201
|
Agarwal SM, Caravaggio F, Costa-Dookhan KA, Castellani L, Kowalchuk C, Asgariroozbehani R, Graff-Guerrero A, Hahn M. Brain insulin action in schizophrenia: Something borrowed and something new. Neuropharmacology 2019; 163:107633. [PMID: 31077731 DOI: 10.1016/j.neuropharm.2019.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Insulin signaling in the central nervous system is at the intersection of brain and body interactions, and represents a fundamental link between metabolic and cognitive disorders. Abnormalities in brain insulin action could underlie the development of comorbid schizophrenia and type 2 diabetes. Among its functions, central nervous system insulin is involved in regulation of striatal dopamine levels, peripheral glucose homeostasis, and feeding regulation. In this review, we discuss the role and importance of central nervous system insulin in schizophrenia and diabetes pathogenesis from a historical and mechanistic perspective. We describe central nervous system insulin sites and pathways of action, with special emphasis on glucose metabolism, cognitive functioning, inflammation, and food preferences. Finally, we suggest possible mechanisms that may explain the actions of central nervous system insulin in relation to schizophrenia and diabetes, focusing on glutamate and dopamine signaling, intracellular signal transduction pathways, and brain energetics. Understanding the interplay between central nervous system insulin and schizophrenia is essential to disentangling this comorbid relationship and may provide novel treatment approaches for both neuropsychiatric and metabolic dysfunction. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kenya A Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
202
|
Hölscher C. Insulin Signaling Impairment in the Brain as a Risk Factor in Alzheimer's Disease. Front Aging Neurosci 2019; 11:88. [PMID: 31068799 PMCID: PMC6491455 DOI: 10.3389/fnagi.2019.00088] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes is a risk factor for developing Alzheimer’s disease (AD). The underlying mechanism that links up the two conditions seems to be the de-sensitization of insulin signaling. In patients with AD, insulin signaling was found to be de-sensitized in the brain, even if they did not have diabetes. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function and replacement, autophagy, oxidative stress management, synaptic plasticity, and cognitive function. Insulin desensitization, therefore, can enhance the risk of developing neurological disorders in later life. Other risk factors, such as high blood pressure or brain injury, also enhance the likelihood of developing AD. All these risk factors have one thing in common – they induce a chronic inflammation response in the brain. Pro-inflammatory cytokines block growth factor signaling and enhance oxidative stress. The underlying molecular processes for this are described in the review. Treatments to re-sensitize insulin signaling in the brain are also described, such as nasal insulin tests in AD patients, or treatments with re-sensitizing hormones, such as leptin, ghrelin, glucagon-like peptide 1 (GLP-1),and glucose-dependent insulinotropic polypeptide (GIP). The first clinical trials show promising results and are a proof of concept that utilizing such treatments is valid.
Collapse
Affiliation(s)
- Christian Hölscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
203
|
Das TK, Chakrabarti SK, Zulkipli IN, Abdul Hamid MR. Curcumin Ameliorates the Impaired Insulin Signaling Involved in the Pathogenesis of Alzheimer's Disease in Rats. J Alzheimers Dis Rep 2019; 3:59-70. [PMID: 31025030 PMCID: PMC6481473 DOI: 10.3233/adr-180091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
To date, dysregulation of the insulin signaling pathway in the brain has not been demonstrated unequivocally in Alzheimer's disease (AD). The purpose of the study was to examine the possible dysregulation of insulin signaling pathway in an AD rat model. Furthermore, the present study investigated the effect of Donepezil and Curcumin on insulin signaling, insulin, and glucose levels in AD rat brain. The rats were induced to develop AD by intraperitoneal administration of Scopolamine. We found that glucose levels in plasma and brain were decreased in AD rats, whereas the insulin levels was increased in plasma but decreased in brain in AD rats. In addition, insulin signaling proteins IR-β, IGF-1, IRS-1, IRS-2 p-Akt (Ser473), and Akt were markedly reduced in the AD rats. Furthermore, GLUT3 and GLUT4 levels in the brain were markedly reduced in AD rats. All these data were compared to Saline-treated control rats. Curcumin significantly increased glucose levels in plasma and in brain. However, insulin levels was decreased in plasma and was increased in AD rats' brain. Moreover, GLUT3 and GLUT4 levels were significantly increased in Curcumin-treated AD rats. All these data were compared to Scopolamine- induced AD rats. Thus amelioration of impaired insulin signaling and improved glucose regulation in AD rats by Curcumin may be beneficial in the management of AD.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Universiti Brunei Darussalam, PAPRSB Institute of Health Sciences, Jalan Tungku Link, Gadong, Brunei Darussalam, Brunei
- Institute of Reproductive Medicine, Salt Lake, Kolkata, India
| | | | - Ihsan Nazurah Zulkipli
- Universiti Brunei Darussalam, PAPRSB Institute of Health Sciences, Jalan Tungku Link, Gadong, Brunei Darussalam, Brunei
| | - Mas R.W. Abdul Hamid
- Universiti Brunei Darussalam, PAPRSB Institute of Health Sciences, Jalan Tungku Link, Gadong, Brunei Darussalam, Brunei
| |
Collapse
|
204
|
Zhao L, Cheng X, Zhong C. Implications of Successful Symptomatic Treatment in Parkinson's Disease for Therapeutic Strategies of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:922-930. [PMID: 30474958 DOI: 10.1021/acschemneuro.8b00450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) has been a devastating neurodegenerative disorder and lacks effective treatment to improve the prognosis for patients. Symptomatic treatment for AD mainly includes two categories: Acetylcholinesterase inhibitors and the N-methyl-d-aspartate (NMDA) receptor antagonist (memantine). They cannot significantly improve the quality of life and extend survival time for AD patients. Worse, almost all clinical trials for disease-modifying drugs have failed, and the reduction of brain β-amyloid (Aβ) deposition by multiple approaches, including inhibitors of β- or γ-secretase, vaccines, and antibodies against Aβ deposition, was found to have little effect on AD progression. A new therapeutic strategy for AD is urgently needed. Parkinson's disease also is a neurodegenerative disease having no effective treatment for modifying the disease. Nevertheless, successful symptomatic treatment using the combined therapies of l-DOPA supplement and modulators of l-DOPA metabolism greatly improves the prognosis for PD patients; the average survival time of the patient has been extended from 3-4 years to 10-15 years although dopaminergic neurons are still progressively decreasing. This provides useful implications for AD therapeutic strategies. AD patients manifest global cognitive decline, prominently represented by memory deficit, especially in the early stages of the disease. Further, the degree of decreased cognitive abilities correlates with cholinergic dysfunction and the hypometabolism of glucose, the dominant energy fuel for brain. Thus, the amelioration of brain cholinergic function and brain energy metabolism may be effective treatment to improve cognitive abilities of AD patients. Here, we highlighted the explorations of symptomatic therapeutics through modulating brain cholinergic function and energy metabolism in AD.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200111, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, The State Key Laboratory of Medical Neurobiology, The Institute of Brain Science, Fudan University, Shanghai 200032, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, The State Key Laboratory of Medical Neurobiology, The Institute of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
205
|
Maciejczyk M, Żebrowska E, Chabowski A. Insulin Resistance and Oxidative Stress in the Brain: What's New? Int J Mol Sci 2019; 20:ijms20040874. [PMID: 30781611 PMCID: PMC6413037 DOI: 10.3390/ijms20040874] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
The latest studies have indicated a strong relationship between systemic insulin resistance (IR) and higher incidence of neurodegeneration, dementia, and mild cognitive impairment. Although some of these abnormalities could be explained by chronic hyperglycaemia, hyperinsulinemia, dyslipidaemia, and/or prolonged whole-body inflammation, the key role is attributed to the neuronal redox imbalance and oxidative damage. In this mini review, we provide a schematic overview of intracellular oxidative stress and mitochondrial abnormalities in the IR brain. We highlight important correlations found so far between brain oxidative stress, ceramide generation, β-amyloid accumulation, as well as neuronal apoptosis in the IR conditions.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| |
Collapse
|
206
|
Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci U S A 2019; 116:6379-6384. [PMID: 30765523 DOI: 10.1073/pnas.1817391116] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies have shown that insulin and IGF-1 signaling in the brain, especially the hypothalamus, is important for regulation of systemic metabolism. Here, we develop mice in which we have specifically inactivated both insulin receptors (IRs) and IGF-1 receptors (IGF1Rs) in the hippocampus (Hippo-DKO) or central amygdala (CeA-DKO) by stereotaxic delivery of AAV-Cre into IRlox/lox/IGF1Rlox/lox mice. Consequently, both Hippo-DKO and CeA-DKO mice have decreased levels of the GluA1 subunit of glutamate AMPA receptor and display increased anxiety-like behavior, impaired cognition, and metabolic abnormalities, including glucose intolerance. Hippo-DKO mice also display abnormal spatial learning and memory whereas CeA-DKO mice have impaired cold-induced thermogenesis. Thus, insulin/IGF-1 signaling has common roles in the hippocampus and central amygdala, affecting synaptic function, systemic glucose homeostasis, behavior, and cognition. In addition, in the hippocampus, insulin/IGF-1 signaling is important for spatial learning and memory whereas insulin/IGF-1 signaling in the central amygdala controls thermogenesis via regulation of neural circuits innervating interscapular brown adipose tissue.
