201
|
Xiao C, Wu M, Liu J, Gu J, Jiao X, Lu D, He J, Lin C, Xue Y, Fu T, Wang H, Wang G, Yang X, Li Z. Acute tobacco smoke exposure exacerbates the inflammatory response to corneal wounds in mice via the sympathetic nervous system. Commun Biol 2019; 2:33. [PMID: 30701198 PMCID: PMC6345828 DOI: 10.1038/s42003-018-0270-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Exposure to tobacco smoke is a major public health concern that can also affect ophthalmic health. Based on previous work demonstrating the important role of the sympathetic nervous system (SNS) in corneal wound repair, we postulated that acute tobacco smoke exposure (ATSE) may act through the SNS in the impairment of corneal wound repair. Here we find that ATSE rapidly increases the markers of inflammatory response in normal corneal limbi. After an abrasion injury, ATSE exaggerates inflammation, impairs wound repair, and enhances the expression of nuclear factor-κB (NF-κB) and inflammatory molecules such as interleukin-6 (IL-6) and IL-17. We find that chemical SNS sympathectomy, local adrenergic receptor antagonism, NF-κB1 inactivation, and IL-6/IL-17A neutralization can all independently attenuate ATSE-induced excessive inflammatory responses and alleviate their impairment of the healing process. These findings highlight that the SNS may represent a major molecular sensor and mediator of ATSE-induced inflammation.
Collapse
Affiliation(s)
- Chengju Xiao
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Mingjuan Wu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jianqin Gu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Jingxin He
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Cuipei Lin
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Hanqing Wang
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Guang Wang
- Department of Histology and Embryology, Jinan University Medical School, Guangzhou, China
| | - Xuesong Yang
- Department of Histology and Embryology, Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
- Section of Leukocyte Biology, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
202
|
Ince LM, Weber J, Scheiermann C. Control of Leukocyte Trafficking by Stress-Associated Hormones. Front Immunol 2019; 9:3143. [PMID: 30687335 PMCID: PMC6336915 DOI: 10.3389/fimmu.2018.03143] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 01/13/2023] Open
Abstract
Leukocyte migration is a crucial process in both homeostatic and inflammatory conditions. The spatiotemporal distribution of immune cells is balanced between processes of cellular mobilization into the bloodstream, their adhesion to vascular beds and trafficking into tissues. Systemic regulation of leukocyte mobility is achieved by different signals including neuronal and hormonal cues, of which the catecholamines and glucocorticoids have been most extensively studied. These hormones are often associated with a stress response, however they regulate immune cell trafficking also in steady state, with effects dependent upon cell type, location, time-of-day, concentration, and duration of signal. Systemic administration of catecholamines, such as the sympathetic neurotransmitters adrenaline and noradrenaline, increases neutrophil numbers in the bloodstream but has different effects on other leukocyte populations. In contrast, local, endogenous sympathetic tone has been shown to be crucial for dynamic daily changes in adhesion molecule expression in the bone marrow and skeletal muscle, acting as a key signal to the endothelium and stromal cells to regulate immune cell trafficking. Conversely, glucocorticoids are often reported as anti-inflammatory, although recent data shows a more complex role, particularly under steady-state conditions. Endogenous changes in circulating glucocorticoid concentration induce redistribution of cells and potentiate inflammatory responses, and in many paradigms glucocorticoid action is strongly influenced by time of day. In this review, we discuss the current knowledge of catecholamine and glucocorticoid regulation of leukocyte migration under homeostatic and stimulated conditions.
