201
|
S6K inhibition renders cardiac protection against myocardial infarction through PDK1 phosphorylation of Akt. Biochem J 2012; 441:199-207. [PMID: 21906027 DOI: 10.1042/bj20110033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study, we observed a rapid and robust activation of the ribosomal protein S6K (S6 kinase) provoked by MI (myocardial infarction) in mice. As activation of S6K promotes cell growth, we hypothesized that increased S6K activity contributes to pathological cardiac remodelling after MI and that suppression of S6K activation may prevent aberrant cardiac remodelling and improve cardiac function. In mice, administration of rapamycin effectively suppressed S6K activation in the heart and significantly improved cardiac function after MI. The heart weight/body weight ratio and fibrotic area were substantially reduced in rapamycin-treated mice. In rapamycin-treated mice, decreased cardiomyocyte remodelling and cell apoptosis were observed compared with vehicle-treated controls. Consistently, inhibition of S6K with PF-4708671 displayed similar protection against MI as rapamycin. Mechanistically, we observed significantly enhanced Thr308 phosphorylation and activation of Akt in rapamycin- and PF-4708671-treated hearts. Cardiomyocyte-specific deletion of PDK1 (phosphoinositide-dependent kinase 1) and Akt1/3 abolished cardioprotection after MI in the presence of rapamycin administration. These results demonstrate that S6K inhibition rendered beneficial effects on left ventricular function and alleviated adverse remodelling following MI in mice by enhancing Akt signalling, suggesting the therapeutic value of both rapamycin and PF-4708671 in treating patients following an MI.
Collapse
|
202
|
Stokes MP, Farnsworth CL, Moritz A, Silva JC, Jia X, Lee KA, Guo A, Polakiewicz RD, Comb MJ. PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS. Mol Cell Proteomics 2012; 11:187-201. [PMID: 22322096 DOI: 10.1074/mcp.m111.015883] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteomic studies of post-translational modifications by metal affinity or antibody-based methods often employ data-dependent analysis, providing rich data sets that consist of randomly sampled identified peptides because of the dynamic response of the mass spectrometer. This can complicate the primary goal of programs for drug development, mutational analysis, and kinase profiling studies, which is to monitor how multiple nodes of known, critical signaling pathways are affected by a variety of treatment conditions. Cell Signaling Technology has developed an immunoaffinity-based LC-MS/MS method called PTMScan Direct for multiplexed analysis of these important signaling proteins. PTMScan Direct enables the identification and quantification of hundreds of peptides derived from specific proteins in signaling pathways or specific protein types. Cell lines, tissues, or xenografts can be used as starting material. PTMScan Direct is compatible with both SILAC and label-free quantification. Current PTMScan Direct reagents target key nodes of many signaling pathways (PTMScan Direct: Multipathway), serine/threonine kinases, tyrosine kinases, and the Akt/PI3K pathway. Validation of each reagent includes score filtering of MS/MS assignments, filtering by identification of peptides derived from expected targets, identification of peptides homologous to expected targets, minimum signal intensity of peptide ions, and dependence upon the presence of the reagent itself compared with a negative control. The Multipathway reagent was used to study sensitivity of human cancer cell lines to receptor tyrosine kinase inhibitors and showed consistent results with previously published studies. The Ser/Thr kinase reagent was used to compare relative levels of kinase-derived phosphopeptides in mouse liver, brain, and embryo, showing tissue-specific activity of many kinases including Akt and PKC family members. PTMScan Direct will be a powerful quantitative method for elucidation of changes in signaling in a wide array of experimental systems, combining the specificity of traditional biochemical methods with the high number of data points and dynamic range of proteomic methods.
Collapse
|
203
|
Abstract
New therapeutic approaches to counter the increasing prevalence of obesity and type 2 diabetes mellitus are in high demand. Deregulation of the phosphoinositide-3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (AKT), mitogen-activated protein kinase (MAPK) and AMP-activated protein kinase (AMPK) pathways, which are essential for glucose homeostasis, often results in obesity and diabetes. Thus, these pathways should be attractive therapeutic targets. However, with the exception of metformin, which is considered to function mainly by activating AMPK, no treatment for the metabolic syndrome based on targeting protein kinases has yet been developed. By contrast, therapies based on the inhibition of the PI3K/AKT and MAPK pathways are already successful in the treatment of diverse cancer types and inflammatory diseases. This contradiction prompted us to review the signal transduction mechanisms of PI3K/AKT, MAPK and AMPK and their roles in glucose homeostasis, and we also discuss current clinical implications.
Collapse
|
204
|
Qiu W, Zhang Y, Liu X, Zhou J, Li Y, Zhou Y, Shan K, Xia M, Che N, Feng X, Zhao D, Wang Y. Sublytic C5b-9 complexes induce proliferative changes of glomerular mesangial cells in rat Thy-1 nephritis through TRAF6-mediated PI3K-dependent Akt1 activation. J Pathol 2011; 226:619-32. [PMID: 21984198 DOI: 10.1002/path.3011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/21/2011] [Accepted: 08/12/2011] [Indexed: 12/20/2022]
Abstract
The proliferation of glomerular mesangial cells (GMCs) and secretion of extracellular matrix (ECM) in rat Thy-1 nephritis (Thy-1N), resembling human mesangioproliferative glomerulonephritis (MsPGN), have been studied for many years, but the mechanisms, especially the role of signalling pathway activation and its regulation in GMCs triggered by sublytic C5b-9 complexes in Thy-1N rats remain largely unclear. In the study, the proliferation of GMCs and production of ECM as well as the role of PI3K/Akt and its regulation, both in GMCs induced by sublytic C5b-9 (in vitro) and in the renal tissues of rats with Thy-1N (in vivo), were determined and the results revealed that GMCs proliferation and ECM secretion, both in vitro and in vivo, were notably increased, and that PI3K/Akt1 activation and its regulation, such as TNF receptor-associated factor 6 (TRAF6)-mediated Akt1 ubiquitination and PI3K-dependent Akt1 phosphorylation, were involved in the process of Thy-1N induction. On the other hand, silence of the TRAF6, PI3K or Akt1 genes could obviously diminish the proliferative damages and urinary protein secretion of Thy-1N rats. Together, these data implicated that sublytic C5b-9 complexes in Thy-1N rats could promote GMCs proliferation and ECM production through TRAF6-mediated PI3K-dependent Akt1 activation, in which the ubiquitination and phosphorylation of the Akt1 signal molecule played an important role in the initiation and development of the proliferative changes in the rats with Thy-1N.
Collapse
Affiliation(s)
- Wen Qiu
- Department of Immunology and Lab of Immunopathology, Nanjing Medical University, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Yao LJ, McCormick JA, Wang J, Yang KY, Kidwai A, Colussi GL, Boini KM, Birnbaum MJ, Lang F, German MS, Pearce D. Novel role for SGK3 in glucose homeostasis revealed in SGK3/Akt2 double-null mice. Mol Endocrinol 2011; 25:2106-18. [PMID: 21980074 DOI: 10.1210/me.2010-0329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The phosphatidylinositol-3-kinase-dependent kinase, Akt2, plays a central role in mediating insulin effects in glucose-metabolizing tissues. Akt2 knockout mice display insulin resistance with a reactive increase in pancreatic islet mass and hyperinsulinemia. The related phosphatidylinositol-3-kinase-dependent kinase, serum- and glucocorticoid-regulated kinase 3 (SGK3), is essential for normal postnatal hair follicle development but plays no apparent role in glucose homeostasis. We report here an unexpected role of SGK3 in islet β-cell function, which is revealed in Akt2/SGK3 double-knockout (DKO) mice. DKO mice have markedly worse glucose homeostasis than Akt2 single-null animals, including greater baseline glucose, and greater rise in blood glucose after glucose challenge. However, surprisingly, our data strongly support the idea that this exacerbation of the glucose-handling defect is due to impaired β-cell function, rather than increased insulin resistance in peripheral tissues. DKO mice had lower plasma insulin and C-peptide levels, lower β-cell mass, reduced glucose-stimulated insulin secretion, and greater sensitivity to exogenous insulin than Akt2 single nulls. We further demonstrated that SGK3 is strongly expressed in normal mouse islets and, interestingly, that β-catenin expression is dramatically lower in the islets of DKO mice than in those of Akt2(-/-)/SGK3(+/+) or Akt2(-/-)/SGK3(+/-) mice. Taken together, these data strongly suggest that SGK3 plays a previously unappreciated role in glucose homeostasis, likely through direct effects within β-cells, to stimulate proliferation and insulin release, at least in part by controlling the expression and activity of β-catenin.
