201
|
Sego C, Gonçalves L, Lima L, Furigo IC, Donato J, Metzger M. Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. J Comp Neurol 2014; 522:1454-84. [PMID: 24374795 DOI: 10.1002/cne.23533] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 02/06/2023]
Abstract
The lateral habenula (LHb) is an epithalamic structure differentiated in a medial (LHbM) and a lateral division (LHbL). Together with the rostromedial tegmental nucleus (RMTg), the LHb has been implicated in the processing of aversive stimuli and inhibitory control of monoamine nuclei. The inhibitory LHb influence on midbrain dopamine neurons has been shown to be mainly mediated by the RMTg, a mostly GABAergic nucleus that receives a dominant input from the LHbL. Interestingly, the RMTg also projects to the dorsal raphe nucleus (DR), which also receives direct LHb projections. To compare the organization and transmitter phenotype of LHb projections to the DR, direct and indirect via the RMTg, we first placed injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into the LHb or the RMTg. We then confirmed our findings by retrograde tracing and investigated a possible GABAergic phenotype of DR-projecting RMTg neurons by combining retrograde tracing with in situ hybridization for GAD67. We found only moderate direct LHb projections to the DR, which mainly emerged from the LHbM and were predominantly directed to the serotonin-rich caudal DR. In contrast, RMTg projections to the DR were more robust, emerged from RMTg neurons enriched in GAD67 mRNA, and were focally directed to a distinctive DR subdivision immunohistochemically characterized as poor in serotonin and enriched in presumptive glutamatergic neurons. Thus, besides its well-acknowledged role as a GABAergic control center for the ventral tegmental area (VTA)-nigra complex, our findings indicate that the RMTg is also a major GABAergic relay between the LHb and the DR.
Collapse
Affiliation(s)
- Chemutai Sego
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
202
|
Abstract
The lateral habenula (LHb) is a small epithalamic structure that projects via the fasciculus retroflexus to the midbrain. The LHb is known to modulate midbrain dopamine (DA) neurons, including inhibition of ventral tegmental area (VTA) neurons via glutamatergic excitation of the GABAergic rostromedial tegmental nucleus (RMTg). A variety of lines of evidence show activity in LHb and the LHb-RMTg pathway is correlated with, and is sufficient to support, punishment learning. However, it is not immediately clear whether LHb is necessary for punishment. Here we used a within-subjects punishment task to assess the role of LHb in the acquisition and expression of punishment as well as in aversive choice. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused footshock deliveries (punished lever) but continued pressing a second lever that did not cause footshock (unpunished lever). Infusions of an AMPA receptor antagonist (NBQX) into LHb had no effect on the acquisition or expression of this punishment, or on aversive choice, but did increase locomotion. Infusion of the sodium channel blocker bupivacaine likewise had no effect on expression of punishment. However, infusion of the calcium channel blocker mibefradil did affect expression of punishment by significantly decreasing the latency with which rats responded on the punished lever and significantly increasing unpunished lever-pressing. Taken together, these findings indicate that the LHb plays a limited role in punishment, influencing only latency to respond. This role is linked to calcium channel permeability and not AMPA receptor or sodium channel permeability.
Collapse
|
203
|
Stopper C, Tse M, Montes D, Wiedman C, Floresco S. Overriding Phasic Dopamine Signals Redirects Action Selection during Risk/Reward Decision Making. Neuron 2014; 84:177-189. [DOI: 10.1016/j.neuron.2014.08.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2014] [Indexed: 11/26/2022]
|
204
|
Gardon O, Faget L, Chu Sin Chung P, Matifas A, Massotte D, Kieffer BL. Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula. Neuroscience 2014; 277:595-609. [PMID: 25086313 PMCID: PMC4164589 DOI: 10.1016/j.neuroscience.2014.07.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022]
Abstract
The habenular complex, encompassing medial (MHb) and lateral (LHb) divisions, is a highly conserved epithalamic structure involved in the dorsal diencephalic conduction system (DDC). These brain nuclei regulate information flow between the limbic forebrain and the mid- and hindbrain, integrating cognitive with emotional and sensory processes. The MHb is also one of the strongest expression sites for mu opioid receptors (MORs), which mediate analgesic and rewarding properties of opiates. At present however, anatomical distribution and function of these receptors have been poorly studied in MHb pathways. Here we took advantage of a newly generated MOR-mcherry knock-in mouse line to characterize MOR expression sites in the DDC. MOR-mcherry fluorescent signal is weak in the LHb, but strong expression is visible in the MHb, fasciculus retroflexus (fr) and interpeduncular nucleus (IPN), indicating that MOR is mainly present in the MHb-IPN pathway. MOR-mcherry cell bodies are detected both in basolateral and apical parts of MHb, where the receptor co-localizes with cholinergic and substance P (SP) neurons, respectively, representing two main MHb neuronal populations. MOR-mcherry is expressed in most MHb-SP neurons, and is present in only a subpopulation of MHb-cholinergic neurons. Intense diffuse fluorescence detected in lateral and rostral parts of the IPN further suggests that MOR-mcherry is transported to terminals of these SP and cholinergic neurons. Finally, MOR-mcherry is present in septal regions projecting to the MHb, and in neurons of the central and intermediate IPN. Together, this study describes MOR expression in several compartments of the MHb-IPN circuitry. The remarkably high MOR density in the MHb-IPN pathway suggests that these receptors are in a unique position to mediate analgesic, autonomic and reward responses.
Collapse
Affiliation(s)
- O Gardon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - L Faget
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - P Chu Sin Chung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - A Matifas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - D Massotte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - B L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France.
| |
Collapse
|
205
|
Zhao H, Zhang BL, Yang SJ, Rusak B. The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness. Behav Brain Res 2014; 277:89-98. [PMID: 25234226 DOI: 10.1016/j.bbr.2014.09.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DRN) play an important role in regulation of many physiological functions. The lateral nucleus of the habenular complex (LHb) is closely connected to the DRN both morphologically and functionally. The LHb is a key regulator of the activity of DRN serotonergic neurons, and it also receives reciprocal input from the DRN. The LHb is also a major way-station that receives limbic system input via the stria medullaris and provides output to the DRN and thereby indirectly connects a number of other brain regions to the DRN. The complex interactions of the LHb and DRN contribute to the regulation of numerous important behavioral and physiological mechanisms, including those regulating cognition, reward, pain sensitivity and patterns of sleep and waking. Disruption of these functions is characteristic of major psychiatric illnesses, so there has been a great deal of interest in how disturbed LHb-DRN interactions may contribute to the symptoms of these illnesses. This review summarizes recent research related to the roles of the LHb-DRN system in regulation of higher brain functions and the possible role of disturbed LHb-DRN function in the pathogenesis of psychiatric disorders, especially depression.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Bei-Lin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Shao-Jun Yang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Benjamin Rusak
- Departments of Psychiatry and Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 2E2, Canada
| |
Collapse
|
206
|
van Nieuwenhuijzen P, McGregor I, Chebib M, Hunt G. Regional Fos-expression induced by γ-hydroxybutyrate (GHB): Comparison with γ-butyrolactone (GBL) and effects of co-administration of the GABAB antagonist SCH 50911 and putative GHB antagonist NCS-382. Neuroscience 2014; 277:700-15. [DOI: 10.1016/j.neuroscience.2014.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
207
|
Abstract
Located centrally along the dorsal diencephalic system, the habenula is divided into two structures: the medial and the lateral portions. It serves as an important relay between the forebrain and several hindbrain sites. In the last few years, a huge attention has been devoted to this structure, especially the lateral habenula (LHb), which seems to play an important role in emotion, motivation, and reward. Recent studies using techniques such as electrophysiology and neuroimaging have shown that the LHb is involved in motivational control of behavior. Its dysfunction is often associated with depression, schizophrenia, and mood disorder. This review focuses on providing a neuroanatomical and behavioral overview of some of the research previously done on the LHb. First, we describe the anatomical structure of the habenula and we explain how it is involved in reward and motivation. Then, we will discuss how this structure is linked to the limbic system, to finally provide a comparison between several studies that have used electrolytic lesions.
Collapse
|
208
|
Schmidt ERE, Brignani S, Adolfs Y, Lemstra S, Demmers J, Vidaki M, Donahoo ALS, Lilleväli K, Vasar E, Richards LJ, Karagogeos D, Kolk SM, Pasterkamp RJ. Subdomain-mediated axon-axon signaling and chemoattraction cooperate to regulate afferent innervation of the lateral habenula. Neuron 2014; 83:372-387. [PMID: 25033181 DOI: 10.1016/j.neuron.2014.05.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 11/20/2022]
Abstract
A dominant feature of neural circuitry is the organization of neuronal projections and synapses into specific brain nuclei or laminae. Lamina-specific connectivity is controlled by the selective expression of extracellular guidance and adhesion molecules in the target field. However, how (sub)nucleus-specific connections are established and whether axon-derived cues contribute to subdomain targeting are largely unknown. Here, we demonstrate that the lateral subnucleus of the habenula (lHb) determines its own afferent innervation by sending out efferent projections that express the cell adhesion molecule LAMP to reciprocally collect and guide dopaminergic afferents to the lHb-a phenomenon we term subdomain-mediated axon-axon signaling. This process of reciprocal axon-axon interactions cooperates with lHb-specific chemoattraction mediated by Netrin-1, which controls axon target entry, to ensure specific innervation of the lHb. We propose that cooperation between pretarget reciprocal axon-axon signaling and subdomain-restricted instructive cues provides a highly precise and general mechanism to establish subdomain-specific neural circuitry.