Collapse
|
207
|
Rahman SO, Panda BP, Parvez S, Kaundal M, Hussain S, Akhtar M, Najmi AK. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed Pharmacother 2019; 110:47-58. [DOI: 10.1016/j.biopha.2018.11.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022] Open
|
208
|
Bowman P, Day J, Torrens L, Shepherd MH, Knight BA, Ford TJ, Flanagan SE, Chakera A, Hattersley AT, Zeman A. Cognitive, Neurological, and Behavioral Features in Adults With KCNJ11 Neonatal Diabetes. Diabetes Care 2019; 42:215-224. [PMID: 30377186 PMCID: PMC6354912 DOI: 10.2337/dc18-1060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/22/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Central nervous system (CNS) features in children with permanent neonatal diabetes (PNDM) due to KCNJ11 mutations have a major impact on affected families. Sulfonylurea therapy achieves outstanding metabolic control but only partial improvement in CNS features. The effects of KCNJ11 mutations on the adult brain and their functional impact are not well understood. We aimed to characterize the CNS features in adults with KCNJ11 PNDM compared with adults with INS PNDM. RESEARCH DESIGN AND METHODS Adults with PNDM due to KCNJ11 mutations (n = 8) or INS mutations (n = 4) underwent a neurological examination and completed standardized neuropsychological tests/questionnaires about development/behavior. Four individuals in each group underwent a brain MRI scan. Test scores were converted to Z scores using normative data, and outcomes were compared between groups. RESULTS In individuals with KCNJ11 mutations, neurological examination was abnormal in seven of eight; predominant features were subtle deficits in coordination/motor sequencing. All had delayed developmental milestones and/or required learning support/special schooling. Half had features and/or a clinical diagnosis of autism spectrum disorder. KCNJ11 mutations were also associated with impaired attention, working memory, and perceptual reasoning and reduced intelligence quotient (IQ) (median IQ KCNJ11 vs. INS mutations 76 vs. 111, respectively; P = 0.02). However, no structural brain abnormalities were noted on MRI. The severity of these features was related to the specific mutation, and they were absent in individuals with INS mutations. CONCLUSIONS KCNJ11 PNDM is associated with specific CNS features that are not due to long-standing diabetes, persist into adulthood despite sulfonylurea therapy, and represent the major burden from KCNJ11 mutations.
Collapse
Affiliation(s)
- Pamela Bowman
- University of Exeter Medical School, Exeter, U.K. .,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Jacob Day
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Lorna Torrens
- Kent Neuropsychology Service, Kent and Medway NHS and Social Care Partnership Trust, Gillingham, U.K
| | - Maggie H Shepherd
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Bridget A Knight
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | | | | | - Ali Chakera
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Andrew T Hattersley
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Adam Zeman
- University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
209
|
Patterns of functional connectivity in an aging population: The Rotterdam Study. Neuroimage 2019; 189:432-444. [PMID: 30659958 DOI: 10.1016/j.neuroimage.2019.01.041] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Structural brain markers are studied extensively in the field of neurodegeneration, but are thought to occur rather late in the process. Functional measures such as functional connectivity are gaining interest as potentially more subtle markers of neurodegeneration. However, brain structure and function are also affected by 'normal' brain ageing. More information is needed on how functional connectivity relates to aging, particularly in the absence of overt neurodegenerative disease. We investigated the association of age with resting-state functional connectivity in 2878 non-demented persons between 50 and 95 years of age (54.1% women) from the population-based Rotterdam Study. We obtained nine well-known resting state networks using data-driven methodology. Within the anterior default mode network, ventral attention network, and sensorimotor network, functional connectivity was significantly lower with older age. In contrast, functional connectivity was higher with older age within the visual network. Between resting state networks, we found patterns of both increases and decreases in connectivity in approximate equal proportions. Our results reinforce the notion that the aging brain undergoes a reorganization process, and serves as a solid basis for exploring functional connectivity as a preclinical marker of neurodegenerative disease.
Collapse
|
210
|
Sposato V, Canu N, Fico E, Fusco S, Bolasco G, Ciotti MT, Spinelli M, Mercanti D, Grassi C, Triaca V, Calissano P. The Medial Septum Is Insulin Resistant in the AD Presymptomatic Phase: Rescue by Nerve Growth Factor-Driven IRS 1 Activation. Mol Neurobiol 2019; 56:535-552. [PMID: 29736736 PMCID: PMC6334735 DOI: 10.1007/s12035-018-1038-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
Abstract
Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition reminiscent of insulin resistance occurs in the medial septum of 3 months old 3×Tg-AD mice, reported to develop typical AD histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS1) and rescues c-Fos expression and glucose metabolism. This effect involves binding of activated IRS1 to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3×Tg-AD mice by TrkA/IRS1 activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance.
Collapse
Affiliation(s)
- Valentina Sposato
- European Brain Research Institute (EBRI) Rita Levi-Montalcini Foundation, Viale Regina Elena 295, Rome, Italy
| | - Nadia Canu
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
- Department of System Medicine, Section of Physiology, University of Rome “TorVergata”, Rome, Italy
| | - Elena Fico
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Salvatore Fusco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Bolasco
- European Molecular Biology Laboratory (EMBL), Monterotondo Outstation, Rome, Italy
| | - Maria Teresa Ciotti
- European Brain Research Institute (EBRI) Rita Levi-Montalcini Foundation, Viale Regina Elena 295, Rome, Italy
| | - Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Delio Mercanti
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Viviana Triaca
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI) Rita Levi-Montalcini Foundation, Viale Regina Elena 295, Rome, Italy
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
| |
Collapse
|
211
|
Valko K, Ciesla L. Amyotrophic lateral sclerosis. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:63-117. [DOI: 10.1016/bs.pmch.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
212
|
Letra L, Rodrigues T, Matafome P, Santana I, Seiça R. Adiponectin and sporadic Alzheimer's disease: Clinical and molecular links. Front Neuroendocrinol 2019; 52:1-11. [PMID: 29038028 DOI: 10.1016/j.yfrne.2017.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 01/21/2023]
Abstract
Obesity has been consistently associated with Alzheimer's disease (AD) though the exact mechanisms by which it influences cognition are still elusive and subject of current research. Adiponectin, the most abundant adipokine in circulation, is inversely correlated with adipose tissue dysfunction and seems to be a central player in this association. In fact, different signalling pathways are shared by adiponectin and proteins involved in AD pathophysiology and considerable amount of evidence supports its direct and indirect influence on β-amyloid and tau aggregates formation. In this paper we present a critical review of cellular, animal and clinical studies which have contributed to a more thorough understanding of the extent to which adiponectin influences the risk of developing AD as well as its progression. Finally, the effect of acetylcholinesterase inhibitors on circulating adiponectin levels, possible therapeutic applications and future research strategies are also discussed.
Collapse
Affiliation(s)
- Liliana Letra
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Neurology Department, Centro Hospitalar do Baixo Vouga - Aveiro, Av. Artur Ravara, 3814-501 Aveiro, Portugal.
| | - Tiago Rodrigues
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Paulo Matafome
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3000-075 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
213
|
Li H, Liu CC, Zheng H, Huang TY. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 2018; 7:34. [PMID: 30603085 PMCID: PMC6306008 DOI: 10.1186/s40035-018-0139-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal disease that threatens the quality of life of an aging population at a global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies. MAIN BODY In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis, and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβ in anti-viral protection. CONCLUSION AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms, which may involve personalized treatment strategies for individual patients at varying stages of disease progression.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX USA
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA USA
| |
Collapse
|
214
|
Gladding JM, Abbott KN, Antoniadis CP, Stuart A, Begg DP. The Effect of Intrahippocampal Insulin Infusion on Spatial Cognitive Function and Markers of Neuroinflammation in Diet-induced Obesity. Front Endocrinol (Lausanne) 2018; 9:752. [PMID: 30619085 PMCID: PMC6297211 DOI: 10.3389/fendo.2018.00752] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Obesity and high fat diet consumption contribute to the development of metabolic disorders, insulin resistance, neuroinflammation, and cognitive impairments. CNS administration of insulin into the brain can attenuate these cognitive impairments. The present study investigated whether hippocampal-dependent spatial memory impairments in a dietary induced mouse model of obesity could be improved by the direct administration of insulin into the hippocampus and whether this was associated with markers of hippocampal inflammation. C57Bl/6J mice consumed a low fat or high fat diet for 16 weeks and continuous intrahippocampal saline or insulin infusion for the final 4 weeks, during a period of behavioral testing, before gene expression analysis was performed. The high fat diet group demonstrated poorer spatial memory performance in the Morris water maze and Y-maze, supporting the hypothesis that high fat diet leads to hippocampal dependent cognitive impairment. Insulin infusion into the hippocampus reversed the deficit of high fat diet consumption on both of the tasks. Increased expression of inflammatory markers was detected in the hippocampus in the high fat diet group and expression of these markers was ameliorated in insulin infused mice. This demonstrates that CNS insulin can improve hippocampal-dependent memory and that hippocampal inflammation may be a factor in the development of cognitive deficits associated with diet-induced obesity. Furthermore, these data suggest that insulin may act to attenuate high fat diet induced cognitive deficits by reducing neuroinflammation.
