201
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Boedeker C, Rohde M, Jogler C. Lignipirellula cremea gen. nov., sp. nov., a planctomycete isolated from wood particles in a brackish river estuary. Antonie Van Leeuwenhoek 2020; 113:1863-1875. [PMID: 32239303 PMCID: PMC7717058 DOI: 10.1007/s10482-020-01407-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023]
Abstract
A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
202
|
Tavşanoğlu ÜN, Başaran Kankılıç G, Akca G, Çırak T, Erdoğan Ş. Microplastics in a dam lake in Turkey: type, mesh size effect, and bacterial biofilm communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45688-45698. [PMID: 32803600 DOI: 10.1007/s11356-020-10424-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The evaluation of microplastic (MP) pollution has been drawing attention for the last decades. MP pollution has been studied widely in marine environments, but limited data exists for freshwater ecosystems on potential source and transport of MPs. The type, shape, plastic components, and the color of the MPs were investigated using various-mesh-sizes (300 and 100 μm) nets in four sampling stations of Süreyyabey Dam Lake in Turkey. The growth of bacterial isolates on the MPs surface and surrounding water was also investigated. The type of the MPs and the interaction between the mesh size and the type of the MPs showed significant differences (p < 0.05). Fibers were found to be the most abundant particle type constituting 45% and 80% of the total MPs found in 330-μm and 100-μm mesh sizes, respectively. In total the observed MP abundance in the dam lake was 5.25 particles m-3, and 4.09 particles m-3 was observed for 100-μm and 330-μm mesh sizes, respectively. The color of the identified microplastics showed variations among microplastic types; however, the dominant color was transparent in each net. The main plastic components of the MPs are polyethylene terephthalate, polyvinyl chloride, polystyrene, polyethylene, and polypropylene. The microbial community mainly consists of potentially pathogenic strains such as Escherichia coli, Enterococcus faecalis, and Acinetobacter baumanii complex. The current study could contribute valuable background information both for MP pollution and for biofilm composition in a dam. However, the surface of the MPs and biofilm formation should be investigated urgently to understand the vector potential of MPs.
Collapse
Affiliation(s)
- Ülkü Nihan Tavşanoğlu
- Eldivan Vocational School of Health Services, Environmental Health Program, Çankırı Karatekin University, Çankırı, Turkey.
| | | | - Gülçin Akca
- Faculty of Dentistry, Department of Medical Microbiology, Gazi University, Ankara, Turkey
| | - Tamer Çırak
- Aksaray Technical Sciences Vocational School, Alternative Energy Sources Technology Program, Aksaray University, Aksaray, Turkey
| | - Şeyda Erdoğan
- Faculty of Art and Science, Biology Department, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
203
|
Coclet C, Garnier C, Durrieu G, D'onofrio S, Layglon N, Briand JF, Misson B. Impacts of copper and lead exposure on prokaryotic communities from contaminated contrasted coastal seawaters: the influence of previous metal exposure. FEMS Microbiol Ecol 2020; 96:5809961. [PMID: 32188980 DOI: 10.1093/femsec/fiaa048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/17/2020] [Indexed: 01/04/2023] Open
Abstract
Our understanding of environmental factors controlling prokaryotic community is largely hampered by the large environmental variability across spatial scales (e.g. trace metal contamination, nutrient enrichment and physicochemical variations) and the broad diversity of bacterial pre-exposure to environmental factors. In this article, we investigated the specific influence of copper (Cu) and lead (Pb) on prokaryotic communities from the uncontaminated site, using mesocosm experiments. In addition, we studied how pre-exposure (i.e. life history) affects communities, with reference to previous metal exposure on the response of three prokaryotic communities to similar Cu exposition. This study showed a stronger influence of Cu contamination than Pb contamination on prokaryotic diversity and structure. We identified 12 and 34 bacterial families and genera, respectively, contributing to the significant differences observed in community structure between control and spiked conditions. Taken altogether, our results point toward a combination of direct negative responses to Cu contamination and indirect responses mediated by interaction with phytoplankton. These identified responses were largely conditioned by the previous exposure of community to contaminants.
Collapse
Affiliation(s)
- Clément Coclet
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc.,Université de Toulon, MAPIEM, EA 4323, Toulon, 83041 Toulon, Cedex 9, Franc
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| | - Gaël Durrieu
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| | - Sébastien D'onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| | - Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| | | | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| |
Collapse
|
204
|
Wright RJ, Langille MGI, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere. ISME JOURNAL 2020; 15:789-806. [PMID: 33139870 PMCID: PMC8027867 DOI: 10.1038/s41396-020-00814-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
It is now indisputable that plastics are ubiquitous and problematic in ecosystems globally. Many suggestions have been made about the role that biofilms colonizing plastics in the environment—termed the “Plastisphere”—may play in the transportation and ecological impact of these plastics. By collecting and re-analyzing all raw 16S rRNA gene sequencing and metadata from 2,229 samples within 35 studies, we have performed the first meta-analysis of the Plastisphere in marine, freshwater, other aquatic (e.g., brackish or aquaculture) and terrestrial environments. We show that random forest models can be trained to differentiate between groupings of environmental factors as well as aspects of study design, but—crucially—also between plastics when compared with control biofilms and between different plastic types and community successional stages. Our meta-analysis confirms that potentially biodegrading Plastisphere members, the hydrocarbonoclastic Oceanospirillales and Alteromonadales are consistently more abundant in plastic than control biofilm samples across multiple studies and environments. This indicates the predilection of these organisms for plastics and confirms the urgent need for their ability to biodegrade plastics to be comprehensively tested. We also identified key knowledge gaps that should be addressed by future studies.
Collapse
Affiliation(s)
- Robyn J Wright
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada. .,Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada.
| | - Morgan G I Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
| |
Collapse
|
205
|
Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza JA. Marine Plastic Debris: A New Surface for Microbial Colonization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11657-11672. [PMID: 32886491 DOI: 10.1021/acs.est.0c02305] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastics become rapidly colonized by microbes when released into marine environments. This microbial community-the Plastisphere-has recently sparked a multitude of scientific inquiries and generated a breadth of knowledge, which we bring together in this review. Besides providing a better understanding of community composition and biofilm development in marine ecosystems, we critically discuss current research on plastic biodegradation and the identification of potentially pathogenic "hitchhikers" in the Plastisphere. The Plastisphere is at the interface between the plastic and its surrounding milieu, and thus drives every interaction that this synthetic material has with its environment, from ecotoxicity and new links in marine food webs to the fate of the plastics in the water column. We conclude that research so far has not shown Plastisphere communities to starkly differ from microbial communities on other inert surfaces, which is particularly true for mature biofilm assemblages. Furthermore, despite progress that has been made in this field, we recognize that it is time to take research on plastic-Plastisphere-environment interactions a step further by identifying present gaps in our knowledge and offering our perspective on key aspects to be addressed by future studies: (I) better physical characterization of marine biofilms, (II) inclusion of relevant controls, (III) study of different successional stages, (IV) use of environmentally relevant concentrations of biofouled microplastics, and (V) prioritization of gaining a mechanistic and functional understanding of Plastisphere communities.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gabriel Erni-Cassola
- Man-Society-Environment (MSE) program, University of Basel, Basel 4003, Switzerland
| | - Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Mira Latva
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Joseph A Christie-Oleza
- University of the Balearic Islands, Palma 07122, Spain
- IMEDEA (CSIC-UIB), Esporles 07190, Spain
| |
Collapse
|
206
|
Grajal-Puche A, Murray CM, Kearley M, Merchant M, Nix C, Warner JK, Walker DM. Microbial Assemblage Dynamics Within the American Alligator Nesting Ecosystem: a Comparative Approach Across Ecological Scales. MICROBIAL ECOLOGY 2020; 80:603-613. [PMID: 32424717 DOI: 10.1007/s00248-020-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Understanding the ecological processes that shape species assemblage patterns is central to community ecology. The effects of ecological processes on assemblage patterns are scale-dependent. We used metabarcoding and shotgun sequencing to determine bacterial taxonomic and functional assemblage patterns among varying defined focal scales (micro-, meso-, and macroscale) within the American alligator (Alligator mississippiensis) nesting microbiome. We correlate bacterial assemblage patterns among eight nesting compartments within and proximal to alligator nests (micro-), across 18 nests (meso-), and between 4 geographic sampling sites (macro-), to determine which ecological processes may drive bacterial assemblage patterns within the nesting environment. Among all focal scales, bacterial taxonomic and functional richness (α-diversity) did not statistically differ. In contrast, bacterial assemblage structure (β-diversity) was unique across all focal scales, whereas functional pathways were redundant within nests and across geographic sites. Considering these observed scale-based patterns, taxonomic bacterial composition may be governed by unique environmental filters and dispersal limitations relative to microbial functional attributes within the alligator nesting environment. These results advance pattern-process dynamics within the field of microbial community ecology and describe processes influencing the American alligator nest microbiome.
Collapse
Affiliation(s)
| | - Christopher M Murray
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, 70402, USA
- Biology Department, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Matthew Kearley
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mark Merchant
- Department of Chemistry, McNeese State University, Lake Charles, LA, 70609, USA
| | - Christopher Nix
- Alabama Wildlife and Freshwater Fisheries Division, Montgomery, AL, 36130, USA
| | | | - Donald M Walker
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
207
|
Jin M, Yu X, Yao Z, Tao P, Li G, Yu X, Zhao JL, Peng J. How biofilms affect the uptake and fate of hydrophobic organic compounds (HOCs) in microplastic: Insights from an In situ study of Xiangshan Bay, China. WATER RESEARCH 2020; 184:116118. [PMID: 32731037 DOI: 10.1016/j.watres.2020.116118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Microplastic (MP) has been identified as an emerging vector that transports hydrophobic organic compounds (HOCs) across aquatic environments due to its hydrophobic surfaces and small size. However, it is also recognized that environmental factors affect MP's chemical vector effects and that attached biofilms could play a major role, although the specific mechanisms remain unclear. To explore this issue, an in situ experiment was conducted at Xiangshan Bay of southeastern China, and dynamics of HOCs (i.e., polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)) and bacterial communities related to the model MP (i.e., PE fibers) were analyzed and compared. Through bacterial characterizations including the 16S rRNA approach, higher summer temperatures (31.4 ± 1.07 °C) were found to promote colonizing bacterial assemblages with larger biomasses, higher activity and more degrading bacteria than winter temperatures (13.3 ± 2.49 °C). Consequently, some sorbed pollutants underwent significant decline in the summer, and this decline was particularly the case for PAHs with low (2-3 rings) and median (4 rings) molecular weights such as phenanthrene (59.4 ± 1.6%), chrysene (70.6 ± 4.2%), fluoranthene (77.1 ± 13.3%) and benz[a]anthracene (71.5 ± 11.0%). In our winter test, however, most pollutants underwent a consistent increase throughout the 8-week exposure period. Moreover, more biorefractory pollutants including PCBs and high molecular weight (5-6 rings) PAHs accumulated regardless of bacterial characteristics. Two putative PAH-degrading bacteria appeared with high relative abundances during the summer test, i.e., family Rhodobacteraceae (18.6 ± 0.5%) and genus Sphingomicrobium (22.4 ± 3.6%), associated with drastic decreases in low (45.2 ± 0.4%) and median (66.0 ± 2.5%) molecular weight PAHs, respectively. Bacterial degradation effects of biofilms on PAHs are also supported by the correlative dynamics of salicylic acid, an important degradation intermediate of PAHs. The results of this study indicate that MP's HOC vector effects are essentially determined by interactions between attached pollutants and microbial assemblages, which are further related to bacterial activity and pollutant features. Further studies of biofilm effects on MP toxicity and on the metabolic pathways of MP-attached HOCs are required.
