201
|
Li D, Li K, Chen G, Xia J, Yang T, Cai P, Yao C, Yang Y, Yan S, Zhang R, Chen H. S100B suppresses the differentiation of C3H/10T1/2 murine embryonic mesenchymal cells into osteoblasts. Mol Med Rep 2016; 14:3878-86. [DOI: 10.3892/mmr.2016.5697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
|
202
|
Valle YL, Almalki SG, Agrawal DK. Vitamin D machinery and metabolism in porcine adipose-derived mesenchymal stem cells. Stem Cell Res Ther 2016; 7:118. [PMID: 27530414 PMCID: PMC4988022 DOI: 10.1186/s13287-016-0382-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/09/2016] [Accepted: 07/29/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Vitamin D, a hormone once thought to have a role limited to calcium homeostasis and bone mineralization, has pleiotropic effects on different types of cells. Vitamin D receptors are reported in vascular smooth muscle cells, endothelial cells, and cardiomyocytes. Adipose-derived MSCs (ADMSCs) are multipotent cells with the capacity to differentiate into cells of different lineages. To our knowledge, the presence of vitamin D machinery on porcine ADMSCs has not yet been examined. In this study, we investigated the presence of vitamin D machinery and metabolism in ADMSCs by analyzing the expression levels of vitamin D receptor (VDR), vitamin D metabolizing enzymes (CYP24A1 and CYP27B1) after in vitro stimulation with active vitamin D, calcitriol. METHODS AND RESULTS ADMSCs isolated from porcine adipose tissue were characterized by positive staining for ADMSC markers, CD44, CD73, and CD90, and negative staining for macrophage marker CD11b and hematopoietic stem cell markers CD34 and CD45, and trilineage differentiation to osteocytes, chondrocytes, and adipocytes. No cytotoxicity was observed when MSCs were stimulated with 0.1-10 nM calcitriol. The ADMSCs were analyzed for mRNA and protein expression of CYP24A1, CYP27B1, and VDR by immunostaining, qPCR, and ELISA. A significant increase (p <0.01) in the mRNA expression of CYP24A1, CYP27B1, and VDR was observed after stimulation of ADMSCs with calcitriol (10 nM). The in vitro time-dependent effect of calcitriol (10 nM) on the components of vitamin D machinery in cultured MSCs was determined by qPCR. The VDR and CYP27B1 expression peaked at 3 h and CYP24A1 at 24 h, respectively. The in vitro biosynthesis of 1, 25(OH)2D3 by ADMSCs was analyzed by ELISA and Western blot. The levels of the active form of vitamin D were significantly decreased once the CYP enzymes were inhibited (p <0.01), demonstrating the ability of ADMSCs to convert inactive vitamin D into active vitamin D for cellular action. CONCLUSIONS Porcine ADMSCs possess vitamin D hydrolases and VDR to metabolize and respond to vitamin D. Hence, in vivo circulating 25-hydroxy vitamin D levels may have a significant role in regulating the differentiation of ADMSCs into different lineages, which might assist in stem cell-based therapy.
Collapse
Affiliation(s)
- Yovani Llamas Valle
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Sami G. Almalki
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Devendra K. Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178 USA
| |
Collapse
|
203
|
Frese L, Dijkman PE, Hoerstrup SP. Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus Med Hemother 2016; 43:268-274. [PMID: 27721702 DOI: 10.1159/000448180] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.
Collapse
Affiliation(s)
- Laura Frese
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Petra E Dijkman
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
204
|
Farahzadi R, Mesbah-Namin SA, Zarghami N, Fathi E. L-carnitine Effectively Induces hTERT Gene Expression of Human Adipose Tissue-derived Mesenchymal Stem Cells Obtained from the Aged Subjects. Int J Stem Cells 2016; 9:107-14. [PMID: 27426092 PMCID: PMC4961110 DOI: 10.15283/ijsc.2016.9.1.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives Human mesenchymal stem cells (hMSCs) are attractive candidates for cell therapy and regenerative medicine due to their multipotency and ready availability, but their application can be complicated by the factors such as age of the donors and senescence-associated growth arrest during culture conditions. The latter most likely reflects the fact that aging of hMSCs is associated with a rise in intracellular reactive oxygen species, loss of telomerase activity, decrease in human telomerase reverse transcriptase (hTERT) expression and finally eroded telomere ends. Over-expression of telomerase in hMSCs leads to telomere elongation and may help to maintain replicative life–span of these cells. The aim of this study was to evaluate of the effect of L-carnitine (LC) as an antioxidant on the telomerase gene expression and telomere length in aged adipose tissue-derived hMSCs. Methods For this purpose, cells were isolated from healthy aged volunteers and their viabilities were assessed by MTT assay. Quantitative gene expression of hTERT and absolute telomere length measurement were also performed by real-time PCR in the absence and presence of different doses of LC (0.1, 0.2 and 0.4 mM). Results The results indicated that LC could significantly increase the hTERT gene expression and telomere length, especially in dose of 0.2 mM of LC and in 48 h treatment for the aged adipose tissue-derived hMSCs samples. Conclusion It seems that LC would be a good candidate to improve the lifespan of the aged adipose tissue-derived hMSCs due to over-expression of telomerase and lengthening of the telomeres.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tabriz, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
205
|
Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z. Human Induced Pluripotent Stem Cells Differentiate Into Functional Mesenchymal Stem Cells and Repair Bone Defects. Stem Cells Transl Med 2016; 5:1447-1460. [PMID: 27400789 PMCID: PMC5070500 DOI: 10.5966/sctm.2015-0311] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Using short-term exposure of embryoid bodies to transforming growth factor-β, the authors directed induced pluripotent stem cells (iPSCs) toward mesenchymal stem cell (MSC) differentiation. Two types of iPSC-derived MSCs were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. Both types differentiated in vitro in response to osteogenic or adipogenic supplements; aiMSCs demonstrated higher osteogenic potential than tiMSCs. Upon orthotopic injection into radial defects, both types regenerated bone and contributed to defect repair. Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration; however, their availability and capability of self-renewal are limited. Recent discoveries of somatic cell reprogramming may be used to overcome these challenges. We hypothesized that induced pluripotent stem cells (iPSCs) that were differentiated into MSCs could be used for bone regeneration. Short-term exposure of embryoid bodies to transforming growth factor-β was used to direct iPSCs toward MSC differentiation. During this process, two types of iPSC-derived MSCs (iMSCs) were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. The transition of iPSCs toward MSCs was documented using MSC marker flow cytometry. Both types of iMSCs differentiated in vitro in response to osteogenic or adipogenic supplements. The results of quantitative assays showed that both cell types retained their multidifferentiation potential, although aiMSCs demonstrated higher osteogenic potential than tiMSCs and bone marrow-derived MSCs (BM-MSCs). Ectopic injections of BMP6-overexpressing tiMSCs produced no or limited bone formation, whereas similar injections of BMP6-overexpressing aiMSCs resulted in substantial bone formation. Upon orthotopic injection into radial defects, all three cell types regenerated bone and contributed to defect repair. In conclusion, MSCs can be derived from iPSCs and exhibit self-renewal without tumorigenic ability. Compared with BM-MSCs, aiMSCs acquire more of a stem cell phenotype, whereas tiMSCs acquire more of a differentiated osteoblast phenotype, which aids bone regeneration but does not allow the cells to induce ectopic bone formation (even when triggered by bone morphogenetic proteins), unless in an orthotopic site of bone fracture. Significance Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration of various skeletal conditions; however, availability of autologous MSCs is very limited. This study demonstrates a new method to differentiate human fibroblast-derived induced pluripotent stem cells (iPSCs) to cells with MSC properties, which we comprehensively characterized including differentiation potential and transcriptomic analysis. We showed that these iPS-derived MSCs are able to regenerate nonunion bone defects in mice more efficiently than bone marrow-derived human MSCs when overexpressing BMP6 using a nonviral transfection method.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shiran Ben-David
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Galina Shapiro
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sandra De Mel
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maxim Bez
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Loren Ornelas
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- iPSC Core Facility, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anais Sahabian
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- iPSC Core Facility, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhruv Sareen
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
- iPSC Core Facility, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiaoyu Da
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wafa Tawackoli
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhenqiu Liu
- Biostatistics and Bioinformatics Core, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
206
|
Fu Q, Tang NN, Zhang Q, Liu Y, Peng JC, Fang N, Yu LM, Liu JW, Zhang T. Preclinical Study of Cell Therapy for Osteonecrosis of the Femoral Head with Allogenic Peripheral Blood-Derived Mesenchymal Stem Cells. Yonsei Med J 2016; 57:1006-15. [PMID: 27189298 PMCID: PMC4951443 DOI: 10.3349/ymj.2016.57.4.1006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/23/2015] [Accepted: 12/09/2015] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To explore the value of transplanting peripheral blood-derived mesenchymal stem cells from allogenic rabbits (rPBMSCs) to treat osteonecrosis of the femoral head (ONFH). MATERIALS AND METHODS rPBMSCs were separated/cultured from peripheral blood after granulocyte colony-stimulating factor mobilization. Afterwards, mobilized rPBMSCs from a second passage labeled with PKH26 were transplanted into rabbit ONFH models, which were established by liquid nitrogen freezing, to observe the effect of rPBMSCs on ONFH repair. Then, the mRNA expressions of BMP-2 and PPAR-γ in the femoral head were assessed by RT-PCR. RESULTS After mobilization, the cultured rPBMSCs expressed mesenchymal markers of CD90, CD44, CD29, and CD105, but failed to express CD45, CD14, and CD34. The colony forming efficiency of mobilized rPBMSCs ranged from 2.8 to 10.8 per million peripheral mononuclear cells. After local transplantation, survival of the engrafted cells reached at least 8 weeks. Therein, BMP-2 was up-regulated, while PPAR-γ mRNA was down-regulated. Additionally, bone density and bone trabeculae tended to increase gradually. CONCLUSION We confirmed that local transplantation of rPBMSCs benefits ONFH treatment and that the beneficial effects are related to the up-regulation of BMP-2 expression and the down-regulation of PPAR-γ expression.