Collapse
Affiliation(s)
- Joanne M. Gladding
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | - Kirsten N. Abbott
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | - Christopher P. Antoniadis
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
- Department of Medicine, School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Angela Stuart
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
- Department of Pharmacology, School of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Denovan P. Begg
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
215
|
Joly-Amado A, Gratuze M, Benderradji H, Vieau D, Buée L, Blum D. [Brain insulin signaling and Tau: impact for Alzheimer's disease and Tauopathies]. Med Sci (Paris) 2018; 34:929-935. [PMID: 30526837 DOI: 10.1051/medsci/2018238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease primarily characterized by cognitive deficits and neuropathological lesions such as Tau aggregates and amyloid plaques, but also associated with metabolic and neuroendocrine abnormalities, such as impairment of cerebral insulin. However, the origin of these symptoms and their relationship to pathology and cognitive disorders remain poorly understood. Insulin is a hormone involved in the control of peripheral and central energy homeostasis, and insulin-resistant state has been linked to increased risk of dementia. It is now well established that brain insulin resistance can exacerbate Tau lesions. Conversely, recent data indicate that Tau protein can modulate insulin signalling in the brain, creating a vicious circle precipitating the pathological AD. This review aims to highlight our current understanding of the role of insulin in the brain and its relationship with Tau protein in the context of AD and Tauopathies.
Collapse
Affiliation(s)
- Aurélie Joly-Amado
- Byrd Alzheimer's Institute, department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, États-Unis
| | - Maud Gratuze
- Centre de recherche du Centre hospitalier de l'université Laval de Québec, axe neurosciences, université Laval, Québec, QC, Canada
| | - Hamza Benderradji
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, « Alzheimer & Tauopathies », LabEx DISTALZ, F-59000 Lille, France
| | - Didier Vieau
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, « Alzheimer & Tauopathies », LabEx DISTALZ, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, « Alzheimer & Tauopathies », LabEx DISTALZ, F-59000 Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, « Alzheimer & Tauopathies », LabEx DISTALZ, F-59000 Lille, France
| |
Collapse
|
216
|
Njan AA, Fatigun CO, Alli-Oluwafuyi AM, Olorundare OE, Afolabi OS, Akinola O, Amin A. Effect of intranasal insulin on peripheral glucose profile in dexamethasone-induced insulin resistance in Wistar rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
217
|
Regulation of heteronuclear Pt–Ru complexes on the fibril formation and cytotoxicity of human islet amyloid polypeptide. J Inorg Biochem 2018; 189:7-16. [DOI: 10.1016/j.jinorgbio.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022]
|
218
|
Rhea EM, Salameh TS, Banks WA. Routes for the delivery of insulin to the central nervous system: A comparative review. Exp Neurol 2018; 313:10-15. [PMID: 30500332 DOI: 10.1016/j.expneurol.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/18/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022]
Abstract
Central nervous system (CNS) insulin resistance is a condition in which the cells within the CNS do not respond to insulin appropriately and is often linked to aberrant CNS insulin levels. CNS insulin is primarily derived from the periphery. Aberrant CNS insulin levels can arise due to various factors including i) decreased endogenous insulin transport into the brain, across the blood-brain barrier (BBB), ii) reduced CNS sequestration of insulin, and iii) increased CNS degradation. While the sole route of endogenous insulin transport into the brain is via the BBB, there are multiple therapeutic routes of administration that have been investigated to deliver exogenous insulin to the CNS. These alternative administrative routes can be utilized to increase the amount of CNS insulin and aid in overcoming CNS insulin resistance. This review focuses on the intravenous, intracerebroventricular, intranasal, ocular, and intrathecal routes of administration and compares the impact of insulin delivery.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Therese S Salameh
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
219
|
Affiliation(s)
- Marcus D Goncalves
- From the Meyer Cancer Center (M.D.G., B.D.H., L.C.C.) and the Division of Endocrinology (M.D.G.), Department of Medicine, Weill Cornell Medicine, New York
| | - Benjamin D Hopkins
- From the Meyer Cancer Center (M.D.G., B.D.H., L.C.C.) and the Division of Endocrinology (M.D.G.), Department of Medicine, Weill Cornell Medicine, New York
| | - Lewis C Cantley
- From the Meyer Cancer Center (M.D.G., B.D.H., L.C.C.) and the Division of Endocrinology (M.D.G.), Department of Medicine, Weill Cornell Medicine, New York
| |
Collapse
|
220
|
Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, Prabhu G. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer's disease. Drug Des Devel Ther 2018; 12:3999-4021. [PMID: 30538427 PMCID: PMC6255119 DOI: 10.2147/dddt.s173970] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiological link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has been suggested in several reports. Few findings suggest that T2DM has strong link in the development process of AD, and the complete mechanism is yet to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, cholesterol, and glucose metabolism. The investigation of the molecular cascades through insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. This review elaborates the molecular insights that would help to further understand the potential mechanisms linking T2DM and AD.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia,
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), Bukit Gambir, Gelugor, Pulau Pinang, Malaysia,
| | - Hamed Karimian
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Girish Prabhu
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
221
|
MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. Int J Mol Sci 2018; 19:ijms19123705. [PMID: 30469501 PMCID: PMC6321520 DOI: 10.3390/ijms19123705] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022] Open
Abstract
The insulin signaling pathway is composed of a large number of molecules that positively or negatively modulate insulin specific signal transduction following its binding to the cognate receptor. Given the importance of the final effects of insulin signal transduction, it is conceivable that many regulators are needed in order to tightly control the metabolic or proliferative functional outputs. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively modulate gene expression through their specific binding within the 3′UTR sequence of messenger RNA (mRNA), thus causing mRNA decoy or translational inhibition. In the last decade, miRNAs have been addressed as pivotal cellular rheostats which control many fundamental signaling pathways, including insulin signal transduction. Several studies demonstrated that multiple alterations of miRNAs expression or function are relevant for the development of insulin resistance in type 2 diabetes (T2D); such alterations have been highlighted in multiple insulin target organs including liver, muscles, and adipose tissue. Indirectly, miRNAs have been identified as modulators of inflammation-derived insulin resistance, by controlling/tuning the activity of innate immune cells in insulin target tissues. Here, we review main findings on miRNA functions as modulators of insulin signaling in physiologic- or in T2D insulin resistance- status. Additionally, we report the latest hypotheses of prospective therapies involving miRNAs as potential targets for future drugs in T2D.
Collapse
|
222
|
Maghami S, Zardooz H, Khodagholi F, Binayi F, Ranjbar Saber R, Hedayati M, Sahraei H, Ansari MA. Maternal separation blunted spatial memory formation independent of peripheral and hippocampal insulin content in young adult male rats. PLoS One 2018; 13:e0204731. [PMID: 30332425 PMCID: PMC6192583 DOI: 10.1371/journal.pone.0204731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
This study explores the effects of maternal separation as a chronic early life stress (ELS) on pancreatic islets insulin content and secretion, and their potential relationship with the hippocampus insulin content and spatial memory in young adulthood. Male rat offspring were divided into two groups: stress (STR) and non-stress (non-STR) groups. The animals of the STR group were separated from their mothers during postnatal days (PND) 1 to 21. During the weaning time, that is, PND-0 to PND-21, the body weight and length of the pups were measured. Blood samples were collected on PND-1, 21, 29 and 34 and during young adulthood (53±2 days) to determine plasma corticosterone and insulin levels. The young adult animals were also tested for spatial memory. One day after the memory test, the animals were decapitated and their pancreases were removed to measure the islets insulin content and secretion. Finally, the animals' hippocampi were isolated to determine their insulin content and insulin receptor protein amounts. During the period of weaning, the body weight and length of pups belonging to the STR group were significantly lower as compared to those in the non-STR group. Maternal separation did not change the plasma levels of insulin but increased plasma corticosterone levels from PND-21 to young adulthood and also reduced the islets insulin content but did not affect insulin secretion and the hippocampus insulin content and insulin receptor protein amount. Although, at the end of the memory tests, rats of the STR group reached the escape box at almost the same time and distance and with the same errors as rats of the non-STR group, the distance traveled to reach the escape box showed a steep reduction in the non-STR group as compared to the STR group after the first trial. Moreover, as compared to the STR group, the non-STR group showed an increasing trend for direct strategy to find the escape box. The islets insulin content and secretion, and the plasma insulin concentration were not significantly correlated with the hippocampus insulin content. From the results of the present study, it appears that the main behavioral effect of the maternal separation stress in the spatial memory task was to impair the strategy used by the animals to reach the escape box. This may indicate that maternal separation stress affects brain regions other than the hippocampus. Moreover, due to the reduction of the body weight and length of offspring belonging to the STR group, it should be further considered that both maternal separation and early life malnutrition are directly (and mechanistically) linked to cognitive alterations later in life in ways that are not dependent on peripheral and hippocampal insulin content.
