201
|
Abstract
Nutrition is one method to counter the negative impact of an exercise-induced injury. Deficiencies of energy, protein and other nutrients should be avoided. Claims for the effectiveness of many other nutrients following injuries are rampant, but the evidence is equivocal. The results of an exercise-induced injury may vary widely depending on the nature of the injury and severity. Injuries typically result in cessation, or at least a reduction, in participation in sport and decreased physical activity. Limb immobility may be necessary with some injuries, contributing to reduced activity and training. Following an injury, an inflammatory response is initiated and while excess inflammation may be harmful, given the importance of the inflammatory process for wound healing, attempting to drastically reduce inflammation may not be ideal for optimal recovery. Injuries severe enough for immobilization of a limb result in loss of muscle mass and reduced muscle strength and function. Loss of muscle results from reductions in basal muscle protein synthesis and the resistance of muscle to anabolic stimulation. Energy balance is critical. Higher protein intakes (2-2.5 g/kg/day) seem to be warranted during immobilization. At the very least, care should be taken not to reduce the absolute amount of protein intake when energy intake is reduced. There is promising, albeit preliminary, evidence for the use of omega-3 fatty acids and creatine to counter muscle loss and enhance hypertrophy, respectively. The overriding nutritional recommendation for injured exercisers should be to consume a well-balanced diet based on whole, minimally processed foods or ingredients made from whole foods. The diet composition should be carefully assessed and changes considered as the injury heals and activity patterns change.
Collapse
Affiliation(s)
- Kevin D Tipton
- Health and Exercise Sciences Research Group, University of Stirling, Cottrell Building, Stirling, FK9 4LA, Scotland, UK.
| |
Collapse
|
202
|
Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016; 8:nu8080506. [PMID: 27548212 PMCID: PMC4997419 DOI: 10.3390/nu8080506] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022] Open
Abstract
This study examined the effects of beetroot juice (BTJ) on recovery between two repeated-sprint tests. In an independent groups design, 20 male, team-sports players were randomized to receive either BTJ or a placebo (PLA) (2 × 250 mL) for 3 days after an initial repeated sprint test (20 × 30 m; RST1) and after a second repeated sprint test (RST2), performed 72 h later. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), reactive strength index (RI), pressure-pain threshold (PPT), creatine kinase (CK), C-reactive protein (hs-CRP), protein carbonyls (PC), lipid hydroperoxides (LOOH) and the ascorbyl free radical (A•−) were measured before, after, and at set times between RST1 and RST2. CMJ and RI recovered quicker in BTJ compared to PLA after RST1: at 72 h post, CMJ and RI were 7.6% and 13.8% higher in BTJ vs. PLA, respectively (p < 0.05). PPT was 10.4% higher in BTJ compared to PLA 24 h post RST2 (p = 0.012) but similar at other time points. No group differences were detected for mean and fastest sprint time or fatigue index. MIVC, or the biochemical markers measured (p > 0.05). BTJ reduced the decrement in CMJ and RI following and RST but had no effect on sprint performance or oxidative stress.
Collapse
|
203
|
Takagi R, Ogasawara R, Tsutaki A, Nakazato K, Ishii N. Regional adaptation of collagen in skeletal muscle to repeated bouts of strenuous eccentric exercise. Pflugers Arch 2016; 468:1565-72. [DOI: 10.1007/s00424-016-1860-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|
204
|
Baroni BM, Leal-Junior ECP. Comment on "Effect of low-level phototherapy on delayed onset muscle soreness: a systematic review and meta-analysis". Lasers Med Sci 2016; 31:1739-1740. [PMID: 27311767 DOI: 10.1007/s10103-016-2000-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Bruno Manfredini Baroni
- Postgraduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Laboratory of Phototherapy in Sports and Exercise, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, 01504-001, São Paulo, SP, Brazil.
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil.
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil.
| |
Collapse
|
205
|
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016; 116:1595-625. [PMID: 27294501 PMCID: PMC4983298 DOI: 10.1007/s00421-016-3411-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Philipp Baumert
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark J Lake
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
206
|
Keane KM, Salicki R, Goodall S, Thomas K, Howatson G. Muscle Damage Response in Female Collegiate Athletes After Repeated Sprint Activity. J Strength Cond Res 2016; 29:2802-7. [PMID: 25853920 DOI: 10.1519/jsc.0000000000000961] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exercise-induced muscle damage (EIMD) is a well-investigated area, however there is a paucity of data surrounding the damage response in females. The aim of this study was to examine the damage responses from a sport-specific bout of repeated sprints in female athletes. Eleven well-trained females (mean ± SD; age: 22 ± 3 years; height: 166.6 ± 5.7 cm; mass: 62.7 ± 4.5 kg) in the luteal phase of the menstrual cycle completed a repeated sprint protocol designed to induce EIMD (15 × 30 m sprints). Creatine kinase, countermovement jump height, knee extensor maximal voluntary isometric contraction (MVIC) force, delayed onset muscle soreness (DOMS), 30-m sprint time, and limb girth were recorded before, after, 24, 48, and 72 hours after exercise. Creatine kinase was elevated at 24, 48, and 72 hours (p ≤ 0.05), peaking at 24 hours (+418%) and returning toward baseline at 72 hours. Countermovement jump height was reduced immediately after, 24, and 48 hours (p ≤ 0.05). Sprint performance was also negatively affected immediately after, 24, 48, and 72 hours after exercise. Muscle soreness peaked at 48 hours (p < 0.01) and remained significantly elevated at 72 hours after exercise (p < 0.01). Limb girth and MVIC did not alter over time. This study provides new information on the EIMD response in trained females after a sport-specific bout of repeated sprints. Importantly, this damage response has the potential to negatively affect performance for several days after exercise.
Collapse
Affiliation(s)
- Karen M Keane
- 1Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom; and 2Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | | | | | | | | |
Collapse
|
207
|
Ruddock AD, Wilson DC, Thompson SW, Hembrough D, Winter EM. Strength and Conditioning for Professional Boxing. Strength Cond J 2016. [DOI: 10.1519/ssc.0000000000000217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
208
|
Bishop SH, Herron RL, Ryan GA, Katica CP, Bishop PA. The Effect of Intermittent Arm and Shoulder Cooling on Baseball Pitching Velocity. J Strength Cond Res 2016; 30:1027-32. [PMID: 24077378 DOI: 10.1519/jsc.0000000000000256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stacy H Bishop
- 1Department of Health and Human Performance, Texas A&M University-Commerce, Commerce, Texas; and 2Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama
| | | | | | | | | |
Collapse
|
209
|
A Systematic Review on the Effects of Botanicals on Skeletal Muscle Health in Order to Prevent Sarcopenia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5970367. [PMID: 27051451 PMCID: PMC4804074 DOI: 10.1155/2016/5970367] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
We performed a systematic review to evaluate the evidence-based medicine regarding the main botanical extracts and their nutraceutical compounds correlated to skeletal muscle health in order to identify novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function and to improve the quality of life of older subjects. This review contains all eligible studies from 2010 to 2015 and included 57 publications. We focused our attention on effects of botanical extracts on growth and health of muscle and divided these effects into five categories: anti-inflammation, muscle damage prevention, antifatigue, muscle atrophy prevention, and muscle regeneration and differentiation.
Collapse
|
210
|
Hatchett A, Berry C, Oliva C, Wiley D, St Hilaire J, LaRochelle A. A Comparison between Chocolate Milk and a Raw Milk Honey Solution's Influence on Delayed Onset of Muscle Soreness. Sports (Basel) 2016; 4:sports4010018. [PMID: 29910267 PMCID: PMC5968944 DOI: 10.3390/sports4010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 11/16/2022] Open
Abstract
This investigation sought to examine the effect that a chocolate milk solution (CMS) and a raw milk solution (RMS) had on lower extremity induced delayed onset of muscle soreness (DOMS). Twenty trained male participants completed a set of questionnaires, prior to completing a lower extremity DOMS protocol, to determine the level of discomfort and functional limitations. Once the DOMS protocol was completed, participants were randomly assigned to either the CM or RM group. Once assigned, participants ingested 240 mL of the respective solution and completed the same set of questionnaires immediately post, 24-, 48- and 72-h post DOMS protocol. Additionally, for 10 days post-ingestion participants were contacted to learn if any negative effects were experienced as a result of ingesting either solution. Both groups reported an increase in lower extremity discomfort at each data collection interval post-DOMS protocol (post, 24-, 48- and 72-h). Participants assigned to the RM group reported high discomfort post and a relative decline in discomfort from immediately post-DOMS protocol to 72-h post. The RMS group reported substantially less discomfort at 72-h when compared to the CMS group. Ingestion of a raw milk solution immediately post strength exercise can substantially reduce the level of self-reported discomfort associated with DOMS.
