201
|
Sze H, Chanroj S. Plant Endomembrane Dynamics: Studies of K +/H + Antiporters Provide Insights on the Effects of pH and Ion Homeostasis. PLANT PHYSIOLOGY 2018; 177:875-895. [PMID: 29691301 PMCID: PMC6053008 DOI: 10.1104/pp.18.00142] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 05/17/2023]
Abstract
Plants remodel their cells through the dynamic endomembrane system. Intracellular pH is important for membrane trafficking, but the determinants of pH homeostasis are poorly defined in plants. Electrogenic proton (H+) pumps depend on counter-ion fluxes to establish transmembrane pH gradients at the plasma membrane and endomembranes. Vacuolar-type H+-ATPase-mediated acidification of the trans-Golgi network is crucial for secretion and membrane recycling. Pump and counter-ion fluxes are unlikely to fine-tune pH; rather, alkali cation/H+ antiporters, which can alter pH and/or cation homeostasis locally and transiently, are prime candidates. Plants have a large family of predicted cation/H+ exchangers (CHX) of obscure function, in addition to the well-studied K+(Na+)/H+ exchangers (NHX). Here, we review the regulation of cytosolic and vacuolar pH, highlighting the similarities and distinctions of NHX and CHX members. In planta, alkalinization of the trans-Golgi network or vacuole by NHXs promotes membrane trafficking, endocytosis, cell expansion, and growth. CHXs localize to endomembranes and/or the plasma membrane and contribute to male fertility, pollen tube guidance, pollen wall construction, stomatal opening, and, in soybean (Glycine max), tolerance to salt stress. Three-dimensional structural models and mutagenesis of Arabidopsis (Arabidopsis thaliana) genes have allowed us to infer that AtCHX17 and AtNHX1 share a global architecture and a translocation core like bacterial Na+/H+ antiporters. Yet, the presence of distinct residues suggests that some CHXs differ from NHXs in pH sensing and electrogenicity. How H+ pumps, counter-ion fluxes, and cation/H+ antiporters are linked with signaling and membrane trafficking to remodel membranes and cell walls awaits further investigation.
Collapse
Affiliation(s)
- Heven Sze
- Department of Cell Biology and Molecular Genetics and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Salil Chanroj
- Department of Biotechnology, Burapha University, Chon-Buri 20131, Thailand
| |
Collapse
|
202
|
Lai H, Chiou JG, Zhurikhina A, Zyla TR, Tsygankov D, Lew DJ. Temporal regulation of morphogenetic events in Saccharomyces cerevisiae. Mol Biol Cell 2018; 29:2069-2083. [PMID: 29927361 PMCID: PMC6232962 DOI: 10.1091/mbc.e18-03-0188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tip growth in fungi involves highly polarized secretion and modification of the cell wall at the growing tip. The genetic requirements for initiating polarized growth are perhaps best understood for the model budding yeast Saccharomyces cerevisiae. Once the cell is committed to enter the cell cycle by activation of G1 cyclin/cyclin-dependent kinase (CDK) complexes, the polarity regulator Cdc42 becomes concentrated at the presumptive bud site, actin cables are oriented toward that site, and septin filaments assemble into a ring around the polarity site. Several minutes later, the bud emerges. Here, we investigated the mechanisms that regulate the timing of these events at the single-cell level. Septin recruitment was delayed relative to polarity establishment, and our findings suggest that a CDK-dependent septin “priming” facilitates septin recruitment by Cdc42. Bud emergence was delayed relative to the initiation of polarized secretion, and our findings suggest that the delay reflects the time needed to weaken the cell wall sufficiently for the cell to bud. Rho1 activation by Rom2 occurred at around the time of bud emergence, perhaps in response to local cell-wall weakening. This report reveals regulatory mechanisms underlying the morphogenetic events in the budding yeast.
Collapse
Affiliation(s)
- Helen Lai
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Anastasia Zhurikhina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
203
|
Ishii M, Lupashin VV, Nakano A. Detailed Analysis of the Interaction of Yeast COG Complex. Cell Struct Funct 2018; 43:119-127. [PMID: 29899178 DOI: 10.1247/csf.18014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Golgi apparatus is a central station for protein trafficking in eukaryotic cells. A widely accepted model of protein transport within the Golgi apparatus is cisternal maturation. Each cisterna has specific resident proteins, which are thought to be maintained by COPI-mediated transport. However, the mechanisms underlying specific sorting of these Golgi-resident proteins remain elusive. To obtain a clue to understand the selective sorting of vesicles between the Golgi cisterenae, we investigated the molecular arrangements of the conserved oligomeric Golgi (COG) subunits in yeast cells. Mutations in COG subunits cause defects in Golgi trafficking and glycosylation of proteins and are causative of Congenital Disorders of Glycosylation (CDG) in humans. Interactions among COG subunits in cytosolic and membrane fractions were investigated by co-immunoprecipitation. Cytosolic COG subunits existed as octamers, whereas membrane-associated COG subunits formed a variety of subcomplexes. Relocation of individual COG subunits to mitochondria resulted in recruitment of only a limited number of other COG subunits to mitochondria. These results indicate that COG proteins function in the forms of a variety of subcomplexes and suggest that the COG complex does not comprise stable tethering without other interactors.Key words: The Golgi apparatus, COG complex, yeast, membrane trafficking, multi-subunit tethering complex.
Collapse
Affiliation(s)
- Midori Ishii
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Vladimir V Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|
204
|
Lipke PN. What We Do Not Know about Fungal Cell Adhesion Molecules. J Fungi (Basel) 2018; 4:jof4020059. [PMID: 29772751 PMCID: PMC6023273 DOI: 10.3390/jof4020059] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
There has been extensive research on structure and function of fungal cell adhesion molecules, but the most of the work has been about adhesins in Candida albicans and Saccharomyces cerevisiae. These yeasts are members of a single ascomycete order, and adhesion molecules from the six other fungal phyla are only sparsely described in the literature. In these other phyla, most of the research is at the cellular level, rather than at the molecular level, so there has been little characterization of the adhesion molecules themselves. A catalog of known adhesins shows some common features: high Ser/Thr content, tandem repeats, N- and O-glycosylations, GPI anchors, dibasic sequence motifs, and potential amyloid-forming sequences. However, none of these features is universal. Known ligands include proteins and glycans on homologous cells and host cells. Existing and novel tools can exploit the availability of genome sequences to identify and characterize new fungal adhesins. These include bioinformatics tools and well-established yeast surface display models, which could be coupled with an adhesion substrate array. Thus, new knowledge could be exploited to answer key questions in fungal ecology, animal and plant pathogenesis, and roles of biofilms in infection and biomass turnover.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
- The Graduate Center, City University of New York, New York, NY 10016, USA.
| |
Collapse
|
205
|
In vitro and in vivo activity of hydrolyzed Saccharomyces cerevisiae against goat nematodes. Vet Parasitol 2018; 254:6-9. [DOI: 10.1016/j.vetpar.2018.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 11/20/2022]
|
206
|
Wang M, Nishihama R, Onishi M, Pringle JR. Role of the Hof1-Cyk3 interaction in cleavage-furrow ingression and primary-septum formation during yeast cytokinesis. Mol Biol Cell 2018; 29:597-609. [PMID: 29321253 PMCID: PMC6004579 DOI: 10.1091/mbc.e17-04-0227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, it is well established that Hof1, Cyk3, and Inn1 contribute to septum formation and cytokinesis. Because hof1∆ and cyk3∆ single mutants have relatively mild defects but hof1∆ cyk3∆ double mutants are nearly dead, it has been hypothesized that these proteins contribute to parallel pathways. However, there is also evidence that they interact physically. In this study, we examined this interaction and its functional significance in detail. Our data indicate that the interaction 1) is mediated by a direct binding of the Hof1 SH3 domain to a proline-rich motif in Cyk3; 2) occurs specifically at the time of cytokinesis but is independent of the (hyper)phosphorylation of both proteins that occurs at about the same time; 3) is dispensable for the normal localization of both proteins; 4) is essential for normal primary-septum formation and a normal rate of cleavage-furrow ingression; and 5) becomes critical for growth when either Inn1 or the type II myosin Myo1 (a key component of the contractile actomyosin ring) is absent. The similarity in phenotype between cyk3∆ mutants and mutants specifically lacking the Hof1-Cyk3 interaction suggests that the interaction is particularly important for Cyk3 function, but it may be important for Hof1 function as well.