Collapse
Affiliation(s)
- Soheila Maghami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail: ,
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Ranjbar Saber
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Ansari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
223
|
Hersom M, Helms HC, Schmalz C, Pedersen TÅ, Buckley ST, Brodin B. The insulin receptor is expressed and functional in cultured blood-brain barrier endothelial cells but does not mediate insulin entry from blood to brain. Am J Physiol Endocrinol Metab 2018; 315:E531-E542. [PMID: 29584446 DOI: 10.1152/ajpendo.00350.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin and its receptor are known to be present and functional in the brain. Insulin cerebrospinal fluid concentrations have been shown to correlate with plasma levels of insulin in a nonlinear fashion, indicative of a saturable transport pathway from the blood to the brain interstitial fluid. The aim of the present study was to investigate whether insulin was transported across brain endothelial cells in vitro via an insulin receptor-dependent pathway. The study showed that the insulin receptor was expressed at both the mRNA and protein levels in bovine brain endothelial cells. Luminally applied radiolabeled insulin showed insulin receptor-mediated binding to the endothelial cells. This caused a dose-dependent increase in Akt-phosphorylation, which was inhibited by coapplication of an insulin receptor inhibitor, s961, demonstrating activation of insulin receptor signaling pathways. Transport of insulin across the blood-brain barrier in vitro was low and comparable to that of a similarly sized paracellular marker. Furthermore, insulin transport was not inhibited by coapplication of an excess of unlabeled insulin or an insulin receptor inhibitor. The insulin transport and uptake studies were repeated in mouse brain endothelial cells demonstrating similar results. Although it cannot be ruled out that culture-induced changes in the cell model could have impaired a potential insulin transport mechanism, these in vitro data indicate that peripheral insulin must reach the brain parenchyma through alternative pathways rather than crossing the blood-brain barrier via receptor mediated transcytosis.
Collapse
Affiliation(s)
- Maria Hersom
- Department of Pharmacy, University of Copenhagen , Copenhagen , Denmark
| | - Hans C Helms
- Department of Pharmacy, University of Copenhagen , Copenhagen , Denmark
- Discovery ADME, Global Research, Novo Nordisk, Måløv, Denmark
| | | | - Thomas Å Pedersen
- Insulin Metabolism and Safety Biology, Global Research, Novo Nordisk, Måløv, Denmark
| | | | - Birger Brodin
- Department of Pharmacy, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
224
|
Denver P, McClean PL. Distinguishing normal brain aging from the development of Alzheimer's disease: inflammation, insulin signaling and cognition. Neural Regen Res 2018; 13:1719-1730. [PMID: 30136683 PMCID: PMC6128051 DOI: 10.4103/1673-5374.238608] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
As populations age, prevalence of Alzheimer's disease (AD) is rising. Over 100 years of research has provided valuable insights into the pathophysiology of the disease, for which age is the principal risk factor. However, in recent years, a multitude of clinical trial failures has led to pharmaceutical corporations becoming more and more unwilling to support drug development in AD. It is possible that dependence on the amyloid cascade hypothesis as a guide for preclinical research and drug discovery is part of the problem. Accumulating evidence suggests that amyloid plaques and tau tangles are evident in non-demented individuals and that reducing or clearing these lesions does not always result in clinical improvement. Normal aging is associated with pathologies and cognitive decline that are similar to those observed in AD, making differentiation of AD-related cognitive decline and neuropathology challenging. In this mini-review, we discuss the difficulties with discerning normal, age-related cognitive decline with that related to AD. We also discuss some neuropathological features of AD and aging, including amyloid and tau pathology, synapse loss, inflammation and insulin signaling in the brain, with a view to highlighting cognitive or neuropathological markers that distinguish AD from normal aging. It is hoped that this review will help to bolster future preclinical research and support the development of clinical tools and therapeutics for AD.
Collapse
Affiliation(s)
- Paul Denver
- Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles Medical Center and Department of Neurology, University of California, Los Angeles, CA, USA
- Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Paula L. McClean
- Northern Ireland Centre for Stratified Medicine, Clinical, Translational and Research Innovation Centre (C-TRIC), University of Ulster, Derry/Londonderry, Northern Ireland, UK
| |
Collapse
|
225
|
Elhaik Goldman S, Goez D, Last D, Naor S, Liraz Zaltsman S, Sharvit-Ginon I, Atrakchi-Baranes D, Shemesh C, Twitto-Greenberg R, Tsach S, Lotan R, Leikin-Frenkel A, Shish A, Mardor Y, Schnaider Beeri M, Cooper I. High-fat diet protects the blood-brain barrier in an Alzheimer's disease mouse model. Aging Cell 2018; 17:e12818. [PMID: 30079520 PMCID: PMC6156545 DOI: 10.1111/acel.12818] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of Alzheimer's disease (AD). There is evidence for impaired blood-brain barrier (BBB) in both diseases, but its role in the interplay between them is not clear. Here, we investigated the effects of high-fat diet (HFD), a model for T2D, on the Tg2576 mouse model of AD, in regard to BBB function. We showed that HFD mice had higher weight, more insulin resistance, and higher serum HDL cholesterol levels, primarily in Tg2576 mice, which also had higher brain lipids content. In terms of behavior, Tg2576 HFD mice were less active and more anxious, but had better learning in the Morris Water Maze compared to Tg2576 on regular diet. HFD had no effect on the level of amyloid beta 1-42 in the cortex of Tg2576 mice, but increased the transcription level of insulin receptor in the hippocampus. Tg2576 mice on regular diet demonstrated more BBB disruption at 8 and 12 months accompanied by larger lateral ventricles volume in contrast to Tg2576 HFD mice, whose BBB leakage and ventricular volume were similar to wild-type (WT) mice. Our results suggest that in AD, HFD may promote better cognitive function through improvements of BBB function and of brain atrophy but not of amyloid beta levels. Lipid metabolism in the CNS and peripheral tissues and brain insulin signaling may underlie this protection.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Gonda Brain Research Center; Bar Ilan University; Ramat-Gan Israel
| | - David Goez
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Sharone Naor
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Sigal Liraz Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Pharmacology Division, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy; Hebrew University of Jerusalem; Jerusalem Israel
| | - Inbal Sharvit-Ginon
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychology; Bar Ilan University; Ramat-Gan Israel
| | - Dana Atrakchi-Baranes
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Rachel Twitto-Greenberg
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Shoval Tsach
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Roni Lotan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Alicia Leikin-Frenkel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Aviv Shish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Yael Mardor
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- The Interdisciplinary Center; Herzliya Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Interdisciplinary Center; Herzliya Israel
| |
Collapse
|
226
|
Manu MS, Rachana KS, Advirao GM. The correlation between insulin and OCT-6 transcription factor in Schwann cells and sciatic nerve of diabetic rats. Genes Dis 2018; 5:130-136. [PMID: 30258942 PMCID: PMC6147042 DOI: 10.1016/j.gendis.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022] Open
Abstract
Insulin signal is one of the vital signaling cascade required for Schwann cells to myelinate the axons of peripheral nervous system (PNS). Myelin formation of peripheral nerve is a complex molecular event controlled by different neurotrophic and transcription factors. The altered or failure in this signaling progression is one of the reasons behind the demyelination of peripheral neurons in diabetic peripheral neuropathy (DPN). The Schwann cell in PNS includes POU domain transcription factor OCT-6 expression. This factor is considered as crucial for the initiation and enhancement of myelination during nerve regeneration. To know the importance of OCT-6 gene, here we studied the long term expression of OCT-6 nuclear protein in sciatic nerve of normal and diabetic neuropathic rats. Also for the first time we elucidated the role of insulin in controlling the expression of OCT-6 in hyperglycemic Schwann cells and sciatic nerve of diabetic neuropathic rats. The results shows that, there will be long term OCT-6 expression in sciatic nerve of adult rats and also their significant decrease is observed in the diabetic condition. But, addition of Insulin for primary Schwann cells and diabetic rats shows the increased OCT-6 expression in both invivo and invitro. Together these results indicate the failure of OCT-6 support in neuropathy and also the importance of insulin signaling cascade in the expression of OCT-6 transcription factor.