Collapse
Affiliation(s)
- Andrew Hatchett
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Christopher Berry
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Claudia Oliva
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Douglas Wiley
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Jacob St Hilaire
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Alex LaRochelle
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| |
Collapse
|
211
|
Elsayed SEB, Raoof NAA, Abdallah NS. Efficacy of cryoflow therapy in induced muscle soreness: a randomized trial. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2016. [DOI: 10.4103/1110-6611.174692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
212
|
Lee SY, Kwon MJ, Seo YI, Kim HA. Acute Myositis of the Tibialis Anterior Muscle after Performance of 108 Prostrations. JOURNAL OF RHEUMATIC DISEASES 2016. [DOI: 10.4078/jrd.2016.23.6.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sung Yeon Lee
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Young Il Seo
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
213
|
Herrlinger KA, Chirouzes DM, Ceddia MA. Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food Nutr Res 2015; 59:30034. [PMID: 26689317 PMCID: PMC4685974 DOI: 10.3402/fnr.v59.30034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Background Exercise can initiate a cascade of inflammatory and oxidative stress–related events leading to delayed onset muscle soreness. Polyphenols possess antioxidant and anti-inflammatory properties. Objective The current study examined the effects of a proprietary polyphenolic blend (PB), containing catechins and theaflavins, on exercise performance and recovery following an eccentric exercise challenge. Design Male participants (18–35 years of age) received placebo or PB at a low dose (PB-L, 1,000 mg/d) or high dose (PB-H, 2,000 mg/d) for 13 weeks. During the 13th week of supplementation, participants completed an eccentric exercise (40 min downhill treadmill run) followed by a strength assessment (peak torque on isokinetic leg extensions) pre-exercise, and 24, 48, and 96 h post-exercise. Muscle soreness (subjective questionnaire), markers of muscle stress (cortisol and creatine phosphokinase [CK]), and antioxidant capacity (ferric reducing ability of plasma [FRAP]) were also assessed. Results PB-H attenuated the decrease in peak torque observed in the placebo group from pre-exercise to 48 h (p=0.012) and 96 h (p=0.003) post-exercise. At 48 h post-exercise, PB-H reduced whole body and hamstring soreness (p=0.029) versus placebo. Chronic consumption of PB improved serum FRAP (p=0.039). As expected, serum cortisol and CK increased from pre- to post-exercise in all groups; however, by 96 h, cortisol and CK levels returned to pre-exercise levels following PB supplementation. At 96 h, the change in cortisol from pre- to post-exercise was significantly greater in placebo versus PB-H (p=0.039). Conclusion These findings show that chronic consumption of PB improved antioxidant status, reduced markers of muscle stress, and promoted strength recovery post-exercise.
Collapse
|
214
|
Cormie P, Singh B, Hayes S, Peake JM, Galvão DA, Taaffe DR, Spry N, Nosaka K, Cornish B, Schmitz KH, Newton RU. Acute Inflammatory Response to Low-, Moderate-, and High-Load Resistance Exercise in Women With Breast Cancer-Related Lymphedema. Integr Cancer Ther 2015; 15:308-17. [PMID: 26582633 PMCID: PMC5739184 DOI: 10.1177/1534735415617283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Resistance exercise is emerging as a potential adjunct therapy to aid in the management of breast cancer-related lymphedema (BCRL). However, the mechanisms underlying the relationships between the acute and long-term benefits of resistance exercise on BCRL are not well understood. Purpose To examine the acute inflammatory response to upper-body resistance exercise in women with BCRL and to compare these effects between resistance exercises involving low, moderate, and high loads. The impact on lymphedema status and associated symptoms was also compared. Methods A total of 21 women, 62 ± 10 years old, with BCRL participated in the study. Participants completed low-load (15-20 repetition maximum [RM]), moderate-load (10-12 RM), and high-load (6-8 RM) exercise sessions consisting of 3 sets of 6 upper-body resistance exercises. Sessions were completed in a randomized order separated by a 7- to 10-day wash-out period. Venous blood samples were obtained to assess markers of exercise-induced muscle damage and inflammation. Lymphedema status was assessed using bioimpedance spectroscopy and arm circumferences, and associated symptoms were assessed using Visual Analogue Scales for pain, heaviness, and tightness. Measurements were conducted before and 24 hours after the exercise sessions. Results No significant changes in creatine kinase, C-reactive protein, interleukin-6, and tumor necrosis factor-α were observed following the 3 resistance exercise sessions. There were no significant changes in arm swelling or symptom severity scores across the 3 resistance exercise conditions. Conclusions The magnitude of acute exercise-induced inflammation following upper-body resistance exercise in women with BCRL does not vary between resistance exercise loads.
Collapse
Affiliation(s)
- Prue Cormie
- Australian Catholic University, Melbourne, Victoria, Australia Edith Cowan University, Joondalup, Western Australia, Australia
| | - Benjamin Singh
- Queensland University of Technology, Queensland, Australia
| | - Sandi Hayes
- Queensland University of Technology, Queensland, Australia
| | | | - Daniel A Galvão
- Edith Cowan University, Joondalup, Western Australia, Australia
| | - Dennis R Taaffe
- Edith Cowan University, Joondalup, Western Australia, Australia University of Wollongong, Wollongong, New South Wales, Australia
| | - Nigel Spry
- Edith Cowan University, Joondalup, Western Australia, Australia Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Kazunori Nosaka
- Edith Cowan University, Joondalup, Western Australia, Australia
| | - Bruce Cornish
- Queensland University of Technology, Queensland, Australia
| | | | - Robert U Newton
- Edith Cowan University, Joondalup, Western Australia, Australia University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
215
|
The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur J Appl Physiol 2015; 116:353-62. [DOI: 10.1007/s00421-015-3290-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
|
216
|
Lau WY, Blazevich AJ, Newton MJ, Wu SSX, Nosaka K. Assessment of Muscle Pain Induced by Elbow-Flexor Eccentric Exercise. J Athl Train 2015; 50:1140-8. [PMID: 26523661 DOI: 10.4085/1062-6050-50.11.05] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CONTEXT Delayed-onset muscle soreness (DOMS) is a common muscle pain that many people experience and is often used as a model of acute muscle pain. Researchers have reported the effects of various interventions on DOMS, but different DOMS assessment protocols used in these studies make it difficult to compare the effects. OBJECTIVE To investigate DOMS characteristics after elbow-flexor eccentric exercise to establish a standardized DOMS assessment protocol. DESIGN Descriptive laboratory study. SETTING Research laboratory. PATIENTS OR OTHER PARTICIPANTS Ten healthy, untrained men (21-39 years). INTERVENTION(S) Participants performed 10 sets of 6 maximal isokinetic eccentric contractions of the elbow flexors. MAIN OUTCOME MEASURE(S) Indirect muscle-damage markers were maximal voluntary isometric contraction torque, range of motion, and serum creatine kinase activity. Muscle pain was assessed before exercise, immediately postexercise, and 1 to 5 days postexercise using (1) a visual analog scale (VAS), (2) a category ratio-10 scale (CR-10) when applying static pressure and palpation at different sites (3, 9, and 15 cm above the elbow crease), and (3) pressure-pain thresholds (PPTs) at 50 sites (pain mapping). RESULTS Maximal voluntary isometric contraction and range of motion decreased and creatine kinase activity increased postexercise, indicating muscle damage. Palpation induced greater pain than static pressure, and longitudinal and transverse palpations induced greater pain than circular palpation (P < .05). The PPT was lower in the medial region before exercise, but the pain-sensitive regions shifted to the central and distal regions of the biceps brachii at 1 to 3 days postexercise (P < .05). The VAS was correlated with the CR-10 scale (r = 0.91, P < .05) but not with the PPT (r = -0.28, P = .45). CONCLUSIONS The way in which muscles are assessed affects the pain level score. This finding suggests that pain level and pain threshold cannot be used interchangeably and that the central and distal regions of the biceps brachii should be included in DOMS assessment using the VAS, CR-10 scale, and PPT after elbow-flexor eccentric exercise.
Collapse
Affiliation(s)
- Wing Yin Lau
- School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Anthony J Blazevich
- School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Michael J Newton
- School of Psychology and Exercise Science, Murdoch University, Western Australia
| | - Sam Shi Xuan Wu
- School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Kazunori Nosaka
- School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| |
Collapse
|
217
|
Rizo-Roca D, Ríos-Kristjánsson JG, Núñez-Espinosa C, Ascensão A, Magalhães J, Torrella JR, Pagès T, Viscor G. A semiquantitative scoring tool to evaluate eccentric exercise-induced muscle damage in trained rats. Eur J Histochem 2015; 59:2544. [PMID: 26708179 PMCID: PMC4698611 DOI: 10.4081/ejh.2015.2544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/16/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022] Open
Abstract
Unaccustomed eccentric exercise is a well-documented cause of exercise-induced muscle damage. However, in trained subjects muscle injury involves only light or moderate tissue damage. Since trained rats are widely used as a model for skeletal muscle injury, here we propose a semiquantitative scoring tool to evaluate muscle damage in trained rats. Twenty male Sprague-Dawley rats were trained for two weeks following a two-week preconditioning period, and randomly divided into two groups: control rats (CTL; n=5) and rats with eccentric exercise-induced muscle damage (INJ; n=15). Injured rats were sacrificed at three time points: 1, 3 and 7 days post injury (n=5 each). Transverse sections from the right soleus were cut (10 µm) and stained with haematoxylin-eosin. Samples were evaluated by two groups of observers (four researchers experienced in skeletal muscle histopathology and four inexperienced) using the proposed tool, which consisted of six items organised in three domains: abnormal fibre morphology, necrotic/(re) degenerating fibres (muscle fibre domain), endomysial and perimysial infiltration (inflammatory state domain) and endomysium and perimysium distension (interstitial compartment domain). We observed the expected time course in the six evaluated items. Furthermore, agreement among observers was evaluated by measuring the Intraclass Correlation Coefficient (ICC). Within the experienced group, items from the muscle fibre and interstitial compartment domains showed good agreement and the two items from the infiltration compartment domain showed excellent agreement. In conclusion, the proposed tool allowed quick and correct evaluation of light to moderate muscle damage in trained rats with good agreement between observers.