Collapse
Affiliation(s)
- Louise M Ince
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jasmin Weber
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
203
|
Beta2-Adrenoceptor Agonists in Parkinson’s Disease and Other Synucleinopathies. J Neuroimmune Pharmacol 2019; 15:74-81. [DOI: 10.1007/s11481-018-09831-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 12/27/2022]
|
204
|
Noradrenaline through β-adrenoceptor contributes to sexual dimorphism in primary CD4+ T-cell response in DA rat EAE model? Cell Immunol 2018; 336:48-57. [PMID: 30600100 DOI: 10.1016/j.cellimm.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
Abstract
Males exhibit stronger sympathetic nervous system (SNS) activity, but weaker primary CD4+ T-cell (auto)immune responses. To test the role of catecholamines, major end-point SNS mediators, in this dimorphism, influence of propranolol (β-adrenoceptor blocker) on mitogen/neuroantigen-stimulated CD4+ T cells from female and male EAE rat draining lymph node (dLN) cell cultures was examined. Male rat dLNs exhibited higher noradrenaline concentration and frequency of β2-adrenoceptor-expressing CD4+ T lymphocytes and antigen presenting cells. Propranolol, irrespective of exogenous noradrenaline presence, more prominently augmented IL-2 production and proliferation of CD4+ lymphocytes in male than female rat dLN cell cultures. In neuroantigen-stimulated dLN cells of both sexes propranolol increased IL-1β and IL-23/p19 expression and IL-17+ CD4+ cell frequency, but enhanced IL-17 production only in male rat CD4+ lymphocytes, thereby abrogating sexual dimorphism in IL-17 concentration observed in propranolol-free cultures. Thus, β-adrenoceptor-mediated signalling may contribute to sex bias in rat IL-17-producing cell secretory capacity.
Collapse
|
205
|
Williams LM, Qi Z, Batai K, Hooker S, Hall NJ, Machado RF, Chen A, Campbell-Lee S, Guan Y, Kittles R, Hanchard NA. A locus on chromosome 5 shows African ancestry-limited association with alloimmunization in sickle cell disease. Blood Adv 2018; 2:3637-3647. [PMID: 30578281 PMCID: PMC6306880 DOI: 10.1182/bloodadvances.2018020594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Red blood cell (RBC) transfusion remains a critical therapeutic intervention in sickle cell disease (SCD); however, the apparent propensity of some patients to regularly develop RBC alloantibodies after transfusion presents a significant challenge to finding compatible blood for so-called alloimmunization responders. Predisposing genetic loci have long been thought to contribute to the responder phenomenon, but to date, no definitive loci have been identified. We undertook a genome-wide association study of alloimmunization responder status in 267 SCD multiple transfusion recipients, using genetic estimates of ancestral admixture to bolster our findings. Analyses revealed single nucleotide polymorphisms (SNPs) on chromosomes 2 and 5 approaching genome-wide significance (minimum P = 2.0 × 10-8 and 8.4 × 10-8, respectively), with local ancestry analysis demonstrating similar levels of admixture in responders and nonresponders at implicated loci. Association at chromosome 5 was nominally replicated in an independent cohort of 130 SCD transfusion recipients, with meta-analysis surpassing genome-wide significance (rs75853687, P meta = 6.6 × 10-9), and this extended to individuals forming multiple (>3) alloantibodies (P meta = 9.4 × 10-5). The associated variant is rare outside of African populations, and orthogonal genome-wide haplotype analyses, contingent on local ancestry, revealed genome-wide significant sharing of a ∼60-kb haplotype of African ancestry at the chromosome 5 locus (Bayes Factor = 4.95). This locus overlaps a putative cis-acting enhancer predicted to regulate transcription of ADRA1B and the lncRNA LINC01847, both members of larger ontologies associated with immune regulation. Our findings provide potential insights to the pathophysiology underlying the development of alloantibodies and implicate non-RBC ancestry-limited loci in the susceptibility to alloimmunization.