Collapse
Affiliation(s)
- Qiang Fu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Ning Ning Tang
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical College, Zunyi, Guizhou, China
| | - Yi Liu
- Department of Bone and Joint Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Jia Chen Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Ning Fang
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Li Mei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Jin Wei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China.
| |
Collapse
|
207
|
Van Pham P, Bich NV, Phan NK. Umbilical cord-derived stem cells (ModulatistTM) show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0029-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
208
|
Wystrychowski W, Patlolla B, Zhuge Y, Neofytou E, Robbins RC, Beygui RE. Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum. Stem Cell Res Ther 2016; 7:84. [PMID: 27296220 PMCID: PMC4907285 DOI: 10.1186/s13287-016-0343-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/30/2016] [Accepted: 05/17/2016] [Indexed: 12/24/2022] Open
Abstract
Background Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. Methods The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. Results The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. Conclusions Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes.
Collapse
Affiliation(s)
- Wojciech Wystrychowski
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA.
| | - Bhagat Patlolla
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA.
| | - Yan Zhuge
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Evgenios Neofytou
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Robert C Robbins
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Ramin E Beygui
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA.
| |
Collapse
|
209
|
Darzi S, Werkmeister JA, Deane JA, Gargett CE. Identification and Characterization of Human Endometrial Mesenchymal Stem/Stromal Cells and Their Potential for Cellular Therapy. Stem Cells Transl Med 2016; 5:1127-32. [PMID: 27245365 DOI: 10.5966/sctm.2015-0190] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED SummaryHuman endometrium is a highly regenerative tissue, undergoing more than 400 cycles of proliferation, differentiation, and shedding during a woman's reproductive life. Adult stem cells, including mesenchymal stem/stromal cells (MSCs), are likely responsible for the immense cellular turnover in human endometrium. The unique properties of MSCs, including high proliferative ability, self-renewal, differentiation to mesodermal lineages, secretion of angiogenic factors, and many other growth-promoting factors make them useful candidates for cellular therapy and tissue engineering. In this review, we summarize the identification and characterization of newly discovered MSCs from the human endometrium: their properties, the surface markers used for their prospective isolation, their perivascular location in the endometrium, and their potential application in cellular therapies. SIGNIFICANCE The endometrium, or the lining of uterus, has recently been identified as a new and accessible source of mesenchymal stem cells, which can be obtained without anesthesia. Endometrial mesenchymal stem cells have comparable properties to bone marrow and adipose tissue mesenchymal stem cells. Endometrial mesenchymal stem cells are purified with known and novel perivascular surface markers and are currently under investigation for their potential use in cellular therapy for several clinical conditions with significant burden of disease.
Collapse
Affiliation(s)
- Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Jerome A Werkmeister
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
210
|
Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG. 'Adipaging': ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol 2016; 594:3187-207. [PMID: 26926488 DOI: 10.1113/jp271691] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/21/2016] [Indexed: 12/15/2022] Open
Abstract
The increasing ageing of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the ageing process, which in turn contributes to metabolic alterations, multi-organ damage and a systemic pro-inflammatory state ('inflammageing'). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal ageing process such as chronic inflammation and multi-system alterations. Accordingly, understanding the interplay between accelerated ageing related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of 'adipaging' to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals.
Collapse
Affiliation(s)
- Laura M Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Helios Pareja-Galeano
- Universidad Europea de Madrid, Spain.,Research Institute Hospital 12 de Octubre ('i+12'), Madrid, Spain
| | | | | | - Alejandro Lucia
- Universidad Europea de Madrid, Spain.,Research Institute Hospital 12 de Octubre ('i+12'), Madrid, Spain
| | - Beatriz G Gálvez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Universidad Europea de Madrid, Spain
| |
Collapse
|
211
|
Chang YH, Liu HW, Wu KC, Ding DC. Mesenchymal Stem Cells and Their Clinical Applications in Osteoarthritis. Cell Transplant 2016; 25:937-50. [DOI: 10.3727/096368915x690288] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis is a chronic degenerative joint disorder characterized by articular cartilage destruction and osteophyte formation. Chondrocytes in the matrix have a relatively slow turnover rate, and the tissue itself lacks a blood supply to support repair and remodeling. Researchers have evaluated the effectiveness of stem cell therapy and tissue engineering for treating osteoarthritis. All sources of stem cells, including embryonic, induced pluripotent, fetal, and adult stem cells, have potential use in stem cell therapy, which provides a permanent biological solution. Mesenchymal stem cells (MSCs) isolated from bone marrow, adipose tissue, and umbilical cord show considerable promise for use in cartilage repair. MSCs can be sourced from any or all joint tissues and can modulate the immune response. Additionally, MSCs can directly differentiate into chondrocytes under appropriate signal transduction. They also have immunosuppressive and anti-inflammatory paracrine effects. This article reviews the current clinical applications of MSCs and future directions of research in osteoarthritis.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hwan-Wun Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Occupational Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
212
|
Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone 2016; 86:119-30. [PMID: 26946132 PMCID: PMC4833637 DOI: 10.1016/j.bone.2016.02.020] [Citation(s) in RCA: 754] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
Abstract
The reconstitution of lost bone is a subject that is germane to many orthopedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk among inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair.