Collapse
|
218
|
Kim J, Lee J, Kim S, Yoon D, Kim J, Sung DJ. Role of creatine supplementation in exercise-induced muscle damage: A mini review. J Exerc Rehabil 2015; 11:244-50. [PMID: 26535213 PMCID: PMC4625651 DOI: 10.12965/jer.150237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 11/22/2022] Open
Abstract
Muscle damage is induced by both high-intensity resistance and endurance exercise. Creatine is a widely used dietary supplement to improve exercise performance by reducing exercise-induced muscle damage. Many researchers have suggested that taking creatine reduces muscle damage by decreasing the inflammatory response and oxidative stress, regulating calcium homeostasis, and activating satellite cells. However, the underlying mechanisms of creatine and muscle damage have not been clarified. Therefore, this review discusses the regulatory effects of creatine on muscle damage by compiling the information collected from basic science and sports science research.
Collapse
Affiliation(s)
- Jooyoung Kim
- College of Physical Education, Kookmin University, Seoul, Korea
| | - Joohyung Lee
- College of Physical Education, Kookmin University, Seoul, Korea
| | - Seungho Kim
- Department of Football Management, Munkyung College, Mungyeong, Korea
| | - Daeyoung Yoon
- Department of Football Management, Munkyung College, Mungyeong, Korea
| | - Jieun Kim
- College of Physical Education, Kookmin University, Seoul, Korea
| | - Dong Jun Sung
- Division of Sport Science, Konkuk University, Choongju, Korea
| |
Collapse
|
219
|
Lima LCR, Denadai BS. Attenuation of eccentric exercise-induced muscle damage conferred by maximal isometric contractions: a mini review. Front Physiol 2015; 6:300. [PMID: 26578972 PMCID: PMC4621416 DOI: 10.3389/fphys.2015.00300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/09/2015] [Indexed: 12/02/2022] Open
Abstract
Although, beneficial in determined contexts, eccentric exercise-induced muscle damage (EIMD) might be unwanted during training regimens, competitions and daily activities. There are a vast number of studies investigating strategies to attenuate EIMD response after damaging exercise bouts. Many of them consist of performing exercises that induce EIMD, consuming supplements or using equipment that are not accessible for most people. It appears that performing maximal isometric contractions (ISOs) 2–4 days prior to damaging bouts promotes significant attenuation of EIMD symptoms that are not related to muscle function. It has been shown that the volume of ISOs, muscle length in which they are performed, and interval between them and the damaging bout influence the magnitude of this protection. In addition, it appears that this protection is not long-lived, lasting no longer than 4 days. Although no particular mechanisms for these adaptations were identified, professionals should consider applying this non-damaging stimulus before submitting their patients to unaccustomed exercised. However, it seems not to be the best option for athletes or relatively trained individuals. Future, studies should focus on establishing if ISOs protect other populations (i.e., trained individuals) or muscle groups (i.e., knee extensors) against EIMD, as well as investigate different mechanisms for ISO-induced protection.
Collapse
Affiliation(s)
- Leonardo C R Lima
- Human Performance Laboratory, Department of Physical Education, Biosciences Institute, São Paulo State University Rio Claro, Brazil
| | - Benedito S Denadai
- Human Performance Laboratory, Department of Physical Education, Biosciences Institute, São Paulo State University Rio Claro, Brazil
| |
Collapse
|
220
|
Murray A, Cardinale M. Cold applications for recovery in adolescent athletes: a systematic review and meta analysis. EXTREME PHYSIOLOGY & MEDICINE 2015; 4:17. [PMID: 26464795 PMCID: PMC4603811 DOI: 10.1186/s13728-015-0035-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022]
Abstract
Recovery and regeneration modalities have been developed empirically over the years to help and support training programmes aimed at maximizing athletic performance. Professional athletes undergo numerous training sessions, characterized by differing modalities of varying volumes and intensities, with the aim of physiological adaptation leading to improved performance. Scientific support to athletes focuses on improving the chances of a training programme producing the largest adaptive response. In competition it is mainly targeted at maximizing the chances of optimal performance and recovery when high performance levels are required repeatedly in quick succession (e.g. heats/finals). In recent years, a lot of emphasis has been put on recovery modalities. In particular, emphasis has been placed on the need to reduce the delayed onset of muscle soreness (DOMS) typically evident following training and competitive activities inducing a certain degree of muscle damage. One of the most used recovery modalities consists of cold-water immersion and/or ice/cold applications to muscles affected by DOMS. While the scientific literature has provided a rationale for such modalities to reduce pain in athletes and recreationally active adults, it is doubtful if this rationale is appropriate to aid training with adolescent athletes. In particular, since these methods have been suggested to potentially impair the muscle remodeling process leading to muscle hypertrophy. While this debate is still active in the literature, many coaches adopt such practices in youth populations, simply transferring what they see in elite sportspeople directly; without questioning the rationale, safety or effectiveness as well as the potential for such activity to reduce the adaptive potential of skeletal muscle remodeling in adolescent athletes. The aim of this review was to assess the current knowledge base on the use of ice/cold applications for recovery purposes in adolescent athletes in order to provide useful guidelines for sports scientists, medical practitioners, physiotherapists and coaches working with such populations as well as developing research questions for further research activities in this area. Based on the current evidence, it seems clear that evidence for acute benefits of such interventions are scarce and more work is needed to ascertain the physiological implications on a pre or peri-pubertal population.
Collapse
Affiliation(s)
- Andrew Murray
- />Department of Sports Science, Aspire Academy, Doha, Qatar
- />University of Edinburgh, Edinburgh, UK
| | - Marco Cardinale
- />Department of Sports Science, Aspire Academy, Doha, Qatar
- />Department of Computer Science and Institute of Sport Exercise and Health, University College London, London, UK
| |
Collapse
|
221
|
Costello JT, Baker PRA, Minett GM, Bieuzen F, Stewart IB, Bleakley C. Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Cochrane Database Syst Rev 2015; 2015:CD010789. [PMID: 26383887 PMCID: PMC9579836 DOI: 10.1002/14651858.cd010789.pub2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recovery strategies are often used with the intention of preventing or minimising muscle soreness after exercise. Whole-body cryotherapy, which involves a single or repeated exposure(s) to extremely cold dry air (below -100 °C) in a specialised chamber or cabin for two to four minutes per exposure, is currently being advocated as an effective intervention to reduce muscle soreness after exercise. OBJECTIVES To assess the effects (benefits and harms) of whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. SEARCH METHODS We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, the British Nursing Index and the Physiotherapy Evidence Database. We also searched the reference lists of articles, trial registers and conference proceedings, handsearched journals and contacted experts.The searches were run in August 2015. SELECTION CRITERIA We aimed to include randomised and quasi-randomised trials that compared the use of whole-body cryotherapy (WBC) versus a passive or control intervention (rest, no treatment or placebo treatment) or active interventions including cold or contrast water immersion, active recovery and infrared therapy for preventing or treating muscle soreness after exercise in adults. We also aimed to include randomised trials that compared different durations or dosages of WBC. Our prespecified primary outcomes were muscle soreness, subjective recovery (e.g. tiredness, well-being) and adverse effects. DATA COLLECTION AND ANALYSIS Two review authors independently screened search results, selected studies, assessed risk of bias and extracted and cross-checked data. Where appropriate, we pooled results of comparable trials. The random-effects model was used for pooling where there was substantial heterogeneity. We assessed the quality of the evidence using GRADE. MAIN RESULTS Four laboratory-based randomised controlled trials were included. These reported results for 64 physically active predominantly young adults (mean age 23 years). All but four participants were male. Two trials were parallel group trials (44 participants) and two were cross-over trials (20 participants). The trials were heterogeneous, including the type, temperature, duration and frequency of WBC, and the type of preceding exercise. None of the trials reported active surveillance of predefined adverse events. All four trials had design features that carried a high risk of bias, potentially limiting the reliability of their findings. The evidence for all outcomes was classified as 'very low' quality based on the GRADE criteria.Two comparisons were tested: WBC versus control (rest or no WBC), tested in four studies; and WBC versus far-infrared therapy, also tested in one study. No studies compared WBC with other active interventions, such as cold water immersion, or different types and applications of WBC.All four trials compared WBC with rest or no WBC. There was very low quality evidence for lower self-reported muscle soreness (pain at rest) scores after WBC at 1 hour (standardised mean difference (SMD) -0.77, 95% confidence interval (CI) -1.42 to -0.12; 20 participants, 2 cross-over trials); 24 hours (SMD -0.57, 95% CI -1.48 to 0.33) and 48 hours (SMD -0.58, 95% CI -1.37 to 0.21), both with 38 participants, 2 cross-over studies, 1 parallel group study; and 72 hours (SMD -0.65, 95% CI -2.54 to 1.24; 29 participants, 1 cross-over study, 1 parallel group study). Of note is that the 95% CIs also included either no between-group differences or a benefit in favour of the control group. One small cross-over trial (9 participants) found no difference in tiredness but better well-being after WBC at 24 hours post exercise. There was no report of adverse events.One small cross-over trial involving nine well-trained runners provided very low quality evidence of lower levels of muscle soreness after WBC, when compared with infrared therapy, at 1 hour follow-up, but not at 24 or 48 hours. The same trial found no difference in well-being but less tiredness after WBC at 24 hours post exercise. There was no report of adverse events. AUTHORS' CONCLUSIONS There is insufficient evidence to determine whether whole-body cryotherapy (WBC) reduces self-reported muscle soreness, or improves subjective recovery, after exercise compared with passive rest or no WBC in physically active young adult males. There is no evidence on the use of this intervention in females or elite athletes. The lack of evidence on adverse events is important given that the exposure to extreme temperature presents a potential hazard. Further high-quality, well-reported research in this area is required and must provide detailed reporting of adverse events.
