acquisition and extraction, sample processing methods, and tips on creation of standards and QCs. We will offer some practical advice to help scientists who have good analytical skills, but are not experienced in tissue analysis to quickly start their own analyses with the minimum amount of time, labor and cost.
Collapse
|
232
|
Abdel-Rahman S, Amidon GL, Kaul A, Lukacova V, Vinks AA, Knipp G. Summary of the National Institute of Child Health and Human Development-best pharmaceuticals for Children Act Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System Working Group. Clin Ther 2012; 34:S11-24. [PMID: 23149009 PMCID: PMC3534959 DOI: 10.1016/j.clinthera.2012.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/04/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Biopharmaceutics Classification System (BCS) allows compounds to be classified based on their in vitro solubility and intestinal permeability. The BCS has found widespread use in the pharmaceutical community to be an enabling guide for the rational selection of compounds, formulation for clinical advancement, and generic biowaivers. The Pediatric Biopharmaceutics Classification System (PBCS) Working Group was convened to consider the possibility of developing an analogous pediatric-based classification system. Because there are distinct developmental differences that can alter intestinal contents, volumes, permeability, and potentially biorelevant solubilities at different ages, the PBCS Working Group focused on identifying age-specific issues that need to be considered in establishing a flexible, yet rigorous PBCS. OBJECTIVE We summarized the findings of the PBCS Working Group and provided insights into considerations required for the development of a PBCS. METHODS Through several meetings conducted both at The Eunice Kennedy Shriver National Institute of Child Health, Human Development-US Pediatric Formulation Initiative Workshop (November 2011) and via teleconferences, the PBCS Working Group considered several high-level questions that were raised to frame the classification system. In addition, the PBCS Working Group identified a number of knowledge gaps that need to be addressed to develop a rigorous PBCS. RESULTS It was determined that for a PBCS to be truly meaningful, it needs to be broken down into several different age groups that account for developmental changes in intestinal permeability, luminal contents, and gastrointestinal (GI) transit. Several critical knowledge gaps were identified, including (1) a lack of fully understanding the ontogeny of drug metabolizing enzymes and transporters along the GI tract, in the liver, and in the kidney; (2) an incomplete understanding of age-based changes in the GI, liver, and kidney physiology; (3) a clear need to better understand age-based intestinal permeability and fraction absorbed required to develop the PBCS; (4) a clear need for the development and organization of pediatric tissue biobanks to serve as a source for ontogenic research; and (5) a lack of literature published in age-based pediatric pharmacokinetics to build physiologically- and population-based pharmacokinetic (PBPK) databases. CONCLUSIONS To begin the process of establishing a PBPK model, 10 pediatric therapeutic agents were selected (based on their adult BCS classifications). These agents should be targeted for additional research in the future. The PBCS Working Group also identified several areas where greater emphasis on research was needed to enable the development of a PBCS.
Collapse
Affiliation(s)
- Susan Abdel-Rahman
- Division of Pediatric Pharmacology and Medical Toxicology, The Children’s Mercy Hospital, Kansas City, MO
| | - Gordon L. Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Ajay Kaul
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Alexander A. Vinks
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Gregory Knipp
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN
| | | |
Collapse
|
233
|
Single-pass intestinal perfusion to establish the intestinal permeability of model drugs in mouse. Int J Pharm 2012; 436:472-7. [DOI: 10.1016/j.ijpharm.2012.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/03/2012] [Accepted: 07/09/2012] [Indexed: 01/08/2023]
|
234
|
Li H, Jin HE, Shim WS, Shim CK. An improved prediction of the humanin vivointestinal permeability and BCS class of drugs using thein vitropermeability ratio obtained for rat intestine using an Ussing chamber system. Drug Dev Ind Pharm 2012; 39:1515-22. [DOI: 10.3109/03639045.2012.714787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
235
|
Perioli L, Mutascio P, Pagano C. Influence of the Nanocomposite MgAl-HTlc on Gastric Absorption of Drugs: In Vitro and Ex Vivo Studies. Pharm Res 2012; 30:156-66. [DOI: 10.1007/s11095-012-0857-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/06/2012] [Indexed: 01/27/2023]
|
236
|
Ruela Corrêa JC, D'Arcy DM, dos Reis Serra CH, Nunes Salgado HR. Darunavir: a critical review of its properties, use and drug interactions. Pharmacology 2012; 90:102-9. [PMID: 22797653 DOI: 10.1159/000339862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/04/2012] [Indexed: 12/19/2022]
Abstract
Darunavir is a synthetic nonpeptidic protease inhibitor which has been shown to be extremely potent against wild-type HIV as well as a large panel of PI-resistant clinical isolates and shows a high genetic barrier to the development of antiretroviral resistance. The treatment of HIV/AIDS requires combinations of multiple antiretroviral drugs. In addition, patients frequently need to coadminister other medications for reasons including the prevention or treatment of opportunistic infections, treatment of concomitant illnesses and management of antiretroviral side effects. Drug interactions have been observed between darunavir and other drugs. New and more comprehensive drug interaction studies will be required since the increase in life expectancy of patients often brings new comorbidities and the concomitant use of different drugs. This paper discusses the impact of the use of darunavir in the treatment of HIV-infected patients, its pharmacological and physical-chemical properties, its drug interactions, and challenges that remain in order to ensure safety and compliance of treatment.