Collapse
Affiliation(s)
- Meng Jin
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xubiao Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Peiran Tao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, PR China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Jinping Peng
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
208
|
Miao L, Wang C, Adyel TM, Wu J, Liu Z, You G, Meng M, Qu H, Huang L, Yu Y, Hou J. Microbial carbon metabolic functions of biofilms on plastic debris influenced by the substrate types and environmental factors. ENVIRONMENT INTERNATIONAL 2020; 143:106007. [PMID: 32763634 DOI: 10.1016/j.envint.2020.106007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
As an artificial type of microbial carrier, plastic debris has been widely detected in freshwater habitats, and the potential impacts of the plastisphere (biofilms colonized on plastics) in aquatic ecosystems have drawn increasing attention. Distinct community compositions and structures of biofilms in plastic and natural substrates have been recorded in freshwater environments. However, the microbial metabolic functioning of the plastisphere was underestimated, especially in freshwater environments. In this study, the effects of substrate types on the carbon metabolic functions of biofilms were studied by in situ cultivation of biofilms on plastics (polyvinyl chloride, PVC and polyethylene, PE) and natural substrate (cobblestone) for 44 days in two rivers (the Niushoushan River and the Qinhuai River) and two lakes (Donghu Lake and Xuanwu Lake). Biofilms on plastics showed higher biomasses than those on natural substrates in all ecosystems. Variations in the micro-structure and compactness of biofilms developed under different substrates were observed from scanning electron microscope and confocal laser scanning microscope image analyses. The carbon metabolic activities of the biofilms evaluated by BIOLOG EcoPlate were different between plastics (PVC and PE) and natural substrate (cobblestone) in the four freshwater ecosystems. In the Niushoushan River, PE-associated biofilms had different capacity in using carbon sources from cobblestone-associated biofilms as illustrated by the Shannon-Wiener diversity index and Shannon evenness index. Additionally, the metabolic functional diversity profiles of biofilms on PVC were significantly different from those on cobblestone in the other three aquatic ecosystems. Moreover, results from variation partitioning analysis suggested that the impact of environmental factors (contribution: 21%) on microbial carbon metabolic functions was much greater than that of substrate types (contribution: 6%). These findings illustrated distinct microbial functions of biofilms inhabited on plastics, and environmental factors play a decisive role in the differentiation and specificity of carbon metabolism of the plastisphere. This study offers new insights that plastics serving as artificial microbial niches have the ability to affect the microbial-mediated carbon cycling process in aquatic ecosystems.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chengqian Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Tanveer M Adyel
- Department of Civil Engineering, Monash University, 23 College Walk, Clayton, VIC 3800, Australia
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Zhilin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Meng Meng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Hao Qu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Liuyan Huang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yue Yu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| |
Collapse
|
209
|
Pinto M, Polania Zenner P, Langer TM, Harrison J, Simon M, Varela MM, Herndl GJ. Putative degraders of low-density polyethylene-derived compounds are ubiquitous members of plastic-associated bacterial communities in the marine environment. Environ Microbiol 2020; 22:4779-4793. [PMID: 32935476 PMCID: PMC7702132 DOI: 10.1111/1462-2920.15232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
It remains unknown whether and to what extent marine prokaryotic communities are capable of degrading plastic in the ocean. To address this knowledge gap, we combined enrichment experiments employing low‐density polyethylene (LDPE) as the sole carbon source with a comparison of bacterial communities on plastic debris in the Pacific, the North Atlantic and the northern Adriatic Sea. A total of 35 operational taxonomic units (OTUs) were enriched in the LDPE‐laboratory incubations after 1 year, of which 20 were present with relative abundances > 0.5% in at least one plastic sample collected from the environment. From these, OTUs classified as Cognatiyoonia, Psychrobacter, Roseovarius and Roseobacter were found in the communities of plastics collected at all oceanic sites. Additionally, OTUs classified as Roseobacter, Pseudophaeobacter, Phaeobacter, Marinovum and Cognatiyoonia, also enriched in the LDPE‐laboratory incubations, were enriched on LDPE communities compared to the ones associated to glass and polypropylene in in‐situ incubations in the northern Adriatic Sea after 1 month of incubation. Some of these enriched OTUs were also related to known alkane and hydrocarbon degraders. Collectively, these results demonstrate that there are prokaryotes capable of surviving with LDPE as the sole carbon source living on plastics in relatively high abundances in different water masses of the global ocean.
Collapse
Affiliation(s)
- Maria Pinto
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Research Platform 'Plastics in the Environment and Society', University of Vienna, Vienna, Austria
| | - Paula Polania Zenner
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Teresa M Langer
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Jesse Harrison
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Marta M Varela
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, A Coruña, Spain
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Research Platform 'Plastics in the Environment and Society', University of Vienna, Vienna, Austria.,NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
210
|
Soil Pollution from Micro- and Nanoplastic Debris: A Hidden and Unknown Biohazard. SUSTAINABILITY 2020. [DOI: 10.3390/su12187255] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The fate, properties and determination of microplastics (MPs) and nanoplastics (NPs) in soil are poorly known. In fact, most of the 300 million tons of plastics produced each year ends up in the environment and the soil acts as a log-term sink for these plastic debris. Therefore, the aim of this review is to discuss MP and NP pollution in soil as well as highlighting the knowledge gaps that are mainly related to the complexity of the soil ecosystem. The fate of MPs and NPs in soil is strongly determined by physical properties of plastics, whereas negligible effect is exerted by their chemical structures. The degradative processes of plastic, termed ageing, besides generating micro-and nano-size debris, can induce marked changes in their chemical and physical properties with relevant effects on their reactivity. Further, these processes could cause the release of toxic oligomeric and monomeric constituents from plastics, as well as toxic additives, which may enter in the food chain, representing a possible hazard to human health and potentially affecting the fauna and flora in the environment. In relation to their persistence in soil, the list of soil-inhabiting, plastic-eating bacteria, fungi and insect is increasing daily. One of the main ecological functions attributable to MPs is related to their function as vectors for microorganisms through the soil. However, the main ecological effect of NPs (limited to the fraction size < than 50 nm) is their capacity to pass through the membrane of both prokaryotic and eukaryotic cells. Soil biota, particularly earthworms and collembola, can be both MPs and NPs carriers through soil profile. The use of molecular techniques, especially omics approaches, can gain insights into the effects of MPs and NPs on composition and activity of microbial communities inhabiting the soil and into those living on MPs surface and in the gut of the soil plastic-ingesting fauna.
Collapse
|
211
|
Microbial carrying capacity and carbon biomass of plastic marine debris. ISME JOURNAL 2020; 15:67-77. [PMID: 32879460 DOI: 10.1038/s41396-020-00756-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/01/2020] [Accepted: 08/21/2020] [Indexed: 01/09/2023]
Abstract
Trillions of plastic debris fragments are floating at sea, presenting a substantial surface area for microbial colonization. Numerous cultivation-independent surveys have characterized plastic-associated microbial biofilms, however, quantitative studies addressing microbial carbon biomass are lacking. Our confocal laser scanning microscopy data show that early biofilm development on polyethylene, polypropylene, polystyrene, and glass substrates displayed variable cell size, abundance, and carbon biomass, whereas these parameters stabilized in mature biofilms. Unexpectedly, plastic substrates presented lower volume proportions of photosynthetic cells after 8 weeks, compared to glass. Early biofilms displayed the highest proportions of diatoms, which could influence the vertical transport of plastic debris. In total, conservative estimates suggest 2.1 × 1021 to 3.4 × 1021 cells, corresponding to about 1% of the microbial cells in the ocean surface microlayer (1.5 × 103 to 1.1 × 104 tons of carbon biomass), inhabit plastic debris globally. As an unnatural addition to sea surface waters, the large quantity of cells and biomass carried by plastic debris has the potential to impact biodiversity, autochthonous ecological functions, and biogeochemical cycles within the ocean.
Collapse
|
212
|
Jiang H, Zhang Y, Wang H. Surface Reactions in Selective Modification: The Prerequisite for Plastic Flotation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9742-9756. [PMID: 32659077 DOI: 10.1021/acs.est.9b07861] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Improper disposal of waste plastic has caused much environmental pollution, but plastic recycling can reduce the amount of new and residual waste plastic in the environment through source control. Plastic flotation can separate waste plastics with similar physical and chemical properties, which suggests its promising application in plastic recycling. With the help of the different hydrophilicities waste plastic can be separated by flotation, and hydrophilization can be accomplished by surface modifications. However, no systematic studies addressing these surface reactions have been published yet, and such modifications are a prerequisite for plastic flotation. In this critical review, we not only summarize the various modification mechanisms, including physical regulation, surface oxidation, surface degradation, dechlorination, and coating, but also have reasonably added additional information for some reactions covering surface reconstruction, plastic degradation, polymer stability, wastewater treatment, soil remediation, and chemical recycling of plastic. An entirely novel concept, the "plastic gene", is also proposed to elaborate on some contradictory results. Plastic flotation with clear surface reactions may promote plastic recycling and thereby control waste plastic at the source, save energy, and reduce microplastics. We also predict challenges for clean, efficient, and practical surface modifications and plastic flotation.