Collapse
Affiliation(s)
- Joseph T Costello
- University of PortsmouthDepartment of Sport and Exercise ScienceSpinnaker BuildingCambridge RoadPortsmouthUKP01 2ER
| | - Philip RA Baker
- Queensland University of TechnologySchool of Public Health and Social Work, Institute of Health and Biomedical InnovationVictoria Park RoadKelvin GroveQueenslandAustralia4059
| | - Geoffrey M Minett
- Queensland University of TechnologySchool of Exercise and Nutrition Sciences and Institute of Health and Biomedical InnovationVictoria Park RoadKelvin GroveBrisbaneQueenslandAustralia4059
| | - Francois Bieuzen
- French National Institute of Sport (INSEP)Laboratory of Sport, Expertise and Performance ‐ EA 737011 avenue du TremblayParisFrance75012
| | - Ian B Stewart
- Queensland University of TechnologySchool of Exercise and Nutrition Sciences and Institute of Health and Biomedical InnovationVictoria Park RoadKelvin GroveBrisbaneQueenslandAustralia4059
| | - Chris Bleakley
- University of UlsterUlster Sports AcademySchool of Health SciencesShore RoadNewtownabbeyCounty AntrimUKBT37 0QB
| | | |
Collapse
|
222
|
Jówko E, Długołęcka B, Makaruk B, Cieśliński I. The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur J Nutr 2015; 54:783-91. [PMID: 25120110 PMCID: PMC4500852 DOI: 10.1007/s00394-014-0757-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although research suggests that antioxidant supplementation can protect against exercise-induced muscle damage and oxidative stress, also delayed post-exercise muscle recovery and hindered adaptation to training were reported in the supplemented athletes. PURPOSE The purpose of the study was to evaluate the effects of green tea extract (GTE) supplementation on selected blood markers of oxidative stress and muscle damage in sprinters during preparatory phase of their training cycle. METHODS Sixteen sprinters participated in a double-blind, randomized, placebo (PL)-controlled crossover study, including two 4-week treatment periods with PL and GTE (980 mg polyphenols daily). The sprinters performed two repeated cycle sprint tests (RST; 4 × 15 s, with 1-min rest intervals), after PL and GTE supplementation. Blood was sampled before (at rest), 5 min after RST, and after the 24-h recovery. The activities of superoxide dismutase (SOD) and glutathione peroxidase were measured in erythrocytes, and total polyphenols, total antioxidant capacity (TAC), uric acid (UA), albumin (AL), malondialdehyde (MDA), and creatine kinase (CK) were determined in blood plasma. RESULTS Repeated cycle sprint test performed after PL induced an increase in MDA, TAC, and SOD. Moreover, an increase in UA, AL, and CK was observed after RST irrespective of experimental conditions (PL, GTE). Supplementation with GTE caused an increase in total polyphenols and TAC at rest, and a decrease in MDA and SOD after RST. No significant changes in sprint performance were noted after GTE, as compared to PL. CONCLUSIONS Supplementation with GTE prevents oxidative stress induced by RST in sprinters. Furthermore, GTE supplementation does not seem to hinder training adaptation in antioxidant enzyme system. On the other hand, neither prevention of exercise-induced muscle damage, nor an improvement in sprint performance is noted after GTE administration.
Collapse
Affiliation(s)
- Ewa Jówko
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, Akademicka 2, 21-500, Biala Podlaska, Poland,
| | | | | | | |
Collapse
|
223
|
Eliakim A, Ben Zaken S, Meckel Y, Yamin C, Dror N, Nemet D. Rhabdomyolysis After Out-of-Water Exercise in an Elite Adolescent Water Polo Player Carrying the IL-6 174C Allele Single-Nucleotide Polymorphism. J Strength Cond Res 2015; 29:3506-8. [PMID: 25970495 DOI: 10.1519/jsc.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present an adolescent elite water polo player who despite a genetic predisposition to develop exercise-induced severe muscle damage due to carrying the IL-6 174C allele single-nucleotide polymorphism, developed acute rhabdomyolysis only after a vigorous out-of-water training, suggesting that water polo training may be more suitable for genetically predisposed athletes.
Collapse
Affiliation(s)
- Alon Eliakim
- 1Child Health and Sport Center, Pediatric Department, Meir Medical Center, Sackler School of Medicine, Tel-Aviv University, Israel; and 2Zinman College of Physical Education and Sport Sciences, Wingate Institute, Israel
| | | | | | | | | | | |
Collapse
|
224
|
Naclerio F, Larumbe-Zabala E, Cooper R, Allgrove J, Earnest CP. A multi-ingredient containing carbohydrate, proteins L-glutamine and L-carnitine attenuates fatigue perception with no effect on performance, muscle damage or immunity in soccer players. PLoS One 2015; 10:e0125188. [PMID: 25915424 PMCID: PMC4411100 DOI: 10.1371/journal.pone.0125188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/10/2015] [Indexed: 01/31/2023] Open
Abstract
We investigated the effects of ingesting a multi-ingredient (53 g carbohydrate, 14.5 g whey protein, 5 g glutamine, 1.5 g L-carnitine-L-tartrate) supplement, carbohydrate only, or placebo on intermittent performance, perception of fatigue, immunity, and functional and metabolic markers of recovery. Sixteen amateur soccer players ingested their respective treatments before, during and after performing a 90-min intermittent repeated sprint test. Primary outcomes included time for a 90-min intermittent repeated sprint test (IRS) followed by eleven 15 m sprints. Measurements included creatine kinase, myoglobin, interleukine-6, Neutrophil; Lymphocytes and Monocyte before (pre), immediately after (post), 1 h and 24 h after exercise testing period. Overall, time for the IRS and 15 m sprints was not different between treatments. However, the perception of fatigue was attenuated (P<0.001) for the multi-ingredient (15.9±1.4) vs. placebo (17.8±1.4) but not for the carbohydrate (17.0±1.9) condition. Several changes in immune/inflammatory indices were noted as creatine kinase peaked at 24 h while Interleukin-6 and myoglobin increased both immediately after and at 1 h compared with baseline (P<0.05) for all three conditions. However, Myoglobin (P<0.05) was lower 1 h post-exercise for the multi-ingredient (241.8±142.6 ng·ml(-1)) and CHO (265.4±187.8 ng·ml(-1)) vs. placebo (518.6±255.2 ng·ml(-1)). Carbohydrate also elicited lower neutrophil concentrations vs. multi-ingredient (3.9±1.5 10(9)/L vs. 4.9±1.8 10(9)/L, P = 0.016) and a reduced (P<0.05) monocytes count (0.36±0.09 10(9)/L) compared to both multi-ingredient (0.42±0.09 10(9)/L) and placebo (0.42±0.12 10(9)/L). In conclusion, multi-ingredient and carbohydrate supplements did not improve intermittent performance, inflammatory or immune function. However, both treatments did attenuate serum myoglobin, while only carbohydrate blunted post-exercise leukocytosis.