Collapse
Affiliation(s)
- Ewoud Roberto Eduard Schmidt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Sara Brignani
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Suzanne Lemstra
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Jeroen Demmers
- Proteomics Centre and Department of Cell Biology, Erasmus University Medical Centre, Dr Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Marina Vidaki
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology, Vassilika Vouton, Heraklion GR-7110, Greece
| | - Amber-Lee Skye Donahoo
- Queensland Brain Institute and The School of Biomedical Sciences, University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4067, Australia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Linda Jane Richards
- Queensland Brain Institute and The School of Biomedical Sciences, University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4067, Australia
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology, Vassilika Vouton, Heraklion GR-7110, Greece
| | - Sharon Margriet Kolk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
209
|
Fricchione G. The Neurocircuitry of Attachment and Recovery in Alcoholics Anonymous. ALCOHOLISM TREATMENT QUARTERLY 2014. [DOI: 10.1080/07347324.2014.907019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
210
|
Abstract
Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.
Collapse
|
211
|
The right dorsal habenula limits attraction to an odor in zebrafish. Curr Biol 2014; 24:1167-75. [PMID: 24856207 DOI: 10.1016/j.cub.2014.03.073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND The habenula consists of an evolutionarily conserved set of nuclei that control neuromodulator release. In lower vertebrates, the dorsal habenula receives innervation from sensory regions, but the significance of this is unclear. Here, we address the role of the habenula in olfaction by imaging neural activity in larval zebrafish expressing GCaMP3 throughout the habenula and by carrying out behavioral assays. RESULTS Activity in several hundred neurons throughout the habenula was recorded using wide-field fluorescence microscopy, fast focusing, and deconvolution. This enabled the creation of 4D maps of odor-evoked activity. Odors activated the habenula in two broad spatiotemporal patterns. Increasing concentrations of a putative social cue (a bile salt) evoked a corresponding increase in neuronal activity in the right dorsal habenula. In behavioral assays, fish were attracted to intermediate concentration of this cue but avoided higher concentration. Increasing cholinergic activity through nicotine exposure rendered the intermediate concentration aversive in a habenula-dependent manner. Pharmacologically blocking nicotinic receptors or lesioning the right dorsal habenula attenuated avoidance. CONCLUSIONS These data provide physiological and functional evidence that the habenula functions as a higher center in zebrafish olfaction and suggest that activity in the right dorsal subdomain gates innate attraction to specific odors.
Collapse
|
212
|
Rohleder C, Jung F, Mertgens H, Wiedermann D, Sué M, Neumaier B, Graf R, Leweke FM, Endepols H. Neural correlates of sensorimotor gating: a metabolic positron emission tomography study in awake rats. Front Behav Neurosci 2014; 8:178. [PMID: 24904330 PMCID: PMC4033256 DOI: 10.3389/fnbeh.2014.00178] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/28/2014] [Indexed: 01/20/2023] Open
Abstract
Impaired sensorimotor gating occurs in neuropsychiatric disorders such as schizophrenia and can be measured using the prepulse inhibition (PPI) paradigm of the acoustic startle response. This assay is frequently used to validate animal models of neuropsychiatric disorders and to explore the therapeutic potential of new drugs. The underlying neural network of PPI has been extensively studied with invasive methods and genetic modifications. However, its relevance for healthy untreated animals and the functional interplay between startle- and PPI-related areas during a PPI session is so far unknown. Therefore, we studied awake rats in a PPI paradigm, startle control and background noise control, combined with behavioral [(18)F]fluoro-2-deoxyglucose positron emission tomography (FDG-PET). Subtractive analyses between conditions were used to identify brain regions involved in startle and PPI processing in well-hearing Black hooded rats. For correlative analysis with regard to the amount of PPI we also included hearing-impaired Lister hooded rats that startled more often, because their hearing threshold was just below the lowest prepulses. Metabolic imaging showed that the brain areas proposed for startle and PPI mediation are active during PPI paradigms in healthy untreated rats. More importantly, we show for the first time that the whole PPI modulation network is active during "passive" PPI sessions, where no selective attention to prepulse or startle stimulus is required. We conclude that this reflects ongoing monitoring of stimulus significance and constant adjustment of sensorimotor gating.
Collapse
Affiliation(s)
- Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Fabienne Jung
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Hanna Mertgens
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Dirk Wiedermann
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Michael Sué
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Bernd Neumaier
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Rudolf Graf
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - F. Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Heike Endepols
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| |
Collapse
|
213
|
deCarvalho TN, Subedi A, Rock J, Harfe BD, Thisse C, Thisse B, Halpern ME, Hong E. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish. Genesis 2014; 52:636-55. [PMID: 24753112 DOI: 10.1002/dvg.22785] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/11/2022]
Abstract
The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity, and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. Although many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions.
Collapse
Affiliation(s)
- Tagide N deCarvalho
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Velasquez KM, Molfese DL, Salas R. The role of the habenula in drug addiction. Front Hum Neurosci 2014; 8:174. [PMID: 24734015 PMCID: PMC3975120 DOI: 10.3389/fnhum.2014.00174] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/09/2014] [Indexed: 01/06/2023] Open
Abstract
Interest in the habenula has greatly increased in recent years. The habenula is a small brain structure located posterior to the thalamus and adjacent to the third ventricle. Despite its small size, the habenula can be divided into medial habenula (MHb) and lateral habenula (LHb) nuclei that are anatomically and transcriptionally distinct. The habenula receives inputs from the limbic system and basal ganglia primarily via the stria medullaris. The fasciculus retroflexus is the primary habenular output from the habenula to the midbrain and governs release of glutamate onto gabaergic cells in the rostromedial tegmental nucleus (RMTg) and onto the interpeduncular nucleus. The resulting GABA released from RMTg neurons inactivates dopaminergic cells in the ventral tegmental area/substantia nigra compacta. Through this process, the habenula controls dopamine levels in the striatum. Thus, the habenula plays a critical role in reward and reward-associated learning. The LHb also modulates serotonin levels and norepinephrine release, while the MHb modulates acetylcholine. The habenula is a critical crossroad that influences the brain’s response to pain, stress, anxiety, sleep, and reward. Dysfunction of the habenula has been linked to depression, schizophrenia, and the effects of drugs of abuse. This review focuses on the possible relationships between the habenula and drug abuse.