Collapse
Affiliation(s)
- Mallahalli S Manu
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India
| | | | - Gopal M Advirao
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India
| |
Collapse
|
227
|
Abstract
OBJECTIVES Pancreatic islet amyloid deposition occurs before β-cell damage in type 2 diabetes mellitus patients. The islet and Alzheimer's disease β-amyloid shares similar secondary structures. The Alzheimer's disease β-amyloid targeting tracer [F]FDDNP could be used to image pancreatic islet amyloid with PET. PATIENTS AND METHODS Consecutive pancreatic tissue sections from a 69-year-old male type 2 diabetes mellitus patient were stained by hematoxylin and eosin, anti-amylin antibody, Congo Red, periodic acid-Schiff, and [F]FDDNP reference compound, respectively. The pancreatic tissue sections were also incubated with [F]FDDNP with and without its reference compound for autoradiography. Subsequently, we performed control [F]FDDNP pancreatic PET/CT imaging in four healthy individuals. The mean standardized uptake values of [F]FDDNP uptake in the pancreatic head, neck, body, and tail, blood pool, liver, and vertebral bone from 5 to 120 min after injection were determined. RESULTS Islet amyloid was observed in all four standard staining methods in the pancreas tissue. Similar islet amyloid distribution and phenotypes were observed clearly in the [F]FDDNP reference compound-stained pancreas tissue. [F]FDDNP was intensively accumulated in the same pancreatic tissue in autoradiography, which was largely blocked by its reference compound. In the PET/CT scans of control human participants, the mean standardized uptake values in pancreas decreased to the blood pool level in 30 min and all parts of the pancreas had similar [F]FDDNP uptake. The pancreas could be distinguished clearly from the liver at all-time points. CONCLUSION These results suggested that [F]FDDNP is a potential tracer for pancreatic islet amyloid PET imaging.
Collapse
|
228
|
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci 2018; 8:E177. [PMID: 30223579 PMCID: PMC6162719 DOI: 10.3390/brainsci8090177] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Hira Zubair
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarah Pursell
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Muhammad Shahab
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
229
|
de Souza CP, Gambeta E, Stern CAJ, Zanoveli JM. Posttraumatic stress disorder-type behaviors in streptozotocin-induced diabetic rats can be prevented by prolonged treatment with vitamin E. Behav Brain Res 2018; 359:749-754. [PMID: 30219262 DOI: 10.1016/j.bbr.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023]
Abstract
Anxiety and stress disorders, such as posttraumatic stress disorder (PTSD) have been described as debilitating comorbidities of diabetes. In the present study, we aimed to investigate anxiety-like behavior and the extinction and generalization of aversive memories in fear conditioning using a streptozotocin-induced model of diabetes (DBT). Moreover, considering that DBT animals present increased oxidative stress in brain areas related to anxiety and memory, we aimed to evaluate the effect of prolonged treatment with antioxidant vitamin E on behavioral parameters of anxiety and fear memory and on the diabetic condition. It was observed that DBT animals showed a deficiency in extinguishing the aversive memory in a fear conditioning test, along with a generalization of the fear memory. They also present a more pronounced anxiety-like behavior in the elevated plus maze test. VIT E treatment (300 mg/kg, p.o.) was not able to reduce hyperglycemia; however, it was able to block the anxiogenic-like behavior, also improving the deficit in the extinction of the aversive memory as well as blocking the generalization of such memory in a different context. Taken together, our data suggest that DBT animals are prone to extinction deficits and generalization of fear memories, behaviors which are observed in models of PTSD. Lastly, prolonged VIT E supplementation may be effective in the treatment of anxiety, extinction deficit and generalization of fear memories induced by the diabetic condition.
Collapse
Affiliation(s)
- Camila Pasquini de Souza
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Eder Gambeta
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
230
|
Silveira PP, Pokhvisneva I, Gaudreau H, Rifkin-Graboi A, Broekman BFP, Steiner M, Levitan R, Parent C, Diorio J, Meaney MJ. Birth weight and catch up growth are associated with childhood impulsivity in two independent cohorts. Sci Rep 2018; 8:13705. [PMID: 30209275 PMCID: PMC6135839 DOI: 10.1038/s41598-018-31816-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Individuals born after intrauterine growth restriction (IUGR) are more impulsive towards palatable foods, but it is not clear 1) if IUGR-related impulsivity is specific for foods and solely based on response inhibition and 2) if the development of impulsivity is due to being born IUGR per se or to growing up fast in the first few years of life (catch up growth). Children were classified in the IUGR group if the birth weight ratio was below 0.85. Delta z score for BMI was used as a measure of catch up growth. In MAVAN (N = 274), impulsivity was measured by the Information Sampling Task from the Cambridge Neuropsychological Test Automated Battery (IST - CANTAB), and in GUSTO using the Sticker Delay Task (N = 327). There is a significant effect of interaction between being born IUGR and the magnitude of catch up growth on the reflection impulsivity from IST-CANTAB at 60 months, in which greater catch up growth associates with greater impulsivity in the IST fixed condition in IUGR children. The finding was reproduced in children from the GUSTO cohort using the Sticker Delay Task. We confirmed that catch up growth interacts with IUGR, having a major role in the development of impulsivity in the first years of life and influencing inhibitory control and decision making processes.
Collapse
Affiliation(s)
- Patrícia P Silveira
- Department of Psychiatry, McGill University & Sackler Institute for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada.
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Hélène Gaudreau
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Anne Rifkin-Graboi
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Meir Steiner
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, L8N 3K7, Canada
| | - Robert Levitan
- Department of Psychiatry, University of Toronto and Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Carine Parent
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Josie Diorio
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Michael J Meaney
- Department of Psychiatry, McGill University & Sackler Institute for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
231
|
Redox Balance, Antioxidant Defense, and Oxidative Damage in the Hypothalamus and Cerebral Cortex of Rats with High Fat Diet-Induced Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6940515. [PMID: 30271528 PMCID: PMC6146783 DOI: 10.1155/2018/6940515] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023]
Abstract
Oxidative stress is a key pathogenic factor in both neurogenerative and metabolic diseases. However, its contribution in the brain complications of insulin resistance is still not well understood. Therefore, the aim of this study was the evaluation of redox homeostasis and oxidative damage in the hypothalamus and cerebral cortex of insulin-resistant and control rats. 16 male Wistar rats were divided into two equal groups (n = 8): the control and high fat diet group (HFD). Prooxidant enzymes (xanthine oxidase and NADPH oxidase); enzymatic and nonenzymatic antioxidants [glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase-1 (SOD-1), and uric acid (UA)]; and oxidative damage products [advanced glycation end products (AGE), 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), and 8-hydroxy-2′-deoxyguanosine (8-OHdG)] as well as the total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), and total ferric reducing ability of sample (FRAP) were evaluated in the hypothalamus and cerebral cortex as well as serum/plasma of HFD-fed and control rats. The activity of prooxidant enzymes was significantly increased in the cerebral cortex and hypothalamus of HFD-fed rats vs. control rats. Additionally, we have showed enhanced antioxidant efficiency in the hypothalamus (↑CAT, ↑UA, ↑TAC, and ↑FRAP) and cerebral cortex (↑GPx, ↑CAT, ↑SOD-1, ↑UA, ↑TAC, and ↑FRAP) of HFD-fed rats. All of the oxidative damage markers (AGE, 4-HNE, MDA, 8-OHdG, and OSI) were significantly increased in the cerebral cortex of insulin-resistant rats, while only 4-HNE and MDA were markedly higher in the hypothalamus of the HFD group. Summarizing, the results of our study indicate an adaptive brain response to the increased production of free radicals under insulin resistance conditions. Despite the increase in antioxidative defense systems, this mechanism does not protect both brain structures from oxidative damages. However, the cerebral cortex is more susceptible to oxidative stress caused by HFD.