Collapse
Affiliation(s)
- Li-Jun Yao
- Departments of Medicine, and Molecular and Cellular Pharmacology, University of California, San Francisco, California 94107-2140, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
NYAP: a phosphoprotein family that links PI3K to WAVE1 signalling in neurons. EMBO J 2011; 30:4739-54. [PMID: 21946561 DOI: 10.1038/emboj.2011.348] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway has been extensively studied in neuronal function and morphogenesis. However, the precise molecular mechanisms of PI3K activation and its downstream signalling in neurons remain elusive. Here, we report the identification of the Neuronal tYrosine-phosphorylated Adaptor for the PI 3-kinase (NYAP) family of phosphoproteins, which is composed of NYAP1, NYAP2, and Myosin16/NYAP3. The NYAPs are expressed predominantly in developing neurons. Upon stimulation with Contactin5, the NYAPs are tyrosine phosphorylated by Fyn. Phosphorylated NYAPs interact with PI3K p85 and activate PI3K, Akt, and Rac1. Moreover, the NYAPs interact with the WAVE1 complex which mediates remodelling of the actin cytoskeleton after activation by PI3K-produced PIP(3) and Rac1. By simultaneously interacting with PI3K and the WAVE1 complex, the NYAPs bridge a PI3K-WAVE1 association. Disruption of the NYAP genes in mice affects brain size and neurite elongation. In conclusion, the NYAPs activate PI3K and concomitantly recruit the downstream effector WAVE complex to the close vicinity of PI3K and regulate neuronal morphogenesis.
Collapse
|
207
|
Delineation of a deletion region critical for corpus callosal abnormalities in chromosome 1q43-q44. Eur J Hum Genet 2011; 20:176-9. [PMID: 21934713 DOI: 10.1038/ejhg.2011.171] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Submicroscopic deletions involving chromosome 1q43-q44 result in cognitive impairment, microcephaly, growth restriction, dysmorphic features, and variable involvement of other organ systems. A consistently observed feature in patients with this deletion are the corpus callosal abnormalities (CCAs), ranging from thinning and hypoplasia to complete agenesis. Previous studies attempting to delineate the critical region for CCAs have yielded inconsistent results. We conducted a detailed clinical and molecular characterization of seven patients with deletions of chromosome 1q43-q44. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. Four patients had CCAs, and shared the smallest region of overlap that contains only three protein coding genes, CEP170, SDCCAG8, and ZNF238. One patient with a small deletion involving SDCCAG8 and AKT3, and another patient with an intragenic deletion of AKT3 did not have any CCA, implying that the loss of these two genes is unlikely to be the cause of CCA. CEP170 is expressed extensively in the brain, and encodes for a protein that is a component of the centrosomal complex. ZNF238 is involved in control of neuronal progenitor cells and survival of cortical neurons. Our results rule out the involvement of AKT3, and implicate CEP170 and/or ZNF238 as novel genes causative for CCA in patients with a terminal 1q deletion.
Collapse
|
208
|
Lee RS, House CM, Cristiano BE, Hannan RD, Pearson RB, Hannan KM. Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining In Vivo AKT Isoform Substrate Specificity. Enzyme Res 2011; 2011:720985. [PMID: 21869924 PMCID: PMC3160084 DOI: 10.4061/2011/720985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/18/2022] Open
Abstract
The AKT protooncogene mediates many cellular processes involved in normal development and disease states such as cancer. The three structurally similar isoforms: AKT1, AKT2, and AKT3 exhibit both functional redundancy and isoform-specific functions; however the basis for their differential signalling remains unclear. Here we show that in vitro, purified AKT3 is ∼47-fold more active than AKT1 at phosphorylating peptide and protein substrates. Despite these marked variations in specific activity between the individual isoforms, a comprehensive analysis of phosphorylation of validated AKT substrates indicated only subtle differences in signalling via individual isoforms in vivo. Therefore, we hypothesise, at least in this model system, that relative tissue/cellular abundance, rather than specific activity, plays the dominant role in determining AKT substrate specificity in situ.
Collapse
Affiliation(s)
- Rachel S Lee
- Growth Control and Differentiation Program, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, VIC 8006, Australia
| | | | | | | | | | | |
Collapse
|
209
|
Ha JM, Kim YW, Lee DH, Yun SJ, Kim EK, Hye Jin I, Kim JH, Kim CD, Shin HK, Bae SS. Regulation of arterial blood pressure by Akt1-dependent vascular relaxation. J Mol Med (Berl) 2011; 89:1253-60. [PMID: 21842346 DOI: 10.1007/s00109-011-0798-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 12/14/2022]
Abstract
Endothelial cell-dependent vascular relaxation plays an important role in the regulation of blood pressure. Here, we show that stimulation of vascular endothelial cells with platelet-derived growth factor (PDGF) results in vascular relaxation through Akt1-dependent activation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Stimulation of both human umbilical artery endothelial cells and abdominal aortic vessels with PDGF induced NO production. PDGF-dependent production of NO was completely abolished by inhibition of phosphatidylinositol 3-kinase with wortmannin (100 nM). Stimulation of aortic vessels with PDGF resulted in the activation of Akt phosphorylation and eNOS phosphorylation: however, eNOS phosphorylation and production of NO were abolished in aortic vessels of mice lacking Akt1. PDGF strongly induced vascular relaxation in the presence of endothelium, and inhibition of NO production by N-nitro-L: -arginine-methyl ester completely blocked PDGF-dependent vascular relaxation. In addition, PDGF-dependent relaxation was completely abolished by inhibition of PI3K with wortmannin (100 nM). Furthermore, vessels from Akt1 heterozygotes showed normal relaxation after PDGF stimulation, whereas vessels from Akt1 knockout littermates did not respond to PDGF stimulation. Finally, administration of PDGF (5 ng/ml) significantly lowered blood pressure in Akt1 heterozygotes, whereas a blood pressure-lowering effect was not observed in Akt1 knockout littermates. These results suggest that Akt1 regulates blood pressure through regulation of vascular relaxation by eNOS phosphorylation and subsequent production of NO.
Collapse
Affiliation(s)
- Jung Min Ha
- MRC for Ischemic Tissue Regeneration and Department of Pharmacology, Pusan National University School of Medicine, Bumeo-ri, Mulgeum-eup, Yangsan-si, Kyungnam, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Andreozzi F, Procopio C, Greco A, Mannino GC, Miele C, Raciti GA, Iadicicco C, Beguinot F, Pontiroli AE, Hribal ML, Folli F, Sesti G. Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia 2011; 54:1879-87. [PMID: 21461637 DOI: 10.1007/s00125-011-2116-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS We determined the contribution to insulin resistance of the PH domain leucine-rich repeat protein phosphatase (PHLPP), which dephosphorylates Akt at Ser473, inhibiting its activity. We measured the abundance of PHLPP in fat and skeletal muscle from obese participants. To study the effect of PHLPP on insulin signalling, PHLPP (also known as PHLPP1) was overexpressed in HepG2 and L6 cells. METHODS Subcutaneous fat samples were obtained from 82 morbidly obese and ten non-obese participants. Skeletal muscle samples were obtained from 12 obese and eight non-obese participants. Quantification of PHLPP-1 in human tissues was performed by immunoblotting. The functional consequences of recombinant PHLPP1 overexpression in hepatoma HepG2 cells and L6 myoblasts were investigated. RESULTS Of the 82 obese participants, 31 had normal fasting glucose, 33 impaired fasting glucose and 18 type 2 diabetes. PHLPP-1 abundance was twofold higher in the three obese groups than in non-obese participants (p = 0.004). No differences were observed between obese participants with normal fasting glucose, impaired fasting glucose or type 2 diabetes. PHLPP-1 abundance was correlated with basal Akt Ser473 phosphorylation (r = -0.48; p = 0.001), BMI (r = 0.44; p < 0.0001), insulin (r = 0.35; p < 0.0001) and HOMA (r = 0.38; p < 0.0001). PHLPP-1 abundance was twofold higher in the skeletal muscle of 12 obese participants than in that of eight non-obese participants (p < 0.0001). Insulin treatment of HepG2 cells resulted in a dose- and time-dependent upregulation of PHLPP-1. Overexpression of PHLPP1 in HepG2 cells and L6 myoblasts resulted in impaired insulin signalling involving Akt/glycogen synthase kinase 3, glycogen synthesis and glucose transport. CONCLUSIONS/INTERPRETATION Increased abundance of PHLPP-1, production of which is regulated by insulin, may represent a new molecular defect in insulin-resistant states such as obesity.
Collapse
Affiliation(s)
- F Andreozzi
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Ito M, Nagasawa M, Omae N, Ide T, Akasaka Y, Murakami K. Differential regulation of CIDEA and CIDEC expression by insulin via Akt1/2- and JNK2-dependent pathways in human adipocytes. J Lipid Res 2011; 52:1450-60. [PMID: 21636835 DOI: 10.1194/jlr.m012427] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Both insulin and the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. Previously, we reported that CIDEA and CIDEC are differentially regulated by insulin and contribute separately to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. However, the upstream signals of CIDE proteins remain unclear. Here, we investigated the signaling molecules involved in insulin regulation of CIDEA and CIDEC expression. The phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and PI-103 blocked both insulin-induced downregulation of CIDEA and upregulation of CIDEC. The Akt inhibitor API-2 and the c-Jun N-terminal kinase (JNK) inhibitor SP600125 selectively inhibited insulin regulation of CIDEA and CIDEC expression, respectively, whereas the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 did not. Small interfering RNA-mediated depletion of Akt1/2 prevented insulin-induced downregulation of CIDEA and inhibition of apoptosis. Depletion of JNK2, but not JNK1, inhibited insulin-induced upregulation of CIDEC and lipid droplet enlargement. Furthermore, insulin increased both Akt and JNK phosphorylation, which was abrogated by the PI3K inhibitors. These results suggest that insulin regulates CIDEA and CIDEC expression via PI3K, and it regulates expression of each protein via Akt1/2- and JNK2-dependent pathways, respectively, in human adipocytes.