Collapse
Affiliation(s)
- Fernando Naclerio
- Center for Sport Sciences and Human Performance, University of Greenwich, Medway, United Kingdom
| | - Eneko Larumbe-Zabala
- Clinical Research Institute, Texas Tech University, Health Sciences Center, Lubbock, Texas, United States of America
| | - Robert Cooper
- Center for Sport Sciences and Human Performance, University of Greenwich, Medway, United Kingdom
| | - Judith Allgrove
- Faculty of Science, Engineering and Computing, Kingston University, London, United Kingdom
| | - Conrad P. Earnest
- Director of Research, Woodbolt International, and Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
225
|
Hill JA, Howatson G, van Someren KA, Walshe I, Pedlar CR. Influence of compression garments on recovery after marathon running. J Strength Cond Res 2015; 28:2228-35. [PMID: 24714530 DOI: 10.1519/jsc.0000000000000469] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Strenuous physical activity can result in exercise-induced muscle damage. The purpose of this study was to investigate the efficacy of a lower limb compression garment in accelerating recovery from a marathon run. Twenty four subjects (female, n = 7; male, n = 17) completed a marathon run before being assigned to a treatment group or a sham treatment group. The treatment group wore lower limb compression tights for 72 hours after the marathon run, the sham treatment group received a single treatment of 15 minutes of sham ultrasound after the marathon run. Perceived muscle soreness, maximal voluntary isometric contraction (MVIC), and serum markers of creatine kinase (CK) and C-reactive protein (C-RP) were assessed before, immediately after, and 24, 48, and 72 hours after the marathon run. Perceived muscle soreness was significantly lower (p ≤ 0.05) in the compression group at 24 hours after marathon when compared with the sham group. There were no significant group effects for MVIC, CK, and C-RP (p > 0.05). The use of a lower limb compression garment improved subjective perceptions of recovery; however, there was neither a significant improvement in muscular strength nor a significant attenuation in markers of exercise-induced muscle damage and inflammation.
Collapse
Affiliation(s)
- Jessica A Hill
- 1School of Sport, Health, and Applied Science, St. Mary's University, Twickenham, United Kingdom; 2School Life of Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom; 3Centre for Aquatic Research, University of Johannesburg, Johannesburg, South Africa; and 4GSK Human Performance Lab, GlaxoSmithKline Consumer Healthcare, London, United Kingdom
| | | | | | | | | |
Collapse
|
226
|
Bell PG, Walshe IH, Davison GW, Stevenson EJ, Howatson G. Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Appl Physiol Nutr Metab 2015; 40:414-23. [DOI: 10.1139/apnm-2014-0244] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The impact of Montmorency tart cherry (Prunus cerasus L.) concentrate (MC) on physiological indices and functional performance was examined following a bout of high-intensity stochastic cycling. Trained cyclists (n = 16) were equally divided into 2 groups (MC or isoenergetic placebo (PLA)) and consumed 30 mL of supplement, twice per day for 8 consecutive days. On the fifth day of supplementation, participants completed a 109-min cycling trial designed to replicate road race demands. Functional performance (maximum voluntary isometric contraction (MVIC), cycling efficiency, 6-s peak cycling power) and delayed onset muscle soreness were assessed at baseline, 24, 48, and 72 h post-trial. Blood samples collected at baseline, immediately pre- and post-trial, and at 1, 3, 5, 24, 48, and 72 h post-trial were analysed for indices of inflammation (interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor alpha, high-sensitivity C-reactive protein (hsCRP)), oxidative stress (lipid hydroperoxides), and muscle damage (creatine kinase). MVIC (P < 0.05) did not decline in the MC group (vs. PLA) across the 72-h post-trial period and economy (P < 0.05) was improved in the MC group at 24 h. IL-6 (P < 0.001) and hsCRP (P < 0.05) responses to the trial were attenuated with MC (vs. PLA). No other blood markers were significantly different between MC and PLA groups. The results of the study suggest that Montmorency cherry concentrate can be an efficacious functional food for accelerating recovery and reducing exercise-induced inflammation following strenuous cycling exercise.
Collapse
Affiliation(s)
- Phillip G. Bell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Ian H. Walshe
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling FK9 4LA, UK
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, University of Ulster, Northern Ireland BT52 1SA, UK
| | - Emma J. Stevenson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| |
Collapse
|
227
|
Lau WY, Blazevich AJ, Newton MJ, Wu SSX, Nosaka K. Reduced muscle lengthening during eccentric contractions as a mechanism underpinning the repeated-bout effect. Am J Physiol Regul Integr Comp Physiol 2015; 308:R879-86. [PMID: 25810385 DOI: 10.1152/ajpregu.00338.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/18/2015] [Indexed: 11/22/2022]
Abstract
This study investigated biceps brachii distal myotendinous junction (MTJ) displacement during maximal eccentric elbow flexor contractions to test the hypothesis that muscle length change would be smaller (less MTJ displacement) during the second than the first exercise bout. Ten untrained men performed two eccentric exercise bouts (ECC1 and ECC2) with the same arm consisting of 10 sets of six maximal isokinetic (60°/s) eccentric elbow flexor contractions separated by 4 wk. Biceps brachii distal MTJ displacement was assessed using B-mode ultrasonography, and changes in the displacement (muscle length change) from the start to the end of each contraction during each set and over 10 sets were compared between bouts by two-way repeated-measures ANOVA. Several indirect muscle damage markers were also measured and compared between bouts by two-way repeated-measures ANOVA. The magnitude of MTJ displacement (average of six contractions) increased from set 1 (8.2 ± 4.7 mm) to set 10 (16.4 ± 4.7 mm) during ECC1 (P < 0.05), but no significant changes over sets were evident during ECC2 (set 1: 8.5 ± 4.0 mm; set 10: 9.3 ± 3.1 mm). Changes in maximal voluntary isometric contraction strength, range of motion, muscle thickness, ultrasound echo intensity, serum creatine kinase activity, and muscle soreness (visual analog scale) were smaller (P < 0.05) following ECC2 than ECC1, showing less damage in the repeated bout. These results indicate that the magnitude of muscle lengthening was less during the second than the first eccentric exercise bout, which appears to be a mechanism underpinning the repeated-bout effect.
Collapse
Affiliation(s)
- Wing Yin Lau
- School of Exercise and Health Sciences, Center for Exercise and Sports Science Research Edith Cowan University, Joondalup, Western Australia, Australia; and
| | - Anthony J Blazevich
- School of Exercise and Health Sciences, Center for Exercise and Sports Science Research Edith Cowan University, Joondalup, Western Australia, Australia; and
| | - Michael J Newton
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Sam Shi Xuan Wu
- School of Exercise and Health Sciences, Center for Exercise and Sports Science Research Edith Cowan University, Joondalup, Western Australia, Australia; and
| | - Kazunori Nosaka
- School of Exercise and Health Sciences, Center for Exercise and Sports Science Research Edith Cowan University, Joondalup, Western Australia, Australia; and
| |
Collapse
|
228
|
Mickleborough TD, Sinex JA, Platt D, Chapman RF, Hirt M. The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a randomized, placebo controlled trial. J Int Soc Sports Nutr 2015; 12:10. [PMID: 25722660 PMCID: PMC4342081 DOI: 10.1186/s12970-015-0073-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The purpose of the present study was to evaluate the effects of PCSO-524®, a marine oil lipid and n-3 LC PUFA blend, derived from New Zealand green- lipped mussel (Perna canaliculus), on markers of muscle damage and inflammation following muscle damaging exercise in untrained men. METHODS Thirty two untrained male subjects were randomly assigned to consume 1200 mg/d of PCSO- 524® (a green-lipped mussel oil blend) or placebo for 26 d prior to muscle damaging exercise (downhill running), and continued for 96 h following the muscle damaging exercise bout. Blood markers of muscle damage (skeletal muscle slow troponin I, sTnI; myoglobin, Mb; creatine kinase, CK), and inflammation (tumor necrosis factor, TNF-α), and functional measures of muscle damage (delayed onset muscle soreness, DOMS; pressure pain threshold, PPT; knee extensor joint range of motion, ROM; isometric torque, MVC) were assessed pre- supplementation (baseline), and multiple time points post-supplementation (before and after muscle damaging exercise). At baseline and 24 h following muscle damaging exercise peripheral fatigue was assessed via changes in potentiated quadriceps twitch force (∆Qtw,pot) from pre- to post-exhaustive cycling ergometer test in response to supra-maximal femoral nerve stimulation. RESULTS Compared to placebo, supplementation with the green-lipped mussel oil blend significantly attenuated (p < 0.05) sTnI and TNF-α at 2, 24, 48, 72 and 96 h., Mb at 24, 48, 72, 96 h., and CK-MM at all-time points following muscle damaging exercise, significantly reduced (p < 0.05) DOMS at 72 and 96 h post-muscle damaging exercise, and resulted in significantly less strength loss (MVC) and provided a protective effect against joint ROM loss at 96 h post- muscle damaging exercise. At 24 h after muscle damaging exercise perceived pain was significantly greater (p < 0.05) compared to baseline in the placebo group only. Following muscle damaging exercise ∆Qtw,pot was significantly less (p < 0.05) on the green-lipped mussel oil blend compared to placebo. CONCLUSION Supplementation with a marine oil lipid and n-3 LC PUFA blend (PCSO-524®), derived from the New Zealand green lipped mussel, may represent a useful therapeutic agent for attenuating muscle damage and inflammation following muscle damaging exercise.