Collapse
Affiliation(s)
- Kenia M Velasquez
- Department of Psychiatry, Baylor College of Medicine Houston, TX, USA
| | - David L Molfese
- Department of Psychiatry, Baylor College of Medicine Houston, TX, USA
| | - Ramiro Salas
- Department of Psychiatry, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
215
|
Cao J, Joyner L, Mickens JA, Leyrer SM, Patisaul HB. Sex-specific Esr2 mRNA expression in the rat hypothalamus and amygdala is altered by neonatal bisphenol A exposure. Reproduction 2014; 147:537-54. [PMID: 24352099 PMCID: PMC3947720 DOI: 10.1530/rep-13-0501] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Perinatal life is a critical window for sexually dimorphic brain organization, and profoundly influenced by steroid hormones. Exposure to endocrine-disrupting compounds may disrupt this process, resulting in compromised reproductive physiology and behavior. To test the hypothesis that neonatal bisphenol A (BPA) exposure can alter sex-specific postnatal Esr2 (Erβ) expression in brain regions fundamental to sociosexual behavior, we mapped Esr2 mRNA levels in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), paraventricular nucleus (PVN), anterior portion of the medial amygdaloid nucleus (MeA), super optic nucleus, suprachiasmatic nucleus, and lateral habenula across postnatal days (PNDs) 0-19. Next, rat pups of both sexes were subcutaneously injected with 10 μg estradiol benzoate (EB), 50 μg/kg BPA (LBPA), or 50 mg/kg BPA (HBPA) over the first 3 days of life and Esr2 levels were quantified in each region of interest (ROI) on PNDs 4 and 10. EB exposure decreased Esr2 signal in most female ROIs and in the male PVN. In the BNSTp, Esr2 expression decreased in LBPA males and HBPA females on PND 10, thereby reversing the sex difference in expression. In the PVN, Esr2 mRNA levels were elevated in LBPA females, also resulting in a reversal of sexually dimorphic expression. In the MeA, BPA decreased Esr2 expression on PND 4. Collectively, these data demonstrate that region- and sex-specific Esr2 expression is vulnerable to neonatal BPA exposure in regions of the developing brain critical to sociosexual behavior in rat.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biology, NCSU, Raleigh NC, 27695
| | | | | | | | - Heather B Patisaul
- Department of Biology, NCSU, Raleigh NC, 27695
- Keck Center for Behavioral Biology, NCSU, Raleigh NC, 27695
| |
Collapse
|
216
|
Fiore VG, Sperati V, Mannella F, Mirolli M, Gurney K, Friston K, Dolan RJ, Baldassarre G. Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot. Front Psychol 2014; 5:124. [PMID: 24600422 PMCID: PMC3930917 DOI: 10.3389/fpsyg.2014.00124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/29/2014] [Indexed: 01/20/2023] Open
Abstract
The effects of striatal dopamine (DA) on behavior have been widely investigated over the past decades, with “phasic” burst firings considered as the key expression of a reward prediction error responsible for reinforcement learning. Less well studied is “tonic” DA, where putative functions include the idea that it is a regulator of vigor, incentive salience, disposition to exert an effort and a modulator of approach strategies. We present a model combining tonic and phasic DA to show how different outflows triggered by either intrinsically or extrinsically motivating stimuli dynamically affect the basal ganglia by impacting on a selection process this system performs on its cortical input. The model, which has been tested on the simulated humanoid robot iCub interacting with a mechatronic board, shows the putative functions ascribed to DA emerging from the combination of a standard computational mechanism coupled to a differential sensitivity to the presence of DA across the striatum.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London London, UK
| | - Valerio Sperati
- Laboratory of Computational Embodied Neuroscience, CNR, Istituto di Scienze e Tecnologie della Cognizione Roma, Italy
| | - Francesco Mannella
- Laboratory of Computational Embodied Neuroscience, CNR, Istituto di Scienze e Tecnologie della Cognizione Roma, Italy
| | - Marco Mirolli
- Laboratory of Computational Embodied Neuroscience, CNR, Istituto di Scienze e Tecnologie della Cognizione Roma, Italy
| | - Kevin Gurney
- Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield Sheffield, UK
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London London, UK
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London London, UK
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, CNR, Istituto di Scienze e Tecnologie della Cognizione Roma, Italy
| |
Collapse
|
217
|
Chatterjee M, Guo Q, Weber S, Scholpp S, Li JY. Pax6 regulates the formation of the habenular nuclei by controlling the temporospatial expression of Shh in the diencephalon in vertebrates. BMC Biol 2014; 12:13. [PMID: 24528677 PMCID: PMC3996077 DOI: 10.1186/1741-7007-12-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/11/2014] [Indexed: 12/02/2022] Open
Abstract
Background The habenula and the thalamus are two critical nodes in the forebrain circuitry and they connect the midbrain and the cerebral cortex in vertebrates. The habenula is derived from the epithalamus and rests dorsally to the thalamus. Both epithalamus and thalamus arise from a single diencephalon segment called prosomere (p)2. Shh is expressed in the ventral midline of the neural tube and in the mid-diencephalic organizer (MDO) at the zona limitans intrathalamica between thalamus and prethalamus. Acting as a morphogen, Shh plays an important role in regulating cell proliferation and survival in the diencephalon and thalamic patterning. The molecular regulation of the MDO Shh expression and the potential role of Shh in development of the habenula remain largely unclear. Results We show that deleting paired-box and homeobox-containing gene Pax6 results in precocious and expanded expression of Shh in the prospective MDO in fish and mice, whereas gain-of-function of pax6 inhibits MDO shh expression in fish. Using gene expression and genetic fate mapping, we have characterized the expression of molecular markers that demarcate the progenitors and precursors of habenular neurons. We show that the thalamic domain is shifted dorsally and the epithalamus is missing in the alar plate of p2 in the Pax6 mutant mouse. Conversely, the epithalamus is expanded ventrally at the expense of the thalamus in mouse embryos with reduced Shh activity. Significantly, attenuating Shh signaling largely rescues the patterning of p2 and restores the epithalamus in Pax6 mouse mutants, suggesting that Shh acts downstream of Pax6 in controlling the formation of the habenula. Similar to that found in the mouse, we show that pax6 controls the formation of the epithalamus mostly via the regulation of MDO shh expression in zebrafish. Conclusions Our findings demonstrate that Pax6 has an evolutionarily conserved function in establishing the temporospatial expression of Shh in the MDO in vertebrates. Furthermore, Shh mediates Pax6 function in regulating the partition of the p2 domain into the epithalamus and thalamus.
Collapse
Affiliation(s)
| | | | | | - Steffen Scholpp
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06030-6403, USA.
| | | |
Collapse
|
218
|
Beatty GF, Fawver B, Hancock GM, Janelle CM. Regulating emotions uniquely modifies reaction time, rate of force production, and accuracy of a goal-directed motor action. Hum Mov Sci 2014; 33:1-13. [DOI: 10.1016/j.humov.2013.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/22/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
|
219
|
Vitay J, Hamker FH. Timing and expectation of reward: a neuro-computational model of the afferents to the ventral tegmental area. Front Neurorobot 2014; 8:4. [PMID: 24550821 PMCID: PMC3907710 DOI: 10.3389/fnbot.2014.00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/15/2014] [Indexed: 12/24/2022] Open
Abstract
Neural activity in dopaminergic areas such as the ventral tegmental area is influenced by timing processes, in particular by the temporal expectation of rewards during Pavlovian conditioning. Receipt of a reward at the expected time allows to compute reward-prediction errors which can drive learning in motor or cognitive structures. Reciprocally, dopamine plays an important role in the timing of external events. Several models of the dopaminergic system exist, but the substrate of temporal learning is rather unclear. In this article, we propose a neuro-computational model of the afferent network to the ventral tegmental area, including the lateral hypothalamus, the pedunculopontine nucleus, the amygdala, the ventromedial prefrontal cortex, the ventral basal ganglia (including the nucleus accumbens and the ventral pallidum), as well as the lateral habenula and the rostromedial tegmental nucleus. Based on a plausible connectivity and realistic learning rules, this neuro-computational model reproduces several experimental observations, such as the progressive cancelation of dopaminergic bursts at reward delivery, the appearance of bursts at the onset of reward-predicting cues or the influence of reward magnitude on activity in the amygdala and ventral tegmental area. While associative learning occurs primarily in the amygdala, learning of the temporal relationship between the cue and the associated reward is implemented as a dopamine-modulated coincidence detection mechanism in the nucleus accumbens.
Collapse
Affiliation(s)
- Julien Vitay
- Department of Computer Science, Chemnitz University of Technology Chemnitz, Germany
| | - Fred H Hamker
- Department of Computer Science, Chemnitz University of Technology Chemnitz, Germany ; Bernstein Center for Computational Neuroscience, Charité University Medicine Berlin, Germany
| |
Collapse
|
220
|
Shabel SJ, Murphy RT, Malinow R. Negative learning bias is associated with risk aversion in a genetic animal model of depression. Front Hum Neurosci 2014; 8:1. [PMID: 24474914 PMCID: PMC3893716 DOI: 10.3389/fnhum.2014.00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/02/2014] [Indexed: 11/13/2022] Open
Abstract
The lateral habenula (LHb) is activated by aversive stimuli and the omission of reward, inhibited by rewarding stimuli and is hyperactive in helpless rats—an animal model of depression. Here we test the hypothesis that congenital learned helpless (cLH) rats are more sensitive to decreases in reward size and/or less sensitive to increases in reward than wild-type (WT) control rats. Consistent with the hypothesis, we found that cLH rats were slower to switch preference between two responses after a small upshift in reward size on one of the responses but faster to switch their preference after a small downshift in reward size. cLH rats were also more risk-averse than WT rats—they chose a response delivering a constant amount of reward (“safe” response) more often than a response delivering a variable amount of reward (“risky” response) compared to WT rats. Interestingly, the level of bias toward negative events was associated with the rat's level of risk aversion when compared across individual rats. cLH rats also showed impaired appetitive Pavlovian conditioning but more accurate responding in a two-choice sensory discrimination task. These results are consistent with a negative learning bias and risk aversion in cLH rats, suggesting abnormal processing of rewarding and aversive events in the LHb of cLH rats.