Collapse
Affiliation(s)
- Florence Loi
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Luis A Córdova
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Sergio Livingstone Polhammer 943, Independencia, 8380000 Santiago, Chile.
| | - Jukka Pajarinen
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Tzu-hua Lin
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Zhenyu Yao
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Stuart B Goodman
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; 300 Pasteur Drive, Edwards Building, Room R114, Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
213
|
Fan J, Sun Z. The Antiaging Gene Klotho Regulates Proliferation and Differentiation of Adipose-Derived Stem Cells. Stem Cells 2016; 34:1615-25. [PMID: 26865060 DOI: 10.1002/stem.2305] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
Klotho was originally discovered as an aging-suppressor gene. The purpose of this study was to investigate whether secreted Klotho (SKL) affects the proliferation and differentiation of adipose-derived stem cells (ADSCs). RT-PCR and Western blot analysis showed that short-form Klotho was expressed in mouse ADSCs. The Klotho gene mutation KL(-/-) significantly decreased proliferation of ADSCs and expression of pluripotent transcription factors (Nanog, Sox-2, and Oct-4) in mice. The adipogenic differentiation of ADSCs was also decreased in KL(-/-) mice. Incubation with Klotho-deficient medium decreased ADSC proliferation, pluripotent transcription factor levels, and adipogenic differentiation, which is similar to what was found in KL(-/-) mice. These results indicate that Klotho deficiency suppresses ADSC proliferation and differentiation. Interestingly, treatment with recombinant SKL protein rescued the Klotho deficiency-induced impairment in ADSC proliferation and adipogenic differentiation. SKL also regulated ADSCs' differentiation to other cell lineages (osteoblasts, myofibroblasts), indicating that SKL maintains stemness of ADSCs. It is intriguing that overexpression of SKL significantly increased PPAR-γ expression and lipid formation in ADSCs following adipogenic induction, indicating enhanced adipogenic differentiation. Overexpression of SKL inhibited expression of TGFβ1 and its downstream signaling mediator Smad2/3. This study demonstrates, for the first time, that SKL is essential to the maintenance of normal proliferation and differentiation in ADSCs. Klotho regulates adipogenic differentiation in ADSCs, likely via inhibition of TGFβ1 and activation of PPAR-γ. Stem Cells 2016;34:1615-1625.
Collapse
Affiliation(s)
- Jun Fan
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
214
|
The Influence of Aging on the Regenerative Potential of Human Adipose Derived Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:2152435. [PMID: 26941800 PMCID: PMC4749808 DOI: 10.1155/2016/2152435] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Tissue regeneration using human adipose derived mesenchymal stem cells (hASCs) has significant potential as a novel treatment for many degenerative bone and joint diseases. Previous studies have established that age negatively affects the proliferation status and the osteogenic and chondrogenic differentiation potential of mesenchymal stem cells. The aim of this study was to assess the age-related maintenance of physiological function and differentiation potential of hASCs in vitro. hASCs were isolated from patients of four different age groups: (1) >20 years (n = 7), (2) >50 years (n = 7), (3) >60 years (n = 7), and (4) >70 years (n = 7). The hASCs were characterized according to the number of fibroblasts colony forming unit (CFU-F), proliferation rate, population doubling time (PDT), and quantified parameters of adipogenic, chondrogenic, and osteogenic differentiation. Compared to younger cells, aged hASCs had decreased proliferation rates, decreased chondrogenic and osteogenic potential, and increased senescent features. A shift in favor of adipogenic differentiation with increased age was also observed. As many bone and joint diseases increase in prevalence with age, it is important to consider the negative influence of age on hASCs viability, proliferation status, and multilineage differentiation potential when considering the potential therapeutic applications of hASCs.
Collapse
|
215
|
Tan KY, Teo KL, Lim JFY, Chen AKL, Choolani M, Reuveny S, Chan J, Oh SK. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture. Cytotherapy 2016; 17:1152-65. [PMID: 26139547 DOI: 10.1016/j.jcyt.2015.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/04/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. METHODS We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. RESULTS We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. CONCLUSIONS Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line.
Collapse
Affiliation(s)
- Kah Yong Tan
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore.
| | - Kim Leng Teo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Jessica F Y Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Allen K L Chen
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | | | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | | | - Steve Kw Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore.
| |
Collapse
|
216
|
Isolation and Characterization of Human Mesenchymal Stem Cells From Facet Joints and Interspinous Ligaments. Spine (Phila Pa 1976) 2016; 41:E1-7. [PMID: 26555840 DOI: 10.1097/brs.0000000000001178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN A descriptive in vitro study on isolation and differentiation of human mesenchymal stem cells (MSCs) derived from the facet joints and interspinous ligaments. OBJECTIVE To isolate cells from the facet joints and interspinous ligaments and investigate their surface marker profile and differentiation potentials. SUMMARY OF BACKGROUND DATA Lumbar spinal canal stenosis and ossification of the posterior longitudinal ligament are progressive conditions characterized by the hypertrophy and ossification of ligaments and joints within the spinal canal. MSCs are believed to play a role in the advancement of these diseases and the existence of MSCs has been demonstrated within the ligamentum flavum and posterior longitudinal ligament. The aim of this study was to investigate whether these cells could also be found within facet joints and interspinous ligaments. METHODS Samples were harvested from 10 patients undergoing spinal surgery. The MSCs from facet joints and interspinous ligaments were isolated using direct tissue explant technique. Cell surface antigen profilings were performed via flow cytometry. Their lineage differentiation potentials were analyzed. RESULTS The facet joints and interspinous ligaments-derived MSCs have the tri-lineage potential to be differentiated into osteogenic, adipogenic, and chondrogenic cells under appropriate inductions. Flow cytometry analysis revealed both cell lines expressed MSCs markers. Both facet joints and interspinous ligaments-derived MSCs expressed marker genes for osteoblasts, adipocytes, and chondrocytes. CONCLUSION The facet joints and interspinous ligaments may provide alternative sources of MSCs for tissue engineering applications. The facet joints and interspinous ligaments-derived MSCs are part of the microenvironment of the human ligaments of the spinal column and might play a crucial role in the development and progression of degenerative spine conditions.