Collapse
Affiliation(s)
- Hongru Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan P.R. China
| | - Yingshuang Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan P.R. China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan P.R. China
| |
Collapse
|
213
|
Laverty AL, Primpke S, Lorenz C, Gerdts G, Dobbs FC. Bacterial biofilms colonizing plastics in estuarine waters, with an emphasis on Vibrio spp. and their antibacterial resistance. PLoS One 2020; 15:e0237704. [PMID: 32804963 PMCID: PMC7430737 DOI: 10.1371/journal.pone.0237704] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/31/2020] [Indexed: 01/15/2023] Open
Abstract
Since plastics degrade very slowly, they remain in the environment on much longer timescales than most natural organic substrates and provide a novel habitat for colonization by bacterial communities. The spectrum of relationships between plastics and bacteria, however, is little understood. The first objective of this study was to examine plastics as substrates for communities of Bacteria in estuarine surface waters. We used next-generation sequencing of the 16S rRNA gene to characterize communities from plastics collected in the field, and over the course of two colonization experiments, from biofilms that developed on plastic (low-density polyethylene, high-density polyethylene, polypropylene, polycarbonate, polystyrene) and glass substrates placed in the environment. Both field sampling and colonization experiments were conducted in estuarine tributaries of the lower Chesapeake Bay. As a second objective, we concomitantly analyzed biofilms on plastic substrates to ascertain the presence and abundance of Vibrio spp. bacteria, then isolated three human pathogens, V. cholerae, V. parahaemolyticus, and V. vulnificus, and determined their antibiotic-resistant profiles. In both components of this study, we compared our results with analyses conducted on paired samples of estuarine water. This research adds to a nascent literature that suggests environmental factors govern the development of bacterial communities on plastics, more so than the characteristics of the plastic substrates themselves. In addition, this study is the first to culture three pathogenic vibrios from plastics in estuaries, reinforcing and expanding upon earlier reports of plastic pollution as a habitat for Vibrio species. The antibiotic resistance detected among the isolates, coupled with the longevity of plastics in the aqueous environment, suggests biofilms on plastics have potential to persist and serve as focal points of potential pathogens and horizontal gene transfer.
Collapse
Affiliation(s)
- Amanda L. Laverty
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- * E-mail:
| | - Sebastian Primpke
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Claudia Lorenz
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Gunnar Gerdts
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Fred C. Dobbs
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
214
|
Stieleria varia sp. nov., isolated from wood particles in the Baltic Sea, constitutes a novel species in the family Pirellulaceae within the phylum Planctomycetes. Antonie van Leeuwenhoek 2020; 113:1953-1963. [PMID: 32797359 PMCID: PMC7717043 DOI: 10.1007/s10482-020-01456-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Species belonging to the bacterial phylum Planctomycetes are ubiquitous members of the microbial communities in aquatic environments and are frequently isolated from various biotic and abiotic surfaces in marine and limnic water bodies. Planctomycetes have large genomes of up to 12.4 Mb, follow complex lifestyles and display an uncommon cell biology; features which motivate the investigation of members of this phylum in greater detail. As a contribution to the current collection of axenic cultures of Planctomycetes, we here describe strain Pla52T isolated from wood particles in the Baltic Sea. Phylogenetic analysis places the strain in the family Pirellulaceae and suggests two species of the recently described genus Stieleria as current closest neighbours. Strain Pla52nT shows typical features of members of the class Planctomycetia, including division by polar budding and the presence of crateriform structures. Colonies of strain Pla52nT have a light orange colour, which is an unusual pigmentation compared to the majority of members in the phylum, which show either a pink to red pigmentation or entirely lack pigmentation. Optimal growth of strain Pla52nT at 33 °C and pH 7.5 indicates a mesophilic (i.e. with optimal growth between 20 and 45 °C) and neutrophilic growth profile. The strain is an aerobic heterotroph with motile daughter cells. Its genome has a size of 9.6 Mb and a G + C content of 56.0%. Polyphasic analyses justify delineation of the strain from described species within the genus Stieleria. Therefore, we conclude that strain Pla52nT = LMG 29463T = VKM B-3447T should be classified as the type strain of a novel species, for which we propose the name Stieleria varia sp. nov.
Collapse
|
215
|
Bowley J, Baker-Austin C, Porter A, Hartnell R, Lewis C. Oceanic Hitchhikers - Assessing Pathogen Risks from Marine Microplastic. Trends Microbiol 2020; 29:107-116. [PMID: 32800610 DOI: 10.1016/j.tim.2020.06.011] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/01/2022]
Abstract
As plastic debris in the environment continues to increase, an emerging concern is the potential for microplastic to act as vectors for pathogen transport. With aquaculture the fastest growing food sector, and microplastic contamination of shellfish increasingly demonstrated, understanding any risk of pathogen transport associated with microplastic is important for this industry. However, there remains a lack of detailed, systematic studies assessing the interactions and potential impacts that the attachment of human and animal pathogens on microplastic may have. Here we synthesise current knowledge regarding these distinct microplastic-associated bacterial communities and microplastic uptake pathways into bivalves, and discuss whether they represent a human and animal health threat, highlighting the outstanding questions critical to our understanding of this potential risk to food safety.
Collapse
Affiliation(s)
- Jake Bowley
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Exeter, EX4 4QD, UK
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, DT4 8UB, UK
| | - Adam Porter
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Exeter, EX4 4QD, UK
| | - Rachel Hartnell
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, DT4 8UB, UK
| | - Ceri Lewis
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Exeter, EX4 4QD, UK.
| |
Collapse
|
216
|
Purohit J, Chattopadhyay A, Teli B. Metagenomic Exploration of Plastic Degrading Microbes for Biotechnological Application. Curr Genomics 2020; 21:253-270. [PMID: 33071619 PMCID: PMC7521044 DOI: 10.2174/1389202921999200525155711] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
Since the last few decades, the promiscuous and uncontrolled use of plastics led to the accumulation of millions of tons of plastic waste in the terrestrial and marine environment. It elevated the risk of environmental pollution and climate change. The concern arises more due to the reckless and unscientific disposal of plastics containing high molecular weight polymers, viz., polystyrene, polyamide, polyvinylchloride, polypropylene, polyurethane, and polyethylene, etc. which are very difficult to degrade. Thus, the focus is now paid to search for efficient, eco-friendly, low-cost waste management technology. Of them, degradation of non-degradable synthetic polymer using diverse microbial agents, viz., bacteria, fungi, and other extremophiles become an emerging option. So far, very few microbial agents and their secreted enzymes have been identified and characterized for plastic degradation, but with low efficiency. It might be due to the predominance of uncultured microbial species, which consequently remain unexplored from the respective plastic degrading milieu. To overcome this problem, metagenomic analysis of microbial population engaged in the plastic biodegradation is advisable to decipher the microbial community structure and to predict their biodegradation potential in situ. Advancements in sequencing technologies and bioinformatics analysis allow the rapid metagenome screening that helps in the identification of total microbial community and also opens up the scope for mining genes or enzymes (hydrolases, laccase, etc.) engaged in polymer degradation. Further, the extraction of the core microbial population and their adaptation, fitness, and survivability can also be deciphered through comparative metagenomic study. It will help to engineer the microbial community and their metabolic activity to speed up the degradation process.
Collapse
Affiliation(s)
- Jyotika Purohit
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| | - Anirudha Chattopadhyay
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| | - Basavaraj Teli
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| |
Collapse
|
217
|
Feng L, He L, Jiang S, Chen J, Zhou C, Qian ZJ, Hong P, Sun S, Li C. Investigating the composition and distribution of microplastics surface biofilms in coral areas. CHEMOSPHERE 2020; 252:126565. [PMID: 32220722 DOI: 10.1016/j.chemosphere.2020.126565] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
In recent years, global climate change and pollution of the marine environment have caused large-scale coral deaths and severe damages to coral reef ecosystems. Numerous studies have shown that coral diseases are closely related to microorganisms. And microplastics (MPs) are a potential threat to corals. In marine ecosystems, MPs are an emerging contaminant. MPs have a strong adsorption effect on pollutants in the water environment, and they are very easily colonized by microorganisms to form biofilms. Biofilms may accumulate many pathogens, increasing the probability of coral disease. However, there is no report about the composition of biofilms on the surface of microplastics in coral growth areas. In this study, nine kinds of MPs were chosen in the experiments, which are commonly found in the ocean. Four stakeout points were selected in the coral area. Biofilms were cultivated in natural environment. The composition and distribution of biofilms on the surface of the MPs were analyzed by 16 S rRNA sequencing. The characteristics of biofilms were observed by scanning electron microscopy (SEM). The experimental results show that the species composition and abundance distribution of the biofilm on the MP surface are significantly different from the surrounding seawater. The type of MPs and the stake out point are important factors affecting the structure of the biofilm bacterial community. Compared to seawater samples, MPs are enriched with certain dominant bacteria such as Vibrionaceae, Rhodobacteraceae, Flavobacteraceae, Microtrichaceae and Sphingomonadaceae. Among them, Vibrionaceae, Rhodobacteraceae and Flavobacteraceae are closely related to the tissue damage of stony corals, and Vibrios are also the main pathogens of coral albinism. In addition, Pseudomonas and Bbellvibrio cholerae are also detected on the MPs biofilm. SEM graphs of the MPs after culture could clearly observe rod-shaped bacteria and Streptococci. This study can provide a new direction for the study of coral toxicology by MPs and provide basic data for the toxicology research of MPs.
Collapse
Affiliation(s)
- Limin Feng
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shiqi Jiang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China
| | - Jinjun Chen
- College of Agriculture, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524088, China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524088, China.
| |
Collapse
|
218
|
Astner AF, Hayes DG, Pingali SV, O’Neill HM, Littrell KC, Evans BR, Urban VS. Effects of soil particles and convective transport on dispersion and aggregation of nanoplastics via small-angle neutron scattering (SANS) and ultra SANS (USANS). PLoS One 2020; 15:e0235893. [PMID: 32692771 PMCID: PMC7373282 DOI: 10.1371/journal.pone.0235893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
Terrestrial nanoplastics (NPs) pose a serious threat to agricultural food production systems due to the potential harm of soil-born micro- and macroorganisms that promote soil fertility and ability of NPs to adsorb onto and penetrate into vegetables and other crops. Very little is known about the dispersion, fate and transport of NPs in soils. This is because of the challenges of analyzing terrestrial NPs by conventional microscopic techniques due to the low concentrations of NPs and absence of optical transparency in these systems. Herein, we investigate the potential utility of small-angle neutron scattering (SANS) and Ultra SANS (USANS) to probe the agglomeration behavior of NPs prepared from polybutyrate adipate terephthalate, a prominent biodegradable plastic used in agricultural mulching, in the presence of vermiculite, an artificial soil. SANS with the contrast matching technique was used to study the aggregation of NPs co-dispersed with vermiculite in aqueous media. We determined the contrast match point for vermiculite was 66% D2O / 33% H2O. At this condition, the signal for vermiculite was ~50–100%-fold lower that obtained using neat H2O or D2O as solvent. According to SANS and USANS, smaller-sized NPs (50 nm) remained dispersed in water and did not undergo size reduction or self-agglomeration, nor formed agglomerates with vermiculite. Larger-sized NPs (300–1000 nm) formed self-agglomerates and agglomerates with vermiculite, demonstrating their significant adhesion with soil. However, employment of convective transport (simulated by ex situ stirring of the slurries prior to SANS and USANS analyses) reduced the self-agglomeration, demonstrating weak NP-NP interactions. Convective transport also led to size reduction of the larger-sized NPs. Therefore, this study demonstrates the potential utility of SANS and USANS with contrast matching technique for investigating behavior of terrestrial NPs in complex soil systems.