Collapse
Affiliation(s)
- Steven J Shabel
- Section of Neurobiology, Department of Neuroscience and Division of Biology, Center for Neural Circuits and Behavior, University of California at San Diego La Jolla, CA, USA
| | - Ryan T Murphy
- Section of Neurobiology, Department of Neuroscience and Division of Biology, Center for Neural Circuits and Behavior, University of California at San Diego La Jolla, CA, USA
| | - Roberto Malinow
- Section of Neurobiology, Department of Neuroscience and Division of Biology, Center for Neural Circuits and Behavior, University of California at San Diego La Jolla, CA, USA
| |
Collapse
|
221
|
Strotmann B, Kögler C, Bazin PL, Weiss M, Villringer A, Turner R. Mapping of the internal structure of human habenula with ex vivo MRI at 7T. Front Hum Neurosci 2013; 7:878. [PMID: 24391571 PMCID: PMC3870283 DOI: 10.3389/fnhum.2013.00878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/02/2013] [Indexed: 11/22/2022] Open
Abstract
The habenula is a small but important nucleus located next to the third ventricle in front of the pineal body. It helps to control the human reward system and is considered to play a key role in emotion, showing increased activation in major depressive disorders. Its dysfunction may underlie several neurological and psychiatric disorders. It is now possible to visualize the habenula and its anatomical subdivisions—medial habenula (MHB) and lateral habenula (LHB)—using MR techniques. The aim of this study was to further differentiate substructures within human lateral habenula (LHB) using ex vivo ultra-high field MR structural imaging, distinguishing between a medial part (m-LHB) and a lateral part (l-LHB). High resolution T1w images with 0.3-mm isotropic resolution and T2*w images with 60-micrometer isotropic resolution were acquired on a 7T MR scanner and quantitative maps of T1 and T2* were calculated. Cluster analysis of image intensity was performed using the Fuzzy and Noise Tolerant Adaptive Segmentation Method (FANTASM) tool. Ultra-high resolution structural MRI of ex vivo brain tissue at 7T provided sufficient SNR and contrast to discriminate the medial and lateral habenular nuclei. Heterogeneity was observed in the lateral habenula (LHB) nuclei, with clear distinctions between lateral and medial parts (m-LHB, l-LHB) and with the neighboring medial habenula (MHB). Clustering analysis based on the T1 and T2* maps strongly showed 4–6 clusters as subcomponents of lateral and medial habenula.
Collapse
Affiliation(s)
- Barbara Strotmann
- Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Carsten Kögler
- Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Pierre-Louis Bazin
- Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Marcel Weiss
- Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Robert Turner
- Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| |
Collapse
|
222
|
Yadid G, Gispan I, Lax E. Lateral habenula deep brain stimulation for personalized treatment of drug addiction. Front Hum Neurosci 2013; 7:806. [PMID: 24376408 PMCID: PMC3860270 DOI: 10.3389/fnhum.2013.00806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/06/2013] [Indexed: 01/11/2023] Open
Affiliation(s)
- Gal Yadid
- The Neuropsychopharmacology Lab, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Israel ; The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Iris Gispan
- The Neuropsychopharmacology Lab, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Israel ; The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Elad Lax
- The Neuropsychopharmacology Lab, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Israel ; The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
223
|
Christensen T, Jensen L, Bouzinova EV, Wiborg O. Molecular profiling of the lateral habenula in a rat model of depression. PLoS One 2013; 8:e80666. [PMID: 24339877 PMCID: PMC3855087 DOI: 10.1371/journal.pone.0080666] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/04/2013] [Indexed: 11/24/2022] Open
Abstract
Objective This study systematically investigated the effect of chronic mild stress and response to antidepressant treatment in the lateral habenula at the whole genome level. Methods Rat whole genome expression chips (Affymetrix) were used to detect gene expression regulations in the lateral habenula of rats subjected to chronic mild stress (mild stressors exchanged twice a day for 8 weeks). Some rats received antidepressant treatment during fifth to eights week of CMS. The lateral habenula gene expression profile was studied through the gene ontology and signal pathway analyses using bioinformatics. Real-time quantitative polymerase chain reaction (RT-PCR) was used to verify the microarray results and determine the expression of the Fcrla, Eif3k, Sec3l1, Ubr5, Abca8a, Ankrd49, Cyp2j10, Frs3, Syn2, and Znf503 genes in the lateral habenula tissue. Results In particular we found that stress and antidepressant treatment affected intracellular cascades like growth factor receptor signaling, G-protein-coupled receptor signaling, and Wnt signaling – processes involved in the neuroplastic changes observed during the progression of depression and antidepressant treatment. Conclusion The present study suggests an important role of the lateral habenula in the development of depression-like conditions and correlates to previous studies demonstrating a significant role of the lateral habenula in depressive-like conditions and antidepressant treatment.
Collapse
Affiliation(s)
- Trine Christensen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Line Jensen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Elena V. Bouzinova
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- * E-mail:
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| |
Collapse
|
224
|
Lax E, Friedman A, Croitoru O, Sudai E, Ben-Moshe H, Redlus L, Sasson E, Blumenfeld-Katzir T, Assaf Y, Yadid G. Neurodegeneration of lateral habenula efferent fibers after intermittent cocaine administration: Implications for deep brain stimulation. Neuropharmacology 2013; 75:246-54. [DOI: 10.1016/j.neuropharm.2013.06.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022]
|
225
|
What's better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nat Neurosci 2013; 17:33-5. [PMID: 24270185 PMCID: PMC4974073 DOI: 10.1038/nn.3587] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023]
Abstract
The lateral habenula (LHb) is believed to convey an aversive or “anti-reward” signal, but its contribution to reward-related action selection is unknown. We found that LHb inactivation abolished choice biases, making rats indifferent when choosing between rewards associated with different subjective costs and magnitudes, but not larger/smaller rewards of equal cost. Thus, instead of serving as an aversion center, the evolutionarily-conserved LHb acts as preference center integral for expressing subjective decision biases.
Collapse
|
226
|
Strotmann B, Heidemann RM, Anwander A, Weiss M, Trampel R, Villringer A, Turner R. High-resolution MRI and diffusion-weighted imaging of the human habenula at 7 tesla. J Magn Reson Imaging 2013; 39:1018-26. [PMID: 24259421 DOI: 10.1002/jmri.24252] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/09/2013] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the feasibility of discriminating the habenula in human brain using high-resolution structural MRI and diffusion-weighted imaging at 7 Tesla (T). MATERIALS AND METHODS MRI experiments included a MP2RAGE and GRE sequence to acquire quantitative parameter maps of T1, T2*, and a calculated proton density map and the combined approach of zoomed and parallel imaging (ZOOPPA) to obtain dw images. Probabilistic tractography algorithms were used to identify multiple fiber orientations in submillimetre voxels, and constrained spherical deconvolution to resolve orientations in regions where fibers cross. RESULTS Maps of T1, T2*, and proton density showed high contrast of the human habenula. The lateral habenula and its commissure can be distinguished from medial habenula and adjacent tissue. DWI data with 0.7 mm isotropic resolution revealed that fiber populations differ in medial and lateral habenula and two major fiber bundles that connect habenular nuclei with forebrain structures and brainstem. CONCLUSION High resolution 7T MR imaging of the human habenula provides sufficient signal-to-noise and contrast to enable identification of the lateral and medial nuclei. In vivo high resolution DWI at 7T is able to distinguish between lateral and medial habenula, and to detect major fiber tracts that connect the habenula with other brain areas.
Collapse
Affiliation(s)
- Barbara Strotmann
- Department of Neurophysics, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
227
|
Good CH, Wang H, Chen YH, Mejias-Aponte CA, Hoffman AF, Lupica CR. Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms. J Neurosci 2013; 33:16853-64. [PMID: 24155292 PMCID: PMC3807019 DOI: 10.1523/jneurosci.1844-13.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/15/2013] [Accepted: 09/05/2013] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic lateral habenula (LHb) output communicates negative motivational valence to ventral tegmental area (VTA) dopamine (DA) neurons via activation of the rostromedial tegmental nucleus (RMTg). However, the LHb also receives a poorly understood DA input from the VTA, which we hypothesized constitutes an important feedback loop regulating DA responses to stimuli. Using whole-cell electrophysiology in rat brain slices, we find that DA initiates a depolarizing inward current (I(DAi)) and increases spontaneous firing in 32% of LHb neurons. I(DAi) was also observed upon application of amphetamine or the DA uptake blockers cocaine or GBR12935, indicating involvement of endogenous DA. I(DAi) was blocked by D4 receptor (D4R) antagonists (L745,870 or L741,742), and mimicked by a selective D4R agonist (A412997). I(DAi) was associated with increased whole-cell conductance and was blocked by Cs+ or a selective blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel, ZD7288. I(DAi) was also associated with a depolarizing shift in half-activation voltage for the hyperpolarization-activated cation current (Ih) mediated by HCN channels. Recordings from LHb neurons containing fluorescent retrograde tracers revealed that I(DAi) was observed only in cells projecting to the RMTg and not the VTA. In parallel with direct depolarization, DA also strongly increased synaptic glutamate release and reduced synaptic GABA release onto LHb cells. These results demonstrate that DA can excite glutamatergic LHb output to RMTg via multiple cellular mechanisms. Since the RMTg strongly inhibits midbrain DA neurons, activation of LHb output to RMTg by DA represents a negative feedback loop that may dampen DA neuron output following activation.