Collapse
Affiliation(s)
- Timothy D Mickleborough
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| | - Jacob A Sinex
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| | - David Platt
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| | - Robert F Chapman
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| | - Molly Hirt
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| |
Collapse
|
229
|
Changes in electrical pain threshold of fascia and muscle after initial and secondary bouts of elbow flexor eccentric exercise. Eur J Appl Physiol 2014; 115:959-68. [DOI: 10.1007/s00421-014-3077-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022]
|
230
|
Maeo S, Ochi Y, Yamamoto M, Kanehisa H, Nosaka K. Effect of a prior bout of preconditioning exercise on muscle damage from downhill walking. Appl Physiol Nutr Metab 2014; 40:274-9. [PMID: 25693898 DOI: 10.1139/apnm-2014-0390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated whether reduced-duration downhill walking (DW) would confer a protective effect against muscle damage induced by a subsequent bout of longer duration DW performed 1 week or 4 weeks later. Healthy young adults were allocated to a control or one of the preconditioning exercise (PRE-1wk or PRE-4wk) groups (10 men and 4 women per group). PRE-1wk and PRE-4wk groups performed 20-min DW (-28% slope, 5 km/h, 10% body mass added to a backpack) 1 week and 4 weeks before 40-min DW, respectively, and the control group performed 40-min DW only. Maximal voluntary contraction (MVC) knee extension torque, plasma creatine kinase (CK) activity, and muscle soreness (100-mm visual analog scale) were measured before, immediately after, and 24, 48, and 72 h after DW, and the changes in these variables were compared among groups. The control group showed symptoms of muscle damage (e.g., prolonged decrease in MVC: -14% ± 10% at 48 h post-DW) after 40-min DW. Changes in all variables after 40-min DW of PRE-1wk and PRE-4wk groups were 54%-61% smaller (P < 0.05) than the control group, without significant differences between PRE-1wk and PRE-4wk groups for MVC and plasma CK activity. Importantly, changes after the preconditioning exercise (20-min DW) were 67%-69% smaller (P < 0.05) than those after the 40-min DW of the control group. These findings suggest that 20-min DW resulting in minor muscle damage conferred a protective effect against subsequent 40-min DW, and its effect could last for more than 4 weeks.
Collapse
Affiliation(s)
- Sumiaki Maeo
- Sports and Life Science, National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya, Kagoshima 891-2393, Japan., Japan Society for the Promotion of Science, Kouji, Tokyo 102-0088, Japan., School of Exercise and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| | | | | | | | | |
Collapse
|
231
|
Hazar M, Otag A, Otag I, Sezen M, Sever O. Effect of increasing maximal aerobic exercise on serum muscles enzymes in professional field hockey players. Glob J Health Sci 2014; 7:69-74. [PMID: 25948428 PMCID: PMC4802123 DOI: 10.5539/gjhs.v7n3p69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/14/2014] [Accepted: 11/04/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND & OBJECTIVES Exercise results in oxidative enzyme increase and micro-injuries in skeletal muscles. The aim of this study was to investigate the effect of maximal aerobic exercise on serum muscle enzymes in professional field hockey players. This study aims to determine the effect of increasing maximal aerobic exercise on creatine kinase (CK), creatine kinase-MB (CK-MB), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) serum levels. MATERIAL & METHODS 31 young professional field hockey players (13 female and 18 male players) volunteered for this study. All participants underwent the shuttle run test. Blood samples were taken from each participant before the shuttle run test. Post test blood samples were taken immediately after exercise and one hour after respectively. Pre and post test CK, CK-MB, AST and ALT values were measured by means of auto analyzer using original kits. RESULTS The acute post test measure of the CK level increased in male (p=0.002) and female (p=0.00) sportsmen. CK-MB values obtained one hour after the exercise was lower than those before the exercise in males (p=0.02). In females (p=0.017) and males (p=0.05) AST activity significantly increased immediately after exercise and decreased to resting activity 1 h recovery. ALT significantly increased immediately after exercise in female (p=0.03) and male (p=0.00) athletes and after 1 h recovery ALT activities decreased below resting values. CONCLUSION The timing and severity of exercise used in our study increased CK values, decreased CK-MB values and AST, ALT values increased in female and male field hockey players.
Collapse
|
232
|
DiLorenzo FM, Drager CJ, Rankin JW. Docosahexaenoic Acid Affects Markers of Inflammation and Muscle Damage After Eccentric Exercise. J Strength Cond Res 2014; 28:2768-74. [DOI: 10.1519/jsc.0000000000000617] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
233
|
Franke RDA, Baroni BM, Rodrigues R, Geremia JM, Lanferdini FJ, Vaz MA. Neural and morphological adaptations of vastus lateralis and vastus medialis muscles to isokinetic eccentric training. MOTRIZ: REVISTA DE EDUCACAO FISICA 2014. [DOI: 10.1590/s1980-65742014000300011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vastus lateralis (VL) and vastus medialis (VM) are frequently targeted in conditioning/rehabilitation programs due to their role in patellar stabilization during knee extension. This study assessed neural and muscular adaptations in these two muscles after an isokinetic eccentric training program. Twenty healthy men underwent a four-week control period followed by a 12-week period of isokinetic eccentric training. Ultrasound evaluations of VL and VM muscle thickness at rest and electromyographic evaluations during maximal isometric tests were used to assess the morphological and neural properties, respectively. No morphological and neural changes were found throughout the control period, whereas both muscles showed significant increases in thickness (VL = 6.9%; p < .001 and VM = 15.8%; p < .001) post-training. Significant increases in muscle activity were observed in VM (47.8%; p = .003), but not in VL (19.8%; p > .05) post-training. Isokinetic eccentric training produces neural and greater morphological adaptations in VM compared to VL, which shows that synergistic muscles respond differently to an eccentric isokinetic strength training program
Collapse
|
234
|
Whey protein-containing product reduces muscle damage induced by running in male adults. SPORT SCIENCES FOR HEALTH 2014. [DOI: 10.1007/s11332-014-0178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
235
|
Neuromuscular electrical stimulation via the peroneal nerve is superior to graduated compression socks in reducing perceived muscle soreness following intense intermittent endurance exercise. Eur J Appl Physiol 2014; 114:2223-32. [DOI: 10.1007/s00421-014-2943-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 06/21/2014] [Indexed: 11/25/2022]
|
236
|
Naclerio F, Larumbe-Zabala E, Cooper R, Jimenez A, Goss-Sampson M. Effect of a carbohydrate-protein multi-ingredient supplement on intermittent sprint performance and muscle damage in recreational athletes. Appl Physiol Nutr Metab 2014; 39:1151-8. [PMID: 25029675 DOI: 10.1139/apnm-2013-0556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Carbohydrate-protein-based multi-ingredient supplements have been proposed as an effective strategy for limiting the deleterious effects of exercise-induced muscle damage. This study compares the effects of a commercially available carbohydrate-protein supplement enriched with l-glutamine and l-carnitine-l-tartrate to carbohydrate alone or placebo on sprint performance, muscle damage markers, and recovery from intermittent exercise. On 3 occasions, 10 recreationally trained males ingested a multi-ingredient, a carbohydrate supplement, or a placebo before, during, and immediately after a 90-min intermittent repeated sprint test. Fifteen-metre sprint times, creatine kinase, myoglobin, and interleukin-6 were assessed before (pre), immediately after (post), 1 h after (1h), and 24 h after (24h) exercise. Total sprint time measured during the intermittent protocol was not different between conditions. Fifteen-metre sprint time was slower (p < 0.05) at post, 1h and 24h compared with pre without differences between conditions (p > 0.05). Creatine kinase at 24h was lower (p < 0.05) in the multi-ingredient (461.8 ± 271.8 U·L) compared with both carbohydrate and placebo (606 ± 314.5 U·L and 636 ± 344.6 U·L, respectively). Myoglobin increased (p < 0.05) in all 3 conditions at post and 1h compared with pre, showing lower values at 1h (p < 0.05) for the carbohydrate and a trend (p = 0.060) for multi-ingredient compared with the placebo condition (211.4 ± 127.2 ng·mL(-1) and 239.4 ± 103.8 ng·mL(-1) vs. 484.6 ± 200.0 ng·mL(-1), respectively). Interleukin-6 increased at both post and 1h compared with pre (p < 0.05) with no differences between conditions. In conclusion, ingesting a multi-ingredient supplement before, during, and immediately after a 90-min intermittent sprint test resulted in no effects on performance and fatigue while the accumulation of some biomarkers of muscle damage could be attenuated.