Collapse
Affiliation(s)
- Meng Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Ryuichi Nishihama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
207
|
McMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S, Ong JX, Erlandson SC, Hilger D, Rasmussen SGF, Ring AM, Manglik A, Kruse AC. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 2018; 25:289-296. [PMID: 29434346 PMCID: PMC5839991 DOI: 10.1038/s41594-018-0028-6] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023]
Abstract
Camelid single-domain antibody fragments ('nanobodies') provide the remarkable specificity of antibodies within a single 15-kDa immunoglobulin VHH domain. This unique feature has enabled applications ranging from use as biochemical tools to therapeutic agents. Nanobodies have emerged as especially useful tools in protein structural biology, facilitating studies of conformationally dynamic proteins such as G-protein-coupled receptors (GPCRs). Nearly all nanobodies available to date have been obtained by animal immunization, a bottleneck restricting many applications of this technology. To solve this problem, we report a fully in vitro platform for nanobody discovery based on yeast surface display. We provide a blueprint for identifying nanobodies, demonstrate the utility of the library by crystallizing a nanobody with its antigen, and most importantly, we utilize the platform to discover conformationally selective nanobodies to two distinct human GPCRs. To facilitate broad deployment of this platform, the library and associated protocols are freely available for nonprofit research.
Collapse
Affiliation(s)
- Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alexander S Baier
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roberta Pascolutti
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Marcin Wegrecki
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sanduo Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Janice X Ong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah C Erlandson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | | | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
208
|
López-Ramírez LA, Hernández NV, Lozoya-Pérez NE, Lopes-Bezerra LM, Mora-Montes HM. Functional characterization of the Sporothrix schenckii Ktr4 and Ktr5, mannosyltransferases involved in the N-linked glycosylation pathway. Res Microbiol 2018; 169:188-197. [PMID: 29476824 DOI: 10.1016/j.resmic.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/22/2023]
Abstract
Sporothrix schenckii is one of the causative agents of the deep-seated mycosis sporotrichosis, a fungal infection with worldwide distribution. Fungus-specific molecules and biosynthetic pathways are potential targets for the development of new antifungal drugs. The MNT1/KRE2 gene family is a group of genes that encode fungus-specific Golgi-resident mannosyltransferases that participate in the synthesis of O-linked and N-linked glycans. While this family is composed of five and nine members in Candida albicans and Saccharomyces cerevisiae, respectively, the S. schenckii genome contains only three putative members. MNT1 has been previously characterized as an enzyme that participates in the synthesis of both N-linked and O-linked glycans. Here, we aimed to establish the functional role of the two remaining family members, KTR4 and KTR5, in the protein glycosylation pathways by using heterologous complementation in C. albicans mutants lacking genes of the MNT1/KRE2 family. The two S. schenckii genes restored defects in the elaboration of N-linked glycans, but no complementation of mutants that synthesize truncated O-linked glycans was observed. Therefore, our results suggest that MNT1 is the sole member with a role in O-linked glycan elaboration, whereas the three family members have redundant activity in the S. schenckii N-linked glycan synthesis.
Collapse
Affiliation(s)
- Luz A López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato Gto., Mexico
| | - Nahúm V Hernández
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato Gto., Mexico
| | - Nancy E Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato Gto., Mexico
| | - Leila M Lopes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Brazil; Faculdade de Farmácia, Universidade de São Paulo, Brazil
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato Gto., Mexico.
| |
Collapse
|
209
|
Andreu C, Del Olmo ML. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Appl Microbiol Biotechnol 2018; 102:2543-2561. [PMID: 29435617 DOI: 10.1007/s00253-018-8827-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés s/n. 46100 Burjassot, València, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, E-46100 Burjassot, València, Spain.
| |
Collapse
|
210
|
Li J, Mouyna I, Henry C, Moyrand F, Malosse C, Chamot-Rooke J, Janbon G, Latgé JP, Fontaine T. Glycosylphosphatidylinositol Anchors from Galactomannan and GPI-Anchored Protein Are Synthesized by Distinct Pathways in Aspergillus fumigatus. J Fungi (Basel) 2018; 4:E19. [PMID: 29393895 PMCID: PMC5872322 DOI: 10.3390/jof4010019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/16/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are lipid anchors allowing the exposure of proteins at the outer layer of the plasma membrane. In fungi, a number of GPI-anchored proteins (GPI-APs) are involved in the remodeling of the cell wall polymers. GPIs follow a specific biosynthetic pathway in the endoplasmic reticulum. After the transfer of the protein onto the GPI-anchor, a lipid remodeling occurs to substitute the diacylglycerol moiety by a ceramide. In addition to GPI-APs, A. fumigatus produces a GPI-anchored polysaccharide, the galactomannan (GM), that remains unique in the fungal kingdom. To investigate the role of the GPI pathway in the biosynthesis of the GM and cell wall organization, the deletion of PER1-coding for a phospholipase required for the first step of the GPI lipid remodeling-was undertaken. Biochemical characterization of the GPI-anchor isolated from GPI-APs showed that the PER1 deficient mutant produced a lipid anchor with a diacylglycerol. The absence of a ceramide on GPI-anchors in the Δper1 mutant led to a mislocation of GPI-APs and to an alteration of the composition of the cell wall alkali-insoluble fraction. On the other hand, the GM isolated from the Δper1 mutant membranes possesses a ceramide moiety as the parental strain, showing that GPI anchor of the GM follow a distinct unknown biosynthetic pathway.
Collapse
Affiliation(s)
- Jizhou Li
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Isabelle Mouyna
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Christine Henry
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Frédérique Moyrand
- Unité de Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Christian Malosse
- Unité de Spectrométrie de Masse pour la Biologie, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France.
| | - Julia Chamot-Rooke
- Unité de Spectrométrie de Masse pour la Biologie, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France.
| | - Guilhem Janbon
- Unité de Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Jean-Paul Latgé
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Thierry Fontaine
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
211
|
Wang J, Mao J, Yang G, Zheng F, Niu C, Li Y, Liu C, Li Q. The FKS family genes cause changes in cell wall morphology resulted in regulation of anti-autolytic ability in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2018; 249:49-56. [PMID: 29040859 DOI: 10.1016/j.biortech.2017.09.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to discuss the functions of FKS family genes which encode β-1, 3-glucan synthase regarding the viability and autolysis of yeast strain. Loss of FKS1 gene severely influences the viability and anti-autolytic ability of yeast. Mutation of FKS1 and FKS2 genes led to cell reconstruction, resulting in a sharp shrinkage of cell volume and decreased stress resistance, viability, and anti-autolytic ability. Deletion of FKS3 gene did not clearly influence the synthesis of β-1, 3-glucan of yeast but increased the strain's stress resistance, viability, and anti-autolytic ability. It is suggested that FKS3 would be the potential target for improving the stress resistance of yeast. The results revealed the relationship among FKS family genes and demonstrated their functions on yeast cell wall construction and anti-autolytic ability.
Collapse
Affiliation(s)
- Jinjing Wang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Jiangchuan Mao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Ge Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Feiyun Zheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Chengtuo Niu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Yongxian Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Chunfeng Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Qi Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
212
|
Wang Y, Niu X, Guo X, Yu H, Liu Z, Zhang Z, Yuan S. Heterologous expression, characterization and possible functions of the chitin deacetylases, Cda1 and Cda2, from mushroom Coprinopsis cinerea. Glycobiology 2018; 28:318-332. [DOI: 10.1093/glycob/cwy007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yanxin Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Xin Niu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Xiaoli Guo
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Han Yu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Wenjing Rd, Dushu lake campus, Suzhou, Jiangsu 215021, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| |
Collapse
|
213
|
Targeting Candida spp. to develop antifungal agents. Drug Discov Today 2018; 23:802-814. [PMID: 29353694 DOI: 10.1016/j.drudis.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/09/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023]
Abstract
Invasive fungal infections are a complex challenge throughout the world because of their high incidence, mainly in critically ill patients, and high mortality rates. The antifungal agents currently available are limited; thus, there is a need for the rapid development of new drugs. In silico methods are a modern strategy to explore interactions between new compounds and specific fungal targets, but they depend on precise genetic information. Here, we discuss the main Candida spp. target genes, including information about null mutants, virulence, cytolocalization, co-regulatory genes, and compounds that are related to protein expression. These data will provide a basis for the future in silico development of antifungal drugs.