Collapse
Affiliation(s)
- Anton F. Astner
- Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Douglas G. Hayes
- Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: (DGH); (SVP)
| | - Sai Venkatesh Pingali
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail: (DGH); (SVP)
| | - Hugh M. O’Neill
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Kenneth C. Littrell
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Barbara R. Evans
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Volker S. Urban
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
219
|
Machado MC, Vimbela GV, Silva-Oliveira TT, Bose A, Tripathi A. The response of Synechococcus sp. PCC 7002 to micro-/nano polyethylene particles - Investigation of a key anthropogenic stressor. PLoS One 2020; 15:e0232745. [PMID: 32609722 PMCID: PMC7329024 DOI: 10.1371/journal.pone.0232745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/27/2020] [Indexed: 01/09/2023] Open
Abstract
Microplastics or plastic particles less than 5 mm in size are a ubiquitous and damaging pollutant in the marine environment. However, the interactions between these plastic particles and marine microorganisms are just starting to be understood. The objective of this study was to measure the responses of a characteristic marine organism (Synechococcus sp. PCC 7002) to an anthropogenic stressor (polyethelene nanoparticles and microparticles) using molecular techniques. This investigation showed that polyethylene microparticles and nanoparticles have genetic, enzymatic and morphological effects on Synechococcus sp. PCC 7002. An RT-PCR analysis showed increases in the expression of esterase and hydrolase genes at 5 days of exposure to polyethylene nanoparticles and at 10 days of exposure to polyethylene microparticles. A qualitative enzymatic assay also showed esterase activity in nanoparticle exposed samples. Cryo-scanning electron microscopy was used to assess morphological changes in exopolymer formation resulting from exposure to polyethylene microparticles and nanoparticles. The data from this paper suggests that microplastic and nanoplastics could be key microbial stressors and should be investigated in further detail.
Collapse
Affiliation(s)
- Mary C. Machado
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Gina V. Vimbela
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | | | - Arijit Bose
- University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
220
|
Sun X, Chen B, Xia B, Li Q, Zhu L, Zhao X, Gao Y, Qu K. Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: A case in situ study on the Sungo Bay, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114336. [PMID: 32443196 DOI: 10.1016/j.envpol.2020.114336] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) pollution in the marine environment has attracted considerable global attention. However, the colonization of microorganisms on mariculture-derived MPs and their effects on mariculture remain poorly understood. In this study, the MPs (fishing nets, foams and floats) and a natural substrate, within size ranges (1-4 mm), were then incubated for 21 days in Sungo Bay (China), and the composition and diversity of bacterial communities attached on all substrates were investigated. Results showed that bacterial communities on MPs mainly originated from their surrounding seawater and sediment, with an average contribution on total MPs adherent population of 47.91% and 37.33%, respectively. Principle coordinate analysis showed that community similarity between MPs and surrounding seawater decreased with exposure time. In addition, lower average bacterial community diversity and higher relative abundances of bacteria from the genera Vibrio, Pseudoalteromonas and Alteromonas on MPs than those in their surrounding seawater and sediments indicated that MPs might enrich potential pathogens and bacteria related with carbohydrate metabolism. They are responsible for the significant differences in KEGG Orthology pathways (infectious disease and carbohydrate metabolism) between MPs and seawater. The KO pathway (Infectious Diseases) associated with MPs was also significantly higher than those with feathers in the nearshore area. MPs might be vectors for enrichment of potentially pathogenic Vibrio, and enhance the ecological risk of MPs to mariculture industry.
Collapse
Affiliation(s)
- Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Qiufen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xinguo Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yaping Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| |
Collapse
|
221
|
Song J, Jongmans-Hochschulz E, Mauder N, Imirzalioglu C, Wichels A, Gerdts G. The Travelling Particles: Investigating microplastics as possible transport vectors for multidrug resistant E. coli in the Weser estuary (Germany). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137603. [PMID: 32143053 DOI: 10.1016/j.scitotenv.2020.137603] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The prevalence of multidrug-resistant Gram-negative bacteria in aquatic environments has been a long withstanding health concern, namely extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Given increasing reports on microplastic (MP) pollution in these environments, it has become crucial to better understand the role of MP particles as transport vectors for such multidrug-resistant bacteria. In this study, an incubation experiment was designed where particles of both synthetic and natural material (HDPE, tyre wear, and wood) were sequentially incubated at multiple sites along a salinity gradient from the Lower Weser estuary (Germany) to the offshore island Helgoland (German Bight, North Sea). Following each incubation period, particle biofilms and water samples were assessed for ESBL-producing E. coli, first by the enrichment and detection of E. coli using Fluorocult® LMX Broth followed by cultivation on CHROMAgar™ ESBL media to select for ESBL-producers. Results showed that general E. coli populations were present on the surfaces of wood particles across all sites but none were found to produce ESBLs. Additionally, neither HDPE nor tyre wear particles were found to harbour any E. coli. Conversely, ESBL-producing E. coli were present in surrounding waters from all sites, 64% of which conferred resistances against up to 3 other antibiotic groups, additional to the beta-lactam resistances intrinsic to ESBL-producers. This study provides a first look into the potential of MP to harbour and transport multidrug-resistant E. coli across different environments and the approach serves as an important precursor to further studies on other potentially harmful MP-colonizing species.
Collapse
Affiliation(s)
- Jessica Song
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27498 Helgoland, Germany; Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia.
| | - Elanor Jongmans-Hochschulz
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27498 Helgoland, Germany
| | - Norman Mauder
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27498 Helgoland, Germany
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27498 Helgoland, Germany
| |
Collapse
|
222
|
Yang Y, Liu W, Zhang Z, Grossart HP, Gadd GM. Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biotechnol 2020; 104:6501-6511. [PMID: 32500269 PMCID: PMC7347703 DOI: 10.1007/s00253-020-10704-x] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022]
Abstract
Microplastics in the biosphere are currently of great environmental concern because of their potential toxicity for aquatic biota and human health and association with pathogenic microbiota. Microplastics can occur in high abundance in all aquatic environments, including oceans, rivers and lakes. Recent findings have highlighted the role of microplastics as important vectors for microorganisms, which can form fully developed biofilms on this artificial substrate. Microplastics therefore provide new microbial niches in the aquatic environment, and the developing biofilms may significantly differ in microbial composition compared to natural free-living or particle-associated microbial populations in the surrounding water. In this article, we discuss the composition and ecological function of the microbial communities found in microplastic biofilms. The potential factors that influence the richness and diversity of such microbial microplastic communities are also evaluated. Microbe-microbe and microbe-substrate interactions in microplastic biofilms have been little studied and are not well understood. Multiomics tools together with morphological, physiological and biochemical analyses should be combined to provide a more comprehensive overview on the ecological role of microplastic biofilms. These new microbial niches have so far unknown consequences for microbial ecology and environmental processes in aquatic ecosystems. More knowledge is required on the microbial community composition of microplastic biofilms and their ecological functions in order to better evaluate consequences for the environment and animal health, including humans, especially since the worldwide abundance of microplastics is predicted to dramatically increase.Key Points • Bacteria are mainly studied in community analyses: fungi are neglected. • Microbial colonization of microplastics depends on substrate, location and time. • Community ecology is a promising approach to investigate microbial colonization. • Biodegradable plastics, and ecological roles of microplastic biofilms, need analysis. |
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland, ABI5 8QH, UK
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, 16775, Stechlin, Germany. .,Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469, Potsdam, Germany.
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK. .,State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Science and Environment, China University of Petroleum, Beijing, 102249, China.
| |
Collapse
|
223
|
Lacerda ALDF, Proietti MC, Secchi ER, Taylor JD. Diverse groups of fungi are associated with plastics in the surface waters of the Western South Atlantic and the Antarctic Peninsula. Mol Ecol 2020; 29:1903-1918. [DOI: 10.1111/mec.15444] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ana L. d. F. Lacerda
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Maíra C. Proietti
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Eduardo R. Secchi
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Joe D. Taylor
- School of Science, Engineering and Environment University of Salford Manchester UK
| |
Collapse
|
224
|
Cornejo-D'Ottone M, Molina V, Pavez J, Silva N. Greenhouse gas cycling by the plastisphere: The sleeper issue of plastic pollution. CHEMOSPHERE 2020; 246:125709. [PMID: 31901660 DOI: 10.1016/j.chemosphere.2019.125709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Plastic is an allochthonous material to marine ecosystems but is rapidly colonized by marine microbial communities, with an as yet unclear contribution to biogeochemical cycles. In this study, we investigated the influence of an active microbial community grown on microplastic particles (the plastisphere) on CO2 and N2O recycling and its potential role in greenhouse gas inventories and air-sea exchange. Microplastics were collected during two cruises (Cimar 21 and FIP Montes Submarinos) from the surface layer (5 m depth) from several contrasting trophic regions of the South Pacific Ocean, i.e., from a transition zone off the eutrophic coastal upwelling of Chile, to a mesotrophic transition area of oceanic seamounts and, finally, to an oligotrophic zone in the South Pacific Subtropical Gyre. . Experiments were carried out onboard to evaluate CO2 and N2O production/consumption by the plastisphere. The active microbial community and its specific quantification were determined for Cimar 21 using iTag 16 S rRNA. The experiments showed that the plastisphere generally contributed to CO2 and N2O production/consumption, with rates ranging from -20.5 (consumption) to +4.5 (production) μmol/m2/d. The seamounts and the transition zone presented the highest production/consumption rates. The experiments performed in the two seamount stations showed that production and consumption of CO2 were related to the environmental nutrient concentration. Both stations presented N2O consumption that was associated with the high nitrogen deficit of the subantarctic water mass. The transition zone presented CO2 and N2O production in a plastisphere dominated by heterotrophic communities. The plastisphere in oligotrophic waters was diverse and active. The experiments, however, presented low or no production of greenhouse gases. Our results show a contribution of CO2 and N2O to the global gas surface inventories and air-sea exchange is lower than 1% of the global sources. These results highlight different critical impacts of plastic pollution on the environment that have, until now, not been considered.