Collapse
Affiliation(s)
- Minoru Ito
- Discovery Research Laboratories, Kyorin Pharmaceutical Co. Ltd., Tochigi 329-0114, Japan
| | | | | | | | | | | |
Collapse
|
212
|
Protein kinase B (Akt) and mitogen-activated protein kinase p38α in retinal ischemic post-conditioning. J Mol Neurosci 2011; 45:309-20. [PMID: 21573888 DOI: 10.1007/s12031-011-9523-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/18/2011] [Indexed: 12/25/2022]
Abstract
In previous studies, it was shown that post-conditioning, a transient period of brief ischemia following prolonged severe ischemia in the retina, could provide significant improvement in post-ischemic recovery, attenuation of cell loss, and decreased apoptosis. However, the mechanisms of post-conditioning in the retina have not been elucidated. We hypothesized that two kinases, mitogen-activated protein kinase p38α and protein kinase B (Akt), were involved in the mechanism of post-conditioning. Ischemia was induced in rat retina in vivo. Recovery after ischemia followed by 8 min of post-conditioning early in the reperfusion period after prolonged ischemia was assessed functionally (electroretinography) and histologically at 7 days after ischemia. We examined the role of p38α and Akt subtypes 1-3 in post-conditioning by intravitreal injection of interfering RNA 6 h prior to ischemia and post-conditioning and compared the results to injection of non-silencing interfering RNA sequence. The blockade of p38α significantly decreased the recovery after ischemia and post-conditioning, and enhanced cell loss and disorganization of the retina. Blockade of Akt1, and to a lesser degree, Akt2, significantly decreased the recovery after ischemia and enhanced cell loss and disorganization. These differences in the effects of blockade of Akt subtypes were not explainable by distribution of Akt subtypes in the retina, which were similar. In conclusion, both p38 and Akt are essential components of the neuroprotection induced by post-ischemic conditioning in the retina.
Collapse
|
213
|
Protective role of Akt2 in Salmonella enterica serovar typhimurium-induced gastroenterocolitis. Infect Immun 2011; 79:2554-66. [PMID: 21555401 DOI: 10.1128/iai.01235-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Salmonella effector protein SopB has previously been shown to induce activation of Akt and protect epithelial cells from apoptosis in vitro. To characterize the role of Akt2 in host defense against Salmonella enterica serovar Typhimurium infection, wild-type (WT) mice and mice lacking Akt2 (Akt2 knockout [KO] mice) were infected using a Salmonella acute gastroenteritis model. Infected Akt2 KO mice showed a more pronounced morbidity and mortality associated with higher bacterial loads in the intestines and elevated levels of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and MCP-1, in the colons at 1 day postinfection compared to those shown in WT mice. Histopathological assessment and immunohistochemical analysis of cecal sections at 1 day postinfection revealed more severe inflammation and higher levels of neutrophil infiltration in the ceca of Akt2 KO mice. Flow cytometry analysis further confirmed an increase in the recruitment of Gr-1(+) CD11b(+) neutrophils and F4/80(+) CD11b(+) macrophages in the intestines of infected Akt2 KO mice. Additionally, enhanced levels of annexin V(+) and terminal transferase dUTP nick end labeling-positive (TUNEL(+)) apoptotic cells in the intestines of infected Akt2 KO mice were also observed, indicating that Akt2 plays an essential role in protection against apoptosis. Finally, the differences in bacterial loads and cecal inflammation in WT and Akt2 KO mice infected with WT Salmonella were abolished when these mice were infected with the sopB deletion mutant, indicating that SopB may play a role in protecting the mice from Salmonella infection through the activation of Akt2. These data demonstrate a definitive phenotypic abnormality in the innate response in mice lacking Akt2, underscoring the important protective role of Akt2 in Salmonella infection.
Collapse
|
214
|
Targeting phosphatidylinositol 3 kinase (PI3K)-Akt beyond rapalogs. Target Oncol 2011; 6:103-17. [DOI: 10.1007/s11523-011-0176-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/09/2011] [Indexed: 01/20/2023]
|
215
|
Schultze SM, Jensen J, Hemmings BA, Tschopp O, Niessen M. Promiscuous affairs of PKB/AKT isoforms in metabolism. Arch Physiol Biochem 2011; 117:70-7. [PMID: 21214427 DOI: 10.3109/13813455.2010.539236] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The protein kinase B (PKB) family encompasses three isoforms; PKBα (AKT1), PKBβ (AKT2) and PKBγ (AKT3). PKBα and PKBβ but not PKBγ, are prominently expressed in classical insulin-sensitive tissues like liver, muscle and fat. Transgenic mice deficient for PKBα, PKBβ or PKBγ have been analysed to study the roles of PKB isoforms in metabolic regulation. Until recently, only loss of PKBβ was reported to result in metabolic disorders, especially insulin resistance, in humans and mice. However, a new study has shown that PKBα-deficient mice can show enhanced glucose tolerance accompanied by improved β-cell function and higher insulin sensitivity in adipocytes. These findings prompted us to review the relevant literature on the regulation of glucose metabolism by PKB isoforms in liver, skeletal muscle, adipocytes and pancreas.
Collapse
Affiliation(s)
- Simon M Schultze
- Endocrinology, Diabetology & Clinical Nutrition, University Hospital of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
216
|
Liby TA, Spyropoulos P, Buff Lindner H, Eldridge J, Beeson C, Hsu T, Muise-Helmericks RC. Akt3 controls vascular endothelial growth factor secretion and angiogenesis in ovarian cancer cells. Int J Cancer 2011; 130:532-43. [PMID: 21351097 DOI: 10.1002/ijc.26010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 01/12/2011] [Indexed: 01/16/2023]
Abstract
The PI3 kinase/Akt pathway is commonly deregulated in human cancers, functioning in such processes as proliferation, glucose metabolism, survival and motility. We have previously described a novel function for one of the Akt isoforms (Akt3) in primary endothelial cells: the control of VEGF-induced mitochondrial biogenesis. We sought to determine if Akt3 played a similar role in carcinoma cells. Because the PI3 kinase/Akt pathway has been strongly implicated as a key regulator in ovarian carcinoma, we tested the role of Akt3 in this tumor type. Silencing of Akt3 by shRNA did not cause an overt reduction in mitochondrial gene expression in a series of PTEN positive ovarian cancer cells. Rather, we find that blockade of Akt3, results in smaller, less vascularized tumors in a xenograft mouse model that is correlated with a reduction in VEGF expression. We find that blockade of Akt3, but not Akt1, results in a reduction in VEGF secretion and retention of VEGF protein in the endoplasmic reticulum (ER). The reduction in secretion under conditions of Akt3 blockade is, at least in part, due to the down regulation of the resident golgi protein and reported tumor cell marker, RCAS1. Conversely, over-expression of Akt3 results in an increase in RCAS1 expression and in VEGF secretion. Silencing of RCAS1 using siRNA inhibits VEGF secretion. These findings suggest an important role for Akt3 in the regulation of RCAS1 and VEGF secretion in ovarian cancer cells.
Collapse
Affiliation(s)
- Tiera A Liby
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Endersby R, Zhu X, Hay N, Ellison DW, Baker SJ. Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model. Cancer Res 2011; 71:4106-16. [PMID: 21507933 DOI: 10.1158/0008-5472.can-10-3597] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The AKT family, comprising three highly homologous kinases, is an essential mediator of the PTEN/PI3K pathway, which is deregulated in many human cancers. A thorough understanding of the specific activities of each isoform in normal and disease tissues is lacking. We evaluated the role of each Akt isoform in gliomagenesis by using a model system driven by common glioma abnormalities, loss of function of p53 and Pten, and expression of EGFRvIII. Both Pten deletion and EGFRvIII expression accelerated the proliferation of p53-null primary murine astrocytes. All three Akt isoforms were expressed and phosphorylated in astrocytes, with significantly higher activation in Pten-null cells. Despite substantial compensation in many contexts when individual Akt isoforms were inhibited, isoform-specific effects were also identified. Specifically, loss of Akt1 or Akt2 decreased proliferation of Pten wild-type astrocytes, whereas combined loss of multiple isoforms was needed to inhibit proliferation of Pten-null astrocytes. In addition, Akt3 was required for anchorage-independent growth of transformed astrocytes and human glioma cells, and Akt3 loss inhibited invasion of transformed astrocytes. EGFRvIII expression transformed p53-null astrocytes with or without Pten deletion, causing rapid development of high-grade astrocytoma on intracranial transplantation. Furthermore, tumorigenesis of Pten;p53-null astrocytes expressing EGFRvIII was delayed by Akt1 loss and accelerated by Akt2 loss. Taken together, these results indicate context-dependent roles for individual Akt isoforms and suggest that there may be heterogeneous tumor response to isoform-specific inhibitors.