Collapse
|
217
|
Menstrual Blood-Derived Stem Cells: In Vitro and In Vivo Characterization of Functional Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:111-121. [PMID: 27837558 DOI: 10.1007/978-3-319-45457-3_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has demonstrated that menstrual blood stands as a viable source of stem cells. Menstrual blood-derived stem cells (MenSCs) are morphologically and functionally similar to cells directly extracted from the endometrium, and present dual expression of mesenchymal and embryonic cell markers, thus becoming interesting tools for regenerative medicine. Functional reports show higher proliferative and self-renewal capacities than bone marrow-derived stem cells, as well as successful differentiation into hepatocyte-like cells, glial-like cells, endometrial stroma-like cells, among others. Moreover, menstrual blood stem cells may be used with increased efficiency in reprogramming techniques for induced Pluripotent Stem cell (iPS) generation. Experimental studies have shown successful treatment of stroke, colitis, limb ischemia, coronary disease, Duchenne's muscular atrophy and streptozotocin-induced type 1 diabetes animal models with MenSCs. As we envision an off-the-shelf product for cell therapy, cryopreserved MenSCs appear as a feasible clinical product. Clinical applications, although still very limited, have great potential and ongoing studies should be disclosed in the near future.
Collapse
|
218
|
Gao T, Cui W, Wang Z, Wang Y, Liu Y, Malliappan PS, Ito Y, Zhang P. Photo-immobilization of bone morphogenic protein 2 on PLGA/HA nanocomposites to enhance the osteogenesis of adipose-derived stem cells. RSC Adv 2016. [DOI: 10.1039/c5ra27914c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(lactide-co-glycolide) and nano-hydroxyapatite composites are surface-modified with BMP-2 via photo-reactive gelatin to make the composites exhibit excellent bioactivities for the adhesion, proliferation and osteogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Tianlin Gao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Weiwei Cui
- School of Public Health
- Jilin University
- Changchun
- P. R. China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Ya Liu
- School of Public Health
- Jilin University
- Changchun
- P. R. China
| | | | - Yoshihiro Ito
- Nano Medical Engineering Laboratory
- RIKEN
- Saitama 351-0198
- Japan
- Emergent Bioengineering Materials Research Team
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
219
|
Vad V, Barve R, Linnell E, Harrison J. Knee Osteoarthritis Treated with Percutaneous Chondral-Bone Interface Optimization: A Pilot Trial. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ss.2016.71001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
220
|
Ferrer L, Kimbrel EA, Lam A, Falk EB, Zewe C, Juopperi T, Lanza R, Hoffman A. Treatment of perianal fistulas with human embryonic stem cell-derived mesenchymal stem cells: a canine model of human fistulizing Crohn's disease. Regen Med 2016; 11:33-43. [DOI: 10.2217/rme.15.69] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To evaluate the safety and efficacy of intralesional injection of human embryonic stem cell (hESC)-derived mesenchymal stem/stromal cells (MSCs) in canine anal furunculosis dogs. Materials & methods: Dogs naturally develop an immune-mediated disease called canine anal furunculosis, which shares many features with human fistulizing Crohn's disease. Results: The hESC-MSCs were well tolerated and 1 month postinjection, accompanied by reduced serum levels of IL-2 and IL-6, two inflammatory cytokines associated with Crohn's disease. All six dogs were found to be completely free of fistulas at 3 months postinjection. However, at 6 months, two dogs had some fistula relapse. Conclusion: Results of this study provide the first evidence of the safety and therapeutic potential of hESC-MSCs in a large animal model.
Collapse
Affiliation(s)
- Lluís Ferrer
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Erin A Kimbrel
- Ocata Therapeutics, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Andrea Lam
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Elizabeth B Falk
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Christine Zewe
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Tarja Juopperi
- Ocata Therapeutics, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Robert Lanza
- Ocata Therapeutics, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Andrew Hoffman
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| |
Collapse
|
221
|
Myocardial Ischemic Subject's Thymus Fat: A Novel Source of Multipotent Stromal Cells. PLoS One 2015; 10:e0144401. [PMID: 26657132 PMCID: PMC4675557 DOI: 10.1371/journal.pone.0144401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Objective Adipose Tissue Stromal Cells (ASCs) have important clinical applications in the regenerative medicine, cell replacement and gene therapies. Subcutaneous Adipose Tissue (SAT) is the most common source of these cells. The adult human thymus degenerates into adipose tissue (TAT). However, it has never been studied before as a source of stem cells. Material and Methods We performed a comparative characterization of TAT-ASCs and SAT-ASCs from myocardial ischemic subjects (n = 32) according to the age of the subjects. Results TAT-ASCs and SAT-ASCs showed similar features regarding their adherence, morphology and in their capacity to form CFU-F. Moreover, they have the capacity to differentiate into osteocyte and adipocyte lineages; and they present a surface marker profile corresponding with stem cells derived from AT; CD73+CD90+CD105+CD14-CD19-CD45-HLA-DR. Interestingly, and in opposition to SAT-ASCs, TAT-ASCs have CD14+CD34+CD133+CD45- cells. Moreover, TAT-ASCs from elderly subjects showed higher adipogenic and osteogenic capacities compared to middle aged subjects, indicating that, rather than impairing; aging seems to increase adipogenic and osteogenic capacities of TAT-ASCs. Conclusions This study describes the human TAT as a source of mesenchymal stem cells, which may have an enormous potential for regenerative medicine.