Collapse
Affiliation(s)
- Marcela Cornejo-D'Ottone
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso and Instituto Milenio de Oceanografía, Chile.
| | - Verónica Molina
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Chile
| | - Javiera Pavez
- Programa de Magister en Oceanografía, Pontificia Universidad Católica de Valparaíso, Chile
| | - Nelson Silva
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Chile
| |
Collapse
|
225
|
Schlundt C, Mark Welch JL, Knochel AM, Zettler ER, Amaral‐Zettler LA. Spatial structure in the "Plastisphere": Molecular resources for imaging microscopic communities on plastic marine debris. Mol Ecol Resour 2020; 20:620-634. [PMID: 31782619 PMCID: PMC7318237 DOI: 10.1111/1755-0998.13119] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/01/2022]
Abstract
Plastic marine debris (PMD) affects spatial scales of life from microbes to whales. However, understanding interactions between plastic and microbes in the "Plastisphere"-the thin layer of life on the surface of PMD-has been technology-limited. Research into microbe-microbe and microbe-substrate interactions requires knowledge of community phylogenetic composition but also tools to visualize spatial distributions of intact microbial biofilm communities. We developed a CLASI-FISH (combinatorial labelling and spectral imaging - fluorescence in situ hybridization) method using confocal microscopy to study Plastisphere communities. We created a probe set consisting of three existing phylogenetic probes (targeting all Bacteria, Alpha-, and Gammaproteobacteria) and four newly designed probes (targeting Bacteroidetes, Vibrionaceae, Rhodobacteraceae and Alteromonadaceae) labelled with a total of seven fluorophores and validated this probe set using pure cultures. Our nested probe set strategy increases confidence in taxonomic identification because targets are confirmed with two or more probes, reducing false positives. We simultaneously identified and visualized these taxa and their spatial distribution within the microbial biofilms on polyethylene samples in colonization time series experiments in coastal environments from three different biogeographical regions. Comparing the relative abundance of 16S rRNA gene amplicon sequencing data with cell-count abundance data retrieved from the microscope images of the same samples showed a good agreement in bacterial composition. Microbial communities were heterogeneous, with direct spatial relationships between bacteria, cyanobacteria and eukaryotes such as diatoms but also micro-metazoa. Our research provides a valuable resource to investigate biofilm development, succession and associations between specific microscopic taxa at micrometre scales.
Collapse
Affiliation(s)
- Cathleen Schlundt
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMAUSA
| | - Jessica L. Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMAUSA
| | - Anna M. Knochel
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMAUSA
| | - Erik R. Zettler
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen Burg, TexelThe Netherlands
| | - Linda A. Amaral‐Zettler
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMAUSA
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen Burg, TexelThe Netherlands
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
226
|
Wolf-Baca M, Piekarska K. Biodiversity of organisms inhabiting the water supply network of Wroclaw. Detection of pathogenic organisms constituting a threat for drinking water recipients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136732. [PMID: 32014762 DOI: 10.1016/j.scitotenv.2020.136732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
The objective of the article was to present the diversity of organisms inhabiting the water supply network with particular consideration of pathogenic organisms that can cause an epidemiological threat, with the application of high throughput sequencing (HTS). The study material was water sampled from 15 points in the water supply system. High species diversity of bacteria was evidenced, as well as the presence of microorganisms from genus Clostridium and family Enterobacteriaceae. No presence of bacteria Clostridium perfringens was recorded, which suggests proper performance of water treatment processes. Owing to advanced techniques of molecular biology, the article also presents species very similar to pathogenic bacteria the detection of which is not possible by means of standard water analysis (plate culture). Based on literature data and very high similarity of the genome of the bacteria to that of pathogenic bacteria, the species are considered to potentially show the same negative character towards the recipient, and cause a serious epidemiological threat. Therefore, the performed analyses show that classic methods of assessment of sanitary quality of water are not fully sufficient, and HTS analysis should be performed as an auxiliary tool to provide the complete image of the community in the existing network.
Collapse
Affiliation(s)
- Mirela Wolf-Baca
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland.
| | - Katarzyna Piekarska
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland.
| |
Collapse
|
227
|
Biodiversity of Microorganisms Colonizing the Surface of Polystyrene Samples Exposed to Different Aqueous Environments. SUSTAINABILITY 2020. [DOI: 10.3390/su12093624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The contamination of marine and freshwater ecosystems with the items from thermoplastics, including polystyrene (PS), necessitates the search for efficient microbial degraders of these polymers. In the present study, the composition of prokaryotes in biofilms formed on PS samples incubated in seawater and the industrial water of a petrochemical plant were investigated. Using a high-throughput sequencing of the V3–V4 region of the 16S rRNA gene, the predominance of Alphaproteobacteria (Blastomonas), Bacteroidetes (Chryseolinea), and Gammaproteobacteria (Arenimonas and Pseudomonas) in the biofilms on PS samples exposed to industrial water was revealed. Alphaproteobacteria (Erythrobacter) predominated on seawater-incubated PS samples. The local degradation of the PS samples was confirmed by scanning microscopy. The PS-colonizing microbial communities in industrial water differed significantly from the PS communities in seawater. Both communities have a high potential ability to carry out the carbohydrates and amino acids metabolism, but the potential for xenobiotic degradation, including styrene degradation, was relatively higher in the biofilms in industrial water. Bacteria of the genera Erythrobacter, Maribacter, and Mycobacterium were potential styrene-degraders in seawater, and Pseudomonas and Arenimonas in industrial water. Our results suggest that marine and industrial waters contain microbial populations potentially capable of degrading PS, and these populations may be used for the isolation of efficient PS degraders.
Collapse
|
228
|
Arias-Andres M. Who is where in the Plastisphere, and why does it matter? Mol Ecol Resour 2020; 20. [PMID: 32329966 DOI: 10.1111/1755-0998.13161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 11/27/2022]
Abstract
To fully understand how plastic is affecting the ocean, we need to understand how marine life interacts directly with it. Besides their ecological relevance, microbes can affect the distribution, degradation and transfer of plastics to the rest of the marine food web. From amplicon sequencing and scanning electron microscopy, we know that a diverse array of microorganisms rapidly associate with plastic marine debris in the form of biofouling and biofilms, also known as the "Plastisphere." However, observation of multiple microbial interactions in situ, at small spatial scales in the Plastisphere, has been a challenge. In this issue of Molecular Ecology Resources, Schlundt et al. apply the combination labelling and spectral imaging - fluorescence in situ hybridization to study microbial communities on plastic marine debris. The images demonstrate the colocalization of abundant bacterial groups on plastic marine debris at a relatively high taxonomic and spatial resolution while also visualizing biofouling of eukaryotes, such as diatoms and bryozoans. This modern imaging technology provides new possibilities to address questions regarding the ecology of marine microbes on plastic marine debris and describe more specific impacts of plastic pollution in the marine food webs.
Collapse
Affiliation(s)
- Maria Arias-Andres
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
229
|
Erni-Cassola G, Wright RJ, Gibson MI, Christie-Oleza JA. Early Colonization of Weathered Polyethylene by Distinct Bacteria in Marine Coastal Seawater. MICROBIAL ECOLOGY 2020; 79:517-526. [PMID: 31463664 PMCID: PMC7176602 DOI: 10.1007/s00248-019-01424-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 05/19/2023]
Abstract
Plastic debris in aquatic environments is rapidly colonized by a diverse community of microorganisms, often referred to as the "Plastisphere." Given that common plastics are derived from fossil fuels, one would expect that Plastispheres should be enriched with obligate hydrocarbon-degrading bacteria (OHCB). So far, though, different polymer types do not seem to exert a strong effect on determining the composition of the Plastisphere, and putative biodegrading bacteria are only found as rare taxa within these biofilms. Here, we show through 16S rRNA gene sequencing that the enrichment of a prominent OHCB member on weathered and non-weathered polyethylene only occurred at early stages of colonization (i.e., after 2 days of incubation in coastal marine water; 5.8% and 3.7% of relative abundance, respectively, vs. 0.6% on glass controls). As biofilms matured, these bacteria decreased in relative abundance on all materials (< 0.3% after 9 days). Apart from OHCB, weathered polyethylene strongly enriched for other distinct organisms during early stages of colonization, such as a specific member of the Roseobacter group and a member of the genus Aestuariibacter (median 26.9% and 1.8% of the community, respectively), possibly as a consequence of the availability of short-oxidized chains generated from weathering. Our results demonstrate that Plastispheres can vary in accordance with the weathering state of the material and that very early colonizing communities are enriched with taxa that can potentially degrade hydrocarbons. Given the lack of persistent enrichment and overall community convergence between materials over time, common non-hydrolysable polymers might not serve as an important source of carbon for mature Plastispheres once the labile substrates generated from weathering have been depleted.
Collapse
Affiliation(s)
| | - Robyn J Wright
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
230
|
Horton AA, Newbold LK, Palacio-Cortés AM, Spurgeon DJ, Pereira MG, Carter H, Gweon HS, Vijver MG, van Bodegom PM, Navarro da Silva MA, Lahive E. Accumulation of polybrominated diphenyl ethers and microbiome response in the great pond snail Lymnaea stagnalis with exposure to nylon (polyamide) microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109882. [PMID: 31698175 DOI: 10.1016/j.ecoenv.2019.109882] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Microplastics attract widespread attention, including for their potential to transport toxic chemicals in the form of plasticisers and associated hydrophobic organic chemicals, such as polybrominated diphenyl ethers (PBDEs). The aims of this study were to investigate how nylon (polyamide) microplastics may affect PBDE accumulation in snails, and the acute effects of nylon particles and PBDEs on survival, weight change and inherent microbiome diversity and community composition of the pond snail Lymnaea stagnalis. Snails were exposed for 96 h to BDEs-47, 99, 100 and 153 in the presence and absence of 1% w/w nylon microplastics in quartz sand sediment. No mortality was observed over the exposure period. Snails not exposed to microplastics lost significantly more weight compared to those exposed to microplastics. Increasing PBDE concentration in the sediment resulted in an increased PBDE body burden in the snails, however microplastics did not significantly influence total PBDE uptake. Based on individual congeners, uptake of BDE 47 by snails was significantly reduced in the presence of microplastics. The diversity and composition of the snail microbiome was not significantly altered by the presence of PBDEs nor by the microplastics, singly or combined. Significant effects on a few individual operational taxonomic units (OTUs) occurred when comparing the highest PBDE concentration with the control treatment, but in the absence of microplastics only. Overall within these acute experiments, only subtle effects on weight loss and slight microbiome alterations occurred. These results therefore highlight that L. stagnalis are resilient to acute exposures to microplastics and PBDEs, and that microplastics are unlikely to influence HOC accumulation or the microbiome of this species over short timescales.