Collapse
MESH Headings
- Black or African American/genetics
- Alleles
- Anemia, Sickle Cell/genetics
- Anemia, Sickle Cell/immunology
- Anemia, Sickle Cell/pathology
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 5/genetics
- Genetic Loci
- Genome-Wide Association Study
- Genotype
- Haplotypes
- Humans
- Isoantibodies/blood
- Polymorphism, Single Nucleotide
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
Collapse
Affiliation(s)
- Lesedi M Williams
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
- Department of Molecular and Human Genetics and
| | - Zhihua Qi
- Department of Molecular and Human Genetics and
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Ken Batai
- College of Medicine, University of Arizona, Tucson, AZ
| | - Stanley Hooker
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, CA
| | - Nancy J Hall
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Roberto F Machado
- College of Medicine, University of Illinois at Chicago, Chicago, IL; and
| | - Alice Chen
- Gulf Coast Pathology Associates, Houston, TX
| | - Sally Campbell-Lee
- College of Medicine, University of Illinois at Chicago, Chicago, IL; and
| | - Yongtao Guan
- Department of Molecular and Human Genetics and
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Rick Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, CA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics and
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
206
|
Gimenez P, Garcia‐Martinez I, Francés R, Gonzalez‐Navajas JM, Mauri M, Alfayate R, Almenara S, Miralles C, Palazon JM, Carnicer F, Pascual S, Such J, Horga JF, Zapater P. Treatment with non-selective beta-blockers affects the systemic inflammatory response to bacterial DNA in patients with cirrhosis. Liver Int 2018; 38:2219-2227. [PMID: 29802788 PMCID: PMC6282820 DOI: 10.1111/liv.13890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/20/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The use of non-selective beta-blockers has been associated with lower rates of infection and reduced infection-associated morbidity in patients with cirrhosis. However, it is unknown if these drugs modify the systemic inflammatory response to circulating bacterial DNA. METHODS Sixty-three patients with cirrhosis were included during an episode of decompensation by ascites. Thirty of those patients were on beta-blockers. Blood samples were obtained after each patient had been in the supine position for at least 30 minutes in a quiet atmosphere. Bacterial DNA, serum cytokines, nitric oxide, and LPS were determined. Phagocytic and oxidative burst activities were determined in polymorphonuclear cells from the patients. RESULTS The detection rate of bacterial DNA in the blood was the same (33%) for patients not treated and treated with non-selective beta-blockers. Patients naive to non-selective beta-blockers showed significantly higher serum levels of IL6, IFN-gamma and IL10 in response to the presence of bacterial DNA. Patients treated with non-selective beta-blockers showed higher basal inflammatory activity that did not change with the presence of bacterial DNA. Monocytes and granulocytes from patients treated with non-selective beta-blockers showed a significantly increased phagocytic capacity in the presence of bacterial DNA. CONCLUSIONS In patients with cirrhosis, chronic treatment with beta-blockers is associated with a higher unstimulated production of serum cytokines and an increased phagocytic activity in the presence of bacterial DNA.
Collapse
Affiliation(s)
| | | | - Rubén Francés
- CIBERehdInstituto de Salud Carlos IIIMadridSpain,Departamento Medicina ClínicaUniversidad Miguel HernándezElche, AlicanteSpain
| | | | - Montserrat Mauri
- Servicio de Análisis ClínicosHospital General Universitario de AlicanteInstituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL‐Fundación FISABIO)AlicanteSpain
| | - Rocío Alfayate
- Servicio de Análisis ClínicosHospital General Universitario de AlicanteInstituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL‐Fundación FISABIO)AlicanteSpain
| | - Susana Almenara
- Unidad de Farmacología ClínicaHospital General Universitario de AlicanteInstituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL‐Fundación FISABIO)AlicanteSpain
| | - Cayetano Miralles
- Unidad HepáticaHospital General Universitario de AlicanteInstituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL‐Fundación FISABIO)AlicanteSpain
| | - Jose M. Palazon
- CIBERehdInstituto de Salud Carlos IIIMadridSpain,Departamento Medicina ClínicaUniversidad Miguel HernándezElche, AlicanteSpain,Unidad HepáticaHospital General Universitario de AlicanteInstituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL‐Fundación FISABIO)AlicanteSpain
| | - Fernando Carnicer
- Unidad HepáticaHospital General Universitario de AlicanteInstituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL‐Fundación FISABIO)AlicanteSpain
| | - Sonia Pascual
- CIBERehdInstituto de Salud Carlos IIIMadridSpain,Unidad HepáticaHospital General Universitario de AlicanteInstituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL‐Fundación FISABIO)AlicanteSpain
| | - José Such
- Digestive Disease InstituteCleveland Clinic Abu DhabiAbu DhabiUAE,Lerner School of MedicineCase Western Reserve UniversityClevelandOHUSA