Collapse
|
222
|
Cormier N, Yeo A, Fiorentino E, Paxson J. Optimization of the Wound Scratch Assay to Detect Changes in Murine Mesenchymal Stromal Cell Migration After Damage by Soluble Cigarette Smoke Extract. J Vis Exp 2015:e53414. [PMID: 26709527 DOI: 10.3791/53414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell migration is vital to many physiological and pathological processes including tissue development, repair, and regeneration, cancer metastasis, and inflammatory responses. Given the current interest in the role of mesenchymal stromal cells in mediating tissue repair, we are interested in quantifying the migratory capacity of these cells, and understanding how migratory capacity may be altered after damage. Optimization of a rigorously quantitative migration assay that is both easy to customize and cost-effective to perform is key to answering questions concerning alterations in cell migration in response to various stimuli. Current methods for quantifying cell migration, including scratch assays, trans-well migration assays (Boyden chambers), micropillar arrays, and cell exclusion zone assays, possess a range of limitations in reproducibility, customizability, quantification, and cost-effectiveness. Despite its prominent use, the scratch assay is confounded by issues with reproducibility related to damage of the cell microenvironment, impediments to cell migration, influence of neighboring senescent cells, and cell proliferation, as well as lack of rigorous quantification. The optimized scratch assay described here demonstrates robust outcomes, quantifiable and image-based analysis capabilities, cost-effectiveness, and adaptability to other applications.
Collapse
Affiliation(s)
| | | | | | - Julia Paxson
- Department of Biology, College of the Holy Cross;
| |
Collapse
|
223
|
Thiel A, Yavanian G, Nastke MD, Morales P, Kouris NA, Kimbrel EA, Lanza R. Human embryonic stem cell-derived mesenchymal cells preserve kidney function and extend lifespan in NZB/W F1 mouse model of lupus nephritis. Sci Rep 2015; 5:17685. [PMID: 26628350 PMCID: PMC4667213 DOI: 10.1038/srep17685] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/03/2015] [Indexed: 12/19/2022] Open
Abstract
Adult tissue-derived mesenchymal stromal cells (MSCs) are showing promise in clinical trials for systemic lupus erythematosus (SLE). However, the inability to manufacture large quantities of functional cells from a single donor as well as donor-dependent variability in quality limits their clinical utility. Human embryonic stem cell (hESC)-derived MSCs are an alternative to adult MSCs that can circumvent issues regarding scalability and consistent quality due to their derivation from a renewable starting material. Here, we show that hESC-MSCs prevent the progression of fatal lupus nephritis (LN) in NZB/W F1 (BWF1) mice. Treatment led to statistically significant reductions in proteinuria and serum creatinine and preserved renal architecture. Specifically, hESC-MSC treatment prevented disease-associated interstitial inflammation, protein cast deposition, and infiltration of CD3+ lymphocytes in the kidneys. This therapy also led to significant reductions in serum levels of tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), two inflammatory cytokines associated with SLE. Mechanistically, in vitro data support these findings, as co-culture of hESC-MSCs with lipopolysaccharide (LPS)-stimulated BWF1 lymphocytes decreased lymphocyte secretion of TNFα and IL-6, and enhanced the percentage of putative regulatory T cells. This study represents an important step in the development of a commercially scalable and efficacious cell therapy for SLE/LN.
Collapse
|
224
|
Schimke MM, Marozin S, Lepperdinger G. Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy. Front Physiol 2015; 6:362. [PMID: 26696897 PMCID: PMC4667069 DOI: 10.3389/fphys.2015.00362] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Multipotential mesenchymal stromal cells (MSC) are present as a rare subpopulation within any type of stroma in the body of higher animals. Prominently, MSC have been recognized to reside in perivascular locations, supposedly maintaining blood vessel integrity. During tissue damage and injury, MSC/pericytes become activated, evade from their perivascular niche and are thus assumed to support wound healing and tissue regeneration. In vitro MSC exhibit demonstrated capabilities to differentiate into a wide variety of tissue cell types. Hence, many MSC-based therapeutic approaches have been performed to address bone, cartilage, or heart regeneration. Furthermore, prominent studies showed efficacy of ex vivo expanded MSC to countervail graft-vs.-host-disease. Therefore, additional fields of application are presently conceived, in which MSC-based therapies potentially unfold beneficial effects, such as amelioration of non-healing conditions after tendon or spinal cord injury, as well as neuropathies. Working along these lines, MSC-based scientific research has been forged ahead to prominently occupy the clinical stage. Aging is to a great deal stochastic by nature bringing forth changes in an individual fashion. Yet, is aging of stem cells or/and their corresponding niche considered a determining factor for outcome and success of clinical therapies?