Collapse
Affiliation(s)
- Fernando Naclerio
- a Centre for Sport Science and Human Performance, School of Science, University of Greenwich, Medway Campus Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | | | | | | | | |
Collapse
|
237
|
Abstract
Purpose:This investigation aimed to ascertain a detailed physiological profile of recovery from intermittentsprint exercise of athletes familiar with the exercise and to investigate if athletes receive a protective effect on markers of exercise-induced muscle damage (EIMD), inflammation, and oxidative stress after a repeated exposure to an identical bout of intermittent-sprint exercise.Methods:Eight well-trained male team-sport athletes of National League or English University Premier Division standard (mean ± SD age 23 ± 3 y, VO2max 54.8 ± 4.6 mL · kg−1 · min−1) completed the Loughborough Intermittent Shuttle Test (LIST) on 2 occasions, separated by 14 d. Maximal isometric voluntary contraction (MIVC), countermovement jump (CMJ), creatine kinase (CK), C-reactive protein (CRP), interleukin-6 (IL-6), F2-isoprostanes, and muscle soreness (DOMS) were measured before and up to 72 h after the initial and repeated LISTs.Results:MIVC, CMJ, CK, IL-6, and DOMS all showed main effects for time (P < .05) after the LIST, indicating that EIMD was present. DOMS peaked at 24 h after LIST 1 (110 ± 53 mm), was attenuated after LIST 2 (56 ± 39 mm), and was the only dependent variable to demonstrate a reduction in the second bout (P = .008). All other markers indicated that EIMD did not differ between bouts.Conclusion:Well-trained games players experienced EIMD after exposure to both exercise tests, despite being accustomed to the exercise type. This suggests that well-trained athletes receive a very limited protective effect from the first bout.
Collapse
|
238
|
Taylor T, West DJ, Howatson G, Jones C, Bracken RM, Love TD, Cook CJ, Swift E, Baker JS, Kilduff LP. The impact of neuromuscular electrical stimulation on recovery after intensive, muscle damaging, maximal speed training in professional team sports players. J Sci Med Sport 2014; 18:328-32. [PMID: 24785367 DOI: 10.1016/j.jsams.2014.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/06/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVES During congested fixture periods in team sports, limited recovery time and increased travel hinder the implementation of many recovery strategies; thus alternative methods are required. We examined the impact of a neuromuscular electrical stimulation device on 24-h recovery from an intensive training session in professional players. DESIGN Twenty-eight professional rugby and football academy players completed this randomised and counter-balanced study, on 2 occasions, separated by 7 days. METHODS After baseline perceived soreness, blood (lactate and creatine kinase) and saliva (testosterone and cortisol) samples were collected, players completed a standardised warm-up and baseline countermovement jumps (jump height). Players then completed 60 m × 50 m maximal sprints, with 5 min recovery between efforts. After completing the sprint session, players wore a neuromuscular electrical stimulation device or remained in normal attire (CON) for 8 h. All measures were repeated immediately, 2 and 24-h post-sprint. RESULTS Player jump height was reduced from baseline at all time points under both conditions; however, at 24-h neuromuscular electrical stimulation was significantly more recovered (mean±SD; neuromuscular electrical stimulation -3.2±3.2 vs. CON -7.2±3.7%; P<0.001). Creatine kinase concentrations increased at all time points under both conditions, but at 24-h was lower under neuromuscular electrical stimulation (P<0.001). At 24-h, perceived soreness was significantly lower under neuromuscular electrical stimulation, when compared to CON (P=0.02). There was no effect of condition on blood lactate, or saliva testosterone and cortisol responses (P>0.05). CONCLUSIONS Neuromuscular electrical stimulation improves recovery from intensive training in professional team sports players. This strategy offers an easily applied recovery strategy which may have particular application during sleep and travel.
Collapse
Affiliation(s)
- Tom Taylor
- Applied Science, College of Engineering, Swansea University, UK; The Head of Sports Science at West Ham United Football Club, UK
| | - Daniel J West
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, UK
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, UK
| | - Chris Jones
- Applied Science, College of Engineering, Swansea University, UK
| | | | - Thomas D Love
- Applied Science, College of Engineering, Swansea University, UK
| | | | - Eamon Swift
- The Head of Sports Science at West Ham United Football Club, UK
| | - Julien S Baker
- Institute of Clinical Exercise and Health Science, School of Science, Faculty of Science and Technology, University of the West of Scotland, UK
| | - Liam P Kilduff
- Applied Science, College of Engineering, Swansea University, UK.
| |
Collapse
|
239
|
de Oliveira AR, Vanin AA, De Marchi T, Antonialli FC, Grandinetti VDS, de Paiva PRV, Albuquerque Pontes GM, Santos LA, Aleixo Junior IDO, de Carvalho PDTC, Bjordal JM, Leal-Junior ECP. What is the ideal dose and power output of low-level laser therapy (810 nm) on muscle performance and post-exercise recovery? Study protocol for a double-blind, randomized, placebo-controlled trial. Trials 2014; 15:69. [PMID: 24576321 PMCID: PMC3944795 DOI: 10.1186/1745-6215-15-69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/11/2014] [Indexed: 01/07/2023] Open
Abstract
Background Recent studies involving phototherapy applied prior to exercise have demonstrated positive results regarding the attenuation of muscle fatigue and the expression of biochemical markers associated with recovery. However, a number of factors remain unknown, such as the ideal dose and application parameters, mechanisms of action and long-term effects on muscle recovery. The aims of the proposed project are to evaluate the long-term effects of low-level laser therapy on post-exercise musculoskeletal recovery and identify the best dose andapplication power/irradiation time. Design and methods A double-blind, randomized, placebo-controlled clinical trial with be conducted. After fulfilling the eligibility criteria, 28 high-performance athletes will be allocated to four groups of seven volunteers each. In phase 1, the laser power will be 200 mW and different doses will be tested: Group A (2 J), Group B (6 J), Group C (10 J) and Group D (0 J). In phase 2, the best dose obtained in phase 1 will be used with the same distribution of the volunteers, but with different powers: Group A (100 mW), Group B (200 mW), Group C (400 mW) and Group D (0 mW). The isokinetic test will be performed based on maximum voluntary contraction prior to the application of the laser and after the eccentric contraction protocol, which will also be performed using the isokinetic dynamometer. The following variables related to physical performance will be analyzed: peak torque/maximum voluntary contraction, delayed onset muscle soreness (algometer), biochemical markers of muscle damage, inflammation and oxidative stress. Discussion Our intention, is to determine optimal laser therapy application parameters capable of slowing down the physiological muscle fatigue process, reducing injuries or micro-injuries in skeletal muscle stemming from physical exertion and accelerating post-exercise muscle recovery. We believe that, unlike drug therapy, LLLT has a biphasic dose–response pattern. Trial registration The protocol for this study is registered with the Protocol Registry System, ClinicalTrials.gov identifier NCT01844271.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ernesto Cesar Pinto Leal-Junior
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP 01504-001, Brazil.
| |
Collapse
|
240
|
Franklin NC, Ali MM, Robinson AT, Norkeviciute E, Phillips SA. Massage therapy restores peripheral vascular function after exertion. Arch Phys Med Rehabil 2014; 95:1127-34. [PMID: 24583315 DOI: 10.1016/j.apmr.2014.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To determine if lower extremity exercise-induced muscle injury reduces vascular endothelial function of the upper extremity and if massage therapy (MT) improves peripheral vascular function after exertion-induced muscle injury. DESIGN Randomized, blinded trial with evaluations at 90 minutes, 24 hours, 48 hours, and 72 hours. SETTING Clinical research center. PARTICIPANTS Sedentary young adults (N=36) were randomly assigned to 1 of 3 groups: (1) exertion-induced muscle injury and MT (n=15; mean age ± SE, 26.6 ± 0.3); (2) exertion-induced muscle injury only (n=10; mean age ± SE, 23.6 ± 0.4), and (3) MT only (n=11; mean age ± SE, 25.5 ± 0.4). INTERVENTION Participants were assigned to exertion-induced muscle injury only (a single bout of bilateral, eccentric leg press exercise), MT only (30-min lower extremity massage using Swedish technique), or exertion-induced muscle injury and MT. MAIN OUTCOME MEASURES Brachial artery flow-mediated dilation (FMD) was determined by ultrasound at each time point. Nitroglycerin (NTG)-induced dilation was also assessed (0.4 mg). RESULTS Brachial FMD increased from baseline in the exertion-induced muscle injury and MT group and the MT only group (7.38%±.18% to 9.02%±.28%, P<.05 and 7.77%±.25% to 10.2%±.22%, P<.05, respectively) at 90 minutes and remained elevated until 72 hours. In the exertion-induced muscle injury only group, FMD was reduced from baseline at 24 and 48 hours (7.78%±.14% to 6.75%±.11%, P<.05 and 6.53%±.11%, P<.05, respectively) and returned to baseline after 72 hours. Dilations of NTG were similar over time. CONCLUSIONS Our results suggest that MT attenuates impairment of upper extremity endothelial function resulting from lower extremity exertion-induced muscle injury in sedentary young adults.