Collapse
|
232
|
Influence of Standardized Extract Ginkgo biloba EGb761® Towards Quality of Life Indicators in Patients with Diabetes Mellitus Type 2. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
233
|
Taibi-Djennah Z, Martin-Eauclaire MF, Laraba-Djebari F. Evaluation of neuroprotective effects of insulin on immuno-inflammatory and systemic disorders induced by kaliotoxin, a Kv1.3 channel blocker. Inflamm Res 2018; 67:863-877. [DOI: 10.1007/s00011-018-1177-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/12/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
|
234
|
Li Z, Chen P, Chen J, Xu Y, Wang Q, Li X, Li C, He L, Shi Y. Glucose and Insulin-Related Traits, Type 2 Diabetes and Risk of Schizophrenia: A Mendelian Randomization Study. EBioMedicine 2018; 34:182-188. [PMID: 30100396 PMCID: PMC6116472 DOI: 10.1016/j.ebiom.2018.07.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The link between schizophrenia and diabetes mellitus is well established by observational studies; however, the cause-effect relationship remains unclear. METHODS Here, we conducted Mendelian randomization analyses to assess a causal relationship of the genetic variants related to elevated fasting glucose levels, hemoglobin A1c (HbA1c), fasting insulin levels, and type 2 diabetes with the risk of schizophrenia. The analyses were performed using summary statistics obtained for the variants identified from the genome-wide association meta-analyses of fasting glucose levels (up to 133,010 individuals), HbA1c (up to 153,377 individuals), fasting insulin levels (up to 108,557 individuals), type 2 diabetes (up to 659,316 individuals), and schizophrenia (up to 108,341 individuals). The association between each variant and schizophrenia was weighted by its association with each studied condition, and estimates were combined using an inverse-variance weighted meta-analysis. FINDINGS Using information from thirteen variants related to fasting insulin levels, the causal effect of fasting insulin levels increases (per 1-SD) on the risk of schizophrenia was estimated at an odds ratio (OR) of 2·33 (p = 0·001), which is consistent with findings from the observational studies. The fasting glucose associated single nucleotide polymorphisms (SNPs) had no effect on the risk of schizophrenia in Europeans and East Asians (p > 0·05). Nonsignificant effects on the risk of schizophrenia was observed with raised HbA1c and type 2 diabetes, and consistent estimates were obtained across different populations. INTERPRETATION Our results suggest a causal role of elevated fasting insulin levels in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Zhiqiang Li
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, PR China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai 200030, PR China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, PR China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai 200030, PR China.
| | - Peng Chen
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, No. 45 Chaoyang Xi Road, Changchun 130021, PR China; College of Basic Medical Sciences, Jilin University, No. 126 Xinmin Street, Changchun 130021, PR China; National Institute of Digestive, Diabetes and Kidney Diseases, National Institutes of Health, 445 N 5th St, Phoenix, AZ 85004, USA
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai 200030, PR China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 Wanping Nan Road, Shanghai 200030, PR China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 Wanping Nan Road, Shanghai 200030, PR China
| | - Qingzhong Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai 200030, PR China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai 200030, PR China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Disease, The Metabolic Disease Institute of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai 200030, PR China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai 200030, PR China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, PR China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai 200030, PR China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, PR China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 Wanping Nan Road, Shanghai 200030, PR China.
| |
Collapse
|
235
|
Musen G, Tinsley LJ, Marcinkowski KA, Pober D, Sun JK, Khatri M, Huynh R, Lu A, King GL, Keenan HA. Cognitive Function Deficits Associated With Long-Duration Type 1 Diabetes and Vascular Complications. Diabetes Care 2018; 41:1749-1756. [PMID: 29871904 PMCID: PMC6054500 DOI: 10.2337/dc17-1955] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/06/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with type 1 diabetes now live long enough to experience cognitive decline. During middle age, they show mild cognitive deficits, but it is unknown whether severity increases with aging or whether cognitive profiles are similar to those of age-matched peers with and without diabetes. RESEARCH DESIGN AND METHODS We tested and compared cognition in 82 individuals with 50 or more years of type 1 diabetes (Medalists), 31 age-matched individuals with type 2 diabetes, and 30 age-matched control subjects without diabetes. Medical histories and biospecimens were collected. We also evaluated the association of complications with cognition in Medalists only. RESULTS Compared with control subjects, both individuals with type 1 diabetes and individuals with type 2 diabetes performed worse on immediate and delayed recall (P ≤ 0.002) and psychomotor speed in both hands (P ≤ 0.01) and showed a trend toward worse executive function (P = 0.05). In Medalists, cardiovascular disease was associated with decreased executive function and proliferative diabetic retinopathy with slower psychomotor speed. CONCLUSIONS Both patients with type 1 and patients with type 2 diabetes showed overall worse cognition than control subjects. Further, in Medalists, a relationship between complications and cognition was seen. Although both groups with diabetes showed similar deficit patterns, the underlying mechanisms may be different. Now that patients with type 1 diabetes are living longer, efforts should be made to evaluate cognition and to identify modifying behaviors to slow decline.
Collapse
Affiliation(s)
- Gail Musen
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | | | | | - David Pober
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jennifer K Sun
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Maya Khatri
- Research Division, Joslin Diabetes Center, Boston, MA
| | - Richie Huynh
- Research Division, Joslin Diabetes Center, Boston, MA
| | - Annie Lu
- Research Division, Joslin Diabetes Center, Boston, MA
| | - George L King
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Hillary A Keenan
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
- Sanofi Genzyme, Cambridge, MA
| |
Collapse
|
236
|
Nikolakopoulou P, Chatzigeorgiou A, Kourtzelis I, Toutouna L, Masjkur J, Arps-Forker C, Poser SW, Rozman J, Rathkolb B, Aguilar-Pimentel JA, Wolf E, Klingenspor M, Ollert M, Schmidt-Weber C, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Tsata V, Monasor LS, Troullinaki M, Witt A, Anastasiou V, Chrousos G, Yi CX, García-Cáceres C, Tschöp MH, Bornstein SR, Androutsellis-Theotokis A. Streptozotocin-induced β-cell damage, high fat diet, and metformin administration regulate Hes3 expression in the adult mouse brain. Sci Rep 2018; 8:11335. [PMID: 30054579 PMCID: PMC6063949 DOI: 10.1038/s41598-018-29434-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus is a group of disorders characterized by prolonged high levels of circulating blood glucose. Type 1 diabetes is caused by decreased insulin production in the pancreas whereas type 2 diabetes may develop due to obesity and lack of exercise; it begins with insulin resistance whereby cells fail to respond properly to insulin and it may also progress to decreased insulin levels. The brain is an important target for insulin, and there is great interest in understanding how diabetes affects the brain. In addition to the direct effects of insulin on the brain, diabetes may also impact the brain through modulation of the inflammatory system. Here we investigate how perturbation of circulating insulin levels affects the expression of Hes3, a transcription factor expressed in neural stem and progenitor cells that is involved in tissue regeneration. Our data show that streptozotocin-induced β-cell damage, high fat diet, as well as metformin, a common type 2 diabetes medication, regulate Hes3 levels in the brain. This work suggests that Hes3 is a valuable biomarker helping to monitor the state of endogenous neural stem and progenitor cells in the context of diabetes mellitus.
Collapse
Affiliation(s)
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Louiza Toutouna
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jimmy Masjkur
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Carina Arps-Forker
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Steven W Poser
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University Munich, EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85350, Freising-Weihenstephan, Germany.,ZIEL - Institute for Food and Health, Technical University Munich, Gregor-Mendel-Str. 2, 85350, Freising-Weihenstephan, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
| | - Vasiliki Tsata
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | | | - Maria Troullinaki
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Anke Witt
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Vivian Anastasiou
- DZD/Paul Langerhans Institute Dresden of Helmholtz Centre Munich, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Chrousos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Aghia Sophia Children's Hospital, Athens, Greece
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Cristina García-Cáceres
- Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Matthias H Tschöp
- Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, 80333, Munich, Germany
| | - Stefan R Bornstein
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andreas Androutsellis-Theotokis
- Department of Medicine, Technische Universität Dresden, Dresden, Germany. .,DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany. .,Division of Cancer and Stem Cells, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
237
|
Khanna S, Domingo-Fernández D, Iyappan A, Emon MA, Hofmann-Apitius M, Fröhlich H. Using Multi-Scale Genetic, Neuroimaging and Clinical Data for Predicting Alzheimer's Disease and Reconstruction of Relevant Biological Mechanisms. Sci Rep 2018; 8:11173. [PMID: 30042519 PMCID: PMC6057884 DOI: 10.1038/s41598-018-29433-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/29/2018] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's Disease (AD) is among the most frequent neuro-degenerative diseases. Early diagnosis is essential for successful disease management and chance to attenuate symptoms by disease modifying drugs. In the past, a number of cerebrospinal fluid (CSF), plasma and neuro-imaging based biomarkers have been proposed. Still, in current clinical practice, AD diagnosis cannot be made until the patient shows clear signs of cognitive decline, which can partially be attributed to the multi-factorial nature of AD. In this work, we integrated genotype information, neuro-imaging as well as clinical data (including neuro-psychological measures) from ~900 normal and mild cognitively impaired (MCI) individuals and developed a highly accurate machine learning model to predict the time until AD is diagnosed. We performed an in-depth investigation of the relevant baseline characteristics that contributed to the AD risk prediction. More specifically, we used Bayesian Networks to uncover the interplay across biological scales between neuro-psychological assessment scores, single genetic variants, pathways and neuro-imaging related features. Together with information extracted from the literature, this allowed us to partially reconstruct biological mechanisms that could play a role in the conversion of normal/MCI into AD pathology. This in turn may open the door to novel therapeutic options in the future.