Collapse
|
214
|
Daikoku S, Pendrill R, Kanie Y, Ito Y, Widmalm G, Kanie O. Synthesis and structural investigation of a series of mannose-containing oligosaccharides using mass spectrometry. Org Biomol Chem 2018; 16:228-238. [PMID: 29234770 DOI: 10.1039/c7ob02723k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of compounds associated with naturally occurring and biologically relevant glycans consisting of α-mannosides were prepared and analyzed using collision-induced dissociation (CID), energy-resolved mass spectrometry (ERMS), and 1H nuclear magnetic resonance spectroscopy. The CID experiments of sodiated species of disaccharides and ERMS experiments revealed that the order of stability of mannosyl linkages was as follows: 6-linked > 4-linked ≧ 2-linked > 3-linked mannosyl residues. Analysis of linear trisaccharides revealed that the order observed in disaccharides could be applied to higher glycans. A branched trisaccharide showed a distinct dissociation pattern with two constituting disaccharide ions. The estimation of the content of this ion mixture was possible using the disaccharide spectra. The hydrolysis of mannose linkages at 3- and 6-positions in the branched trisaccharide revealed that the 3-linkage was cleaved twice as fast as the 6-linkage. It was observed that the solution-phase hydrolysis and gas-phase dissociation have similar energetics.
Collapse
Affiliation(s)
- S Daikoku
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.
| | | | | | | | | | | |
Collapse
|
215
|
Negritto MC, Valdez C, Sharma J, Rosenberg C, Selassie CR. Growth Inhibition and DNA Damage Induced by X-Phenols in Yeast: A Quantitative Structure-Activity Relationship Study. ACS OMEGA 2017; 2:8568-8579. [PMID: 29302629 PMCID: PMC5748281 DOI: 10.1021/acsomega.7b01200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/14/2017] [Indexed: 05/07/2023]
Abstract
Phenolic compounds and their derivatives are ubiquitous constituents of numerous synthetic and natural chemicals that exist in the environment. Their toxicity is mostly attributed to their hydrophobicity and/or the formation of free radicals. In a continuation of the study of phenolic toxicity in a systematic manner, we have examined the biological responses of Saccharomyces cerevisiae to a series of mostly monosubstituted phenols utilizing a quantitative structure-activity relationship (QSAR) approach. The biological end points included a growth assay that determines the levels of growth inhibition induced by the phenols as well as a yeast deletion (DEL) assay that assesses the ability of X-phenols to induce DNA damage or DNA breaks. The QSAR analysis of cell growth patterns determined by IC50 and IC80 values indicates that toxicity is delineated by a hydrophobic, parabolic model. The DEL assay was then utilized to detect genomic deletions in yeast. The increase in the genotoxicity was enhanced by the electrophilicity of the phenolic substituents that were strong electron donors as well as by minimal hydrophobicity. The electrophilicities are represented by Brown's sigma plus values that are a variant of the Hammett sigma constants. A few mutant strains of genes involved in DNA repair were separately exposed to 2,6-di-tert-butyl-4-methyl-phenol (BHT) and butylated hydroxy anisole (BHA). They were subsequently screened for growth phenotypes. BHA-induced growth defects in most of the DNA repair null mutant strains, whereas BHT was unresponsive.
Collapse
Affiliation(s)
- M. Cristina Negritto
- Molecular
Biology Program, Department of Biology/Department of Chemistry, Pomona College, 175 West 6th Street, Claremont, California 91711, United States
| | - Clarissa Valdez
- Molecular
Biology Program, Department of Biology/Department of Chemistry, Pomona College, 175 West 6th Street, Claremont, California 91711, United States
| | - Jasmine Sharma
- Molecular
Biology Program, Department of Biology/Department of Chemistry, Pomona College, 175 West 6th Street, Claremont, California 91711, United States
| | - Christa Rosenberg
- Chemistry
Department, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Cynthia R. Selassie
- Chemistry
Department, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
- E-mail: (C.R.S.)
| |
Collapse
|
216
|
Muszewska A, Piłsyk S, Perlińska-Lenart U, Kruszewska JS. Diversity of Cell Wall Related Proteins in Human Pathogenic Fungi. J Fungi (Basel) 2017; 4:E6. [PMID: 29371499 PMCID: PMC5872309 DOI: 10.3390/jof4010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
The cell wall is one of the major keys to fungal identity. Fungi use their cell wall to sense the environment, and localize nutrients and competing microorganism. Pathogenic species additionally modify their cell walls to hide from a host's immune system. With the growing number of fungal infections and alarming shortage of available drugs, we are in need of new approaches to fight pathogens. The cell wall seems to be a natural target, since animal host cells are devoid of it. The current knowledge about fungal cell wall components is often limited, and there is huge diversity both in structure and composition between species. In order to compare the distribution of diverse proteins involved in cell wall biosynthesis and maintenance, we performed sequence homology searches against 24 fungal proteomes from distinct taxonomic groups, all reported as human pathogens. This approach led to identification of 4014 cell wall proteins (CWPs), and enabled us to speculate about cell wall composition in recently sequenced pathogenic fungi with limited experimental information. We found large expansions of several CWP families, in particular taxa, and a number of new CWPs possibly involved in evading host immune recognition. Here, we present a comprehensive evolutionary history of fungal CWP families in the context of the fungal tree of life.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | | | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| |
Collapse
|
217
|
The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. J Fungi (Basel) 2017; 4:jof4010001. [PMID: 29371494 PMCID: PMC5872304 DOI: 10.3390/jof4010001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.
Collapse
|
218
|
A computational model for regulation of nanoscale glucan exposure in Candida albicans. PLoS One 2017; 12:e0188599. [PMID: 29232689 PMCID: PMC5726713 DOI: 10.1371/journal.pone.0188599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is a virulent human opportunistic pathogen. It evades innate immune surveillance by masking an immunogenic cell wall polysaccharide, β-glucan, from recognition by the immunoreceptor Dectin-1. Glucan unmasking by the antifungal drug caspofungin leads to changes in the nanostructure of glucan exposure accessible to Dectin-1. The physical mechanism that regulates glucan exposure is poorly understood, but it controls the nanobiology of fungal pathogen recognition. We created computational models to simulate hypothetical physical processes of unmasking glucan in a biologically realistic distribution of cell wall glucan fibrils. We tested the predicted glucan exposure nanostructural features arising from these models against experimentally measured values. A completely spatially random unmasking process, reflective of random environmental damage to the cell wall, cannot account for experimental observations of glucan unmasking. However, the introduction of partially edge biased unmasking processes, consistent with an unmasking contribution from active, local remodeling at glucan exposure sites, produces markedly more accurate predictions of experimentally observed glucan nanoexposures in untreated and caspofungin-treated yeast. These findings suggest a model of glucan unmasking wherein cell wall remodeling processes in the local nanoscale neighborhood of glucan exposure sites are an important contributor to the physical process of drug-induced glucan unmasking in C. albicans.
Collapse
|
219
|
Bartolo-Aguilar Y, Dendooven L, Chávez-Cabrera C, Flores-Cotera LB, Hidalgo-Lara ME, Villa-Tanaca L, Marsch R. Autolysis of Pichia pastoris induced by cold. AMB Express 2017; 7:95. [PMID: 28500590 PMCID: PMC5429318 DOI: 10.1186/s13568-017-0397-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/02/2017] [Indexed: 01/17/2023] Open
Abstract
The production of recombinant biopharmaceutical proteins is a multi-billion dollar market. Protein recovery represents a major part of the production costs. Pichia pastoris is one of the microbial systems most used for the production of heterologous proteins. The use of a cold-induced promoter to express lytic enzymes in the yeast after the growth stage could reduce protein recovery costs. This study shows that a cold-shock can be applied to induce lysis of the yeast cells. A strain of P. pastoris was constructed in which the endogenous eng gene encoding a putative endo-β-1,3-glucanase was overexpressed using the cold-shock induced promoter of the cctα gene from Saccharomyces cerevisiae. In the transgenic P. pastoris, the expression of eng increased 3.6-fold after chilling the cells from 30 to 4 °C (cold-shock stage) followed by incubation for 6 h (eng expression stage). The culture was heated to 30 °C for 6 h (ENG synthesis stage) and kept at 37 °C for 24 h (lysis stage). After this procedure the cell morphology changed, spheroplasts were obtained and cellular lysis was observed. Thus, a clone of P. pastoris was obtained, which undergoes autolysis after a cold-shock.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Gustavo A. Madero, CDMX Mexico
| | - Luc Dendooven
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Gustavo A. Madero, CDMX Mexico
| | - Cipriano Chávez-Cabrera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Gustavo A. Madero, CDMX Mexico
| | - Luis B. Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Gustavo A. Madero, CDMX Mexico
| | - María E. Hidalgo-Lara
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Gustavo A. Madero, CDMX Mexico
| | - Lourdes Villa-Tanaca
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas del IPN, Prol. Carpio y Plan de Ayala S/N Col. Santo Tomás, 11340 Miguel Hidalgo, CDMX Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Gustavo A. Madero, CDMX Mexico
| |
Collapse
|
220
|
Molon M, Woznicka O, Zebrowski J. Cell wall biosynthesis impairment affects the budding lifespan of the Saccharomyces cerevisiae yeast. Biogerontology 2017; 19:67-79. [PMID: 29189912 PMCID: PMC5765204 DOI: 10.1007/s10522-017-9740-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
The Saccharomyces cerevisiae yeast is one of the most widely used model in studies of cellular and organismal biology, including as aging and proliferation. Although several constraints of aging and budding lifespan have been identified, these processes have not yet been fully understood. Previous studies of aging in yeast have focused mostly on the molecular basics of the underlying mechanisms, while physical aspects, particularly those related to the cell wall, were rather neglected. In this paper, we examine for the first time, to our knowledge, the impact of cell wall biosynthesis disturbances on the lifespan in the budding yeast. We have used a set of cell wall mutants, including knr4Δ, cts1Δ, chs3Δ, fks1Δ and mnn9Δ, which affect biosynthesis of all major cell wall compounds. Our results indicated that impairment of chitin biosynthesis and cell wall protein mannosylation reduced the budding lifespan, while disruption in the 1,3-β-glucan synthase activity had no adverse effect on that parameter. The impact varied in the severity and the most notable effect was observed for the mnn9Δ mutant. What was interesting, in the case of the dysfunction of the Knr4 protein playing the role of the transcriptional regulator of cell wall chitin and glucan synthesis, the lifespan increased significantly. We also report the phenotypic characteristics of cell wall-associated mutants as revealed by imaging of the cell wall using transmission electron microscopy, scanning electron microscopy and atomic force microscopy. In addition, our findings support the conviction that achievement of the state of hypertrophy may not be the only factor that determines the budding lifespan.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
221
|
Bamba T, Inokuma K, Hasunuma T, Kondo A. Enhanced cell-surface display of a heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces cerevisiae strain. J Biosci Bioeng 2017; 125:306-310. [PMID: 29175124 DOI: 10.1016/j.jbiosc.2017.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/22/2023]
Abstract
Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1.