Collapse
Affiliation(s)
- Josilene Chaves Ruela Corrêa
- Drugs and Medicines Quality Control Laboratory, School of Pharmaceutical Sciences University Estadual Paulista, Araraquara, Brazil
| | | | | | | |
Collapse
|
237
|
Tuberculosis: Finding a New Potential Antimycobacterium Derivative in a Aldehyde–Arylhydrazone–Oxoquinoline Series. Curr Microbiol 2012; 65:455-60. [DOI: 10.1007/s00284-012-0176-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/08/2012] [Indexed: 11/26/2022]
|
238
|
Nair AK, Anand O, Chun N, Conner DP, Mehta MU, Nhu DT, Polli JE, Yu LX, Davit BM. Statistics on BCS classification of generic drug products approved between 2000 and 2011 in the USA. AAPS JOURNAL 2012; 14:664-6. [PMID: 22718306 DOI: 10.1208/s12248-012-9384-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/11/2012] [Indexed: 11/30/2022]
Abstract
The Biopharmaceutics Classification system (BCS) classifies drug substances based on aqueous solubility and intestinal permeability. The objective of this study was to use the World Health Organization Model List of Essential Medicines to determine the distribution of BCS Class 1, 2, 3, and 4 drugs in Abbreviated New drug Applications (ANDA) submissions. To categorize solubility and intestinal permeability properties of generic drugs under development, we used a list of 61 drugs which were classified as BCS 1, 2, 3, and 4 drugs with certainty in the World Health Organization Model List of Essential Medicines. Applying this list to evaluation of 263 ANDA approvals of BCS drugs during the period of 2000 to 2011 indicated 110 approvals (41.8%) for Class 1 drugs (based on both biowaiver and in vivo bioequivalence studies), 55 (20.9%) approvals for Class 2 drugs, 98 (37.3%) approvals for Class 3 drugs, and no (0%) approvals for Class 4 drugs. The present data indicated a trend of more ANDA approvals of BCS Class 1 drugs than Class 3 or Class 2 drugs. Antiallergic drugs in Class 1, drugs for pain relief in Class 2 and antidiabetic drugs in Class 3 have received the largest number of approvals during this period.
Collapse
Affiliation(s)
- Anil K Nair
- Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, 7520 Standish Place, Rockville, Maryland 20855, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm 2012; 9:2009-16. [PMID: 22632106 DOI: 10.1021/mp300104s] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, we have revealed a trade-off between solubility increase and permeability decrease when solubility-enabling oral formulations are employed. We have shown this trade-off phenomenon to be ubiquitous, and to exist whenever the aqueous solubility is increased via solubilizing excipients, regardless if the mechanism involves decreased free fraction (cyclodextrins complexation, surfactant micellization) or simple cosolvent solubilization. Discovering a way to increase drug solubility without concomitant decreased permeability represents a major advancement in oral delivery of lipophilic drugs and is the goal of this work. For this purpose, we sought to elucidate the solubility-permeability interplay when increased apparent solubility is obtained via supersaturation from an amorphous solid dispersion (ASD) formulation. A spray-dried ASD of the lipophilic drug progesterone was prepared in the hydrophilic polymer hydroxypropyl methylcellulose acetate succinate (HPMC-AS), which enabled supersaturation up to 4× the crystalline drug's aqueous solubility (8 μg/mL). The apparent permeability of progesterone from the ASD in HPMC-AS was then measured as a function of increasing apparent solubility (supersaturation) in the PAMPA and rat intestinal perfusion models. In contrast to previous cases in which apparent solubility increases via cyclodextrins, surfactants, and cosolvents resulted in decreased apparent permeability, supersaturation via ASD resulted in no decrease in apparent permeability with increasing apparent solubility. As a result, overall flux increased markedly with increasing apparent solubility via ASD as compared to the other formulation approaches. This work demonstrates that supersaturation via ASDs has a subtle yet powerful advantage over other solubility-enabling formulation approaches. That is, increased apparent solubility may be achieved without the expense of apparent intestinal membrane permeability. Thus, supersaturation via ASDs presents a markedly increased opportunity to maximize overall oral drug absorption.