Collapse
Affiliation(s)
- Cameron H. Good
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| | - Huikun Wang
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| | - Yuan-Hao Chen
- Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Carlos A. Mejias-Aponte
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland 21224, and
| | | | - Carl R. Lupica
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| |
Collapse
|
228
|
Yang LM, Yu L, Jin HJ, Zhao H. Substance P receptor antagonist in lateral habenula improves rat depression-like behavior. Brain Res Bull 2013; 100:22-8. [PMID: 24157953 DOI: 10.1016/j.brainresbull.2013.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022]
Abstract
Substance P (SP) levels are closely related with the pathogenesis of depression. Recent work has focused on antidepressive effect of substance P receptor antagonist (SPA), however, its action site and mechanism remain largely unresolved. Our previous results showed that the lateral habenula (LHb) plays a key role in the pathogenesis of depression. The current study investigated the effects of SPA microinjected into LHb on the behavioral responses of two rat models that exhibit depression-like behavior. To produce adult rats that exhibit depression-like behavior, rats were either exposed to chronic mild stress (CMS), or chronically administered clomipramine (CLI), a tricyclic antidepressant, during the neonatal state of life. The forced-swimming test (FST) was used to evaluate behavioral responses. Furthermore, we measured serotonin (5-HT) levels in dorsal raphe nucleus (DRN) using microdialysis. The FST showed a decreased immobility time and an increased climbing time after SPA injection into the LHb of depression-like behavior rats. In addition, 5-HT levels in DRN increased after SPA was microinjected into LHb of the rats that exhibited depression-like behavior. This study demonstrates that LHb mediates antidepressive effect of SPA by increasing 5-HT levels in the DRN, suggesting that the LHb may be a potential target of antidepressant.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Lei Yu
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Hui-Juan Jin
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Hua Zhao
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China; Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
229
|
Must A, Horvath S, Nemeth VL, Janka Z. The Iowa Gambling Task in depression - what have we learned about sub-optimal decision-making strategies? Front Psychol 2013; 4:732. [PMID: 24133474 PMCID: PMC3794198 DOI: 10.3389/fpsyg.2013.00732] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/22/2013] [Indexed: 12/16/2022] Open
Abstract
Our earlier study found patients with depression to show a preference for larger reward as measured by the Iowa Gambling Task (IGT). In this IGT version, larger rewards were associated with even larger consequent losses. In the light of the clinical markers defining depressive disorder, this finding might appear controversial at first. Performance of depressed patients on various decision-making (DM) tasks is typically found to be impaired. Evidence points toward reduced reward learning, as well as the difficulty to shift strategy and integrate environmental changes into DM contingencies. This results in an impaired ability to modulate behavior as a function of reward, or punishment, respectively. Clinical symptoms of the disorder, the genetic profile, as well as personality traits might also influence DM strategies. More severe depression increased sensitivity to immediate large punishment, thus predicting future decisions, and was also associated with higher harm avoidance. Anhedonic features diminished reward learning abilities to a greater extent, even predicting clinical outcome. Several questions about how these aspects relate remain to be clarified. Is there a genetic predisposition for the DM impairment preceding mood symptoms? Is it the consequence of clinical signs or even learned behavior serving as a coping strategy? Are patients prone to develop an aversion of loss or are they unable to sense or deal with reward or the preference of reward? Does the DM deficit normalize or is a persisting impairment predictor for clinical outcome or relapse risk? To what extent is it influenced by medication effects? How does a long-lasting DM deficit affect daily life and social interactions? Strikingly, research evidence indicates that depressed patients tend to behave less deceptive and more self-focused, resulting in impaired social DM. The difficulty in daily interpersonal interactions might contribute to social isolation, further intensifying depressive symptoms.
Collapse
Affiliation(s)
- Anita Must
- Department of Psychiatry, University of Szeged Szeged, Hungary
| | | | | | | |
Collapse
|
230
|
Bastide MF, Dovero S, Charron G, Porras G, Gross CE, Fernagut PO, Bézard E. Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis 2013; 62:179-92. [PMID: 24103779 DOI: 10.1016/j.nbd.2013.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 09/27/2013] [Indexed: 01/20/2023] Open
Abstract
Long-term l-3,4-dihydroxyphenylalanine (l-DOPA) treatment in Parkinson's disease (PD) leads to l-DOPA-induced dyskinesia (LID), a condition thought to primarily involve the dopamine D1 receptor-expressing striatal medium spiny neurons. Activation of the D1 receptor results in increased expression of several molecular markers, in particular the members of the immediate-early gene (IEG) family, a class of genes rapidly transcribed in response to an external stimulus. However, several dopaminoceptive structures in the brain that are likely to be affected by the exogenously produced DA have received little attention although they might play a key role in mediating those l-DOPA-induced abnormal behaviours. ΔFosB, ARC, FRA2 and Zif268 IEGs expression patterns were thus characterised, using unbiased stereological methods, in the whole brain of dyskinetic and non-dyskinetic rats to identify brain nuclei displaying a transcriptional response specifically related to LID. Within the basal ganglia, the striatum and the substantia nigra pars reticulata showed an increased expression of all four IEGs in dyskinetic compared to non-dyskinetic rats. Outside the basal ganglia, there was a striking increased expression of the four IEGs in the motor cortex, the bed nucleus of the stria terminalis, the dorsal hippocampus, the pontine nuclei, the cuneiform nucleus and the pedunculopontine nuclei. Moreover, the zona incerta and the lateral habenula displayed an overexpression of ΔFosB, ARC and Zif268. Among these structures, the IEG expression in the striatum, the bed nucleus of the stria terminalis, the lateral habenula, the pontine nuclei and the cuneiform nucleus correlate with LID severity. These results illustrate a global transcriptional response to a dyskinetic state in the whole brain suggesting the possible involvement of these structures in LID.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sandra Dovero
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Giselle Charron
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Gregory Porras
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Christian E Gross
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
231
|
Gass N, Schwarz AJ, Sartorius A, Cleppien D, Zheng L, Schenker E, Risterucci C, Meyer-Lindenberg A, Weber-Fahr W. Haloperidol modulates midbrain-prefrontal functional connectivity in the rat brain. Eur Neuropsychopharmacol 2013; 23:1310-9. [PMID: 23165219 DOI: 10.1016/j.euroneuro.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/21/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Dopamine D₂ receptor antagonists effectively reduce positive symptoms in schizophrenia, implicating abnormal dopaminergic neurotransmission as an underlying mechanism of psychosis. Despite the well-established, albeit incomplete, clinical efficacies of D₂ antagonists, no studies have examined their effects on functional interaction between brain regions. We hypothesized that haloperidol, a widely used antipsychotic and D₂ antagonist, would modulate functional connectivity in dopaminergic circuits. Ten male Sprague-Dawley rats received either haloperidol (1 mg/kg, s.c.) or the same volume of saline a week apart. Resting-state functional magnetic resonance imaging data were acquired 20 min after injection. Connectivity analyses were performed using two complementary approaches: correlation analysis between 44 atlas-derived regions of interest, and seed-based connectivity mapping. In the presence of haloperidol, reduced correlation was observed between the substantia nigra and several brain regions, notably the cingulate and prefrontal cortices, posterodorsal hippocampus, ventral pallidum, and motor cortex. Haloperidol induced focal changes in functional connectivity were found to be the most strongly associated with ascending dopamine projections. These included reduced connectivity between the midbrain and the medial prefrontal cortex and hippocampus, possibly relating to its therapeutic action, and decreased coupling between substantia nigra and motor areas, which may reflect dyskinetic effects. These data may help in further characterizing the functional circuits modulated by antipsychotics that could be targeted by innovative drug treatments.
Collapse
Affiliation(s)
- Natalia Gass
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Höflich A, Savli M, Comasco E, Moser U, Novak K, Kasper S, Lanzenberger R. Neuropsychiatric deep brain stimulation for translational neuroimaging. Neuroimage 2013; 79:30-41. [DOI: 10.1016/j.neuroimage.2013.04.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022] Open
|
233
|
Li K, Zhou T, Liao L, Yang Z, Wong C, Henn F, Malinow R, Yates JR, Hu H. βCaMKII in lateral habenula mediates core symptoms of depression. Science 2013; 341:1016-20. [PMID: 23990563 PMCID: PMC3932364 DOI: 10.1126/science.1240729] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lateral habenula (LHb) has recently emerged as a key brain region in the pathophysiology of depression. However, the molecular mechanism by which LHb becomes hyperactive in depression remains unknown. Through a quantitative proteomic screen, we found that expression of the β form of calcium/calmodulin-dependent protein kinase type II (βCaMΚΙΙ) was significantly up-regulated in the LHb of animal models of depression and down-regulated by antidepressants. Increasing β-, but not α-, CaMKII in the LHb strongly enhanced the synaptic efficacy and spike output of LHb neurons and was sufficient to produce profound depressive symptoms, including anhedonia and behavioral despair. Down-regulation of βCaMKII levels, blocking its activity or its target molecule the glutamate receptor GluR1 reversed the depressive symptoms. These results identify βCaMKII as a powerful regulator of LHb neuron function and a key molecular determinant of depression.