Collapse
Affiliation(s)
- Takahiro Bamba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
222
|
González-Hernández RJ, Jin K, Hernández-Chávez MJ, Díaz-Jiménez DF, Trujillo-Esquivel E, Clavijo-Giraldo DM, Tamez-Castrellón AK, Franco B, Gow NAR, Mora-Montes HM. Phosphomannosylation and the Functional Analysis of the Extended Candida albicans MNN4-Like Gene Family. Front Microbiol 2017; 8:2156. [PMID: 29163439 PMCID: PMC5681524 DOI: 10.3389/fmicb.2017.02156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/20/2017] [Indexed: 11/21/2022] Open
Abstract
Phosphomannosylation is a modification of cell wall proteins that occurs in some species of yeast-like organisms, including the human pathogen Candida albicans. These modified mannans confer a negative charge to the wall, which is important for the interactions with phagocytic cells of the immune systems and cationic antimicrobial peptides. In Saccharomyces cerevisiae, the synthesis of phosphomannan relies on two enzymes, the phosphomannosyltransferase Ktr6 and its positive regulator Mnn4. However, in C. albicans, at least three phosphomannosyltransferases, Mnn4, Mnt3 and Mnt5, participate in the addition of phosphomannan. In addition to MNN4, C. albicans has a MNN4-like gene family composed of seven other homologous members that have no known function. Here, using the classical mini-Ura-blaster approach and the new gene knockout CRISPR-Cas9 system for gene disruption, we generated mutants lacking single and multiple genes of the MNN4 family; and demonstrate that, although Mnn4 has a major impact on the phosphomannan content, MNN42 was also required for full protein phosphomannosylation. The reintroduction of MNN41, MNN42, MNN46, or MNN47 in a genetic background lacking MNN4 partially restored the phenotype associated with the mnn4Δ null mutant, suggesting that there is partial redundancy of function between some family members and that the dominant effect of MNN4 over other genes could be due to its relative abundance within the cell. We observed that additional copies of alleles number of any of the other family members, with the exception of MNN46, restored the phosphomannan content in cells lacking both MNT3 and MNT5. We, therefore, suggest that phosphomannosylation is achieved by three groups of proteins: [i] enzymes solely activated by Mnn4, [ii] enzymes activated by the dual action of Mnn4 and any of the products of other MNN4-like genes, with exception of MNN46, and [iii] activation of Mnt3 and Mnt5 by Mnn4 and Mnn46. Therefore, although the MNN4-like genes have the potential to functionally redundant with Mnn4, they apparently do not play a major role in cell wall mannosylation under most in vitro growth conditions. In addition, our phenotypic analyses indicate that several members of this gene family influence the ability of macrophages to phagocytose C. albicans cells.
Collapse
Affiliation(s)
| | - Kai Jin
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Marco J. Hernández-Chávez
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Diana F. Díaz-Jiménez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato, Mexico
| | - Elías Trujillo-Esquivel
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Diana M. Clavijo-Giraldo
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Alma K. Tamez-Castrellón
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Héctor M. Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
223
|
Abstract
The Schizosaccharomyces pombe cell wall is a rigid exoskeletal structure mainly composed of interlinked glucose polysaccharides and galactomannoproteins. It is essential for survival of the fission yeast, as it prevents cells from bursting from internal turgor pressure and protects them from mechanical injuries. Additionally, the cell wall determines the cell shape and, therefore, a better knowledge of cell wall structure and composition could provide valuable data in S. pombe morphogenetic studies. Here, we provide information about this structure and the current reliable methods for rapid analysis of the cell wall polymers by specific enzymatic and chemical degradations of purified cell walls.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Juan C Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
224
|
The PHR Family: The Role of Extracellular Transglycosylases in Shaping Candida albicans Cells. J Fungi (Basel) 2017; 3:jof3040059. [PMID: 29371575 PMCID: PMC5753161 DOI: 10.3390/jof3040059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is an opportunistic microorganism that can become a pathogen causing mild superficial mycosis or more severe invasive infections that can be life-threatening for debilitated patients. In the etiology of invasive infections, key factors are the adaptability of C. albicans to the different niches of the human body and the transition from a yeast form to hypha. Hyphal morphology confers high adhesiveness to the host cells, as well as the ability to penetrate into organs. The cell wall plays a crucial role in the morphological changes C. albicans undergoes in response to specific environmental cues. Among the different categories of enzymes involved in the formation of the fungal cell wall, the GH72 family of transglycosylases plays an important assembly role. These enzymes cut and religate β-(1,3)-glucan, the major determinant of cell shape. In C. albicans, the PHR family encodes GH72 enzymes, some of which work in specific environmental conditions. In this review, we will summarize the work from the initial discovery of PHR genes to the study of the pH-dependent expression of PHR1 and PHR2, from the characterization of the gene products to the recent findings concerning the stress response generated by the lack of GH72 activity in C. albicans hyphae.
Collapse
|
225
|
Hernández NV, López-Ramírez LA, Díaz-Jiménez DF, Mellado-Mojica E, Martínez-Duncker I, López MG, Mora-Montes HM. Saccharomyces cerevisiae KTR4 , KTR5 and KTR7 encode mannosyltransferases differentially involved in the N - and O -linked glycosylation pathways. Res Microbiol 2017; 168:740-750. [DOI: 10.1016/j.resmic.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 12/23/2022]
|
226
|
Schiavone M, Déjean S, Sieczkowski N, Castex M, Dague E, François JM. Integration of Biochemical, Biophysical and Transcriptomics Data for Investigating the Structural and Nanomechanical Properties of the Yeast Cell Wall. Front Microbiol 2017; 8:1806. [PMID: 29085340 PMCID: PMC5649194 DOI: 10.3389/fmicb.2017.01806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022] Open
Abstract
The yeast cell is surrounded by a cell wall conferring protection and resistance to environmental conditions that can be harmful. Identify the molecular cues (genes) which shape the biochemical composition and the nanomechanical properties of the cell wall and the links between these two parameters represent a major issue in the understanding of the biogenesis and the molecular assembly of this essential cellular structure, which may have consequences in diverse biotechnological applications. We addressed this question in two ways. Firstly, we compared the biochemical and biophysical properties using atomic force microscopy (AFM) methods of 4 industrial strains with the laboratory sequenced strain BY4743 and used transcriptome data of these strains to infer biological hypothesis about differences of these properties between strains. This comparative approach showed a 4–6-fold higher hydrophobicity of industrial strains that was correlated to higher expression of genes encoding adhesin and adhesin-like proteins and not to their higher mannans content. The second approach was to employ a multivariate statistical analysis to identify highly correlated variables among biochemical, biophysical and genes expression data. Accordingly, we found a tight association between hydrophobicity and adhesion events that positively correlated with a set of 22 genes in which the main enriched GO function was the sterol metabolic process. We also identified a strong association of β-1,3-glucans with contour length that corresponds to the extension of mannans chains upon pulling the mannosyl units with the lectin-coated AFM tips. This association was positively correlated with a group of 27 genes in which the seripauperin multigene family was highly documented and negatively connected with a set of 23 genes whose main GO biological process was sulfur assimilation/cysteine biosynthetic process. On the other hand, the elasticity modulus was found weakly associated with levels of β-1,6-glucans, and this biophysical variable was positively correlated with a set of genes implicated in microtubules polymerization, tubulin folding and mitotic organization.