Collapse
Affiliation(s)
- Alice A Horton
- National Oceanography Centre, European Way, Southampton, SO14 SZH, UK; Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK; Institute of Environmental Sciences, University of Leiden, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Lindsay K Newbold
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Angela M Palacio-Cortés
- Zoology Department, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, Jardim Das Americas, Curitiba, PR, 81531-981, Brazil
| | - David J Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK
| | - M Glória Pereira
- Centre for Ecology and Hydrology, Library Avenue, Lancaster Environment Centre, Lancaster, Bailrigg, LA1 4AP, UK
| | - Heather Carter
- Centre for Ecology and Hydrology, Library Avenue, Lancaster Environment Centre, Lancaster, Bailrigg, LA1 4AP, UK
| | - Hyun S Gweon
- National Oceanography Centre, European Way, Southampton, SO14 SZH, UK; School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK
| | - Martina G Vijver
- Institute of Environmental Sciences, University of Leiden, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences, University of Leiden, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - Mario Antonio Navarro da Silva
- Zoology Department, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, Jardim Das Americas, Curitiba, PR, 81531-981, Brazil
| | - Elma Lahive
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
231
|
Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8020078] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial biofilms are biological structures composed of surface-attached microbial communities embedded in an extracellular polymeric matrix. In aquatic environments, the microbial colonization of submerged surfaces is a complex process involving several factors, related to both environmental conditions and to the physical-chemical nature of the substrates. Several studies have addressed this issue; however, more research is still needed on microbial biofilms in marine ecosystems. After a brief report on environmental drivers of biofilm formation, this study reviews current knowledge of microbial community attached to artificial substrates, as obtained by experiments performed on several material types deployed in temperate and extreme polar marine ecosystems. Depending on the substrate, different microbial communities were found, sometimes highlighting the occurrence of species-specificity. Future research challenges and concluding remarks are also considered. Emphasis is given to future perspectives in biofilm studies and their potential applications, related to biofouling prevention (such as cell-to-cell communication by quorum sensing or improved knowledge of drivers/signals affecting biological settlement) as well as to the potential use of microbial biofilms as sentinels of environmental changes and new candidates for bioremediation purposes.
Collapse
|
232
|
Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol 2020; 18:139-151. [PMID: 31937947 DOI: 10.1038/s41579-019-0308-0] [Citation(s) in RCA: 524] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 01/08/2023]
Abstract
The plastisphere, which comprises the microbial community on plastic debris, rivals that of the built environment in spanning multiple biomes on Earth. Although human-derived debris has been entering the ocean for thousands of years, microplastics now numerically dominate marine debris and are primarily colonized by microbial and other microscopic life. The realization that this novel substrate in the marine environment can facilitate microbial dispersal and affect all aquatic ecosystems has intensified interest in the microbial ecology and evolution of this biotope. Whether a 'core' plastisphere community exists that is specific to plastic is currently a topic of intense investigation. This Review provides an overview of the microbial ecology of the plastisphere in the context of its diversity and function, as well as suggesting areas for further research.
Collapse
Affiliation(s)
- Linda A Amaral-Zettler
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, The Netherlands. .,The University of Amsterdam, Amsterdam, The Netherlands.
| | - Erik R Zettler
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, The Netherlands
| | - Tracy J Mincer
- Wilkes Honors College and Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
233
|
Oberbeckmann S, Labrenz M. Marine Microbial Assemblages on Microplastics: Diversity, Adaptation, and Role in Degradation. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:209-232. [PMID: 31226027 DOI: 10.1146/annurev-marine-010419-010633] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have known for more than 45 years that microplastics in the ocean are carriers of microbially dominated assemblages. However, only recently has the role of microbial interactions with microplastics in marine ecosystems been investigated in detail. Research in this field has focused on three main areas: (a) the establishment of plastic-specific biofilms (the so-called plastisphere); (b) enrichment of pathogenic bacteria, particularly members of the genus Vibrio, coupled to a vector function of microplastics; and (c) the microbial degradation of microplastics in the marine environment. Nevertheless, the relationships between marine microorganisms and microplastics remain unclear. In this review, we deduce from the current literature, new comparative analyses, and considerations of microbial adaptation concerning plastic degradation that interactions between microorganisms and microplastic particles should have rather limited effects on the ocean ecosystems. The majority of microorganisms growing on microplastics seem to belong to opportunistic colonists that do not distinguish between natural and artificial surfaces. Thus, microplastics do not pose a higher risk than natural particles to higher life forms by potentially harboring pathogenic bacteria. On the other hand, microplastics in the ocean represent recalcitrant substances for microorganisms that are insufficient to support prokaryotic metabolism and will probably not be microbially degraded in any period of time relevant to human society. Because we cannot remove microplastics from the ocean, proactive action regarding research on plastic alternatives and strategies to prevent plastic entering the environment should be taken promptly.
Collapse
Affiliation(s)
- Sonja Oberbeckmann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), D-18119 Rostock, Germany;
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), D-18119 Rostock, Germany;
| |
Collapse
|
234
|
Abed RMM, Muthukrishnan T, Al Khaburi M, Al-Senafi F, Munam A, Mahmoud H. Degradability and biofouling of oxo-biodegradable polyethylene in the planktonic and benthic zones of the Arabian Gulf. MARINE POLLUTION BULLETIN 2020; 150:110639. [PMID: 31706724 DOI: 10.1016/j.marpolbul.2019.110639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 05/21/2023]
Abstract
Little is known about the degradability of oxo-biodegradable polyethylene (OXO-PE) and its surface fouling bacterial communities in the marine environment. The degradation of OXO-PE, PE and polyethylene terephthalate (PET) was compared at two depths (2 m and 6 m) in the Arabian Gulf. Scanning electron microcopy (SEM) revealed more fissure formation on OXO-PE and PE than on PET, indicating physical degradation. The formation of hydroxyl groups and carbonyl bonds, by Fourier-transform infrared spectroscopy (FTIR), suggests chemical degradation of OXO-PE. Plastisphere bacterial communities on OXO-PE and PE were different than on PET. Proteobacteria, Bacteriodetes and Planctomycetes were detected on all plastics, however, sequences of Alteromonas and Zoogloea were OXO-PE-specific suggesting a possible involvement of these bacterial genera in OXO-PE degradation. We conclude that OXO-PE shows increased signs of degradation with time owing to the combination of abiotic and biotic processes, and its degradation is higher in the benthic than in the planktonic zone.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman.
| | - Thirumahal Muthukrishnan
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Maryam Al Khaburi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Fahad Al-Senafi
- Department of Marine Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, Kuwait
| | - Abdul Munam
- Chemistry Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Huda Mahmoud
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, Kuwait
| |
Collapse
|
235
|
Tu C, Zhou Q, Zhang C, Liu Y, Luo Y. Biofilms of Microplastics. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
236
|
Three novel Rubripirellula species isolated from plastic particles submerged in the Baltic Sea and the estuary of the river Warnow in northern Germany. Antonie van Leeuwenhoek 2019; 113:1767-1778. [DOI: 10.1007/s10482-019-01368-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
|
237
|
Rhodopirellula heiligendammensis sp. nov., Rhodopirellula pilleata sp. nov., and Rhodopirellula solitaria sp. nov. isolated from natural or artificial marine surfaces in Northern Germany and California, USA, and emended description of the genus Rhodopirellula. Antonie van Leeuwenhoek 2019; 113:1737-1750. [DOI: 10.1007/s10482-019-01366-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
238
|
Naik RK, Naik MM, D'Costa PM, Shaikh F. Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and HAB species: A potential risk to the marine environment and human health. MARINE POLLUTION BULLETIN 2019; 149:110525. [PMID: 31470206 DOI: 10.1016/j.marpolbul.2019.110525] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 05/18/2023]
Abstract
Microplastic pollution in marine waters around the globe is increasing exponentially. This is the first comprehensive review which focuses on microplastics as a source and vector for metals, antibiotics, toxic chemicals, pathogenic bacteria (Vibrio cholerae), and Harmful Algal Bloom (HAB)-forming dinoflagellates across the continents through ballast water. Microplastics in ballast waters serve as 'hotspots' for the development and spread of multiple drug-resistant human pathogens through co-selection mechanisms. Microplastic inoculation at distant countries through ballast water may pose a serious threat to human health due to higher incidences of bacterial disease outbreaks and HABs. The 2017 ballast water management convention lacks a provision for on-board treatment of microplastic-contaminated ballast water. We conclude that there is a pressing need to include microplastics in the ballast water management convention as a hazardous material. Efficient on-board ballast water treatment strategies and effective limits for microplastics in ballast waters need to be developed.
Collapse
Affiliation(s)
- Ravidas Krishna Naik
- ESSO - National Centre for Polar and Ocean Research, Headland Sada, Vasco-da-Gama, Goa, 403804, India.
| | - Milind Mohan Naik
- Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | | | - Fauzia Shaikh
- Department of Biotechnology, Parvatibai Chowgule College of Arts and Science, Margao, Goa, 403601, India
| |
Collapse
|
239
|
Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J, Rivas-Marín E, Kohn T, Peeters SH, Heuer A, Rast P, Oberbeckmann S, Bunk B, Jeske O, Meyerdierks A, Storesund JE, Kallscheuer N, Lücker S, Lage OM, Pohl T, Merkel BJ, Hornburger P, Müller RW, Brümmer F, Labrenz M, Spormann AM, Op den Camp HJM, Overmann J, Amann R, Jetten MSM, Mascher T, Medema MH, Devos DP, Kaster AK, Øvreås L, Rohde M, Galperin MY, Jogler C. Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nat Microbiol 2019; 5:126-140. [PMID: 31740763 DOI: 10.1038/s41564-019-0588-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
When it comes to the discovery and analysis of yet uncharted bacterial traits, pure cultures are essential as only these allow detailed morphological and physiological characterization as well as genetic manipulation. However, microbiologists are struggling to isolate and maintain the majority of bacterial strains, as mimicking their native environmental niches adequately can be a challenging task. Here, we report the diversity-driven cultivation, characterization and genome sequencing of 79 bacterial strains from all major taxonomic clades of the conspicuous bacterial phylum Planctomycetes. The samples were derived from different aquatic environments but close relatives could be isolated from geographically distinct regions and structurally diverse habitats, implying that 'everything is everywhere'. With the discovery of lateral budding in 'Kolteria novifilia' and the capability of the members of the Saltatorellus clade to divide by binary fission as well as budding, we identified previously unknown modes of bacterial cell division. Alongside unobserved aspects of cell signalling and small-molecule production, our findings demonstrate that exploration beyond the well-established model organisms has the potential to increase our knowledge of bacterial diversity. We illustrate how 'microbial dark matter' can be accessed by cultivation techniques, expanding the organismic background for small-molecule research and drug-target detection.
Collapse
Affiliation(s)
| | | | | | | | - John Vollmers
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Timo Kohn
- Radboud University, Nijmegen, The Netherlands
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Sonja Oberbeckmann
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | - Matthias Labrenz
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | | | | | | | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | | | | | | | | | - Christian Jogler
- Radboud University, Nijmegen, The Netherlands. .,Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
240
|
Roager L, Sonnenschein EC. Bacterial Candidates for Colonization and Degradation of Marine Plastic Debris. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11636-11643. [PMID: 31557003 DOI: 10.1021/acs.est.9b02212] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
With the rising plastic pollution in the oceans, research on the plastisphere-the microorganisms interacting with marine plastic debris-has emerged. Microbial communities colonizing plastic have been characterized from several ocean regions and they are distinct from the communities of the surrounding waters, and a few plastic-degrading microorganisms have been isolated from other environments. Therefore, we propose that marine microorganisms have adapted to plastic as a surface for colonization and potentially degradation. When comparing the taxonomic patterns of plastic-associated, marine bacteria, recurring groups and families such as the families Erythrobacteraceae and Rhodobacteraceae (Alphaproteobacteria), Flavobacteriaceae (Bacteriodetes), and the phylum of cyanobacteria (such as the Phormidium genus) can be identified. Thereby, we provide a perspective on which bacterial candidates could play a role in the colonization and possible degradation of plastic in the oceans due to their occurrence on marine plastic debris. We emphasize the need for extended and reproducible collection of data to assess the existence of a core microbiome or core functionalities of the plastisphere and confirm the capability of these bacterial candidates for biodegradation of plastic. Furthermore, we suggest the next steps in research to elucidate the level of natural bioremediation and the exploitation of bacterial degradative mechanisms of plastic.