Collapse
Affiliation(s)
- Raelene Endersby
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
218
|
Madhunapantula SV, Robertson GP. Therapeutic Implications of Targeting AKT Signaling in Melanoma. Enzyme Res 2011; 2011:327923. [PMID: 21461351 PMCID: PMC3065045 DOI: 10.4061/2011/327923] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/01/2011] [Indexed: 11/29/2022] Open
Abstract
Identification of key enzymes regulating melanoma progression and drug resistance has the potential to lead to the development of novel, more effective targeted agents for inhibiting this deadly form of skin cancer. The Akt3, also known as protein kinase B gamma, pathway enzymes regulate diverse cellular processes including proliferation, survival, and invasion thereby promoting the development of melanoma. Accumulating preclinical evidence demonstrates that therapeutic agents targeting these kinases alone or in combination with other pathway members could be effective for the long-term treatment of advanced-stage disease. However, currently, no selective and effective therapeutic agent targeting these kinases has been identified for clinical use. This paper provides an overview of the key enzymes of the PI3K pathway with emphasis placed on Akt3 and the negative regulator of this kinase called PTEN (phosphatase and tensin homolog deleted on chromosome 10). Mechanisms regulating these enzymes, their substrates and therapeutic implications of targeting these proteins to treat melanoma are also discussed. Finally, key issues that remain to be answered and future directions for interested researchers pertaining to this signaling cascade are highlighted.
Collapse
Affiliation(s)
- Subbarao V Madhunapantula
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
219
|
Wu YT, Ouyang W, Lazorchak AS, Liu D, Shen HM, Su B. mTOR complex 2 targets Akt for proteasomal degradation via phosphorylation at the hydrophobic motif. J Biol Chem 2011; 286:14190-8. [PMID: 21321111 DOI: 10.1074/jbc.m111.219923] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The protein kinase Akt (also known as protein kinase B) is a critical signaling hub downstream of various cellular stimuli such as growth factors that control cell survival, growth, and proliferation. The activity of Akt is tightly regulated, and the aberrant activation of Akt is associated with diverse human diseases including cancer. Although it is well documented that the mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of the Akt hydrophobic motif (Ser-473 in Akt1) is essential for full Akt activation, it remains unclear whether this phosphorylation has additional roles in regulating Akt activity. In this study, we found that abolishing Akt Ser-473 phosphorylation stabilizes Akt following agonist stimulation. The Akt Ser-473 phosphorylation promotes a Lys-48-linked polyubiquitination of Akt, resulting in its rapid proteasomal degradation. Moreover, blockade of this proteasomal degradation pathway prolongs agonist-induced Akt activation. These data reveal that mTORC2 plays a central role in regulating the Akt protein life cycle by first stabilizing Akt protein folding through the turn motif phosphorylation and then by promoting Akt protein degradation through the hydrophobic motif phosphorylation. Taken together, this study reveals that the Akt Ser-473 phosphorylation-dependent ubiquitination and degradation is an important negative feedback regulation that specifically terminates Akt activation.
Collapse
Affiliation(s)
- You-Tong Wu
- Department of Immunobiology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
220
|
Hay N. Akt isoforms and glucose homeostasis - the leptin connection. Trends Endocrinol Metab 2011; 22:66-73. [PMID: 20947368 PMCID: PMC3427792 DOI: 10.1016/j.tem.2010.09.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 12/31/2022]
Abstract
The serine/threonine kinase Akt, also known as protein kinase B, has been the focus of substantial attention, largely because it is frequently activated in human cancers. However, relatively little is known about the roles of Akt, particularly the individual isoforms of Akt, in glucose homeostasis in vivo. This review summarizes data on the role of Akt isoforms in glucose homeostasis and diabetes. Emphasis is given to the observation that certain combinations of whole-body Akt1 and Akt2 deficiencies reduce circulating levels of leptin and that restoration of leptin levels restores normal glucose homeostasis in diabetic Akt-deficient mice. The significance of these findings, together with recent observations suggesting that leptin emulates insulin action, is also discussed.
Collapse
Affiliation(s)
- Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
221
|
Kirby J, Ning K, Ferraiuolo L, Heath PR, Ismail A, Kuo SW, Valori CF, Cox L, Sharrack B, Wharton SB, Ince PG, Shaw PJ, Azzouz M. Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 134:506-17. [PMID: 21228060 PMCID: PMC3030763 DOI: 10.1093/brain/awq345] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene expression profiling has been used previously with spinal cord homogenates and laser capture microdissected motor neurons to determine the mechanisms involved in neurodegeneration in amyotrophic lateral sclerosis. However, while cellular and animal model work has focused on superoxide dismutase 1-related amyotrophic lateral sclerosis, the transcriptional profile of human mutant superoxide dismutase 1 motor neurons has remained undiscovered. The aim of this study was to apply gene expression profiling to laser captured motor neurons from human superoxide dismutase 1-related amyotrophic lateral sclerosis and neurologically normal control cases, in order to determine those pathways dysregulated in human superoxide dismutase 1-related neurodegeneration and to establish potential pathways suitable for therapeutic intervention. Identified targets were then validated in cultured cell models using lentiviral vectors to manipulate the expression of key genes. Microarray analysis identified 1170 differentially expressed genes in spinal cord motor neurons from superoxide dismutase 1-related amyotrophic lateral sclerosis, compared with controls. These genes encoded for proteins in multiple functional categories, including those involved in cell survival and cell death. Further analysis determined that multiple genes involved in the phosphatidylinositol-3 kinase signalling cascade were differentially expressed in motor neurons that survived the disease process. Functional experiments in cultured cells and primary motor neurons demonstrate that manipulating this pathway by reducing the expression of a single upstream target, the negative phosphatidylinositol-3 kinase regulator phosphatase and tensin homology, promotes a marked pro-survival effect. Therefore, these data indicate that proteins in the phosphatidylinositol-3 kinase pathway could represent a target for therapeutic manipulation in motor neuron degeneration.
Collapse
Affiliation(s)
- Janine Kirby
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Tokuda S, Mahaffey CL, Monks B, Faulkner CR, Birnbaum MJ, Danzer SC, Frankel WN. A novel Akt3 mutation associated with enhanced kinase activity and seizure susceptibility in mice. Hum Mol Genet 2010; 20:988-99. [PMID: 21159799 DOI: 10.1093/hmg/ddq544] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a phenotype-driven mutagenesis screen, a novel, dominant mouse mutation, Nmf350, caused low seizure threshold, sporadic tonic-clonic seizures, brain enlargement and ectopic neurons in the dentate hilus and molecular layer of the hippocampus. Genetic mapping implicated Akt3, one of four candidates within the critical interval. Sequencing analysis revealed that mutants have a missense mutation in Akt3 (encoding one of three AKT/protein kinase B molecules), leading to a non-synonymous amino acid substitution in the highly conserved protein kinase domain. Previous knockout studies showed that Akt3 is pivotal in postnatal brain development, including a smaller brain, although seizures were not observed. In contrast to Akt3(Nmf350), we find that Akt3 null mice exhibit an elevated seizure threshold. An in vitro kinase assay revealed that Akt3(Nmf350) confers higher enzymatic activity, suggesting that Akt3(Nmf350) might enhance AKT signaling in the brain. In the dentate gyrus of Akt3(Nmf350) homozygotes, we also observed a modest increase in immunoreactivity of phosphorylated ribosomal protein S6, an AKT pathway downstream target. Together these findings suggest that Akt3(Nmf350) confers an increase of AKT3 activity in specific neuronal populations in the brain, and a unique dominant phenotype. Akt3(Nmf350) mice provide a new tool for studying physiological roles of AKT signaling in the brain, and potentially novel mechanisms for epilepsy.
Collapse
|
223
|
Soleimanpour SA, Crutchlow MF, Ferrari AM, Raum JC, Groff DN, Rankin MM, Liu C, De León DD, Naji A, Kushner JA, Stoffers DA. Calcineurin signaling regulates human islet {beta}-cell survival. J Biol Chem 2010; 285:40050-9. [PMID: 20943662 DOI: 10.1074/jbc.m110.154955] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The calcium-regulated phosphatase calcineurin intersects with both calcium and cAMP-mediated signaling pathways in the pancreatic β-cell. Pharmacologic calcineurin inhibition, necessary to prevent rejection in the setting of organ transplantation, is associated with post-transplant β-cell failure. We sought to determine the effect of calcineurin inhibition on β-cell replication and survival in rodents and in isolated human islets. Further, we assessed whether the GLP-1 receptor agonist and cAMP stimulus, exendin-4 (Ex-4), could rescue β-cell replication and survival following calcineurin inhibition. Following treatment with the calcineurin inhibitor tacrolimus, human β-cell apoptosis was significantly increased. Although we detected no human β-cell replication, tacrolimus significantly decreased rodent β-cell replication. Ex-4 nearly normalized both human β-cell survival and rodent β-cell replication when co-administered with tacrolimus. We found that tacrolimus decreased Akt phosphorylation, suggesting that calcineurin could regulate replication and survival via the PI3K/Akt pathway. We identify insulin receptor substrate-2 (Irs2), a known cAMP-responsive element-binding protein target and upstream regulator of the PI3K/Akt pathway, as a novel calcineurin target in β-cells. Irs2 mRNA and protein are decreased by calcineurin inhibition in both rodent and human islets. The effect of calcineurin on Irs2 expression is mediated at least in part through the nuclear factor of activated T-cells (NFAT), as NFAT occupied the Irs2 promoter in a calcineurin-sensitive manner. Ex-4 restored Irs2 expression in tacrolimus-treated rodent and human islets nearly to baseline. These findings reveal calcineurin as a regulator of human β-cell survival in part through regulation of Irs2, with implications for the pathogenesis and treatment of diabetes following organ transplantation.