Collapse
Affiliation(s)
- Shashank Khanna
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Anandhi Iyappan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Mohammad Asif Emon
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Holger Fröhlich
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany. .,UCB Biosciences GmbH, Alfred-Nobel Str. 10, 40789, Monheim, Germany.
| |
Collapse
|
238
|
Geijselaers SLC, Aalten P, Ramakers IHGB, De Deyn PP, Heijboer AC, Koek HL, OldeRikkert MGM, Papma JM, Reesink FE, Smits LL, Stehouwer CDA, Teunissen CE, Verhey FRJ, van der Flier WM, Biessels GJ. Association of Cerebrospinal Fluid (CSF) Insulin with Cognitive Performance and CSF Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2018; 61:309-320. [PMID: 29154275 PMCID: PMC5734123 DOI: 10.3233/jad-170522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Abnormal insulin signaling in the brain has been linked to Alzheimer’s disease (AD). Objective: To evaluate whether cerebrospinal fluid (CSF) insulin levels are associated with cognitive performance and CSF amyloid-β and Tau. Additionally, we explore whether any such association differs by sex or APOE ɛ4 genotype. Methods: From 258 individuals participating in the Parelsnoer Institute Neurodegenerative Diseases, a nationwide multicenter memory clinic population, we selected 138 individuals (mean age 66±9 years, 65.2% male) diagnosed with subjective cognitive impairment (n = 45), amnestic mild cognitive impairment (n = 44), or AD (n = 49), who completed a neuropsychological assessment, including tests of global cognition and memory performance, and who underwent lumbar puncture. We measured CSF levels of insulin, amyloid-β1-42, total (t-)Tau, and phosphorylated (p-)Tau. Results: CSF insulin levels did not differ between the diagnostic groups (p = 0.136). Across the whole study population, CSF insulin was unrelated to cognitive performance and CSF biomarkers of AD, after adjustment for age, sex, body mass index, diabetes status, and clinic site (all p≥0.131). Importantly, however, we observed effect modification by sex and APOE ɛ4 genotype. Specifically, among women, higher insulin levels in the CSF were associated with worse global cognition (standardized regression coefficient –0.483; p = 0.008) and higher p-Tau levels (0.353; p = 0.040). Among non-carriers of the APOE ɛ4 allele, higher CSF insulin was associated with higher t-Tau (0.287; p = 0.008) and p-Tau (0.246; p = 0.029). Conclusion: Our findings provide further evidence for a relationship between brain insulin signaling and AD pathology. It also highlights the need to consider sex and APOE ɛ4 genotype when assessing the role of insulin.
Collapse
Affiliation(s)
- Stefan L C Geijselaers
- Departments of Neurology and Geriatrics Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands.,Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Pauline Aalten
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Peter Paul De Deyn
- Department of Neurology and Alzheimer Research Centre, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Centre, Amsterdam, the Netherlands
| | - Huiberdina L Koek
- Departments of Neurology and Geriatrics Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marcel G M OldeRikkert
- Radboudumc Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Janne M Papma
- Departments of Neurology and Radiology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Fransje E Reesink
- Department of Neurology and Alzheimer Research Centre, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Lieke L Smits
- Alzheimer Centre Amsterdam, VU University Medical Centre, Amsterdam, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory and Biobank, VU University Medical Centre, Amsterdam, the Netherlands
| | - Frans R J Verhey
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre +, Maastricht, the Netherlands
| | | | - Geert Jan Biessels
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | | |
Collapse
|
239
|
Onyango AN. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4321714. [PMID: 30116482 PMCID: PMC6079365 DOI: 10.1155/2018/4321714] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease, and Alzheimer's disease. Its etiological pathways are not well defined, although many contributory mechanisms have been established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity, hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes, myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative, carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling. Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.
Collapse
Affiliation(s)
- Arnold N. Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya
| |
Collapse
|
240
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
241
|
Chatterjee S, Mudher A. Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Front Neurosci 2018; 12:383. [PMID: 29950970 PMCID: PMC6008657 DOI: 10.3389/fnins.2018.00383] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM) are two of the most prevalent diseases in the elderly population worldwide. A growing body of epidemiological studies suggest that people with T2DM are at a higher risk of developing AD. Likewise, AD brains are less capable of glucose uptake from the surroundings resembling a condition of brain insulin resistance. Pathologically AD is characterized by extracellular plaques of Aβ and intracellular neurofibrillary tangles of hyperphosphorylated tau. T2DM, on the other hand is a metabolic disorder characterized by hyperglycemia and insulin resistance. In this review we have discussed how Insulin resistance in T2DM directly exacerbates Aβ and tau pathologies and elucidated the pathophysiological traits of synaptic dysfunction, inflammation, and autophagic impairments that are common to both diseases and indirectly impact Aβ and tau functions in the neurons. Elucidation of the underlying pathways that connect these two diseases will be immensely valuable for designing novel drug targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Chatterjee
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Amritpal Mudher
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
242
|
Cai W, Xue C, Sakaguchi M, Konishi M, Shirazian A, Ferris HA, Li ME, Yu R, Kleinridders A, Pothos EN, Kahn CR. Insulin regulates astrocyte gliotransmission and modulates behavior. J Clin Invest 2018; 128:2914-2926. [PMID: 29664737 DOI: 10.1172/jci99366] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/10/2018] [Indexed: 01/16/2023] Open
Abstract
Complications of diabetes affect tissues throughout the body, including the central nervous system. Epidemiological studies show that diabetic patients have an increased risk of depression, anxiety, age-related cognitive decline, and Alzheimer's disease. Mice lacking insulin receptor (IR) in the brain or on hypothalamic neurons display an array of metabolic abnormalities; however, the role of insulin action on astrocytes and neurobehaviors remains less well studied. Here, we demonstrate that astrocytes are a direct insulin target in the brain and that knockout of IR on astrocytes causes increased anxiety- and depressive-like behaviors in mice. This can be reproduced in part by deletion of IR on astrocytes in the nucleus accumbens. At a molecular level, loss of insulin signaling in astrocytes impaired tyrosine phosphorylation of Munc18c. This led to decreased exocytosis of ATP from astrocytes, resulting in decreased purinergic signaling on dopaminergic neurons. These reductions contributed to decreased dopamine release from brain slices. Central administration of ATP analogs could reverse depressive-like behaviors in mice with astrocyte IR knockout. Thus, astrocytic insulin signaling plays an important role in dopaminergic signaling, providing a potential mechanism by which astrocytic insulin action may contribute to increased rates of depression in people with diabetes, obesity, and other insulin-resistant states.
Collapse
Affiliation(s)
- Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chang Xue
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Masaji Sakaguchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Metabolic Medicine, Kumamoto University, Kumamoto, Japan
| | - Masahiro Konishi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alireza Shirazian
- Public Health and Professional Degree Programs, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Heather A Ferris
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mengyao E Li
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruichao Yu
- Section of Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andre Kleinridders
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Emmanuel N Pothos
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
243
|
Shahriyary L, Riazi G, Lornejad MR, Ghezlou M, Bigdeli B, Delavari B, Mamashli F, Abbasi S, Davoodi J, Saboury AA. Effect of glycated insulin on the blood-brain barrier permeability: An in vitro study. Arch Biochem Biophys 2018; 647:54-66. [DOI: 10.1016/j.abb.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
|
244
|
Nguyen TTL, Chan LC, Borreginne K, Kale RP, Hu C, Tye SJ. A review of brain insulin signaling in mood disorders: From biomarker to clinical target. Neurosci Biobehav Rev 2018; 92:7-15. [PMID: 29758232 DOI: 10.1016/j.neubiorev.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/08/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
Patients with mood disorders are at increased risk for metabolic dysfunction. Co-occurrence of the two conditions is typically associated with a more severe disease course and poorer treatment outcomes. The specific pathophysiological mechanisms underlying this bidirectional relationship between mood and metabolic dysfunction remains poorly understood. However, it is likely that impairment of metabolic processes within the brain play a critical role. The insulin signaling pathway mediates metabolic homeostasis and is important in the regulation of neurotrophic and synaptic plasticity processes, including those involved in neurodegenerative diseases like Alzheimer's. Thus, insulin signaling in the brain may serve to link metabolic function and mood. Central insulin signaling is mediated through locally secreted insulin and widespread insulin receptor expression. Here we review the preclinical and clinical data addressing the relationships between central insulin signaling, cellular metabolism, neurotrophic processes, and mood regulation, including key points of mechanistic overlap. These relationships have important implications for developing biomarker-based diagnostics and precision medicine approaches to treat severe mood disorders.