Collapse
Affiliation(s)
- Kun Li
- Institute of Neuroscience and State Key laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- Graduate School of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Tao Zhou
- Institute of Neuroscience and State Key laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- Graduate School of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Lujian Liao
- The Scripps Research Institute, Department of Molecular and Cellular Neurobiology, La Jolla, CA, 92037, USA
| | - Zhongfei Yang
- Institute of Neuroscience and State Key laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Catherine Wong
- The Scripps Research Institute, Department of Molecular and Cellular Neurobiology, La Jolla, CA, 92037, USA
| | - Fritz Henn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Roberto Malinow
- University of California at San Diego, La Jolla, CA, 92093, USA
| | - John R. Yates
- The Scripps Research Institute, Department of Molecular and Cellular Neurobiology, La Jolla, CA, 92037, USA
| | - Hailan Hu
- Institute of Neuroscience and State Key laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| |
Collapse
|
234
|
Saidel WM. Nucleus rostrolateralis: an expansion of the epithalamus in some actinopterygii. Anat Rec (Hoboken) 2013; 296:1594-602. [PMID: 23956021 DOI: 10.1002/ar.22761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 11/08/2022]
Abstract
The diencephalic nucleus rostrolateralis (RL) in the African butterfly fish (Pantodon buchholzi) is a brain nucleus identified in fewer than a dozen of the ∼25,000 species of actinopterygian fishes. Located in the rostrolateral diencephalon, this nucleus in Pantodon receives direct and indirect visual input from the superior visual field. Its lack of precedent or consistent phylogenetic expression creates a difficulty in interpreting the functional role of this nucleus within the visual system. By tracing experiments, RL was found to be afferent to nucleus interpeduncularis (IP) and the target of cells from the subpallium of the telencephalon. RL is a component of a descending telencephalic pathway involved in at least one behavior at the intersection of limbic and somatic activities--feeding. The parallelism between the ventral telencephalon--RL--IP and the limbic/striatal--habenula--IP pathway (the dorsal diencephalic conduction system, DDCS) suggests that RL is a component within the DDCS. Moreover, the hodological connections of RL suggest that RL is likely a hypertrophy of the lateral habenula.
Collapse
Affiliation(s)
- William M Saidel
- Department of Biology, Rutgers University, Camden, New Jersey; Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey
| |
Collapse
|
235
|
Hoyer C, Sartorius A, Lecourtier L, Kiening KL, Meyer-Lindenberg A, Gass P. One ring to rule them all?--Temporospatial specificity of deep brain stimulation for treatment-resistant depression. Med Hypotheses 2013; 81:611-8. [PMID: 23910557 DOI: 10.1016/j.mehy.2013.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 01/30/2023]
Abstract
Deep brain stimulation (DBS) for intractable cases of depression has emerged as a valuable therapeutic option during the last decade. While several locations have been intensely investigated in recent years, the literature is lacking an all-encompassing perspective thereupon asking if and how these stimulation sites relate to each other and what this may imply for the underlying mechanisms of action of this treatment modality. We aim at proposing a model of DBS mechanism of action with particular focus on several puzzling aspects regarding an apparent temporo-spatial specificity of antidepressant action, i.e. the discrepancy between protracted response after initiation of stimulation and rapid relapse upon discontinuation, as well as differential effects on psychopathology. We suggest that the pre-treatment depressive state is determined by the interaction of individual traits with dysfunctional adaptive processes as responses to stress, resulting in a disease-associated, overtly dysfunctional, equilibrium. The antidepressant action of DBS is thought to modify and re-set this equilibrium in a temporospatially distinct manner by influencing the activity states of two different brain circuitries. The idea of sequential and temporospatially distinct mechanisms of action bears implications for the assessment of psychopathology and behavior in clinical and preclinical studies as well as investigations into brain circuit activity states.
Collapse
Affiliation(s)
- Carolin Hoyer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159 Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
236
|
Bowen MT, Kevin RC, May M, Staples LG, Hunt GE, McGregor IS. Defensive aggregation (huddling) in Rattus norvegicus toward predator odor: individual differences, social buffering effects and neural correlates. PLoS One 2013; 8:e68483. [PMID: 23922655 PMCID: PMC3726686 DOI: 10.1371/journal.pone.0068483] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/29/2013] [Indexed: 01/08/2023] Open
Abstract
Aggregation is a defensive strategy employed by many prey species in response to predatory threat. Our group has characterized defensive aggregation (huddling) in Rattus norvegicus in response to a ball of cat fur. In this situation some rats huddle less, and approach the threatening cue more than others (active vs. passive responders). The present study explored whether active responding is a stable phenotype associated with behaviors outside direct predatory encounters. The neural substrates of active and passive responding under predatory threat were explored using c-Fos immunohistochemistry. Finally, we examined whether the presence of conspecifics during predatory threat biases behavior towards active responding. Active and passive responding styles were found to be stable in individual rats across consecutive group exposures to cat fur, and were predicted by anxiety-like behavior in an open-field emergence test. Active responders displayed less conditioned fear in an environment associated with predatory threat, and had higher post-exposure intake of a weak sucrose solution (a test of “anhedonia”). Active responding was associated with: greater cat fur-induced activation of the accessory olfactory bulb, reflecting greater olfactory stimulation in rats actively approaching the fur; lowered activation of somatosensory cortex, reflecting reduced huddling with conspecifics; and reduced activation in the lateral septum. Social exposure to cat fur promoted active responding relative to individual exposure, and lowered c-Fos expression in the dorsomedial periaqueductal grey, medial caudate putamen and lateral habenula. We conclude that individual differences in anti-predator behavior appear stable traits with active responders having a more resilient phenotype. Social exposure to predatory threat has an acute buffering effect, subtly changing the neural and behavioral response towards threat and encouraging active responding. An association between active responding and lower c-Fos expression in the lateral septum is consistent with previous studies that highlight this region as an important neurobiological substrate of defensive aggregation.
Collapse
Affiliation(s)
- Michael T Bowen
- School of Psychology, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
237
|
Electrical stimulation of lateral habenula during learning: frequency-dependent effects on acquisition but not retrieval of a two-way active avoidance response. PLoS One 2013; 8:e65684. [PMID: 23840355 PMCID: PMC3695985 DOI: 10.1371/journal.pone.0065684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/26/2013] [Indexed: 12/29/2022] Open
Abstract
The lateral habenula (LHb) is an epithalamic structure involved in signaling reward omission and aversive stimuli, and it inhibits dopaminergic neurons during motivated behavior. Less is known about LHb involvement in the acquisition and retrieval of avoidance learning. Our previous studies indicated that brief electrical stimulation of the LHb, time-locked to the avoidance of aversive footshock (presumably during the positive affective “relief” state that occurs when an aversive outcome is averted), inhibited the acquisition of avoidance learning. In the present study, we used the same paradigm to investigate different frequencies of LHb stimulation. The effect of 20 Hz vs. 50 Hz vs. 100 Hz stimulation was investigated during two phases, either during acquisition or retrieval in Mongolian gerbils. The results indicated that 50 Hz, but not 20 Hz, was sufficient to produce a long-term impairment in avoidance learning, and was somewhat more effective than 100 Hz in this regard. None of the stimulation parameters led to any effects on retrieval of avoidance learning, nor did they affect general motor activity. This suggests that, at frequencies in excess of the observed tonic firing rates of LHb neurons (>1–20 Hz), LHb stimulation may serve to interrupt the consolidation of new avoidance memories. However, these stimulation parameters are not capable of modifying avoidance memories that have already undergone extensive consolidation.
Collapse
|
238
|
Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways. J Neurosci 2013; 33:7501-12. [PMID: 23616555 DOI: 10.1523/jneurosci.3634-12.2013] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many strong rewards, including abused drugs, also produce aversive effects that are poorly understood. For example, cocaine can produce aversive conditioning after its rewarding effects have dissipated, consistent with opponent process theory, but the neural mechanisms involved are not well known. Using electrophysiological recordings in awake rats, we found that some neurons in the lateral habenula (LHb), where activation produces aversive conditioning, exhibited biphasic responses to single doses of intravenous cocaine, with an initial inhibition followed by delayed excitation paralleling cocaine's shift from rewarding to aversive. Recordings in LHb slice preparations revealed similar cocaine-induced biphasic responses and further demonstrated that biphasic responses were mimicked by dopamine, that the inhibitory phase depended on dopamine D2-like receptors, and that the delayed excitation persisted after drug washout for prolonged durations consistent with findings in vivo. c-Fos experiments further showed that cocaine-activated LHb neurons preferentially projected to and activated neurons in the rostromedial tegmental nucleus (RMTg), a recently identified target of LHb axons that is activated by negative motivational stimuli and inhibits dopamine neurons. Finally, pharmacological excitation of the RMTg produced conditioned place aversion, whereas cocaine-induced avoidance behaviors in a runway operant paradigm were abolished by lesions of LHb efferents, lesions of the RMTg, or by optogenetic inactivation of the RMTg selectively during the period when LHb neurons are activated by cocaine. Together, these results indicate that LHb/RMTg pathways contribute critically to cocaine-induced avoidance behaviors, while also participating in reciprocally inhibitory interactions with dopamine neurons.