Collapse
Affiliation(s)
- Line Roager
- Technical University of Denmark , Department of Biotechnology and Biomedicine , Søltofts Plads 221 , 2800 Kgs. Lyngby , Denmark
| | - Eva C Sonnenschein
- Technical University of Denmark , Department of Biotechnology and Biomedicine , Søltofts Plads 221 , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
241
|
Astner AF, Hayes DG, O'Neill H, Evans BR, Pingali SV, Urban VS, Young TM. Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:1097-1106. [PMID: 31390700 DOI: 10.1016/j.scitotenv.2019.06.241] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Release of microplastics (MPs) and nanoplastics (NPs) into agricultural fields is of great concern due to their reported ecotoxicity to organisms that provide beneficial service to the soil such as earthworms, and the potential ability of MPs and NPs to enter the food chain. Most fundamental studies of the fate and transport of plastic particulates in terrestrial environments employ idealized MP materials as models, such as monodisperse polystyrene spheres. In contrast, plastics that reside in agricultural soils consist of polydisperse fragments resulting from degraded films employed in agriculture. There exists a need for more representative materials in fundamental studies of the fate, transport, and ecotoxicity of MPs and NPs in soil ecosystems. The objective of this study was therefore to develop a procedure to produce MPs and NPs from agricultural plastics (a mulch film prepared biodegradable polymer polybutyrate adipate-co-terephthalate (PBAT) and low-density PE [LDPE]), and to characterize the resultant materials. Soaking of PBAT films under cryogenic conditions promoted embrittlement, similar to what occurs through environmental weathering. LDPE and cryogenically-treated PBAT underwent mechanical milling followed by sieve fractionation into MP fractions of 840 μm, 250 μm, 106 μm, and 45 μm. The 106 μm fraction was subjected to wet grinding to produce NPs of average particle size 366.0 nm and 389.4 nm for PBAT and LDPE, respectively. A two-parameter Weibull model described the MPs' particle size distributions, while NPs possessed bimodal distributions. Size reduction did not produce any changes in the chemical properties of the plastics, except for slight depolymerization and an increase of crystallinity resulting from cryogenic treatment. This study suggests that MPs form from cutting and high-impact mechanical degradation as would occur during the tillage into soil, and that NPs form from the MP fragments in regions of relative weakness that possess lower molecular weight polymers and crystallinity.
Collapse
Affiliation(s)
- A F Astner
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America
| | - D G Hayes
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America.
| | - H O'Neill
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - B R Evans
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - S V Pingali
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - V S Urban
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - T M Young
- The University of Tennessee, Center for Renewable Carbon, 2506 Jacob Dr, Knoxville, TN 37996, United States of America
| |
Collapse
|
242
|
Li W, Zhang Y, Wu N, Zhao Z, Xu W, Ma Y, Niu Z. Colonization Characteristics of Bacterial Communities on Plastic Debris Influenced by Environmental Factors and Polymer Types in the Haihe Estuary of Bohai Bay, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10763-10773. [PMID: 31441645 DOI: 10.1021/acs.est.9b03659] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The colonization characteristics of bacterial communities on microplastics or plastic debris (PD) have generated great concern in recent years. However, the influence of environmental factors and polymer types on the formation of bacterial communities on PD in estuarine areas is less studied. To gain additional insights, five types of PD (polyvinyl chloride, polypropylene, polyethylene, polystyrene, and polyurethane) were exposed for three-time periods (two weeks, four weeks, and six weeks) in the Haihe Estuary. 16S rRNA gene sequencing was used to identify the bacterial communities on PD, in seawater, and in sediment samples. The results indicate that the average growth rate of a biofilm is affected by nutrients (total nitrogen and total phosphorus) and salinity. Furthermore, salinity is the primary factor affecting bacterial diversity of the colonies on PD. In addition, genera of bacteria show selectivity toward the PD polymer type and tend to colonize their preferred substrate. Compared with seawater and sediment, PD could be carriers for enrichment of Vibrio in the estuarine environment with salinity ≥26 (± 2‰), which might increase the ecological risk of PD in marine environments.
Collapse
Affiliation(s)
- Wenjie Li
- School of Marine Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Nan Wu
- School of Marine Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Ze Zhao
- School of Marine Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Wei'an Xu
- School of Marine Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Yongzheng Ma
- School of Marine Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Zhiguang Niu
- School of Marine Science and Technology , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
243
|
Paix B, Othmani A, Debroas D, Culioli G, Briand JF. Temporal covariation of epibacterial community and surface metabolome in the Mediterranean seaweed holobiont Taonia atomaria. Environ Microbiol 2019; 21:3346-3363. [PMID: 30945796 DOI: 10.1111/1462-2920.14617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022]
Abstract
An integrative multi-omics approach allowed monthly variations for a year of the surface metabolome and the epibacterial community of the Mediterranean Phaeophyceae Taonia atomaria to be investigated. The LC-MS-based metabolomics and 16S rDNA metabarcoding data sets were integrated in a multivariate meta-omics analysis (multi-block PLS-DA from the MixOmic DIABLO analysis) showing a strong seasonal covariation (Mantel test: p < 0.01). A network based on positive and negative correlations between the two data sets revealed two clusters of variables, one relative to the 'spring period' and a second to the 'summer period'. The 'spring period' cluster was mainly characterized by dipeptides positively correlated with a single bacterial taxon of the Alteromonadaceae family (BD1-7 clade). Moreover, 'summer' dominant epibacterial taxa from the second cluster (including Erythrobacteraceae, Rhodospirillaceae, Oceanospirillaceae and Flammeovirgaceae) showed positive correlations with few metabolites known as macroalgal antifouling defences [e.g. dimethylsulphoniopropionate (DMSP) and proline] which exhibited a key role within the correlation network. Despite a core community that represents a significant part of the total epibacteria, changes in the microbiota structure associated with surface metabolome variations suggested that both environment and algal host shape the bacterial surface microbiota.
Collapse
Affiliation(s)
- Benoît Paix
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
| | - Ahlem Othmani
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, UMR 6023, Clermont-Ferrand, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
| | | |
Collapse
|
244
|
Raddadi N, Fava F. Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:148-158. [PMID: 31082589 DOI: 10.1016/j.scitotenv.2019.04.419] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 05/26/2023]
Abstract
The production of synthetic oil-based plastics has led to the accumulation of huge amounts of the plastic waste in the environment, especially in the marine system, very often the final sink for many types of conventional wasted plastics. In particular, (micro)plastics account for the majority of litter items in the marine environment and a high percentage of such litter is originating from land sources. Attempts to mitigate the harmful effects of conventional plastics such as the development of novel management strategies together with the gradual substitution of them with biodegradable (bio)plastics are representing future solutions. However, high amounts of conventional plastics have been accumulating in the environment since several years. Although many studies reported on their potential biodegradation by microbes in and from terrestrial environments, very little is known about the biodegradability of these plastics in freshwater systems and only recently more reports on their biodegradation by marine microorganisms/in marine environment were made available. In this review, we first provide a summary of the approaches applied for monitoring and assessing conventional plastics biodegradation under defined conditions. Then, we reviewed historical and recent findings related to biodegradation of four major plastics produced in European Union (EU), i.e. Polyethylene, Polyvinyl Chloride, Polypropylene and Polystyrene, in terrestrial and aquatic environments and by pure and mixed microbial cultures obtained from them.
Collapse
Affiliation(s)
- Noura Raddadi
- Department of Civil, Chemical, Environmental and Materials Engineering; Alma Mater Studiorum-University of Bologna, Italy.
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering; Alma Mater Studiorum-University of Bologna, Italy
| |
Collapse
|
245
|
Kesy K, Oberbeckmann S, Kreikemeyer B, Labrenz M. Spatial Environmental Heterogeneity Determines Young Biofilm Assemblages on Microplastics in Baltic Sea Mesocosms. Front Microbiol 2019; 10:1665. [PMID: 31447791 PMCID: PMC6696623 DOI: 10.3389/fmicb.2019.01665] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Microplastics in aquatic environments provide novel habitats for surface-colonizing microorganisms. Given the continuing debate on whether substrate-specific properties or environmental factors prevail in shaping biofilm assemblages on microplastics, we examined the influence of substrate vs. spatial factors in the development of bacterial assemblages on polyethylene (PE), polystyrene (PS), wood, and seston and in the free-living fraction. Further, the selective colonization of microplastics by potential pathogens was investigated because among the bacterial species found in microplastic-associated biofilms are potentially pathogenic Vibrio spp. Due to their persistence and great dispersal potential, microplastics could act as vectors for these potential pathogens and for biofilm assemblages in general. Incubation experiments with these substrates were conducted for 7 days during a summer cruise along the eastern Baltic Sea coastline in waters covering a salinity gradient of 4.5-9 PSU. Bacterial assemblages were analyzed using 16S rRNA-gene amplicon sequencing, distance-based redundancy analyses, and the linear discriminant analysis effect size method to identify taxa that were significantly more abundant on the plastics. The results showed that the sample type was the most important factor structuring bacterial assemblages overall. Surface properties were less significant in differentiating attached biofilms on PE, PS, and wood; instead, environmental factors, mainly salinity, prevailed. A potential role for inorganic-nutrient limitations in surface-specific attachment was identified as well. Alphaproteobacteria (Sphingomonadaceae, Devosiaceae, and Rhodobacteraceae) and Gammaproteobacteria (Alteromonadaceae and Pseudomonas) were distinctive for the PE- and PS-associated biofilms. Vibrio was more abundant on the PE and PS biofilms than on seston, but its abundances were highest on wood and positively correlated with salinity. These results corroborate earlier findings that microplastics constitute a habitat for biofilm-forming microorganisms distinct from seston, but less from wood. In contrast to earlier reports of low Vibrio numbers on microplastics, these results also suggest that vibrios are early colonizers of surfaces in general. Spatial as well as temporal dynamics should therefore be considered when assessing the potential of microplastics to serve as vectors for bacterial assemblages and putative pathogens, as these parameters are major drivers of biofilm diversity.