Collapse
Affiliation(s)
- Marion Schiavone
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, Institut National des Sciences Appliquées de Toulouse, UPS, INP, Université de ToulouseToulouse, France.,Lallemand SASBlagnac, France
| | | | | | | | - Etienne Dague
- Laboratoire D'analyse et D'architecture des Systèmes du-Centre National de la Recherche Scientifique, Université de ToulouseToulouse, France
| | - Jean M François
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, Institut National des Sciences Appliquées de Toulouse, UPS, INP, Université de ToulouseToulouse, France
| |
Collapse
|
227
|
Pan HP, Wang N, Tachikawa H, Nakanishi H, Gao XD. β-1,6-glucan synthesis-associated genes are required for proper spore wall formation in Saccharomyces cerevisiae. Yeast 2017; 34:431-446. [PMID: 28732129 DOI: 10.1002/yea.3244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/16/2017] [Accepted: 07/16/2017] [Indexed: 01/30/2023] Open
Abstract
The yeast spore wall is an excellent model to study the assembly of an extracellular macromolecule structure. In the present study, mutants defective in β-1,6-glucan synthesis, including kre1∆, kre6∆, kre9∆ and big1∆, were sporulated to analyse the effect of β-1,6-glucan defects on the spore wall. Except for kre6∆, these mutant spores were sensitive to treatment with ether, suggesting that the mutations perturb the integrity of the spore wall. Morphologically, the mutant spores were indistinguishable from wild-type spores. They lacked significant sporulation defects partly because the chitosan layer, which covers the glucan layer, compensated for the damage. The proof for this model was obtained from the effect of the additional deletion of CHS3 that resulted in the absence of the chitosan layer. Among the double mutants, the most severe spore wall deficiency was observed in big1∆ spores. The majority of the big1∆chs3∆ mutants failed to form visible spores at a higher temperature. Given that the big1∆ mutation caused a failure to attach a GPI-anchored reporter, Cwp2-GFP, to the spore wall, β-1,6-glucan is involved in tethering of GPI-anchored proteins in the spore wall as well as in the vegetative cell wall. Thus, β-1,6-glucan is required for proper organization of the spore wall. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hua-Ping Pan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hiroyuki Tachikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
228
|
Impact of Glucose Concentration and NaCl Osmotic Stress on Yeast Cell Wall β-d-Glucan Formation during Anaerobic Fermentation Process. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3030044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
229
|
Rahlwes KC, Ha SA, Motooka D, Mayfield JA, Baumoel LR, Strickland JN, Torres-Ocampo AP, Nakamura S, Morita YS. The cell envelope-associated phospholipid-binding protein LmeA is required for mannan polymerization in mycobacteria. J Biol Chem 2017; 292:17407-17417. [PMID: 28855252 DOI: 10.1074/jbc.m117.804377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/28/2017] [Indexed: 11/06/2022] Open
Abstract
The integrity of the distinguishing, multilaminate cell envelope surrounding mycobacteria is critical to their survival and pathogenesis. The prevalence of phosphatidylinositol mannosides in the cell envelope suggests an important role in the mycobacterial life cycle. Indeed, deletion of the pimE gene (ΔpimE) encoding the first committed step in phosphatidylinositol hexamannoside biosynthesis in Mycobacterium smegmatis results in the formation of smaller colonies than wild-type colonies on Middlebrook 7H10 agar. To further investigate potential contributors to cell-envelope mannan biosynthesis while taking advantage of this colony morphology defect, we isolated spontaneous suppressor mutants of ΔpimE that reverted to wild-type colony size. Of 22 suppressor mutants, 6 accumulated significantly shorter lipomannan or lipoarabinomannan. Genome sequencing of these mutants revealed mutations in genes involved in the lipomannan/lipoarabinomannan biosynthesis, such as those encoding the arabinosyltransferase EmbC and the mannosyltransferase MptA. Furthermore, we identified three mutants carrying a mutation in a previously uncharacterized gene, MSMEG_5785, that we designated lmeA Complementation of these suppressor mutants with lmeA restored the original ΔpimE phenotypes and deletion of lmeA in wild-type M. smegmatis resulted in smaller lipomannan, as observed in the suppressor mutants. LmeA carries a predicted N-terminal signal peptide, and density gradient fractionation and detergent extractability experiments indicated that LmeA localizes to the cell envelope. Using a lipid ELISA, we found that LmeA binds to plasma membrane phospholipids, such as phosphatidylethanolamine and phosphatidylinositol. LmeA is widespread throughout the Corynebacteriales; therefore, we concluded that LmeA is an evolutionarily conserved cell-envelope protein critical for controlling the mannan chain length of lipomannan/lipoarabinomannan.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- From the Department of Microbiology, University of Massachusetts, Amherst, MA 01003
| | - Stephanie A Ha
- From the Department of Microbiology, University of Massachusetts, Amherst, MA 01003
| | - Daisuke Motooka
- the Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Jacob A Mayfield
- the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02445
| | - Lisa R Baumoel
- From the Department of Microbiology, University of Massachusetts, Amherst, MA 01003
| | - Justin N Strickland
- From the Department of Microbiology, University of Massachusetts, Amherst, MA 01003
| | - Ana P Torres-Ocampo
- From the Department of Microbiology, University of Massachusetts, Amherst, MA 01003
| | - Shota Nakamura
- the Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yasu S Morita
- From the Department of Microbiology, University of Massachusetts, Amherst, MA 01003,
| |
Collapse
|
230
|
Abstract
We focus this article on turning a biofilm inside out. The "inside" of the biofilm comprises the individual biofilm-related phenotypes, their environmental drivers and genetic determinants, and the coordination of gene functions through transcriptional regulators. Investigators have viewed the inside of the biofilm through diverse approaches, and this article will attempt to capture the essence of many. The ultimate goal is to connect the inside to the "outside," which we view as biofilm structure, development, pharmacological attributes, and medical impact.
Collapse
|
231
|
Abstract
β-(1,3)-Glucan, the major fungal cell wall component, ramifies through β-(1,6)-glycosidic linkages, which facilitates its binding with other cell wall components contributing to proper cell wall assembly. Using Saccharomyces cerevisiae as a model, we developed a protocol to quantify β-(1,6)-branching on β-(1,3)-glucan. Permeabilized S. cerevisiae and radiolabeled substrate UDP-(14C)glucose allowed us to determine branching kinetics. A screening aimed at identifying deletion mutants with reduced branching among them revealed only two, the bgl2Δ and gas1Δ mutants, showing 15% and 70% reductions in the branching, respectively, compared to the wild-type strain. Interestingly, a recombinant Gas1p introduced β-(1,6)-branching on the β-(1,3)-oligomers following its β-(1,3)-elongase activity. Sequential elongation and branching activity of Gas1p occurred on linear β-(1,3)-oligomers as well as Bgl2p-catalyzed products [short β-(1,3)-oligomers linked by a linear β-(1,6)-linkage]. The double S. cerevisiae gas1Δ bgl2Δ mutant showed a drastically sick phenotype. An ScGas1p ortholog, Gel4p from Aspergillus fumigatus, also showed dual β-(1,3)-glucan elongating and branching activity. Both ScGas1p and A. fumigatus Gel4p sequences are endowed with a carbohydrate binding module (CBM), CBM43, which was required for the dual β-(1,3)-glucan elongating and branching activity. Our report unravels the β-(1,3)-glucan branching mechanism, a phenomenon occurring during construction of the cell wall which is essential for fungal life. The fungal cell wall is essential for growth, morphogenesis, protection, and survival. In spite of being essential, cell wall biogenesis, especially the core β-(1,3)-glucan ramification, is poorly understood; the ramified β-(1,3)-glucan interconnects other cell wall components. Once linear β-(1,3)-glucan is synthesized by plasma membrane-bound glucan synthase, the subsequent event is its branching event in the cell wall space. Using Saccharomyces cerevisiae as a model, we identified GH72 and GH17 family glycosyltransferases, Gas1p and Bgl2p, respectively, involved in the β-(1,3)-glucan branching. The sick phenotype of the double Scgas1Δ bgl2Δ mutant suggested that β-(1,3)-glucan branching is essential. In addition to ScGas1p, GH72 family ScGas2p and Aspergillus fumigatus Gel4p, having CBM43 in their sequences, showed dual β-(1,3)-glucan elongating and branching activity. Our report identifies the fungal cell wall β-(1,3)-glucan branching mechanism. The essentiality of β-(1,3)-glucan branching suggests that enzymes involved in the glucan branching could be exploited as antifungal targets.