Collapse
Affiliation(s)
- Scott A Soleimanpour
- Division of Endocrinology, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Restuccia DF, Hemmings BA. From man to mouse and back again: advances in defining tumor AKTivities in vivo. Dis Model Mech 2010; 3:705-20. [PMID: 20940316 DOI: 10.1242/dmm.004671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AKT hyperactivation is a common event in human cancers, and inhibition of oncogenic AKT activation is a major goal of drug discovery programs. Mouse tumor models that replicate AKT activation typical of human cancers provide a powerful means by which to investigate mechanisms of oncogenic signaling, identify potential therapeutic targets and determine treatment regimes with maximal therapeutic efficacy. This Perspective highlights recent advances using in vivo studies that reveal how AKT signaling supports tumor formation, cooperates with other mutations to promote tumor progression and facilitates tumor-cell dissemination, focusing on well-characterized prostate carcinoma mouse models that are highly sensitive to AKT activation. The implications of these findings on the therapeutic targeting of AKT and potential new drug targets are also explored.
Collapse
Affiliation(s)
- David F Restuccia
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
225
|
Chen CC, Boxer RB, Stairs DB, Portocarrero CP, Horton RH, Alvarez JV, Birnbaum MJ, Chodosh LA. Akt is required for Stat5 activation and mammary differentiation. Breast Cancer Res 2010; 12:R72. [PMID: 20849614 PMCID: PMC3096959 DOI: 10.1186/bcr2640] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 09/17/2010] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The Akt pathway plays a central role in regulating cell survival, proliferation and metabolism, and is one of the most commonly activated pathways in human cancer. A role for Akt in epithelial differentiation, however, has not been established. We previously reported that mice lacking Akt1, but not Akt2, exhibit a pronounced metabolic defect during late pregnancy and lactation that results from a failure to upregulate Glut1 as well as several lipid synthetic enzymes. Despite this metabolic defect, however, both Akt1-deficient and Akt2-deficient mice exhibit normal mammary epithelial differentiation and Stat5 activation. METHODS In light of the overlapping functions of Akt family members, we considered the possibility that Akt may play an essential role in regulating mammary epithelial development that is not evident in Akt1-deficient mice due to compensation by other Akt isoforms. To address this possibility, we interbred mice bearing targeted deletions in Akt1 and Akt2 and determined the effect on mammary differentiation during pregnancy and lactation. RESULTS Deletion of one allele of Akt2 in Akt1-deficient mice resulted in a severe defect in Stat5 activation during late pregnancy that was accompanied by a global failure of terminal mammary epithelial cell differentiation, as manifested by the near-complete loss in production of the three principal components of milk: lactose, lipid, and milk proteins. This defect was due, in part, to a failure of pregnant Akt1(-/-);Akt2(+/-) mice to upregulate the positive regulator of Prlr-Jak-Stat5 signaling, Id2, or to downregulate the negative regulators of Prlr-Jak-Stat5 signaling, caveolin-1 and Socs2. CONCLUSIONS Our findings demonstrate an unexpected requirement for Akt in Prlr-Jak-Stat5 signaling and establish Akt as an essential central regulator of mammary epithelial differentiation and lactation.
Collapse
Affiliation(s)
- Chien-Chung Chen
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Kouroupi G, Lavdas AA, Gaitanou M, Thomaidou D, Stylianopoulou F, Matsas R. Lentivirus-mediated expression of insulin-like growth factor-I promotes neural stem/precursor cell proliferation and enhances their potential to generate neurons. J Neurochem 2010; 115:460-74. [PMID: 20681949 DOI: 10.1111/j.1471-4159.2010.06939.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Strategies to enhance neural stem/precursor cell (NPC) capacity to yield multipotential, proliferative, and migrating pools of cells that can efficiently differentiate into neurons could be crucial for structural repair after neurodegenerative damage. Here, we have generated a lentiviral vector for expression of insulin-like growth factor-I (IGF-1) and investigated the impact of IGF-1 transduction on the properties of cultured NPCs (IGF-1-NPCs). Under proliferative conditions, IGF-1 transduction promoted cell cycle progression via cyclin D1 up-regulation and Akt phosphorylation. Remarkably upon differentiation-inducing conditions, IGF-1-NPCs cease to proliferate and differentiate to a greater extent into neurons with significantly longer neurites, at the expense of astrocytes. Moreover, using live imaging we provide evidence that IGF-1 transduction enhances the motility and tissue penetration of grafted NPCs in cultured cortical slices. These results illustrate the important consequence of IGF-1 transduction in regulating NPC functions and offer a potential strategy to enhance the prospective repair potential of NPCs.
Collapse
Affiliation(s)
- Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | | | | | |
Collapse
|
227
|
Zhou F, Chang Z, Zhang L, Hong YK, Shen B, Wang B, Zhang F, Lu G, Tvorogov D, Alitalo K, Hemmings BA, Yang Z, He Y. Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2124-33. [PMID: 20724596 DOI: 10.2353/ajpath.2010.091301] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Akt-mediated signaling plays an important role in blood vascular development. In this study, we investigated the role of Akt in lymphatic growth using Akt-deficient mice. First, we found that lymphangiogenesis occurred in Akt1(-/-), Akt2(-/-), and Akt3(-/-) mice. However, both the diameter and endothelial cell number of lymphatic capillaries were significantly less in Akt1(-/-) mice than in wild-type control mice, whereas there was only a slight change in Akt2(-/-) and Akt3(-/-) mice. Second, valves present in the small collecting lymphatics in the superficial dermal layer of the ear skin were rarely observed in Akt1(-/-) mice, although these valves could be detected in the large collecting lymphatics in the deep layer of the skin tissues. A fluorescence microlymphangiography assay showed that the skin lymphatic network in Akt1(-/-) mice was functional but abnormal as shown by fluorescein isothiocyanate-dextran draining. There was an uncharacteristic enlargement of collecting lymphatic vessels, and further analysis showed that smooth muscle cell coverage of collecting lymphatic vessels became much more sparse in Akt1-deficient mice than in wild-type control animals. Finally, we showed that lymphatic vessels were detected in compound Akt-null mice and that lymphangiogenesis could be induced by vascular endothelial growth factor-C delivered via adenoviral vectors in adult mice lacking Akt1. These results indicate that despite the compensatory roles of other Akt isoforms, Akt1 is more critically required during lymphatic development.
Collapse
Affiliation(s)
- Fei Zhou
- Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
O'Driscoll MC, Black GCM, Clayton-Smith J, Sherr EH, Dobyns WB. Identification of genomic loci contributing to agenesis of the corpus callosum. Am J Med Genet A 2010; 152A:2145-59. [DOI: 10.1002/ajmg.a.33558] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
229
|
Speed NK, Matthies HJG, Kennedy JP, Vaughan RA, Javitch JA, Russo SJ, Lindsley CW, Niswender K, Galli A. Akt-dependent and isoform-specific regulation of dopamine transporter cell surface expression. ACS Chem Neurosci 2010; 1:476-81. [PMID: 22778840 DOI: 10.1021/cn100031t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/14/2010] [Indexed: 11/29/2022] Open
Abstract
Dopamine (DA) is a neurotransmitter implicated in multiple functions, including movement, cognition, motivation, and reward. The DA transporter (DAT) is responsible for clearing extracellular DA, thereby terminating DA neurotransmission. Previously, it has been shown that insulin signaling through protein kinase B/Akt regulates DAT function by fine-tuning DAT cell surface expression. Importantly, specific Akt isoforms (e.g., Akt1, Akt2) serve distinct physiological functions. Here, we demonstrate using isoform-specific Akt inhibitors that basal activity of Akt2, rather than Akt1, regulates DAT cell surface expression. Since Akt2 activation is mediated by insulin, these data further implicate insulin signaling as an important modulator of DAT function and dopaminergic tone.