Collapse
Affiliation(s)
- Jonathan M Miller
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, United States
| | | | | | | | | |
Collapse
|
240
|
Dahan A, Khamis M, Agbaria R, Karaman R. Targeted prodrugs in oral drug delivery: the modern molecular biopharmaceutical approach. Expert Opin Drug Deliv 2012; 9:1001-13. [PMID: 22703376 DOI: 10.1517/17425247.2012.697055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The molecular revolution greatly impacted the field of drug design and delivery in general, and the utilization of the prodrug approach in particular. The increasing understanding of membrane transporters has promoted a novel 'targeted-prodrug' approach utilizing carrier-mediated transport to increase intestinal permeability, as well as specific enzymes to promote activation to the parent drug. AREAS COVERED This article provides the reader with a concise overview of this modern approach to prodrug design. Targeting the oligopeptide transporter PEPT1 for absorption and the serine hydrolase valacyclovirase for activation will be presented as examples for the successful utilization of this approach. Additionally, the use of computational approaches, such as DFT and ab initio molecular orbital methods, in modern prodrugs design will be discussed. EXPERT OPINION Overall, in the coming years, more and more information will undoubtedly become available regarding intestinal transporters and potential enzymes that may be exploited for the targeted modern prodrug approach. Hence, the concept of prodrug design can no longer be viewed as merely a chemical modification to solve problems associated with parent compounds. Rather, it opens promising opportunities for precise and efficient drug delivery, as well as enhancement of treatment options and therapeutic efficacy.
Collapse
Affiliation(s)
- Arik Dahan
- Ben-Gurion University of the Negev, School of Pharmacy, Faculty of Health Sciences, Department of Clinical Pharmacology, P.O. Box 653, Beer-Sheva 84105, Israel.
| | | | | | | |
Collapse
|
241
|
Karalis V, Macheras P. Current regulatory approaches of bioequivalence testing. Expert Opin Drug Metab Toxicol 2012; 8:929-42. [PMID: 22681436 DOI: 10.1517/17425255.2012.690394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Nowadays, reducing medication costs is vital for health care agencies. Prescription of generic drug products can help lower these expenses. A generally accepted assumption is that therapeutic equivalence, between a generic and a brand-name medication, can be claimed if bioequivalence is demonstrated. AREAS COVERED This article reviews the current regulatory procedures on bioequivalence testing. Special focus is placed on the guidelines recommended by the European Medicines Agency and the US Food and Drug administration. The authors also describe the evolution of these issues and the alternatives proposed in the literature. EXPERT OPINION Defining bioequivalence, as the condition of no significant differences in the extent and rate of absorption between the generic and the brand-name medication, sounds simple. However, the scientific and regulatory basis of bioequivalence appears rather complicated in practice. Even though the regulatory authorities have elucidated many issues, several aspects of bioequivalence assessment are still unresolved. Examples, of these open questions, in bioequivalence, include the assessment of complex drugs, such as biologics and iron-carbohydrates, the assessment of immunosuppressive agents as well as the role that pharmacogenomics plays in bioequivalence.
Collapse
Affiliation(s)
- Vangelis Karalis
- National and Kapodistrian University of Athens, School of Pharmacy, Laboratory of Biopharmaceutics-Pharmacokinetics, Athens, Greece.