Collapse
|
232
|
Abstract
The polysaccharide-rich wall, which envelopes the fungal cell, is pivotal to the maintenance of cellular integrity and for the protection of the cell from external aggressors - such as environmental fluxes and during host infection. This review considers the commonalities in the composition of the wall across the fungal kingdom, addresses how little is known about the assembly of the polysaccharide matrix, and considers changes in the wall of plant-pathogenic fungi during on and in planta growth, following the elucidation of infection structures requiring cell wall alterations. It highlights what is known about the phytopathogenic fungal wall and what needs to be discovered.
Collapse
Affiliation(s)
- Ivey Geoghegan
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK; School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Sarah Gurr
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK; School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
233
|
Fluconazole-Induced Ploidy Change in Cryptococcus neoformans Results from the Uncoupling of Cell Growth and Nuclear Division. mSphere 2017. [PMID: 28630940 PMCID: PMC5471349 DOI: 10.1128/msphere.00205-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Azoles are antifungals that are widely utilized due to relatively low toxicity and cost of treatment. One of their drawbacks, however, is that azoles are primarily cytostatic, leaving fungal cells capable of developing drug resistance. The human pathogen Cryptococcus neoformans acquires resistance to the azole drug fluconazole (FLC) through the development of aneuploidy, leading to elevated expression of key resistance genes, a mechanism that is also common for Candida albicans (K. J. Kwon-Chung and Y. C. Chang, PLoS Pathog 8:e1003022, 2012, https://doi.org/10.1371/journal.ppat.1003022; J. Morschhäuser, J Microbiol 54:192–201, 2016, https://doi.org/10.1007/s12275-016-5628-4). However, the exact ways in which FLC contributes to increased resistance in either of these important fungal pathogens remain unclear. Here we found that FLC treatment leads to an increase in DNA content in C. neoformans through multiple mechanisms, potentially increasing the size of a pool of cells from which aneuploids with increased resistance are selected. This study demonstrated the importance of FLC’s inhibitory effects on growth and cytokinesis in the generation of cell populations with decreased sensitivity to the drug. Cryptococcus neoformans is a pathogenic yeast that causes lethal cryptococcal meningitis in immunocompromised patients. One of the challenges in treating cryptococcosis is the development of resistance to azole antifungals. Previous studies linked azole resistance to elevated numbers of copies of critical resistance genes in aneuploid cells. However, how aneuploidy is formed in the presence of azole drugs remains unclear. This study showed that treatment with inhibitory concentrations of an azole drug, fluconazole (FLC), resulted in a significant population of cells with increased DNA content, through the following defects: inhibition of budding, premature mitosis, and inhibition of cytokinesis followed by replication in the mother cell. Inhibition of and/or a delay in cytokinesis led to the formation of cells with two or more daughter cells attached (multimeric cells). To investigate which part of cytokinesis fails in the presence of FLC, the dynamics of the actomyosin ring (AMR), septins, and Cts1, a protein involved in cell separation, were analyzed with time-lapse microscopy. Following the constriction of the AMR, septins assembled and the septum was formed between the mother and daughter cells. However, final degradation of the septum was affected. Enlarged cells with aberrant morphology, including multimeric cells, exhibited an increased potential to proliferate in the presence of FLC. These findings suggest that pleiotropic effects of FLC on growth and mitotic division lead to an increase in DNA content, resulting in cells less sensitive to the drug. Cells with increased DNA content continue to proliferate and therefore increase the chance of forming resistant populations. IMPORTANCE Azoles are antifungals that are widely utilized due to relatively low toxicity and cost of treatment. One of their drawbacks, however, is that azoles are primarily cytostatic, leaving fungal cells capable of developing drug resistance. The human pathogen Cryptococcus neoformans acquires resistance to the azole drug fluconazole (FLC) through the development of aneuploidy, leading to elevated expression of key resistance genes, a mechanism that is also common for Candida albicans (K. J. Kwon-Chung and Y. C. Chang, PLoS Pathog 8:e1003022, 2012, https://doi.org/10.1371/journal.ppat.1003022; J. Morschhäuser, J Microbiol 54:192–201, 2016, https://doi.org/10.1007/s12275-016-5628-4). However, the exact ways in which FLC contributes to increased resistance in either of these important fungal pathogens remain unclear. Here we found that FLC treatment leads to an increase in DNA content in C. neoformans through multiple mechanisms, potentially increasing the size of a pool of cells from which aneuploids with increased resistance are selected. This study demonstrated the importance of FLC’s inhibitory effects on growth and cytokinesis in the generation of cell populations with decreased sensitivity to the drug.
Collapse
|
234
|
Zatorska E, Gal L, Schmitt J, Bausewein D, Schuldiner M, Strahl S. Cellular Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast. Int J Mol Sci 2017; 18:ijms18061226. [PMID: 28598353 PMCID: PMC5486049 DOI: 10.3390/ijms18061226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
O-Mannosylation is a type of protein glycosylation initiated in the endoplasmic reticulum (ER) by the protein O-mannosyltransferase (PMT) family. Despite the vital role of O-mannosylation, its molecular functions and regulation are not fully characterized. To further explore the cellular impact of protein O-mannosylation, we performed a genome-wide screen to identify Saccharomyces cerevisiae mutants with increased sensitivity towards the PMT-specific inhibitor compound R3A-5a. We identified the cell wall and the ER as the cell compartments affected most upon PMT inhibition. Especially mutants with defects in N-glycosylation, biosynthesis of glycosylphosphatidylinositol-anchored proteins and cell wall β-1,6-glucan showed impaired growth when O-mannosylation became limiting. Signaling pathways that counteract cell wall defects and unbalanced ER homeostasis, namely the cell wall integrity pathway and the unfolded protein response, were highly crucial for the cell growth. Moreover, among the most affected mutants, we identified Ost3, one of two homologous subunits of the oligosaccharyltransferase complexes involved in N-glycosylation, suggesting a functional link between the two pathways. Indeed, we identified Pmt2 as a substrate for Ost3 suggesting that the reduced function of Pmt2 in the absence of N-glycosylation promoted sensitivity to the drug. Interestingly, even though S. cerevisiae Pmt1 and Pmt2 proteins are highly similar on the sequence, as well as the structural level and act as a complex, we identified only Pmt2, but not Pmt1, as an Ost3-specific substrate protein.
Collapse
Affiliation(s)
- Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Jaro Schmitt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Daniela Bausewein
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
235
|
Campbell C, Nanjundaswamy AK, Njiti V, Xia Q, Chukwuma F. Value-added probiotic development by high-solid fermentation of sweet potato with Saccharomyces boulardii. Food Sci Nutr 2017; 5:633-638. [PMID: 28572951 PMCID: PMC5448380 DOI: 10.1002/fsn3.441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/25/2016] [Accepted: 10/02/2016] [Indexed: 12/30/2022] Open
Abstract
Controlled fermentation of Sweet potato (Ipomoea batatas) var. Beauregard by yeast, Saccharomyces boulardii (MAY 796) to enhance the nutritional value of sweet potato was investigated. An average 8.00 × 1010 Colony Forming Units (CFU)/g of viable cells were obtained over 5‐day high‐solid fermentation. Yeast cell viability did not change significantly over time at 4°C whereas the number of viable yeast cells reduced significantly at room temperature (25°C), which was approximately 40% in 12 months. Overall, the controlled fermentation of sweet potato by MAY 796 enhanced protein, crude fiber, neutral detergent fiber, acid detergent fiber, amino acid, and fatty acid levels. Development of value‐added sweet potato has a great potential in animal feed and human nutrition. S. boulardii‐ fermented sweet potato has great potential as probiotic‐enriched animal feed and/or functional food for human nutrition.