Collapse
|
239
|
Lammel S, Tye KM, Warden MR. Progress in understanding mood disorders: optogenetic dissection of neural circuits. GENES BRAIN AND BEHAVIOR 2013; 13:38-51. [PMID: 23682971 DOI: 10.1111/gbb.12049] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/22/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022]
Abstract
Major depression is characterized by a cluster of symptoms that includes hopelessness, low mood, feelings of worthlessness and inability to experience pleasure. The lifetime prevalence of major depression approaches 20%, yet current treatments are often inadequate both because of associated side effects and because they are ineffective for many people. In basic research, animal models are often used to study depression. Typically, experimental animals are exposed to acute or chronic stress to generate a variety of depression-like symptoms. Despite its clinical importance, very little is known about the cellular and neural circuits that mediate these symptoms. Recent advances in circuit-targeted approaches have provided new opportunities to study the neuropathology of mood disorders such as depression and anxiety. We review recent progress and highlight some studies that have begun tracing a functional neuronal circuit diagram that may prove essential in establishing novel treatment strategies in mood disorders. First, we shed light on the complexity of mesocorticolimbic dopamine (DA) responses to stress by discussing two recent studies reporting that optogenetic activation of midbrain DA neurons can induce or reverse depression-related behaviors. Second, we describe the role of the lateral habenula circuitry in the pathophysiology of depression. Finally, we discuss how the prefrontal cortex controls limbic and neuromodulatory circuits in mood disorders.
Collapse
Affiliation(s)
- S Lammel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
240
|
deCarvalho TN, Akitake CM, Thisse C, Thisse B, Halpern ME. Aversive cues fail to activate fos expression in the asymmetric olfactory-habenula pathway of zebrafish. Front Neural Circuits 2013; 7:98. [PMID: 23734103 PMCID: PMC3659297 DOI: 10.3389/fncir.2013.00098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/02/2013] [Indexed: 11/17/2022] Open
Abstract
The dorsal habenular nuclei of the zebrafish epithalamus have become a valuable model for studying the development of left-right (L-R) asymmetry and its function in the vertebrate brain. The bilaterally paired dorsal habenulae exhibit striking differences in size, neuroanatomical organization, and molecular properties. They also display differences in their efferent connections with the interpeduncular nucleus (IPN) and in their afferent input, with a subset of mitral cells distributed on both sides of the olfactory bulb innervating only the right habenula. Previous studies have implicated the dorsal habenulae in modulating fear/anxiety responses in juvenile and adult zebrafish. It has been suggested that the asymmetric olfactory-habenula pathway (OB-Ha), revealed by selective labeling from an lhx2a:YFP transgene, mediates fear behaviors elicited by alarm pheromone. Here we show that expression of the fam84b gene demarcates a unique region of the right habenula that is the site of innervation by lhx2a:YFP-labeled olfactory axons. Upon ablation of the parapineal, which normally promotes left habenular identity; the fam84b domain is present in both dorsal habenulae and lhx2a:YFP-labeled olfactory bulb neurons form synapses on the left and the right side. To explore the relevance of the asymmetric olfactory projection and how it might influence habenular function, we tested activation of this pathway using odorants known to evoke behaviors. We find that alarm substance or other aversive odors, and attractive cues, activate fos expression in subsets of cells in the olfactory bulb but not in the lhx2a:YFP expressing population. Moreover, neither alarm pheromone nor chondroitin sulfate elicited fos activation in the dorsal habenulae. The results indicate that L-R asymmetry of the epithalamus sets the directionality of olfactory innervation, however, the lhx2a:YFP OB-Ha pathway does not appear to mediate fear responses to aversive odorants.
Collapse
Affiliation(s)
- Tagide N deCarvalho
- Department of Embryology, Carnegie Institution for Science Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
241
|
Schiffer AM, Krause KH, Schubotz RI. Surprisingly correct: unexpectedness of observed actions activates the medial prefrontal cortex. Hum Brain Mapp 2013; 35:1615-29. [PMID: 23670963 DOI: 10.1002/hbm.22277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/28/2013] [Accepted: 02/03/2013] [Indexed: 11/09/2022] Open
Abstract
Not only committing errors, but also observing errors has been shown to activate the dorsal medial prefrontal cortex, particularly BA 8 and adjacent rostral cingulate zone (RCZ). Currently, there is a debate on whether this activity reflects a response to the incorrectness of the committed action or to its unexpectedness. This article reports two studies investigating whether activity in BA 8/RCZ is due to the unexpectedness of observed errors or the incorrectness of the specific observed action. Both studies employed an action observation paradigm reliant on the observation of an actor tying sailing knots. The reported behavioral experiment delivered evidence that the paradigm successfully induced the expectation of incorrect actions as well as the expectation of correct actions. The functional magnetic resonance imaging study revealed that unexpectedly correct as well as unexpectedly incorrect actions activate the BA 8/RCZ. The same result was confirmed for a coordinate in the vicinity that has been previously reported to be activated in separate studies either by the error observation or by the unexpectedness of committed errors, and has been associated with the error-related negativity. The present results suggest that unexpectedness has an impact on the medial prefrontal correlate of observed errors.
Collapse
Affiliation(s)
- Anne-Marike Schiffer
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
242
|
Rood BD, Stott RT, You S, Smith CJ, Woodbury ME, De Vries GJ. Site of origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp Neurol 2013; 521:2321-58. [DOI: 10.1002/cne.23288] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/11/2012] [Accepted: 12/11/2012] [Indexed: 01/14/2023]
|
243
|
Olazábal DE, Pereira M, Agrati D, Ferreira A, Fleming AS, González-Mariscal G, Lévy F, Lucion AB, Morrell JI, Numan M, Uriarte N. Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neurosci Biobehav Rev 2013; 37:1875-92. [PMID: 23608126 DOI: 10.1016/j.neubiorev.2013.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/08/2013] [Indexed: 12/30/2022]
Abstract
Maternal behavior is species-specific and expressed under different physiological conditions, and contexts. It is the result of neural processes that support different forms (e.g. postpartum, cycling sensitized and spontaneous maternal behavior) and modalities of mother-offspring interaction (e.g. maternal interaction with altricial/precocious young; selective/non-selective bond). To understand how the brain adapts to and regulates maternal behavior in different species, and physiological and social conditions we propose new neural models to explain different forms of maternal expression (e.g. sensitized and spontaneous maternal behavior) and the behavioral changes that occur across the postpartum period. We emphasize the changing role of the medial preoptic area in the neural circuitry that supports maternal behavior and the cortical regulation and adjustment of ongoing behavioral performance. Finally, we discuss how our accumulated knowledge about the psychobiology of mothering in animal models supports the validity of animal studies to guide our understanding of human mothering and to improve human welfare and health.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, CP 11800, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Role of the lateral habenula in shaping context-dependent locomotor activity during cognitive tasks. Neuroreport 2013; 24:276-80. [DOI: 10.1097/wnr.0b013e32835ee1e8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
245
|
Lesions of the fasciculus retroflexus alter footshock-induced cFos expression in the mesopontine rostromedial tegmental area of rats. PLoS One 2013; 8:e60678. [PMID: 23593280 PMCID: PMC3625179 DOI: 10.1371/journal.pone.0060678] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
Abstract
Midbrain dopamine neurons are an essential part of the circuitry underlying motivation and reinforcement. They are activated by rewards or reward-predicting cues and inhibited by reward omission. The lateral habenula (lHb), an epithalamic structure that forms reciprocal connections with midbrain dopamine neurons, shows the opposite response being activated by reward omission or aversive stimuli and inhibited by reward-predicting cues. It has been hypothesized that habenular input to midbrain dopamine neurons is conveyed via a feedforward inhibitory pathway involving the GABAergic mesopontine rostromedial tegmental area. Here, we show that exposing rats to low-intensity footshock (four, 0.5 mA shocks over 20 min) induces cFos expression in the rostromedial tegmental area and that this effect is prevented by lesions of the fasciculus retroflexus, the principal output pathway of the habenula. cFos expression is also observed in the medial portion of the lateral habenula, an area that receives dense DA innervation via the fr and the paraventricular nucleus of the thalamus, a stress sensitive area that also receives dopaminergic input. High-intensity footshock (120, 0.8 mA shocks over 40 min) also elevates cFos expression in the rostromedial tegmental area, medial and lateral aspects of the lateral habenula and the paraventricular thalamus. In contrast to low-intensity footshock, increases in cFos expression within the rostromedial tegmental area are not altered by fr lesions suggesting a role for non-habenular inputs during exposure to highly aversive stimuli. These data confirm the involvement of the lateral habenula in modulating the activity of rostromedial tegmental area neurons in response to mild aversive stimuli and suggest that dopamine input may contribute to footshock- induced activation of cFos expression in the lateral habenula.