Collapse
Affiliation(s)
- Thanh Thanh L Nguyen
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Biology and Psychology, Green Mountain College, 1 Brennan Cir, Poultney, VT, 05764, United States
| | - Lily C Chan
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Kristin Borreginne
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Rajas P Kale
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; School of Engineering, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Chunling Hu
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Susannah J Tye
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Psychiatry, University of Minnesota, 3 Morrill Hall, 100 Church Street SE, Minneapolis, MN, 55454, United States; School of Psychology, Deakin University, Burwood, VIC, 3125, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
245
|
Niyomchan A, Visitnonthachai D, Suntararuks S, Ngamsiri P, Watcharasit P, Satayavivad J. Arsenic impairs insulin signaling in differentiated neuroblastoma SH-SY5Y cells. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
246
|
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci 2018; 12:78. [PMID: 29755330 PMCID: PMC5932180 DOI: 10.3389/fnbeh.2018.00078] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.
Collapse
|
247
|
Nedelcovych MT, Gadiano AJ, Wu Y, Manning AA, Thomas AG, Khuder SS, Yoo SW, Xu J, McArthur JC, Haughey NJ, Volsky DJ, Rais R, Slusher BS. Pharmacokinetics of Intranasal versus Subcutaneous Insulin in the Mouse. ACS Chem Neurosci 2018; 9:809-816. [PMID: 29257872 PMCID: PMC5906198 DOI: 10.1021/acschemneuro.7b00434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin delivery to the brain has emerged as an important therapeutic target for cognitive disorders associated with abnormal brain energy metabolism. Although insulin is transported across the blood-brain barrier, peripheral routes of administration are problematic due to systemic effects of insulin on blood glucose. Intranasal (IN) administration is being investigated as an alternative route. We conducted a head-to-head comparison of subcutaneous (SC) and IN insulin, assessing plasma and brain pharmacokinetics and blood glucose levels in the mouse. SC insulin (2.4 IU) achieved therapeutically relevant concentrations in the brain (AUCbrain = 2537 h·μIU/mL) but dramatically increased plasma insulin (AUCplasma = 520 351 h·*μIU/mL), resulting in severe hypoglycemia and in some cases death. IN administration of the same dose resulted in similar insulin levels in the brain (AUCbrain = 3442 h·μIU/mL) but substantially lower plasma concentrations (AUCplasma = 354 h·μIU/mL), amounting to a ∼ 2000-fold increase in the AUCbrain:plasma ratio relative to SC. IN dosing also had no significant effect on blood glucose. When administered daily for 9 days, IN insulin increased brain glucose and energy metabolite concentrations (e.g., adenosine triphosphate and phosphocreatine) without causing overt toxicity, suggesting that IN insulin may be a safe therapeutic option for cognitively impaired patients.
Collapse
Affiliation(s)
- Michael T. Nedelcovych
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Alexandra J. Gadiano
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Arena A. Manning
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Saja S. Khuder
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neuroimmunology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Seung-Wan Yoo
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Jiadi Xu
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Justin C. McArthur
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Norman J. Haughey
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - David J. Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
248
|
Ravichandran S, Michelucci A, Del Sol A. Integrative Computational Network Analysis Reveals Site-Specific Mediators of Inflammation in Alzheimer's Disease. Front Physiol 2018; 9:154. [PMID: 29551980 PMCID: PMC5840953 DOI: 10.3389/fphys.2018.00154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/14/2018] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disease and is one of the most common cause of dementia in older adults. Among several factors, neuroinflammation is known to play a critical role in the pathogenesis of chronic neurodegenerative diseases. In particular, studies of brains affected by AD show a clear involvement of several inflammatory pathways. Furthermore, depending on the brain regions affected by the disease, the nature and the effect of inflammation can vary. Here, in order to shed more light on distinct and common features of inflammation in different brain regions affected by AD, we employed a computational approach to analyze gene expression data of six site-specific neuronal populations from AD patients. Our network based computational approach is driven by the concept that a sustained inflammatory environment could result in neurotoxicity leading to the disease. Thus, our method aims to infer intracellular signaling pathways/networks that are likely to be constantly activated or inhibited due to persistent inflammatory conditions. The computational analysis identified several inflammatory mediators, such as tumor necrosis factor alpha (TNF-a)-associated pathway, as key upstream receptors/ligands that are likely to transmit sustained inflammatory signals. Further, the analysis revealed that several inflammatory mediators were mainly region specific with few commonalities across different brain regions. Taken together, our results show that our integrative approach aids identification of inflammation-related signaling pathways that could be responsible for the onset or the progression of AD and can be applied to study other neurodegenerative diseases. Furthermore, such computational approaches can enable the translation of clinical omics data toward the development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Srikanth Ravichandran
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
249
|
Pratchayasakul W, Thongnak LO, Chattipakorn K, Lungaphin A, Pongchaidecha A, Satjaritanun P, Jaiwongkam T, Kerdphoo S, Chattipakorn SC. Atorvastatin and insulin equally mitigate brain pathology in diabetic rats. Toxicol Appl Pharmacol 2018; 342:79-85. [PMID: 29391240 DOI: 10.1016/j.taap.2018.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/15/2018] [Accepted: 01/28/2018] [Indexed: 01/08/2023]
Abstract
Although insulin and atorvastatin have been shown to exert glycemic control and could improve brain function, the effects of atorvastatin or insulin as well as the combination of atorvastatin plus insulin on brain pathology in diabetes mellitus type 1 (T1DM) are unclear. Therefore, this study investigated the effect of atorvastatin, insulin or combined drugs on brain pathology in streptozotocin-induced diabetic rats. Thirty-six male rats were divided into two groups, a control group (n = 12) and a diabetic or experimental group (n = 24). Diabetic rats were further divided into four groups (n = 6/group) and the groups received either a vehicle (normal saline), atorvastatin (10 mg/kg/day), insulin (4 U/day) or a combination of the drugs for 4 weeks. The control group rats were divided into two groups (n = 6/group) to receive either just the vehicle or atorvastatin for 4 weeks. We found that streptozotocin-induced diabetic rats developed hyperglycemia, showing evidence of increased brain oxidative stress, impaired brain mitochondrial function, increased brain apoptosis, increased tau protein expression, increased phosphorylation of tau protein expression and amyloid beta levels, and decreased dendritic spine density. Although atorvastatin and insulin therapies led to an equal reduction in plasma glucose level in these diabetic rats, the combined drug therapy showed the greatest efficacy in decreasing plasma glucose level. Interestingly, atorvastatin, insulin and the combined drugs equally mitigated brain pathology. Our findings indicate that the combined drug therapy showed the greatest efficacy in improving metabolic parameters. However, atorvastatin, insulin and the combined drug therapy shared a similar efficacy in preventing brain damage in T1DM rats.
Collapse
Affiliation(s)
- Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - La-Ongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kenneth Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anusorn Lungaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattarapong Satjaritanun
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
250
|
Mullins R, Reiter D, Kapogiannis D. Magnetic resonance spectroscopy reveals abnormalities of glucose metabolism in the Alzheimer's brain. Ann Clin Transl Neurol 2018; 5:262-272. [PMID: 29560372 PMCID: PMC5846391 DOI: 10.1002/acn3.530] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Objective Brain glucose hypometabolism is a prominent feature of Alzheimer's disease (AD), and in this case-control study we used Magnetic Resonance Spectroscopy (MRS) to assess AD-related differences in the posterior cingulate/precuneal ratio of glucose, lactate, and other metabolites. Methods J-modulated Point-Resolved Spectroscopy (J-PRESS) and Prior-Knowledge Fitting (ProFit) software was used to measure glucose and other metabolites in the posterior cingulate/precuneus of 25 AD, 27 older controls, and 27 younger control participants. Clinical assessments for AD participants included cognitive performance measures, insulin resistance metrics and CSF biomarkers. Results AD participants showed substantially elevated glucose, lactate, and ascorbate levels compared to older (and younger) controls. In addition, the precuneal glucose elevation discriminated well between AD participants and older controls. Myo-inositol correlated with CSF p-Tau181P, total Tau, and the Clinical Dementia Rating (CDR) sum-of-boxes score within the AD group. Interpretation Higher glucose to creatine ratios in the AD brain likely reflect lower glucose utilization. Our findings reveal pronounced metabolic abnormalities in the AD brain and strongly suggest that brain glucose merits further investigation as a candidate AD biomarker.
Collapse
Affiliation(s)
- Roger Mullins
- Laboratory of NeurosciencesIntramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMaryland
| | - David Reiter
- Laboratory of Clinical InvestigationNational Institute on Aging Intramural Research Program (NIA‐IRP)BaltimoreMaryland
| | - Dimitrios Kapogiannis
- Laboratory of NeurosciencesIntramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMaryland
| |
Collapse
|