Collapse
Affiliation(s)
- Carmen Campbell
- Department of Agriculture School of Agriculture, Research, Extension and Applied Sciences Alcorn State University Lorman MS USA
| | - Ananda K Nanjundaswamy
- Department of Agriculture School of Agriculture, Research, Extension and Applied Sciences Alcorn State University Lorman MS USA
| | - Victor Njiti
- Department of Agriculture School of Agriculture, Research, Extension and Applied Sciences Alcorn State University Lorman MS USA
| | - Qun Xia
- Department of Agriculture School of Agriculture, Research, Extension and Applied Sciences Alcorn State University Lorman MS USA
| | - Franklin Chukwuma
- Department of Agriculture School of Agriculture, Research, Extension and Applied Sciences Alcorn State University Lorman MS USA
| |
Collapse
|
236
|
Zvonarev AN, Crowley DE, Ryazanova LP, Lichko LP, Rusakova TG, Kulakovskaya TV, Dmitriev VV. Cell wall canals formed upon growth of Candida maltosa in the presence of hexadecane are associated with polyphosphates. FEMS Yeast Res 2017; 17:3798215. [DOI: 10.1093/femsyr/fox026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/01/2017] [Indexed: 01/01/2023] Open
|
237
|
Abstract
We focus this article on turning a biofilm inside out. The "inside" of the biofilm comprises the individual biofilm-related phenotypes, their environmental drivers and genetic determinants, and the coordination of gene functions through transcriptional regulators. Investigators have viewed the inside of the biofilm through diverse approaches, and this article will attempt to capture the essence of many. The ultimate goal is to connect the inside to the "outside," which we view as biofilm structure, development, pharmacological attributes, and medical impact.
Collapse
Affiliation(s)
- Katherine Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
238
|
Gohlke S, Muthukrishnan S, Merzendorfer H. In Vitro and In Vivo Studies on the Structural Organization of Chs3 from Saccharomyces cerevisiae. Int J Mol Sci 2017; 18:E702. [PMID: 28346351 PMCID: PMC5412288 DOI: 10.3390/ijms18040702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
Chitin biosynthesis in yeast is accomplished by three chitin synthases (Chs) termed Chs1, Chs2 and Chs3, of which the latter accounts for most of the chitin deposited within the cell wall. While the overall structures of Chs1 and Chs2 are similar to those of other chitin synthases from fungi and arthropods, Chs3 lacks some of the C-terminal transmembrane helices raising questions regarding its structure and topology. To fill this gap of knowledge, we performed bioinformatic analyses and protease protection assays that revealed significant information about the catalytic domain, the chitin-translocating channel and the interfacial helices in between. In particular, we identified an amphipathic, crescent-shaped α-helix attached to the inner side of the membrane that presumably controls the channel entrance and a finger helix pushing the polymer into the channel. Evidence has accumulated in the past years that chitin synthases form oligomeric complexes, which may be necessary for the formation of chitin nanofibrils. However, the functional significance for living yeast cells has remained elusive. To test Chs3 oligomerization in vivo, we used bimolecular fluorescence complementation. We detected oligomeric complexes at the bud neck, the lateral plasma membrane, and in membranes of Golgi vesicles, and analyzed their transport route using various trafficking mutants.
Collapse
Affiliation(s)
- Simon Gohlke
- Department of Biology and Chemistry, University of Osnabrück, 49068 Osnabrück, Germany.
- Institute of Biology, University of Siegen, 57068 Siegen, Germany.
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry & Molecular Biophysics, Kansas-State University, Manhattan 66506, KS, USA.
| | - Hans Merzendorfer
- Department of Biology and Chemistry, University of Osnabrück, 49068 Osnabrück, Germany.
- Institute of Biology, University of Siegen, 57068 Siegen, Germany.
| |
Collapse
|
239
|
Critical role for CaFEN1 and CaFEN12 of Candida albicans in cell wall integrity and biofilm formation. Sci Rep 2017; 7:40281. [PMID: 28079132 PMCID: PMC5227966 DOI: 10.1038/srep40281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023] Open
Abstract
Sphingolipids are involved in several cellular functions, including maintenance of cell wall integrity. To gain insight into the role of individual genes of sphingolipid biosynthetic pathway, we have screened Saccharomyces cerevisiae strains deleted in these genes for sensitivity to cell wall perturbing agents calcofluor white and congo red. Only deletants of FEN1 and SUR4 genes were found to be sensitive to both these agents. Candida albicans strains deleted in their orthologs, CaFEN1 and CaFEN12, respectively, also showed comparable phenotypes, and a strain deleted for both these genes was extremely sensitive to cell wall perturbing agents. Deletion of these genes was reported earlier to sensitise cells to amphotericin B (AmB), which is a polyene drug that kills the cells mainly by binding and sequestering ergosterol from the plasma membrane. Here we show that their AmB sensitivity is likely due to their cell wall defect. Further, we show that double deletant of C. albicans is defective in hyphae formation as well as biofilm development. Together this study reveals that deletion of FEN1 and SUR4 orthologs of C. albicans leads to impaired cell wall integrity and biofilm formation, which in turn sensitise cells to AmB.
Collapse
|
240
|
Grewal Y, Shiddiky MJA, Mahler SM, Cangelosi GA, Trau M. Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30649-30664. [PMID: 27762541 PMCID: PMC5114700 DOI: 10.1021/acsami.6b09263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 05/06/2023]
Abstract
Rapid progress in disease biomarker discovery has increased the need for robust detection technologies. In the past several years, the designs of many immunoaffinity reagents have focused on lowering costs and improving specificity while also promoting stability. Antibody fragments (scFvs) have long been displayed on the surface of yeast and phage libraries for selection; however, the stable production of such fragments presents challenges that hamper their widespread use in diagnostics. Membrane and cell wall proteins similarly suffer from stability problems when solubilized from their native environment. Recently, cell envelope compositions that maintain membrane proteins in native or native-like lipid environment to improve their stability have been developed. This cell envelope composition approach has now been adapted toward stabilizing antibody fragments by retaining their native cell wall environment. A new class of immunoaffinity reagents has been developed that maintains antibody fragment attachment to yeast cell wall. Herein, we review recent strategies that incorporate cell wall fragments with functional scFvs, which are designed for easy production while maintaining specificity and stability when in use with simple detection platforms. These cell wall based antibody fragments are globular in structure, and heterogeneous in size, with fragments ranging from tens to hundreds of nanometers in size. These fragments appear to retain activity once immobilized onto biosensor surfaces for the specific and sensitive detection of pathogen antigens. They can be quickly and economically generated from a yeast display library and stored lyophilized, at room temperature, for up to a year with little effect on stability. This new format of scFvs provides stability, in a simple and low-cost manner toward the use of scFvs in biosensor applications. The production and "panning" of such antibody cell wall composites are also extremely facile, enabling the rapid adoption of stable and inexpensive affinity reagents for emerging infectious threats.
Collapse
Affiliation(s)
- Yadveer
S. Grewal
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Muhammad J. A. Shiddiky
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen M. Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology
(AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerard A. Cangelosi
- School
of Public Health, University of Washington, Seattle, Washington 98195, United States
| | - Matt Trau
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
241
|
Xu S, Zhang GY, Zhang H, Kitajima T, Nakanishi H, Gao XD. Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae. Microb Cell Fact 2016; 15:179. [PMID: 27769287 PMCID: PMC5073930 DOI: 10.1186/s12934-016-0575-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/03/2016] [Indexed: 11/14/2022] Open
Abstract
Background To humanize yeast N-glycosylation pathways, genes involved in yeast specific hyper-mannosylation must be disrupted followed by the introduction of genes catalyzing the synthesis, transport, and addition of human sugars. However, deletion of these genes, for instance, OCH1, which initiates hyper-mannosylation, could cause severe defects in cell growth, morphogenesis and response to environmental challenges. Results In this study, overexpression of RHO1, which encodes the Rho1p small GTPase, is confirmed to partially recover the growth defect of Saccharomyces cerevisiae Δalg3Δoch1 double mutant strain. In addition, transmission electron micrographs indicated that the cell wall structure of RHO1-expressed cells have an enhanced glucan layer and also a recovered mannoprotein layer, revealing the effect of Rho1p GTPase on cell wall biosynthesis. Similar complementation phenotypes have been confirmed by overexpression of the gene that encodes Fks2 protein, a catalytic subunit of a 1,3-β-glucan synthase. Besides the recovery of cell wall structure, the RHO1-overexpressed Δalg3Δoch1 strain also showed improved abilities in temperature tolerance, osmotic potential and drug sensitivity, which were not observed in the Δalg3Δoch1-FKS2 cells. Moreover, RHO1 overexpression could also increase N-glycan site occupancy and the amount of secreted glycoproteins. Conclusions Overexpression of RHO1 in ‘humanized’ glycoprotein producing yeasts could significantly facilitate its future industrial applications for the production of therapeutic glycoproteins. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0575-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sha Xu
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ge-Yuan Zhang
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Huijie Zhang
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Toshihiko Kitajima
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Hideki Nakanishi
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiao-Dong Gao
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
242
|
Ugbogu EA, Wang K, Schweizer LM, Schweizer M. Metabolic gene products have evolved to interact with the cell wall integrity pathway inSaccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow092. [DOI: 10.1093/femsyr/fow092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
|
243
|
Identification of Genes in Candida glabrata Conferring Altered Responses to Caspofungin, a Cell Wall Synthesis Inhibitor. G3-GENES GENOMES GENETICS 2016; 6:2893-907. [PMID: 27449515 PMCID: PMC5015946 DOI: 10.1534/g3.116.032490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Candida glabrata is an important human fungal pathogen whose incidence continues to rise. Because many clinical isolates are resistant to azole drugs, the drugs of choice to treat such infections are members of the echinocandin family, although there are increasing reports of resistance to these drugs as well. In efforts to better understand the genetic changes that lead to altered responses to echinocandins, we screened a transposon-insertion library of mutants for strains to identify genes that are important for cellular responses to caspofungin, a member of this drug family. We identified 16 genes that, when disrupted, caused increased tolerance, and 48 genes that, when disrupted, caused increased sensitivity compared to the wild-type parental strain. Four of the genes identified as causing sensitivity are orthologs of Saccharomyces cerevisiae genes encoding proteins important for the cell wall integrity (CWI) pathway. In addition, several other genes are orthologs of the high affinity Ca2+ uptake system (HACS) complex genes. We analyzed disruption mutants representing all 64 genes under 33 different conditions, including the presence of cell wall disrupting agents and other drugs, a variety of salts, increased temperature, and altered pH. Further, we generated knockout mutants in different genes within the CWI pathway and the HACS complex, and found that they too exhibited phenotypes consistent with defects in cell wall construction. Our results indicate that small molecules that inhibit the CWI pathway, or that the HACS complex, may be an important means of increasing the efficacy of caspofungin.