Collapse
Affiliation(s)
| | | | | | - Roxanne A. Vaughan
- University of North Dakota School of Medicine and Health Science, Grand Forks, North Dakota
| | - Jonathan A. Javitch
- Department of Psychiatry and Pharmacology, Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Scott J. Russo
- Department of Neuroscience, Mount Sinai Medical Center, New York, New York
| | | | - Kevin Niswender
- Department of Molecular Physiology & Biophysics
- Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aurelio Galli
- Department of Pharmacology
- Department of Molecular Physiology & Biophysics
- Center for Molecular Neuroscience
| |
Collapse
|
230
|
PDK1 regulates vascular remodeling and promotes epithelial-mesenchymal transition in cardiac development. Mol Cell Biol 2010; 30:3711-21. [PMID: 20457809 DOI: 10.1128/mcb.00420-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One essential downstream signaling pathway of receptor tyrosine kinases (RTKs), such as vascular endothelial growth factor receptor (VEGFR) and the Tie2 receptor, is the phosphoinositide-3 kinase (PI3K)-phosphoinositide-dependent protein kinase 1 (PDK1)-Akt/protein kinase B (PKB) cascade that plays a critical role in development and tumorigenesis. However, the role of PDK1 in cardiovascular development remains unknown. Here, we deleted PDK1 specifically in endothelial cells in mice. These mice displayed hemorrhage and hydropericardium and died at approximately embryonic day 11.5 (E11.5). Histological analysis revealed defective vascular remodeling and development and disrupted integrity between the endothelium and trabeculae/myocardium in the heart. The atrioventricular canal (AVC) cushion and valves failed to form, indicating a defect in epithelial-mesenchymal transition (EMT), together with increased endothelial apoptosis. Consistently, ex vivo AVC explant culture showed impeded mesenchymal outgrowth. Snail protein was reduced and was absent from the nucleus in AVC cells. Delivery of the Snail S6A mutant to the AVC explant effectively rescued EMT defects. Furthermore, adenoviral Akt delivery rescued EMT defects in AVC explant culture, and deletion of PTEN delayed embryonic lethality of PDK1 endothelial deletion mice by 1 day and rendered normal development of the AVC cushion in the PDK1-deficient heart. Taken together, these results have revealed an essential role of PDK1 in cardiovascular development through activation of Akt and Snail.
Collapse
|
231
|
Freyberg Z, Ferrando SJ, Javitch JA. Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am J Psychiatry 2010; 167:388-96. [PMID: 19917593 PMCID: PMC3245866 DOI: 10.1176/appi.ajp.2009.08121873] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dopamine D(2) receptor antagonism is a unifying property of all antipsychotic drugs in clinical use. Remarkably, the effector molecules through which these medications exert their actions remain poorly characterized. Increasing attention is being focused on Akt/glycogen synthase kinase-3 (GSK-3) and wingless (Wnt) signaling pathways, which have been associated with schizophrenia in a number of genetic and postmortem studies. Antipsychotic medications may treat symptoms of psychosis, at least in part, through modulation of levels and activity of Akt, GSK-3, and Wnt-related intracellular signaling. The authors review evidence that Akt/GSK-3 and Wnt-related pathways are involved in the pathogenesis of schizophrenia as well as details of intracellular events related to these molecules mediated by both typical and atypical antipsychotic medications. Further study of Akt/GSK-3 and Wnt signaling may ultimately lead to alternative therapeutics of schizophrenia-related disorders.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, NY 10032, USA.
| | - Stephen J. Ferrando
- Department of Psychiatry, The New York-Presbyterian Hospital, Weill Medical College of Cornell University, New York, NY, USA,Department of Public Health, The New York-Presbyterian Hospital, Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
232
|
Chan CB, Liu X, Jung DY, Jun JY, Luo HR, Kim JK, Ye K. Deficiency of phosphoinositide 3-kinase enhancer protects mice from diet-induced obesity and insulin resistance. Diabetes 2010; 59:883-93. [PMID: 20068140 PMCID: PMC2844836 DOI: 10.2337/db09-1404] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Phosphoinositide 3-kinase enhancer A (PIKE-A) is a proto-oncogene that promotes tumor growth and transformation by enhancing Akt activity. However, the physiological functions of PIKE-A in peripheral tissues are unknown. Here, we describe the effect of PIKE deletion in mice and explore the role of PIKE-A in obesity development. RESEARCH DESIGN AND METHODS Whole-body PIKE knockout mice were generated and subjected to high-fat-diet feeding for 20 weeks. The glucose tolerance, tissue-specific insulin sensitivity, adipocyte differentiation, and lipid oxidation status were determined. The molecular mechanism of PIKE in the insulin signaling pathway was also studied. RESULTS We show that PIKE-A regulates obesity development by modulating AMP-activated protein kinase (AMPK) phosphorylation. PIKE-A is important for insulin to suppress AMPK phosphorylation. The expression of PIKE-A is markedly increased in adipose tissue of obese mice, whereas depletion of PIKE-A inhibits adipocyte differentiation. PIKE knockout mice exhibit a prominent phenotype of lipoatrophy and are resistant to high-fat diet-induced obesity, liver steatosis, and diabetes. PIKE knockout mice also have augmented lipid oxidation, which is accompanied by enhanced AMPK phosphorylation in both muscle and adipose tissue. Moreover, insulin sensitivity is improved in PIKE-A-deficient muscle and fat, thus protecting the animals from diet-induced diabetes. CONCLUSIONS Our results suggest that PIKE-A is implicated in obesity and associated diabetes development by negatively regulating AMPK activity.
Collapse
Affiliation(s)
- Chi Bun Chan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Dae Young Jung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts
| | - John Y. Jun
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Hongbo R. Luo
- Department of Pathology and Lab Medicine, Harvard Medical School and Children's Hospital Boston, Boston, Massachusetts
| | - Jason K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Program in Molecular Medicine and Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
- Corresponding author: Keqiang Ye,
| |
Collapse
|
233
|
AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 2010; 115:4030-8. [PMID: 20354168 DOI: 10.1182/blood-2009-09-241000] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although AKT is essential for multiple cellular functions, the role of this kinase family in hematopoietic stem cells (HSCs) is unknown. Thus, we analyzed HSC function in mice deficient in the 2 isoforms most highly expressed in the hematopoietic compartment, AKT1 and AKT2. Although loss of either isoform had only a minimal effect on HSC function, AKT1/2 double-deficient HSCs competed poorly against wild-type cells in the development of myeloid and lymphoid cells in in vivo reconstitution assays. Serial transplantations revealed an essential role for AKT1 and AKT2 in the maintenance of long-term HSCs (LT-HSCs). AKT1/2 double-deficient LT-HSCs were found to persist in the G(0) phase of the cell cycle, suggesting that the long-term functional defects are caused by increased quiescence. Furthermore, we found that the intracellular content of reactive oxygen species (ROS) is dependent on AKT because double-deficient HSCs demonstrate decreased ROS. The importance of maintaining ROS for HSC differentiation was shown by a rescue of the differentiation defect after pharmacologically increasing ROS levels in double-deficient HSCs. These data implicate AKT1 and AKT2 as critical regulators of LT-HSC function and suggest that defective ROS homeostasis may contribute to failed hematopoiesis.
Collapse
|
234
|
Abstract
In neutrophils, the phosphoinositide 3-kinase/Akt signaling cascade is involved in migration, degranulation, and O(2)(-) production. However, it is unclear whether the Akt kinase isoforms have distinct functions in neutrophil activation. Here we report functional differences between the 2 major Akt isoforms in neutrophil activation on the basis of studies in which we used individual Akt1 and Akt2 knockout mice. Akt2(-/-) neutrophils exhibited decreased cell migration, granule enzyme release, and O(2)(-) production compared with wild-type and Akt1(-/-) neutrophils. Surprisingly, Akt2 deficiency and pharmacologic inhibition of Akt also abrogated phorbol ester-induced O(2)(-) production, which was unaffected by treatment with the phosphoinositide 3-kinase inhibitor LY294002. The decreased O(2)(-) production in Akt2(-/-) neutrophils was accompanied by reduced p47(phox) phosphorylation and its membrane translocation, suggesting that Akt2 is important for the assembly of phagocyte nicotinamide adenine dinucleotide phosphate oxidase. In wild-type neutrophils, Akt2 but not Akt1 translocated to plasma membrane upon chemoattractant stimulation and to the leading edge in polarized neutrophils. In the absence of Akt2, chemoattractant-induced Akt protein phosphorylation was significantly reduced. These results demonstrate a predominant role of Akt2 in regulating neutrophil functions and provide evidence for differential activation of the 2 Akt isoforms in neutrophils.
Collapse
|
235
|
Fukai A, Kawamura N, Saito T, Oshima Y, Ikeda T, Kugimiya F, Higashikawa A, Yano F, Ogata N, Nakamura K, Chung UI, Kawaguchi H. Akt1 in murine chondrocytes controls cartilage calcification during endochondral ossification under physiologic and pathologic conditions. ACTA ACUST UNITED AC 2010; 62:826-36. [DOI: 10.1002/art.27296] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
236
|
Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene 2010; 29:2488-98. [PMID: 20154720 PMCID: PMC2861728 DOI: 10.1038/onc.2010.7] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypoxic microenvironment supports cancer stem cell survival, causes poor response to anticancer therapy and tumor recurrence. Inhibition of Notch-1 signaling in adenocarcinoma of the lung (ACL) cells causes apoptosis specifically under hypoxia. Here, we found that Akt-1 activation is a key mediator of Notch-1 pro-survival effects under hypoxia. Notch-1 activates Akt-1 through repression of phosphatase and tensin (PTEN) homolog expression and induction of the insulin-like growth factor 1 receptor (IGF-1R). The latter seems to be the major determinant of Akt-1 stimulation, as Notch-1 signaling affects Akt-1 activation in PTEN(-/-) ACL cells. Both downregulation of insulin receptor substrate 1 (IRS-1) and dominant-negative IGF-1R sensitized ACL cells to gamma-secretase inhibitor (GSI)-induced apoptosis. Conversely, overexpression of IGF-1R protected ACL cells from GSI toxicity. Inhibition of Notch-1 caused reduced IGF-1R expression, whereas forced Notch-1 expression yielded opposite effects. Chromatin immunoprecipitation experiments suggested Notch-1 direct regulation of the IGF-1R promoter. Experiments in which human ACL cells were injected in mice confirmed elevated and specific co-expression of Notch-1(IC), IGF-1R and pAkt-1 in hypoxic tumor areas. Our data provide a mechanistic explanation for Notch-1-mediated pro-survival function in hypoxic ACL tumor microenvironment. The results identify additional targets that may synergize with Notch-1 inhibition for ACL treatment.