Collapse
Affiliation(s)
- Katharina Kesy
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Sonja Oberbeckmann
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Matthias Labrenz
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| |
Collapse
|
246
|
Wright SL, Levermore JM, Kelly FJ. Raman Spectral Imaging for the Detection of Inhalable Microplastics in Ambient Particulate Matter Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8947-8956. [PMID: 31293159 DOI: 10.1021/acs.est.8b06663] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microplastics are ubiquitous contaminants, with preliminary evidence indicating they are a novel component of air pollution. This presents a plausible inhalation exposure pathway, should microplastics occur in the inhalable size range; however, this remains an analytical challenge. Here, we develop a filter-based sampling method compatible with both air quality monitoring and Raman spectral imaging (RSI) for the detection of inhalable-sized microplastics. Clean and particulate matter (PM) contaminated filters of a range of compositions were screened. RSI was validated using a plastic microbead suspension (poly(methyl methacrylate) (5-27 μm), polyethylene (10-27 μm), and polystyrene (4 and 10 μm)). Filters were loaded with the suspension before being analyzed. RSI analysis was conducted using a univariate analysis, fitting unique plastic bands to the spectral data sets, where high spatial intensity indicated the presence of microplastics. Inhalable microplastics were not visibly detectable against quartz or spectroscopically detectable against polytetrafluoroethylene (PTFE)- and alumina-based filters. While microplastics were detectable against cellulose, the PM-contaminated filters (4 and 24 h) burned during analysis. The greatest intensities for microplastics were observed against the silver membrane filter, and inhalable microplastics were still detectable in a 24 h PM sample. These findings will facilitate the acquisition of inhalable microplastic concentrations, which are necessary for understanding microplastic exposure and, ultimately, what their potential role in PM-associated health effects might be.
Collapse
Affiliation(s)
- Stephanie L Wright
- MRC-PHE Centre for Environment and Health, Department of Analytical, Environmental and Forensic Sciences , King's College London , London SE1 9NH , United Kingdom
| | - Joseph M Levermore
- MRC-PHE Centre for Environment and Health, Department of Analytical, Environmental and Forensic Sciences , King's College London , London SE1 9NH , United Kingdom
| | - Frank J Kelly
- MRC-PHE Centre for Environment and Health, Department of Analytical, Environmental and Forensic Sciences , King's College London , London SE1 9NH , United Kingdom
| |
Collapse
|
247
|
Muthukrishnan T, Al Khaburi M, Abed RMM. Fouling Microbial Communities on Plastics Compared with Wood and Steel: Are They Substrate- or Location-Specific? MICROBIAL ECOLOGY 2019; 78:361-374. [PMID: 30535914 DOI: 10.1007/s00248-018-1303-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/27/2018] [Indexed: 05/20/2023]
Abstract
Although marine biofouling has been widely studied on different substrates, information on biofouling on plastics in the Arabian Gulf is limited. Substrate- and location-specific effects were investigated by comparing the microbial communities developed on polyethylene terephthalate (PET) and polyethylene (PE) with those on steel and wood, at two locations in the Sea of Oman. Total biomass was lower on PET and PE than on steel and wood. PET had the highest bacterial abundance at both locations, whereas chlorophyll a concentrations did not vary between substrates. MiSeq 16S ribosomal RNA sequencing revealed comparable operational taxonomic unit (OTU) richness on all substrates at one location but lower numbers on PET and PE at the other location. Non-metric multidimensional scaling (NMDS) showed distinct clusters of the bacterial communities based on substrate (analysis of similarity (ANOSIM), R = 0.45-0.97, p < 0.03) and location (ANOSIM, R = 0.56, p < 0.0001). The bacterial genera Microcystis and Hydrogenophaga and the diatoms Licmophora and Mastogloia were specifically detected on plastics. Desulfovibrio and Pseudomonas spp. exhibited their highest abundance on steel and Corynebacterium spp. on wood. Scanning electron microscopy (SEM) revealed fissure formation on PET and PE, indicating physical degradation. The presence of free radicals on PET and carbonyl bonds (C=O) on PE, as revealed by Fourier transform infrared (FTIR) spectroscopy, indicated abiotic degradation while hydroxyl groups and spectral peaks for proteins and polysaccharides on PE indicated biotic degradation. We conclude that fouling microbial communities are not only substrate-specific but also location-specific and microbes developing on plastics could potentially contribute to their degradation in the marine environment.
Collapse
Affiliation(s)
- Thirumahal Muthukrishnan
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box 36, PC, 123, Al Khoud, Sultanate of Oman
| | - Maryam Al Khaburi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box 36, PC, 123, Al Khoud, Sultanate of Oman
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box 36, PC, 123, Al Khoud, Sultanate of Oman.
| |
Collapse
|
248
|
Catão ECP, Pollet T, Misson B, Garnier C, Ghiglione JF, Barry-Martinet R, Maintenay M, Bressy C, Briand JF. Shear Stress as a Major Driver of Marine Biofilm Communities in the NW Mediterranean Sea. Front Microbiol 2019; 10:1768. [PMID: 31608016 PMCID: PMC6774042 DOI: 10.3389/fmicb.2019.01768] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
While marine biofilms depend on environmental conditions and substrate, little is known about the influence of hydrodynamic forces. We tested different immersion modes (dynamic, cyclic and static) in Toulon Bay (north-western Mediterranean Sea; NWMS). The static mode was also compared between Toulon and Banyuls Bays. In addition, different artificial surfaces designed to hamper cell attachment (self-polishing coating: SPC; and fouling-release coating: FRC) were compared to inert plastic. Prokaryotic community composition was affected by immersion mode, surface characteristics and site. Rhodobacteriaceae and Flavobacteriaceae dominated the biofilm community structure, with distinct genera according to surface type or immersion mode. Cell density increased with time, greatly limited by hydrodynamic forces, and supposed to delay biofilm maturation. After 1 year, a significant impact of shear stress on the taxonomic structure of the prokaryotic community developed on each surface type was observed. When surfaces contained no biocides, roughness and wettability shaped prokaryotic community structure, which was not enhanced by shear stress. Conversely, the biocidal effect of SPC surfaces, already major in static immersion mode, was amplified by the 15 knots speed. The biofilm community on SPC was 60% dissimilar to the biofilm on the other surfaces and was distinctly colonized by Sphingomonadaceae ((Alter)Erythrobacter). At Banyuls, prokaryotic community structures were more similar between the four surfaces tested than at Toulon, due possibly to a masking effect of environmental constraints, especially hydrodynamic, which was greater than in Toulon. Finally, predicted functions such as cell adhesion confirmed some of the hypotheses drawn regarding biofilm formation over the artificial surfaces tested here.
Collapse
Affiliation(s)
| | - Thomas Pollet
- Laboratoire MAPIEM (EA 4323), Université de Toulon, Toulon, France
- UMR BIPAR, INRA, ANSES, ENVA, Université Paris-Est, Maisons-Alfort, France
| | - Benjamin Misson
- CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, University of Toulon – Aix-Marseille University, La Garde, France
| | - Cédric Garnier
- CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, University of Toulon – Aix-Marseille University, La Garde, France
| | - Jean-Francois Ghiglione
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d’Océanographie Microbienne, Banyuls-sur-Mer, France
| | | | - Marine Maintenay
- Laboratoire MAPIEM (EA 4323), Université de Toulon, Toulon, France
| | - Christine Bressy
- Laboratoire MAPIEM (EA 4323), Université de Toulon, Toulon, France
| | | |
Collapse
|
249
|
Pinto M, Langer TM, Hüffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS One 2019; 14:e0217165. [PMID: 31166981 PMCID: PMC6550384 DOI: 10.1371/journal.pone.0217165] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Once in the ocean, plastics are rapidly colonized by complex microbial communities. Factors affecting the development and composition of these communities are still poorly understood. Additionally, whether there are plastic-type specific communities developing on different plastics remains enigmatic. We determined the development and succession of bacterial communities on different plastics under ambient and dim light conditions in the coastal Northern Adriatic over the course of two months using scanning electron microscopy and 16S rRNA gene analyses. Plastics used were low- and high-density polyethylene (LDPE and HDPE, respectively), polypropylene (PP) and polyvinyl chloride with two typical additives (PVC DEHP and PVC DINP). The bacterial communities developing on the plastics clustered in two groups; one group was found on PVC and the other group on all the other plastics and on glass, which was used as an inert control. Specific bacterial taxa were found on specific surfaces in essentially all stages of biofilm development and in both ambient and dim light conditions. Differences in bacterial community composition between the different plastics and light exposures were stronger after an incubation period of one week than at the later stages of the incubation. Under both ambient and dim light conditions, one part of the bacterial community was common on all plastic types, especially in later stages of the biofilm development, with families such as Flavobacteriaceae, Rhodobacteraceae, Planctomycetaceae and Phyllobacteriaceae presenting relatively high relative abundances on all surfaces. Another part of the bacterial community was plastic-type specific. The plastic-type specific fraction was variable among the different plastic types and was more abundant after one week of incubation than at later stages of the succession.
Collapse
Affiliation(s)
- Maria Pinto
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- * E-mail:
| | - Teresa M. Langer
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Thorsten Hüffer
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thilo Hofmann
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Gerhard J. Herndl
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
250
|
Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, Barbe V, Meistertzheim AL, Ghiglione JF. Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the "Plastisphere". Front Microbiol 2019; 10:865. [PMID: 31073297 PMCID: PMC6497127 DOI: 10.3389/fmicb.2019.00865] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/04/2019] [Indexed: 01/09/2023] Open
Abstract
Over the last decades, it has become clear that plastic pollution presents a global societal and environmental challenge given its increasing presence in the oceans. A growing literature has focused on the microbial life growing on the surfaces of these pollutants called the "plastisphere," but the general concepts of microbial ecotoxicology have only rarely been integrated. Microbial ecotoxicology deals with (i) the impact of pollutants on microbial communities and inversely (ii) how much microbes can influence their biodegradation. The goal of this review is to enlighten the growing literature of the last 15 years on microbial ecotoxicology related to plastic pollution in the oceans. First, we focus on the impact of plastic on marine microbial life and on the various functions it ensures in the ecosystems. In this part, we also discuss the driving factors influencing biofilm development on plastic surfaces and the potential role of plastic debris as vector for dispersal of harmful pathogen species. Second, we give a critical view of the extent to which marine microorganisms can participate in the decomposition of plastic in the oceans and of the relevance of current standard tests for plastic biodegradability at sea. We highlight some examples of metabolic pathways of polymer biodegradation. We conclude with several questions regarding gaps in current knowledge of plastic biodegradation by marine microorganisms and the identification of possible directions for future research.
Collapse
Affiliation(s)
- Justine Jacquin
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Jingguang Cheng
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Charlène Odobel
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Caroline Pandin
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Pascal Conan
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Mireille Pujo-Pay
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Valérie Barbe
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat á I’Énergie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Évry, France
| | - Anne-Leila Meistertzheim
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
- Plastic@Sea, Observatoire Océanographique de Banyuls-sur-Mer, Banyuls-sur-Mer, France
| | - Jean-François Ghiglione
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| |
Collapse
|