Collapse
Affiliation(s)
- Magdalena M Schimke
- Department of Cell Biology and Physiology, Stem Cell Research, Aging and Regeneration, University Salzburg Salzburg, Austria
| | - Sabrina Marozin
- Department of Cell Biology and Physiology, Stem Cell Research, Aging and Regeneration, University Salzburg Salzburg, Austria
| | - Günter Lepperdinger
- Department of Cell Biology and Physiology, Stem Cell Research, Aging and Regeneration, University Salzburg Salzburg, Austria
| |
Collapse
|
225
|
Reinders MEJ, Dreyer GJ, Bank JR, Roelofs H, Heidt S, Roelen DL, Zandvliet ML, Huurman VAL, Fibbe WE, van Kooten C, Claas FHJ, Rabelink TJ, de Fijter JW. Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the neptune study. J Transl Med 2015; 13:344. [PMID: 26537851 PMCID: PMC4632480 DOI: 10.1186/s12967-015-0700-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 01/05/2023] Open
Abstract
Background Mesenchymal stromal cells (MSC) may serve as an attractive therapy in renal transplantation due to their immunosuppressive and reparative properties. While most studies have used autologous MSCs, allogeneic MSCs offer the advantage of immediate availability for clinical use. This is of major importance for indications where instant treatment is needed, for example allograft rejection or calcineurin inhibitor toxicity. Clinical studies using allogeneic MSCs are limited in number. Although these studies showed no adverse reactions, allogeneic MSCs could possibly elicit an anti-donor immune response, which may increase the incidence of rejection and impact the allograft survival in the long term. These safety issues should be addressed before further studies are planned with allogeneic MSCs in the solid organ transplant setting. Methods/design 10 renal allograft recipients, 18–75 years old, will be included in this clinical phase Ib, open label, single center study. Patients will receive two doses of 1.5 × 106 per/kg body weight allogeneic bone marrow derived MSCs intravenously, at 25 and 26 weeks after transplantation, when immune suppression levels are reduced. The primary end point of this study is safety by assessing biopsy proven acute rejection (BPAR)/graft loss after MSC treatment. Secondary end points, all measured before and after MSC infusions, include: comparison of fibrosis in renal biopsy by quantitative Sirius Red scoring; de novo HLA antibody development and extensive immune monitoring; renal function measured by cGFR and iohexol clearance; CMV and BK infection and other opportunistic infections. Discussion This study will provide information on the safety of allogeneic MSC infusion and its effect on the incidence of BPAR/graft loss. Trial registration: NCT02387151
Collapse
Affiliation(s)
- Marlies E J Reinders
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Geertje J Dreyer
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Jonna R Bank
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Helene Roelofs
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Sebastiaan Heidt
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Dave L Roelen
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Maarten L Zandvliet
- Department of Clinical Parmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Volkert A L Huurman
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Wim E Fibbe
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Frans H J Claas
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
226
|
Morrison T, McAuley DF, Krasnodembskaya A. Mesenchymal stromal cells for treatment of the acute respiratory distress syndrome: The beginning of the story. J Intensive Care Soc 2015; 16:320-329. [PMID: 28979439 PMCID: PMC5606462 DOI: 10.1177/1751143715586420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In spite of decades of research, the acute respiratory distress syndrome (ARDS) continues to have an unacceptably high mortality and morbidity. Mesenchymal stromal cells (MSCs) present a promising candidate for the treatment of this condition and have demonstrated benefit in preclinical models. MSCs, which are a topic of growing interest in many inflammatory disorders, have already progressed to early phase clinical trials in ARDS. While a number of their mechanisms of effect have been elucidated, a better understanding of the complex actions of these cells may pave the way for MSC modifications, which might enable more effective translation into clinical practice.
Collapse
|
227
|
Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2015; 99:69-80. [PMID: 26384579 DOI: 10.1016/j.ymeth.2015.09.015] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/10/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023] Open
Abstract
Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.
Collapse
|
228
|
Tan KY, Reuveny S, Oh SKW. Recent advances in serum-free microcarrier expansion of mesenchymal stromal cells: Parameters to be optimized. Biochem Biophys Res Commun 2015; 473:769-73. [PMID: 26385177 DOI: 10.1016/j.bbrc.2015.09.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022]
Abstract
Mesenchymal stromal cells (MSCs) are being investigated for a variety of therapeutic indications. However, current 2D planar technology cannot meet the anticipated demand and a shift to serum-free microcarrier cultures is needed in order to meet the quality and quantity of cells required. Here we summarize several recent attempts to grow cells in such conditions, and identify several variables that affect cell expansion, including tissue source, serum-free medium formulation, microcarrier type and matrix, and agitation regime (continuous versus intermittent). Optimization of these culture conditions will be necessary to ensure success in bioreactor-scale production of MSCs for cell therapies.