Collapse
|
237
|
Fishwick KJ, Li RA, Halley P, Deng P, Storey KG. Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev Biol 2010; 338:215-25. [DOI: 10.1016/j.ydbio.2009.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/11/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
238
|
Protein Kinase B (PKB/Akt), a Key Mediator of the PI3K Signaling Pathway. Curr Top Microbiol Immunol 2010; 346:31-56. [DOI: 10.1007/82_2010_58] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
239
|
Ulici V, Hoenselaar KD, Agoston H, McErlain DD, Umoh J, Chakrabarti S, Holdsworth DW, Beier F. The role of Akt1 in terminal stages of endochondral bone formation: angiogenesis and ossification. Bone 2009; 45:1133-45. [PMID: 19679212 DOI: 10.1016/j.bone.2009.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/28/2009] [Accepted: 08/02/2009] [Indexed: 02/04/2023]
Abstract
Longitudinal bone growth is the result of endochondral bone formation which takes place in the growth plate. The rate of chondrocyte proliferation and hypertrophy, vascular invasion with the formation of primary ossification centers and cartilage replacement by bone tissue are all important processes required for normal growth. We have shown a role for the PI3K signaling pathway in chondrocyte hypertrophy and bone growth in tibia explant cultures. In this current study, we aimed to investigate the role of Akt1, an important target of PI3K, in endochondral ossification. Akt1 KO mice showed reduced size compared to their littermates throughout life, but the largest difference in body size was observed around 1 week of age. Focusing on this specific developmental stage, we discovered delayed secondary ossification in the long bones of Akt1 KO mice. A delay in formation of a structure resembling a secondary ossification center was also seen in tibia organ cultures treated with the PI3K inhibitor LY294002. The expression of matrix metalloproteinase-14 (MMP-14), the main protease responsible for development of secondary ossification centers, was decreased in the epiphysis of Akt1 KO mice, possibly explaining the delay in secondary ossification centers seen in the Akt1 KO mice. Bone mineral density (BMD) and bone mineral content (BMC) measured in the proximal tibia of 1-year-old mice were decreased in Akt1 KO mice, suggesting that the original delay in ossification might affect bone quality in older animals.
Collapse
Affiliation(s)
- Veronica Ulici
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, Obuse C, Hatakeyama S, Obata T, Noguchi M. The E3 Ligase TTC3 Facilitates Ubiquitination and Degradation of Phosphorylated Akt. Dev Cell 2009; 17:800-10. [DOI: 10.1016/j.devcel.2009.09.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 08/22/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
241
|
Differential effects of protein kinase B/Akt isoforms on glucose homeostasis and islet mass. Mol Cell Biol 2009; 30:601-12. [PMID: 19933838 DOI: 10.1128/mcb.00719-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein kinase B (PKB)/Akt is considered to be a key target downstream of insulin receptor substrate 2 (IRS2) in the regulation of beta-cell mass. However, while deficiency of IRS2 in mice results in diabetes with insulin resistance and severe failure of beta-cell mass and function, only loss of the PKBbeta isoform leads to a mild metabolic phenotype with insulin resistance. Other isoforms were reported not to be required for metabolic regulation. To clarify the roles of the three PKB isoforms in the regulation of islet mass and glucose homeostasis, we assessed the metabolic and pancreatic phenotypes of Pkbalpha, Pkbbeta, and Pkbgamma-deficient mice. Our study uncovered a novel role for PKBalpha in the regulation of glucose homeostasis, whereas it confirmed that Pkbbeta(-/)(-) mice are insulin resistant with compensatory increase of islet mass. Pkbalpha(-/)(-) mice displayed an opposite phenotype with improved insulin sensitivity, lower blood glucose, and higher serum glucagon concentrations. Pkbgamma(-/)(-) mice did not show metabolic abnormalities. Additionally, our signaling analyses revealed that PKBalpha, but not PKBbeta or PKBgamma, is specifically activated by overexpression of IRS2 in beta-cells and is required for IRS2 action in the islets.
Collapse
|
242
|
Brown C, LaRocca J, Pietruska J, Ota M, Anderson L, Smith SD, Weston P, Rasoulpour T, Hixon ML. Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKB alpha/Akt1. Biol Reprod 2009; 82:246-56. [PMID: 19794155 PMCID: PMC6058744 DOI: 10.1095/biolreprod.109.077925] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian females are endowed with a finite number of primordial follicles at birth. Immediately following formation of the primordial follicle pool, cohorts of follicles are either culled from the ovary or are recruited to grow until the primordial follicle population is depleted. The majority of ovarian follicles, including the oocytes, undergo atresia through apoptotic cell death. As PKB alpha/Akt1 is known to regulate apoptosis, we asked whether Akt1 functioned in the regulation of folliculogenesis in the ovary. Akt1(-/-) females display reduced fertility and abnormal estrous cyclicity. At Postnatal Day (PND) 25, Akt1(-/-) ovaries possessed a reduced number of growing antral follicles, significantly larger primary and secondary oocytes, and an increase in the number of degenerate oocytes. By PND90, there was a significant decrease in the number of primordial follicles in Akt1(-/-) ovaries relative to Akt1(+/+). In vivo granulosa cell proliferation was reduced, as were expression levels of Kitl and Bcl2l1, two factors associated with granulosa cell proliferation/survival. No compensation was observed by Akt2 or Akt3 at the mRNA/protein level. Significantly higher serum LH and trends for lower FSH and higher inhibin A and lower inhibin B relative to Akt1(+/+) females were observed in Akt1(-/-) females. Exposure to exogenous gonadotropins resulted in an increase in the number of secondary follicles in Akt1(-/-) ovaries, but few mature follicles. Collectively, our results suggest that PKB alpha/Akt1 plays an instrumental role in the regulation of the growth and maturation of the ovary, and that the loss of PKB alpha/Akt1 results in premature ovarian failure.
Collapse
Affiliation(s)
- Caitlin Brown
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Di Lorenzo A, Fernández-Hernando C, Cirino G, Sessa WC. Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proc Natl Acad Sci U S A 2009; 106:14552-7. [PMID: 19622728 PMCID: PMC2732859 DOI: 10.1073/pnas.0904073106] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Indexed: 01/01/2023] Open
Abstract
Akt1 is implicated in cell metabolism, survival migration, and gene expression; however, little is known about the role of specific Akt isoforms during inflammation in vivo. Thus, we directly explored the roles of the isoforms Akt1 and Akt2 in acute inflammation models by using mice deficient in either Akt1 or Akt2. Akt1(-/-) mice showed a markedly reduced edema versus Akt2(-/-) and WT controls, and the reduced inflammation was associated with a dramatic decrease in neutrophil and monocyte infiltration. The loss of Akt1 did not affect leukocyte functions in vitro, and bone marrow transplant experiments suggest that host Akt1 regulates leukocyte emigration into inflamed tissues. Moreover, carrageenan-induced edema and the direct propermeability actions of bradykinin and histamine were reduced dramatically in Akt1(-/-) versus WT mice. These findings are supported by in vitro experiments showing that Akt1 deficiency or blockade of nitric oxide synthase markedly reduces histamine-stimulated changes in transendothelial electrical resistance of microvascular endothelial cells. Collectively, these results suggest that Akt1 is necessary for acute inflammation and exerts its actions primarily via regulation of vascular permeability, leading to edema and leukocyte extravasation.
Collapse
Affiliation(s)
- Annarita Di Lorenzo
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520; and
| | - Carlos Fernández-Hernando
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520; and
| | - Giuseppe Cirino
- Department of Pharmacology, Faculty of Pharmacy, University of Naples “Federico II,” Naples, Italy
| | - William C. Sessa
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520; and
| |
Collapse
|
244
|
Gonzalez E, McGraw TE. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 2009; 8:2502-8. [PMID: 19597332 DOI: 10.4161/cc.8.16.9335] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Akt (PKB) protein kinases are critical regulators of human physiology that control an impressive array of diverse cellular functions, including the modulation of growth, survival, proliferation and metabolism. The Akt kinase family is comprised of three highly homologous isoforms: Akt1 (PKBalpha), Akt2 (PKBbeta) and Akt3 (PKBgamma). Phenotypic analyses of Akt isoform knockout mice documented Akt isoform specific functions in the regulation of cellular growth, glucose homeostasis and neuronal development. Those studies establish that the functions of the different Akt kinases are not completely overlapping and that isoform-specific signaling contributes to the diversity of Akt activities. However, despite these important advances, a thorough understanding about the specific roles of Akt family members and the molecular mechanisms that determine Akt isoform functional specificity will be essential to elucidate the complexity of Akt regulated cellular processes and how Akt isoform-specific deregulation might contribute to disease states. Here, we summarize recent advances in understanding the roles of Akt isoforms in the regulation of metabolism and cancer, and possible mechanisms contributing to Akt isoform functional specificity.