Collapse
Affiliation(s)
- Nina C Franklin
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL; Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | - Mohamed M Ali
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL; Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | - Austin T Robinson
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL; Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | - Edita Norkeviciute
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL
| | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL; Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Medicine, University of Illinois at Chicago, Chicago, IL.
| |
Collapse
|
241
|
Bell PG, Walshe IH, Davison GW, Stevenson E, Howatson G. Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients 2014; 6:829-43. [PMID: 24566440 PMCID: PMC3942735 DOI: 10.3390/nu6020829] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/09/2014] [Accepted: 02/11/2014] [Indexed: 11/16/2022] Open
Abstract
This investigation examined the impact of Montmorency tart cherry concentrate (MC) on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16) were divided into equal groups and consumed 30 mL of MC or placebo (PLA), twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), interleukin-1-beta (IL-1-β), high-sensitivity C-reactive protein (hsCRP) and creatine kinase (CK) were conducted. LOOH (p < 0.01), IL-6 (p < 0.05) and hsCRP (p < 0.05) responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario's where back-to-back performances are required.
Collapse
Affiliation(s)
- Phillip G Bell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Ian H Walshe
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling FK9 4LA, UK.
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, University of Ulster, Northern Ireland BT52 1SA, UK.
| | - Emma Stevenson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
242
|
Minett GM, Duffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front Physiol 2014; 5:24. [PMID: 24550837 PMCID: PMC3909945 DOI: 10.3389/fphys.2014.00024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/11/2014] [Indexed: 01/29/2023] Open
Abstract
Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.
Collapse
Affiliation(s)
- Geoffrey M Minett
- School of Exercise and Nutrition Sciences, Queensland University of Technology Kelvin Grove, Brisbane, QLD, Australia ; Institute of Health and Biomedical Innovation, Queensland University of Technology Kelvin Grove, Brisbane, QLD, Australia
| | - Rob Duffield
- Sport and Exercise Discipline Group, UTS: Health, University of Technology Sydney Lindfield, Sydney, NSW, Australia
| |
Collapse
|
243
|
Warnecke JM, Wendt T, Winkler S, Schak M, Schiffer T, Kohl-Bareis M. Evaluation of changes in the haemoglobin of skin and muscle tissue of the calf, as induced by topical application of a nonivamide/nicoboxil cream. Can J Physiol Pharmacol 2014; 92:149-54. [DOI: 10.1139/cjpp-2013-0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Topical agents like nonivamide and nicoboxil induce hyperaemisation and increase cutaneous blood flow and temperature. This study aimed to determine the effects of a nonivamide–nicoboxil cream on haemodynamics in the skin and calf muscle, via optical spectroscopy, discriminating between the changes for skin and muscle. Optical spectroscopy was applied in the visible (VIS) and near-infrared (NIR) wavelength range. The study determined the effect of the cream on changes in oxygenated (ΔoxyHb) and deoxygenated (ΔdeoxyHb) haemoglobin in skin and muscle, as well as on tissue oxygen saturation (SO2) in the skin of 14 healthy subjects. The left and right calves of the subjects were either treated with nonivamide–nicoboxil cream or were sham-administered. NIR spectroscopy allows noninvasive in-vivo examination of the oxygenation of human skeletal muscle. Topical administration of the nonivamide–nicoboxil cream significantly increased the concentration of oxygenated haemoglobin and tissue oxygen saturation in the skin, as well as the concentration of oxygenated haemoglobin in the muscle of the treated legs after 15 min, but with stronger and faster effects in the skin. The topical application of the nonivamide–nicoboxil cream increased blood flow in (smaller vessels of) the skin and muscle tissues.
Collapse
Affiliation(s)
- Jan M. Warnecke
- RheinAhrCampus, University of Applied Sciences Koblenz, Joseph-Rovan-Allee 2, 53424 Remagen, Germany
| | - Thomas Wendt
- Outpatient Clinic for Sports Traumatology and Public Health Consultation, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Stefan Winkler
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Matthias Schak
- RheinAhrCampus, University of Applied Sciences Koblenz, Joseph-Rovan-Allee 2, 53424 Remagen, Germany
| | - Thorsten Schiffer
- Outpatient Clinic for Sports Traumatology and Public Health Consultation, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Matthias Kohl-Bareis
- RheinAhrCampus, University of Applied Sciences Koblenz, Joseph-Rovan-Allee 2, 53424 Remagen, Germany
| |
Collapse
|
244
|
A 7-day oral supplementation with branched-chain amino acids was ineffective to prevent muscle damage during a marathon. Amino Acids 2014; 46:1169-76. [PMID: 24477835 DOI: 10.1007/s00726-014-1677-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
The aim of this study was to determine the effectiveness of a 7-day oral supplementation with branched-chain amino acids (BCAA) to prevent muscle damage during a marathon. Forty-six experienced runners were randomly divided into two groups, one with BCAA supplementation (n = 25, supplemented with 5 g day(-1) of powdered 1:0.5:0.5 leucine:isoleucine:valine, during the 7 days prior to the competition) and the other as a control group (n = 21, supplemented with an isocaloric placebo). Before the marathon race and within 3 min of finishing, leg muscle power was measured with a maximal countermovement jump and a urine sample was obtained. During the race, running pace was measured by means of a time-chip. Myoglobin concentration was determined in the urine samples as an indirect marker of muscle damage. A visual analog scale (0-10 points) was used to assess leg muscle pain during the race. In the BCAA group, the mean running pace during the marathon was similar to the control group (3.3 ± 0.4 vs. 3.3 ± 0.5 m s(-1), respectively, 0.98). The pre- to post-race reduction in muscle power was similar in both BCAA and control groups (-23.0 ± 16.1 vs. -17.3 ± 13.8 %, P = 0.13). Post-race urine myoglobin concentration was similar in both BCAA and control groups (5.4 ± 7.5 vs. 4.5 ± 8.6 μg mL(-1), P = 0.70). Finally, there were no differences between groups in the perceived muscle pain during the race (6 ± 1 vs. 5 ± 1 points, P = 0.80). A 7-day supplementation of BCAA (5 g day(-1)) did not increase the running performance during a marathon. Furthermore, BCAA supplementation was ineffective to prevent muscle power loss, muscle damage or perceived muscle pain during a marathon race.
Collapse
|
245
|
Lau WY, Muthalib M, Nosaka K. Visual Analog Scale and Pressure Pain Threshold for Delayed Onset Muscle Soreness Assessment. ACTA ACUST UNITED AC 2013. [DOI: 10.3109/10582452.2013.848967] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
246
|
Reid K. Performance Food: Promoting foods with a functional benefit in sports performance. NUTR BULL 2013. [DOI: 10.1111/nbu.12065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Reid
- Performance Food Ltd.; Swansea UK
| |
Collapse
|
247
|
Sousa M, Teixeira VH, Soares J. Dietary strategies to recover from exercise-induced muscle damage. Int J Food Sci Nutr 2013; 65:151-63. [PMID: 24180469 DOI: 10.3109/09637486.2013.849662] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exhaustive or unaccustomed intense exercise can cause exercise-induced muscle damage (EIMD) and its undesirable consequences may decrease the ability to exercise and to adhere to a training programme. This review briefly summarises the muscle damage process, focusing predominantly on oxidative stress and inflammation as contributing factors, and describes how nutrition may be positively used to recover from EIMD. The combined intake of carbohydrates and proteins and the use of antioxidants and/or anti-inflammatory nutrients within physiological ranges are interventions that may assist the recovery process. Although the works studying food instead of nutritional supplements are very scarce, their results seem to indicate that food might be a favourable option as a recovery strategy. To date, the only tested foods were milk, cherries, blueberries and pomegranate with promising results. Other potential solutions are foods rich in protein, carbohydrates, antioxidants and/or anti-inflammatory nutrients.
Collapse
Affiliation(s)
- Mónica Sousa
- Faculdade de Desporto, Centro de Investigação, Formação, Intervenção e Inovação em Desporto (CIFI2D)
| | | | | |
Collapse
|
248
|
Intramuscular responses with muscle damaging exercise and the interplay between multiple intracellular networks: A human perspective. Food Chem Toxicol 2013; 61:136-43. [DOI: 10.1016/j.fct.2013.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/10/2013] [Accepted: 04/17/2013] [Indexed: 11/21/2022]
|
249
|
Costello JT, Baker PRA, Minett GM, Bieuzen F, Stewart IB, Bleakley C. Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2013. [DOI: 10.1002/14651858.cd010789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
250
|
Markworth JF, Vella L, Lingard BS, Tull DL, Rupasinghe TW, Sinclair AJ, Maddipati KR, Cameron-Smith D. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1281-96. [PMID: 24089379 DOI: 10.1152/ajpregu.00128.2013] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0-3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a biological active inflammatory resolution program, regulated by proresolving lipid mediators during postexercise recovery.
Collapse
Affiliation(s)
- James F Markworth
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|