Collapse
|
244
|
Martínez JP, Blanes R, Casanova M, Valentín E, Murgui A, Domínguez Á. Null mutants of Candida albicans for cell-wall-related genes form fragile biofilms that display an almost identical extracellular matrix proteome. FEMS Yeast Res 2016; 16:fow075. [PMID: 27609602 DOI: 10.1093/femsyr/fow075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/20/2022] Open
Abstract
By two-dimensional gel electrophoresis (2-DE) and mass spectrometry, we have characterized the polypeptide species present in extracts obtained by 60% ethanol treatment of whole mature (48 h) biofilms formed by a reference strain (CAI4-URA3) and four Candida albicans null mutants for cell-wall-related genes (ALG5, CSA1, MNN9 and PGA10) Null mutants form fragile biofilms that appeared partially split and weakly attached to the substratum contrary to those produced by the reference strain. An almost identical, electrophoretic profile consisting of about 276 spots was visualized in all extracts examined. Proteomic analysis led to the identification of 131 polypeptides, corresponding to 86 different protein species, being the rest isoforms-83 displayed negative hydropathic indexes and 82 lack signal peptide. The majority of proteins appeared at pI between 4 and 6, and molecular mass between 10 and 94 kDa. The proteins identified belonged to the following Gene Ontology categories: 21.9% unknown molecular function, 16.2% oxidoreductase activity, 13.3% hydrolase activity and 41.8% distributed between other different GO categories. Strong defects in biofilm formation appreciated in the cell-wall mutant strains could be attributed to defects in aggregation due to abnormal cell wall formation rather than to differences in the biofilm extracellular matrix composition.
Collapse
Affiliation(s)
- José P Martínez
- Department of Microbiology and Ecology, School of Pharmacy, University of Valencia, 46100 Burjasot, Valencia, Spain
| | - Rosario Blanes
- Department of Microbiology and Ecology, School of Pharmacy, University of Valencia, 46100 Burjasot, Valencia, Spain
| | - Manuel Casanova
- Department of Microbiology and Ecology, School of Pharmacy, University of Valencia, 46100 Burjasot, Valencia, Spain
| | - Eulogio Valentín
- Department of Microbiology and Ecology, School of Pharmacy, University of Valencia, 46100 Burjasot, Valencia, Spain
| | - Amelia Murgui
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Valencia, 46100 Burjasot, Valencia, Spain
| | - Ángel Domínguez
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
245
|
Liu Z, Ho SH, Hasunuma T, Chang JS, Ren NQ, Kondo A. Recent advances in yeast cell-surface display technologies for waste biorefineries. BIORESOURCE TECHNOLOGY 2016; 215:324-333. [PMID: 27039354 DOI: 10.1016/j.biortech.2016.03.132] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, PR China.
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Taiwan
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, PR China
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
246
|
Okada H, Kono K, Neiman AM, Ohya Y. Examination and Disruption of the Yeast Cell Wall. Cold Spring Harb Protoc 2016; 2016:2016/8/pdb.top078659. [PMID: 27480724 DOI: 10.1101/pdb.top078659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The cell wall of Saccharomyces cerevisiae is a complicated extracellular organelle. Although the barrier may seem like a technical nuisance for researchers studying intracellular biomolecules or conditions, the rigid wall is an essential aspect of the yeast cell. Without it, yeast cells are unable to proliferate or carry out their life cycle. The chemical composition of the cell wall and the biosynthetic pathways and signal transduction mechanisms involved in cell wall remodeling have been studied extensively, but many unanswered questions remain. This introduction describes techniques for investigating abnormalities in the cell and spore walls and performing cell wall disruption.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Keiko Kono
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi Prefecture 467-8601, Japan
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| |
Collapse
|
247
|
Abstract
In animal cells, cytokinesis requires the formation of a cleavage furrow that divides the cell into two daughter cells. Furrow formation is achieved by constriction of an actomyosin ring that invaginates the plasma membrane. However, fungal cells contain a rigid extracellular cell wall surrounding the plasma membrane; thus, fungal cytokinesis also requires the formation of a special septum wall structure between the dividing cells. The septum biosynthesis must be strictly coordinated with the deposition of new plasma membrane material and actomyosin ring closure and must occur in such a way that no breach in the cell wall occurs at any time. Because of the high turgor pressure in the fungal cell, even a minor local defect might lead to cell lysis and death. Here we review our knowledge of the septum structure in the fission yeast Schizosaccharomyces pombe and of the recent advances in our understanding of the relationship between septum biosynthesis and actomyosin ring constriction and how the two collaborate to build a cross-walled septum able to support the high turgor pressure of the cell. In addition, we discuss the importance of the septum biosynthesis for the steady ingression of the cleavage furrow.
Collapse
|
248
|
Nimrichter L, de Souza MM, Del Poeta M, Nosanchuk JD, Joffe L, Tavares PDM, Rodrigues ML. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells. Front Microbiol 2016; 7:1034. [PMID: 27458437 PMCID: PMC4937017 DOI: 10.3389/fmicb.2016.01034] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/20/2016] [Indexed: 12/02/2022] Open
Abstract
Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Marcio M de Souza
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NYUSA; Veterans Administration Medical Center, Northport, NYUSA
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Luna Joffe
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Patricia de M Tavares
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Marcio L Rodrigues
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil; Fundação Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Rio de JaneiroBrazil
| |
Collapse
|
249
|
Arroyo J, Farkaš V, Sanz AB, Cabib E. ‘Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity’. Cell Microbiol 2016; 18:1239-50. [DOI: 10.1111/cmi.12615] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia; Universidad Complutense de Madrid, IRYCIS; 28040 Madrid Spain
| | - Vladimír Farkaš
- Institute of Chemistry, Center for Glycomics; Department of Glycobiology, Slovak Academy of Sciences; 84538 Bratislava Slovakia
| | - Ana Belén Sanz
- Departamento de Microbiología II, Facultad de Farmacia; Universidad Complutense de Madrid, IRYCIS; 28040 Madrid Spain
| | - Enrico Cabib
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health; Department of Health and Human Services; Bethesda MD USA
| |
Collapse
|
250
|
Inokuma K, Bamba T, Ishii J, Ito Y, Hasunuma T, Kondo A. Enhanced cell-surface display and secretory production of cellulolytic enzymes withSaccharomyces cerevisiaeSed1 signal peptide. Biotechnol Bioeng 2016; 113:2358-66. [DOI: 10.1002/bit.26008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Kentaro Inokuma
- Organization of Advanced Science and Technology; Kobe University; Kobe Japan
| | - Takahiro Bamba
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada Kobe 657-8501 Japan
| | - Jun Ishii
- Organization of Advanced Science and Technology; Kobe University; Kobe Japan
| | - Yoichiro Ito
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada Kobe 657-8501 Japan
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology; Kobe University; Kobe Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada Kobe 657-8501 Japan
- Biomass Engineering Program; RIKEN; 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama Kanagawa 230-0045 Japan
| |
Collapse
|