Collapse
Affiliation(s)
- Kah Yong Tan
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Steve Kah Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|
229
|
Atluri K, Seabold D, Hong L, Elangovan S, Salem AK. Nanoplex-Mediated Codelivery of Fibroblast Growth Factor and Bone Morphogenetic Protein Genes Promotes Osteogenesis in Human Adipocyte-Derived Mesenchymal Stem Cells. Mol Pharm 2015; 12:3032-42. [PMID: 26121311 PMCID: PMC4613810 DOI: 10.1021/acs.molpharmaceut.5b00297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study highlights the importance of transfection mediated coordinated bone morphogenetic protein 2 (BMP-2) and fibroblast growth factor 2 (FGF-2) signaling in promoting osteogenesis. We employed plasmids independently encoding BMP-2 and FGF-2 complexed with polyethylenimine (PEI) to transfect human adipose derived mesenchymal stem cells (hADMSCs) in vitro. The nanoplexes were characterized for size, surface charge, in vitro cytotoxicity, and transfection ability in hADMSCs. A significant enhancement in BMP-2 protein secretion was observed on day 7 post-transfection of hADMSCs with PEI nanoplexes loaded with both pFGF-2 and pBMP-2 (PEI/(pFGF-2+pBMP-2)) versus transfection with PEI nanoplexes of either pFGF-2 alone or pBMP-2 alone. Osteogenic differentiation of transfected hADMSCs was determined by measuring osteocalcin and Runx-2 gene expression using real time polymerase chain reactions. A significant increase in the expression of Runx-2 and osteocalcin was observed on day 3 and day 7 post-transfection, respectively, by cells transfected with PEI/(pFGF-2+pBMP-2) compared to cells transfected with nanoplexes containing pFGF-2 or pBMP-2 alone. Alizarin Red staining and atomic absorption spectroscopy revealed elevated levels of calcium deposition in hADMSC cultures on day 14 and day 30 post-transfection with PEI/(pFGF-2+pBMP-2) compared to other treatments. We have shown that codelivery of pFGF-2 and pBMP-2 results in a significant enhancement in osteogenic protein synthesis, osteogenic marker expression, and subsequent mineralization. This research points to a new clinically translatable strategy for achieving efficient bone regeneration.
Collapse
Affiliation(s)
- Keerthi Atluri
- †Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Denise Seabold
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Liu Hong
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Satheesh Elangovan
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Aliasger K Salem
- †Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
230
|
Muhammad G, Jablonska A, Rose L, Walczak P, Janowski M. Effect of MRI tags: SPIO nanoparticles and 19F nanoemulsion on various populations of mouse mesenchymal stem cells. Acta Neurobiol Exp (Wars) 2015; 75:144-59. [PMID: 26232992 PMCID: PMC4889457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transplantation of mesenchymal stem cells (MSCs) has emerged as a promising strategy for the treatment of myriad human disorders, including several neurological diseases. Superparamagnetic iron oxide nanoparticles (SPION) and fluorine nanoemulsion (19F) are characterized by low toxicity and good sensitivity, and, as such, are among the most frequently used cell-labeling agents. However, to date, their impact across the various populations of MSCs has not been comprehensively investigated. Thus, the impact of MRI tags (independent variable) has been set as a primary endpoint. The various populations of mouse MSCs in which the effect of tag was investigated consisted of (1) tissue of cell origin: bone marrow vs. Adipose tissue; (2) age of donor: young vs. old; (3) cell culture conditions: hypoxic vs. normal vs. normal + ascorbic acid (AA); (4) exposure to acidosis: yes vs. no. The impact of those populations has been also analyzed and considered as secondary endpoints. The experimental readouts (dependent variables) included: (1) cell viability; (2) cell size; (3) cell doubling time; (4) colony formation; (5) efficiency of labeling; and (6) cell migration. We did not identify any impact of cell labeling for these investigated populations in any of the readouts. In addition, we found that the harsh microenvironment of injured tissue modeled by a culture of cells in a highly acidic environment has a profound effect on all readouts, and both age of donor and cell origin tissue also have a substantial influence on most of the readouts, while oxygen tension in the cell culture conditions has a smaller impact on MSCs. A detailed characterization of the factors that influence the quality of MSCs is vital to the proper pursuit of preclinical and clinical studies.
Collapse
Affiliation(s)
- Ghulam Muhammad
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Stem Cell Laboratory, University of the Punjab, Lahore, Pakistan
| | - Anna Jablonska
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Rose
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA;
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
231
|
Adipose-Derived Stem Cells as a Tool for Dental Implant Osseointegration: an Experimental Study in the Dog. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:197-208. [PMID: 27014644 PMCID: PMC4769597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The biological interaction between the jaw bones and dental implant is fundamental for the long-term success of dental implant placement. Nevertheless, the insufficient bone volume remains a major clinical problem, especially in case of immediate dental implant. Using a canine model, the present study proves the regenerative potential of adipose- derived stem cells (ADSCs) to repair peri-implant bone defects occurring in immediate dental implant placement. In six labradors, all mandibular premolars and the first molars were extracted bilaterally and three months later dental implants were installed with a marginal gap. The marginal defects were filled with hydroxyapatite (HA)-based scaffolds previously seeded with ADSCs. After one month of healing, specimens were prepared for histological and histomorphometric evaluations. Histological analyses of ground sections show that ADSCs significantly increase bone regeneration. Several new vessels, osteoblasts and new bone matrix were detected. By contrast, no inflammatory cells have been revealed. ADSCs could be used to accelerate bone healing in peri- implant defects in case of immediate dental implant placement.
Collapse
|