Collapse
Affiliation(s)
- Eva Gonzalez
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
245
|
Matheny RW, Adamo ML. Current perspectives on Akt Akt-ivation and Akt-ions. Exp Biol Med (Maywood) 2009; 234:1264-70. [PMID: 19596822 DOI: 10.3181/0904-mr-138] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The serine/threonine kinase Akt is an effector of PI3K-generated phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and is a principle mediator of growth factor-induced signal transduction. Akt is activated through phosphorylation by specific kinases, and its activity is reduced directly by phosphorylation-site-specific phosphatases. In addition, Akt activity is effectively reduced by the action of phosphatases which dephosphorylate PI(3,4,5)P3, thereby reducing the levels of the essential lipid activators of PDK1 and Akt. The functions of Akt are pleiotropic and include regulation of cellular proliferation, differentiation, protein synthesis, and survival. Akt stimulates protein synthesis through actions on mTOR/p70S6K, and promotes survival by phosphorylating and inactivating pro-apoptotic molecules such as Ask1, Bad, Bax, and FoxO3a. Furthermore, loss of Akt decreases the intracellular ATP:AMP ratio, thus establishing a role for Akt in energy regulation. Three isoforms of Akt have been identified, and although redundant functions between isoforms exist, recent investigations have enumerated unique functions for each. Therefore, targeting specific Akt isozymes in a tissue- and context-specific fashion may lead to a greater understanding of Akt-mediated processes.
Collapse
Affiliation(s)
- Ronald W Matheny
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | |
Collapse
|
246
|
Selective induction of neocortical GABAergic neurons by the PDK1-Akt pathway through activation of Mash1. Proc Natl Acad Sci U S A 2009; 106:13064-9. [PMID: 19549840 DOI: 10.1073/pnas.0808400106] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular stimuli regulate neuronal differentiation and subtype specification during brain development, although the intracellular signaling pathways that mediate these processes remain largely unclear. We now show that the PDK1-Akt pathway regulates differentiation of telencephalic neural precursor cells (NPCs). Active Akt promotes differentiation of NPC into gamma-aminobutyric acid-containing (GABAergic) but not glutamatergic neurons. Disruption of the Pdk1 gene or expression of dominant-negative forms of Akt suppresses insulin-like growth factor (IGF)-1 enhancement of NPC differentiation into neurons in vitro and production of neocortical GABAergic neurons in vivo. Furthermore, active Akt increased the protein levels and transactivation activity of Mash1, a proneural basic helix-loop-helix protein required for the generation of neocortical GABAergic neurons, and Mash1 was required for Akt-induced neuronal differentiation. These results have unveiled an unexpected role of the PDK1-Akt pathway: a key mediator of extracellular signals regulating the production of neocortical GABAergic neurons.
Collapse
|
247
|
Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C. Neuron 2009; 62:471-8. [PMID: 19477150 DOI: 10.1016/j.neuron.2009.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/28/2009] [Accepted: 04/10/2009] [Indexed: 11/20/2022]
Abstract
NMDA receptor subunit composition varies throughout the brain, providing molecular diversity in NMDA receptor function. The NR2 subunits (NR2A-D) in large part dictate the distinct functional properties of NMDA receptors and differentially regulate receptor trafficking. Although the NR2C subunit is highly enriched in cerebellar granule cells and plays a unique role in cerebellar function, little is known about NR2C-specific regulation of NMDA receptors. Here, we demonstrate that PKB/Akt directly phosphorylates NR2C on serine 1096 (S1096). In addition, we identify 14-3-3epsilon as an NR2C interactor, whose binding is dependent on S1096 phosphorylation. Both growth factor stimulation and NMDA receptor activity lead to a robust increase in both phosphorylation of NR2C on S1096 and surface expression of cerebellar NMDA receptors. Finally, we find that NR2C expression, unlike NR2A and NR2B, supports neuronal survival. Thus, our data provide a direct mechanistic link between growth factor stimulation and regulation of cerebellar NMDA receptors.
Collapse
|
248
|
Mauro TM, McCormick JA, Wang J, Boini KM, Ray L, Monks B, Birnbaum MJ, Lang F, Pearce D. Akt2 and SGK3 are both determinants of postnatal hair follicle development. FASEB J 2009; 23:3193-202. [PMID: 19433625 DOI: 10.1096/fj.08-123729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
SGK3, which previously has been shown to play a key role in hair follicle development in mice, is a member of the AGC family of serine-threonine kinases. Mice lacking SGK3 have abnormal follicle cycling, which begins shortly after birth and ameliorates substantially with age. However, this developmental abnormality is not recapitulated in mice lacking closely related kinases Akt1, Akt2, or Akt3. To examine whether Akt2 interacts with SGK3 in postnatal hair development, we have generated and characterized Akt2/SGK3 double knockouts (DKOs). We find that the DKO mice have a defect in hair growth that is markedly worse than that of SGK3(-/-) mice and does not ameliorate with age. Morphologically, this defect is characterized by accelerated entry into catagen and through anagen, irregular hair follicle orientation, and increased expression of sebaceous glands. The defect is preceded by a profound failure to increase follicle matrix cell nuclear beta-catenin accumulation and proliferation at the onset of morphogenesis. Furthermore, in cultured keratinocytes, transfected Akt2 and SGK3 both stimulate transcription of a beta-catenin-LEF1-dependent reporter gene. Thus, SGK3 and Akt2 both appear to play important roles in postnatal hair follicle morphogenesis, likely because of their redundant regulation of beta-catenin-dependent transcriptional processes, which control hair follicle cell proliferation.
Collapse
Affiliation(s)
- Theodora M Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107-2140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Insulin-like growth factor-1 promotes G(1)/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex. J Neurosci 2009; 29:775-88. [PMID: 19158303 DOI: 10.1523/jneurosci.1700-08.2009] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although survival-promoting effects of insulin-like growth factor-1 (IGF-1) during neurogenesis are well characterized, mitogenic effects remain less well substantiated. Here, we characterize cell cycle regulators and signaling pathways underlying IGF-1 effects on embryonic cortical precursor proliferation in vitro and in vivo. In vitro, IGF-1 stimulated cell cycle progression and increased cell number without promoting cell survival. IGF-1 induced rapid increases in cyclin D1 and D3 protein levels at 4 h and cyclin E at 8 h. Moreover, p27(KIP1) and p57(KIP2) expression were reduced, suggesting downregulation of negative regulators contributes to mitogenesis. Furthermore, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway specifically underlies IGF-1 activity, because blocking this pathway, but not MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinase), prevented mitogenesis. To determine whether mechanisms defined in culture relate to corticogenesis in vivo, we performed transuterine intracerebroventricular injections. Whereas blockade of endogenous factor with anti-IGF-1 antibody decreased DNA synthesis, IGF-1 injection stimulated DNA synthesis and increased the number of S-phase cells in the ventricular zone. IGF-1 treatment increased phospho-Akt fourfold at 30 min, cyclins D1 and E by 6 h, and decreased p27(KIP1) and p57(KIP2) expression. Moreover, blockade of the PI3K/Akt pathway in vivo decreased DNA synthesis and cyclin E, increased p27(KIP1) and p57(KIP2) expression, and prevented IGF-1-induced cyclin E mRNA upregulation. Finally, IGF-1 injection in embryos increased postnatal day 10 brain DNA content by 28%, suggesting a role for IGF-1 in brain growth control. These results demonstrate a mitogenic role for IGF-1 that tightly controls both positive and negative cell cycle regulators, and indicate that the PI3K/Akt pathway mediates IGF-1 mitogenic signaling during corticogenesis.
Collapse
|
250
|
Leptin deficiency and beta-cell dysfunction underlie type 2 diabetes in compound Akt knockout mice. Mol Cell Biol 2009; 29:3151-62. [PMID: 19289493 DOI: 10.1128/mcb.01792-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phenotypic analyses of mice null for the individual Akt isoforms suggested that they are functionally distinct and that only Akt2 plays a role in diabetes. We show here that Akt isoforms play compensatory and complementary roles in glucose homeostasis and diabetes. Insulin resistance in Akt2(-/-) mice was inhibited by haplodeficiency of Pten, suggesting that other Akt isoforms can compensate for Akt2 function. Haplodeficiency of Akt1 in Akt2(-/-) mice, however, converts prediabetes to overt type 2 diabetes, which is also reversed by haplodeficiency of Pten. Akt3 does not appear to contribute significantly to diabetes. Overt type 2 diabetes in Akt1(+/-) Akt2(-/-) mice is manifested by hyperglycemia due to beta-cell dysfunction combined with impaired glucose homeostasis due to markedly decreased leptin levels. Restoring leptin levels was sufficient to restore normal blood glucose and insulin levels in Akt1(+/-) Akt2(-/-) and Akt2(-/-) mice, suggesting that leptin-deficiency is the predominant cause of diabetes in these mice. These results uncover a new mechanism linking Akt to diabetes, provide a therapeutic strategy, and show that diabetes induced as a consequence of cancer therapy, via Akt inhibition, could be reversed by leptin therapy.
Collapse
|