| | | |
Collapse
|
242
|
Dahan A, Lennernäs H, Amidon GL. The fraction dose absorbed, in humans, and high jejunal human permeability relationship. Mol Pharm 2012; 9:1847-51. [PMID: 22524707 PMCID: PMC3482341 DOI: 10.1021/mp300140h] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The drug intestinal permeability (P(eff)) measure has been widely used as one of the main factors governing both the rate and/or extent of drug absorption (F(abs)) in humans following oral administration. In this communication we emphasize the complexity behind and the care that must be taken with this in vivo P(eff) measurement. Intestinal permeability, considering the whole of the human intestine, is more complex than generally recognized, and this can lead to misjudgment regarding F(abs) and P(eff) in various settings, e.g. drug discovery, formulation design, drug development and regulation. Setting the adequate standard for the low/high permeability class boundary, the different experimental methods for the permeability measurement, and segmental-dependent permeability throughout the human intestine due to different mechanisms are some of the main points that are discussed. Overall, the use of jejunal P(eff) as a surrogate for extent of absorption is sound and scientifically justified; a compound with high jejunal P(eff) will have high F(abs), eliminating the risk for misclassification as a BCS class I drug. Much more care should be taken, however, when jejunal P(eff) does not support a high-permeability classification; a thorough examination may reveal high-permeability after all, attributable to e.g. segmental-dependent permeability due to degree of ionization or transporter expression. In this situation, the use of multiple permeability experimental methods, including the use of metabolism, which except for luminal degradation requires absorption, is prudent and encouraged.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | |
Collapse
|
243
|
Beig A, Miller JM, Dahan A. Accounting for the solubility–permeability interplay in oral formulation development for poor water solubility drugs: The effect of PEG-400 on carbamazepine absorption. Eur J Pharm Biopharm 2012; 81:386-91. [DOI: 10.1016/j.ejpb.2012.02.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/12/2012] [Accepted: 02/17/2012] [Indexed: 11/16/2022]
|
244
|
Miller JM, Dahan A. Predicting the solubility-permeability interplay when using cyclodextrins in solubility-enabling formulations: model validation. Int J Pharm 2012; 430:388-91. [PMID: 22465550 DOI: 10.1016/j.ijpharm.2012.03.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/22/2012] [Accepted: 03/06/2012] [Indexed: 01/21/2023]
Abstract
Although the extraordinary solubility advantage afforded by cyclodextrins has led to their widespread use as pharmaceutical solubilizers, several reports have emerged that cyclodextrins may also reduce the apparent permeability of the drug. With the purpose to investigate this solubility-permeability interplay, we have recently developed a mathematical mass transport model that quantitatively explains the impact of molecular complexation on the intestinal permeability. This model enabled excellent quantitative prediction of progesterone P(eff) as a function of HPβCD concentrations in several experimental methods. The purpose of the present study was to challenge the predictive capabilities of this mathematical model, assessing whether the model allows the prediction of literature permeability data, as a model validation method. The mass-transport model was applied to carbamazepine and hydrocortisone, and the predicted permeability (P(eff), P(m) and P(aq)) vs. HPβCD concentration were plotted. Excellent agreement was obtained between literature experimental permeability and the predicted P(eff) values for both compounds at all of the HPβCD concentrations tested. The presented validated model that considers the opposing effects of the formulation on the solubility and the permeability, can lead to a more efficient and intelligent use of molecular complexation strategies; the formulator will be able to a priori strike the optimal solubility-permeability balance to maximize and facilitate the overall oral drug absorption.
Collapse
Affiliation(s)
- Jonathan M Miller
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
245
|
MARTINEZ MN, FAHMY R. The scientific basis for establishing solubility criteria for veterinary species. J Vet Pharmacol Ther 2012; 35 Suppl 1:81-6. [DOI: 10.1111/j.1365-2885.2012.01370.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
246
|
Dahan A, Miller JM. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS JOURNAL 2012; 14:244-51. [PMID: 22391790 DOI: 10.1208/s12248-012-9337-6] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/15/2012] [Indexed: 01/22/2023]
Abstract
While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel.
| | | |
Collapse
|
247
|
Kadow JF, Ueda Y, Meanwell NA, Connolly TP, Wang T, Chen CP, Yeung KS, Zhu J, Bender JA, Yang Z, Parker D, Lin PF, Colonno RJ, Mathew M, Morgan D, Zheng M, Chien C, Grasela D. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment 6. Preclinical and human pharmacokinetic profiling of BMS-663749, a phosphonooxymethyl prodrug of the HIV-1 attachment inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043). J Med Chem 2012; 55:2048-56. [PMID: 22356441 DOI: 10.1021/jm201218m] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BMS-663749, a phosphonooxymethyl prodrug 4 of the HIV-1 attachment inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043) (2) was prepared and profiled in a variety of preclinical in vitro and in vivo models designed to assess its ability to deliver parent drug following oral administration. The data showed that prodrug 4 had excellent potential to significantly reduce dissolution rate-limited absorption following oral dosing in humans. Clinical studies in normal healthy subjects confirmed the potential of 4, revealing that the prodrug significantly increased both the AUC and C(max) of 2 compared to a solid capsule formulation containing the parent drug upon dose escalation. These data provided guidance for further efforts to obtain an effective HIV-1 attachment inhibitor.