Collapse
|
246
|
Kobayashi Y, Sano Y, Vannoni E, Goto H, Suzuki H, Oba A, Kawasaki H, Kanba S, Lipp HP, Murphy NP, Wolfer DP, Itohara S. Genetic dissection of medial habenula-interpeduncular nucleus pathway function in mice. Front Behav Neurosci 2013; 7:17. [PMID: 23487260 PMCID: PMC3594921 DOI: 10.3389/fnbeh.2013.00017] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/15/2013] [Indexed: 01/20/2023] Open
Abstract
The habenular complex linking forebrain and midbrain structures is subdivided into the medial (mHb) and the lateral nuclei (lHb). The mHb is characterized by the expression of specific nicotinic acetylcholine receptor isoforms and the release of acetylcholine to the interpeduncular nucleus (IPN), the sole output region of the mHb. The specific function of this circuit, however, is poorly understood. Here we generated transgenic mice in which mHb cells were selectively ablated postnatally. These lesions led to large reductions in acetylcholine levels within the IPN. The mutant mice exhibited abnormalities in a wide range of behavioral domains. They tended to be hyperactive during the early night period and were maladapted when repeatedly exposed to new environments. Mutant mice also showed a high rate of premature responses in the 5-choice serial reaction time task (5-CSRTT), indicating impulsive and compulsive behavior. Additionally, mice also exhibited delay and effort aversion in a decision-making test, deficits in spatial memory, a subtle increase in anxiety levels, and attenuated sensorimotor gating. IntelliCage studies under social housing conditions confirmed hyperactivity, environmental maladaptation, and impulsive/compulsive behavior, delay discounting, deficits in long-term spatial memory, and reduced flexibility in complex learning paradigms. In 5-CSRTT and adaptation tasks, systemic administration of nicotine slowed down nose-poke reaction and enhanced adaptation in control but not mutant mice. These findings demonstrate that the mHb–IPN pathway plays a crucial role in inhibitory control and cognition-dependent executive functions.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Oral E, Aydin MD, Aydin N, Ozcan H, Hacimuftuoglu A, Sipal S, Demirci E. How olfaction disorders can cause depression? The role of habenular degeneration. Neuroscience 2013; 240:63-9. [PMID: 23485804 DOI: 10.1016/j.neuroscience.2013.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
The removal of bilateral olfactory bulbs (OBs) can result in serious behavioral, neurochemical, neuroendocrine, and neuroimmune alterations in depressed patients. However, there is little information on how olfactory bulbectomy (OBX) leads to depression. Habenular nuclei and their connections are important in the regulation of psychomotor and psychosocial behaviors through afferent impulses of the olfactory system. Therefore, we investigated whether OB lesions lead to habenular degeneration. We used a sample of 50 rats (25 female and 25 male) for this study. Of these rats, five male and five female rats were taken as the control group. The remaining 40 rats (20 male and 20 female rats) constituted the study group, and frontal burr holes were performed at the OB level on these rats. OB cauterization was applied to 10 male and 10 female rats (n=10, 10; study group 1), mechanical OBX was applied to five male and five female rats (n=5, 5; study group 2), and no procedure was performed on the remaining 10 rats (n=5, 5). The psychomotor movements; pregnancy rates; and sexual, feeding, maternal, social, and grooming behaviors for both study groups were observed daily for 3 months. Their OBs, olfactory cortices, and habenular complexes were examined using stereological methods. All of the animals in the study groups, especially in the cauterization group, demonstrated anorexia, nutritional disorders, weight loss, psychomotor retardation, sexual aversion, decreased grooming behavior, and reduced social interaction similar to depression symptoms. As compared to the control group, the pregnancy rates, number of offspring per mother rat, and birth weights in the study groups were lower, whereas the number of stillbirths was higher. Gross anatomical examinations revealed that the OBs of all of the animals in the study groups were atrophied. Histopathological examinations detected prominent neuronal loss due to apoptosis in the habenular structures in the study groups. We detected a relationship between a decreased healthy neuronal density of the habenula and depressive symptomatology in rats with OBX. We suggest that olfaction disorders might cause neuropsychiatric disorders by affecting neuronal degeneration in habenular nuclei.
Collapse
Affiliation(s)
- E Oral
- Department of Psychiatry, Medical Faculty, University of Atatürk, Erzurum, Turkey
| | | | | | | | | | | | | |
Collapse
|
248
|
Poller WC, Madai VI, Bernard R, Laube G, Veh RW. A glutamatergic projection from the lateral hypothalamus targets VTA-projecting neurons in the lateral habenula of the rat. Brain Res 2013; 1507:45-60. [PMID: 23348378 DOI: 10.1016/j.brainres.2013.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
Abstract
Homeostasis describes the fundamental biological ability of individuals to maintain stable internal conditions in a changing environment. Homeostatic reactions include internal adjustments as well as behavioral responses. In vertebrates, behavioral responses are induced by the reward system. This system originates in the ventral tegmental area (VTA) and leads to increased dopamine levels in the forebrain whenever activated. A major inhibitor of VTA activity is the lateral habenula (LHb). This epithalamic structure is able to almost completely suppress dopamine release, either directly or via the rostromedial tegmental nucleus (RMTg), when rewarding expectations are not met. A major input to the LHb arises from the lateral hypothalamic area (LHA), an important regulator of the homeostatic system. Currently, little is known about the effects of the strong hypothalamic projection on the activity of LHb neurons. In the present study, we analyze neurotransmitters and cellular targets of the LHA-LHb projection in the rat. Therefore, anterograde tracing from the LHA was combined with the visualization of neurotransmitters in the LHb. These experiments revealed a mainly glutamatergic projection, probably exerting excitatory effects on the targeted LHb cells. These cellular targets were analyzed in a second step. Anterograde tracing from the LHA in combination with retrograde tracing from the VTA/RMTg region revealed that LHb neurons projecting to the VTA/RMTg region are densely targeted by the LHA projection. Visualization of synaptophysin at these contact sites indicates that the contact sites indeed are synapses. Taken together, the present study describes a strong mainly glutamatergic projection from the LHA that targets VTA/RMTg-projecting neurons in the LHb. These findings emphasize the potential role of the LHb as direct link between homeostatic areas and reward circuitries, which may be important for the control of homeostatic behaviors.
Collapse
Affiliation(s)
- Wolfram C Poller
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstrasse 12, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
249
|
Lawson RP, Drevets WC, Roiser JP. Defining the habenula in human neuroimaging studies. Neuroimage 2013; 64:722-7. [PMID: 22986224 PMCID: PMC3650642 DOI: 10.1016/j.neuroimage.2012.08.076] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 01/09/2023] Open
Abstract
Recently there has been renewed interest in the habenula; a pair of small, highly evolutionarily conserved epithalamic nuclei adjacent to the medial dorsal (MD) nucleus of the thalamus. The habenula has been implicated in a range of behaviours including sleep, stress and pain, and studies in non-human primates have suggested a potentially important role in reinforcement processing, putatively via its effects on monoaminergic neurotransmission. Over the last decade, an increasing number of neuroimaging studies have reported functional responses in the human habenula using functional magnetic resonance imaging (fMRI). However, standard fMRI analysis approaches face several challenges in isolating signal from this structure because of its relatively small size, around 30 mm(3) in volume. In this paper we offer a set of guidelines for locating and manually tracing the habenula in humans using high-resolution T1-weighted structural images. We also offer recommendations for appropriate pre-processing and analysis of high-resolution functional magnetic resonance imaging (fMRI) data such that signal from the habenula can be accurately resolved from that in surrounding structures.
Collapse
Affiliation(s)
- Rebecca P Lawson
- UCL Institute of Cognitive Neuroscience, 17 Queen Square, London, UK.
| | | | | |
Collapse
|
250
|
The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 2012; 37:2331-71. [PMID: 23261405 DOI: 10.1016/j.neubiorev.2012.12.007] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 12/18/2022]
Abstract
We present a comprehensive overview of the neurobiology of unipolar major depression and antidepressant drug action, integrating data from affective neuroscience, neuro- and psychopharmacology, neuroendocrinology, neuroanatomy, and molecular biology. We suggest that the problem of depression comprises three sub-problems: first episodes in people with low vulnerability ('simple' depressions), which are strongly stress-dependent; an increase in vulnerability and autonomy from stress that develops over episodes of depression (kindling); and factors that confer vulnerability to a first episode (a depressive diathesis). We describe key processes in the onset of a 'simple' depression and show that kindling and depressive diatheses reproduce many of the neurobiological features of depression. We also review the neurobiological mechanisms of antidepressant drug action, and show that resistance to antidepressant treatment is associated with genetic and other factors that are largely similar to those implicated in vulnerability to depression. We discuss the implications of these conclusions for the understanding and treatment of depression, and make some strategic recommendations for future research.
Collapse
|