Collapse
Affiliation(s)
- John F Kadow
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Miller JM, Beig A, Carr RA, Webster GK, Dahan A. The solubility-permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol Pharm 2012; 9:581-90. [PMID: 22280478 DOI: 10.1021/mp200460u] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have recently reported the interplay between apparent aqueous solubility and intestinal membrane permeability, showing the trade-off between the two when using cyclodextrin- and surfactant-based systems as solubility-enabling formulations. In these cases, the decreased permeability could be attributed directly to decreased free fraction of drug due to the complexation/micellization inherent in these solubilization methods. The purpose of this study was to investigate the direct solubility-permeability interplay, using formulations in which complexation is not the mechanism for increased solubilization. The apparent aqueous solubility (S(aq)) and rat intestinal permeability (P(eff)) of the lipophilic drug progesterone were measured in systems containing various levels of the cosolvents propylene glycol and PEG-400, since this solubilization method does not involve decreased free fraction. Thermodynamic activity was maintained equivalent in all permeability studies (75% equilibrium solubility). Both cosolvents increased progesterone S(aq) in nonlinear fashion. Decreased P(eff) with increased S(aq) was observed, despite the constant thermodynamic activity, and the nonrelevance of free fraction. A mass-transport analysis was developed to describe this interplay. The model considers the effects of solubilization on the membrane permeability (P(m)) and the unstirred water layer (UWL) permeability (P(aq)), to predict the overall P(eff) dependence on S(aq). The analysis revealed that (1) the effective UWL thickness quickly decreases with ↑S(aq), such that P(aq) markedly increases with ↑S(aq); (2) the apparent membrane/aqueous partitioning decreases with ↑S(aq), thereby reducing the thermodynamic driving force for permeability such that ↓P(m) with ↑S(aq); (3) since ↑P(aq) and ↓P(m) with ↑S(aq), the UWL is shorted out and P(eff) becomes membrane control with ↑S(aq). The model enabled excellent quantitative prediction of P(eff) as a function of S(aq). This work demonstrates that a direct trade-off exists between the apparent solubility and permeability, which must be taken into account when developing solubility-enabling formulations to strike the optimal solubility-permeability balance, in order to maximize the overall oral absorption.
Collapse
Affiliation(s)
- Jonathan M Miller
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, United States
| | | | | | | | | |
Collapse
|
249
|
Song JS, Lee KR, Kwon HJ, Rhee SD, Kim MS, Choi SH, Lee SH, Song IS, Ahn JH, Ahn SH, Bae MA. Pharmacokinetics and pharmacodynamics of KR-66223, a novel DPP-4 inhibitor. Drug Metab Pharmacokinet 2012; 27:216-22. [PMID: 22240842 DOI: 10.2133/dmpk.dmpk-11-rg-095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
KR-66223 is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor that is under development for the treatment of type 2 diabetes. We studied the pharmacokinetic and pharmacodynamic characteristics of KR-66223 in rats, monkeys, and dogs to predict PK/PD profiles in humans. KR-66223 exhibited a moderate volume of distribution (0.3-1.8 L/kg), moderate systemic clearance (1-1.76 L/h/kg), long half-life (>3 h), and low oral bioavailability (below 2.5% in all tested species). The EC(50)s for DPP-4 inhibition as calculated by the E(max) model was below 4.25 ng/mL across all species, confirming KR-66223 as a potent DPP-4 inhibitor. In vitro plasma protein binding suggested that it was available (69-89%), correlating with its volume of distribution in animals. Using allometric scaling and the E(max) model, human systemic clearance, volume of the central compartment, volume of the peripheral compartment, and EC₅₀ for DPP-4 inhibition were predicted to be 0.31 L/h/kg, 0.1 L/kg, 2.4 L/kg, and 3 ng/mL, respectively. These results can serve as a valuable foundation for future clinical trials.
Collapse
Affiliation(s)
- Jin Sook Song
- Drug Discovery Platform Technology Team, Division of Bio-organic Science, Korea Research Institute of Chemical Technology, Daejeon
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Kuentz M. Lipid-based formulations for oral delivery of lipophilic drugs. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e71-e174. [PMID: 24064269 DOI: 10.1016/j.ddtec.2012.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|