| | - José F. Horga
- Unidad de Farmacología ClínicaHospital General Universitario de AlicanteInstituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL‐Fundación FISABIO)AlicanteSpain,Instituto de BioingenieriaUniversidad Miguel HernándezElche, AlicanteSpain
| | - Pedro Zapater
- CIBERehdInstituto de Salud Carlos IIIMadridSpain,Unidad de Farmacología ClínicaHospital General Universitario de AlicanteInstituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL‐Fundación FISABIO)AlicanteSpain,Instituto de BioingenieriaUniversidad Miguel HernándezElche, AlicanteSpain
| |
Collapse
|
207
|
Wu L, Tai Y, Hu S, Zhang M, Wang R, Zhou W, Tao J, Han Y, Wang Q, Wei W. Bidirectional Role of β2-Adrenergic Receptor in Autoimmune Diseases. Front Pharmacol 2018; 9:1313. [PMID: 30538630 PMCID: PMC6277539 DOI: 10.3389/fphar.2018.01313] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Disorder of the sympathetic nervous system (SNS) is closely related to the pathogenesis of various autoimmune diseases (ADs). Catecholamine triggered beta2-adrenergic receptor (β2-AR) signaling is important in creating a bidirectional response in the progression of ADs due to factors including diverse expression patterns, single nucleotide polymorphisms (SNPs), biased signals, and desensitization of β2-AR, as well as different subtypes of Gα binding to β2-AR. In this review, we summarize the actions of β2-AR signaling in regulating the functions of immunocytes and in the pathogenesis of ADs, and the application of β2-AR agonists or antagonists in treating major types of ADs is also discussed. We suggest that restoring the immune balance via a soft regulation of the expression or activation of β2-AR is one of the promising therapeutic strategies for systematic ADs.
Collapse
Affiliation(s)
- Li Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Shanshan Hu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Mei Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Rui Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Juan Tao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
208
|
Moreno-Villanueva M, Feiveson AH, Krieger S, Kay Brinda A, von Scheven G, Bürkle A, Crucian B, Wu H. Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells. Int J Mol Sci 2018; 19:ijms19113689. [PMID: 30469384 PMCID: PMC6275019 DOI: 10.3390/ijms19113689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the β2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alan H Feiveson
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | | | - AnneMarie Kay Brinda
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA.
| | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Brian Crucian
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | - Honglu Wu
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| |
Collapse
|
209
|
Interplay between sympathetic nervous system and inflammation in aseptic loosening of hip joint replacement. Sci Rep 2018; 8:16044. [PMID: 30375409 PMCID: PMC6207762 DOI: 10.1038/s41598-018-33360-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a common symptom in joint disorders such as rheumatoid arthritis, osteoarthritis (OA) and implant aseptic loosening (AL). The sympathetic nervous system is well known to play a critical role in regulating inflammatory conditions, and imbalanced sympathetic activity has been observed in rheumatoid arthritis. In AL it is not clear whether the sympathetic nervous system is altered. In this study we evaluated the systemic and local profile of neuroimmune molecules involved in the interplay between the sympathetic nervous system and the periprosthetic inflammation in hip AL. Our results showed that periprosthetic inflammation does not trigger a systemic response of the sympathetic nervous system, but is mirrored rather by the impairment of the sympathetic activity locally in the hip joint. Moreover, macrophages were identified as key players in the local regulation of inflammation by the sympathetic nervous system in a process that is implant debris-dependent and entails the reduction of both adrenergic and Neuropetide Y (NPY)-ergic activity. Additionally, our results showed a downregulation of semaphorin 3A (SEMA3A) that may be part of the mechanism sustaining the periprosthetic inflammation. Overall, the local sympathetic nervous system emerges as a putative target to mitigate the inflammatory response to debris release and extending the lifespan of orthopedic implants.
Collapse
|
210
|
Rossi SP, Walenta L, Rey-Ares V, Köhn FM, Schwarzer JU, Welter H, Calandra RS, Frungieri MB, Mayerhofer A. Alpha 1 adrenergic receptor-mediated inflammatory responses in human testicular peritubular cells. Mol Cell Endocrinol 2018; 474:1-9. [PMID: 29407194 DOI: 10.1016/j.mce.2018.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/14/2017] [Accepted: 01/29/2018] [Indexed: 01/15/2023]
Abstract
Stress activates the sympathetic nervous system and is linked to impaired fertility in man. We hypothesized that catecholamines by acting on testicular cells have a role in these events, possibly by fostering an inflammatory environment. The cells of the wall of seminiferous tubules, human testicular peritubular cells (HTPCs), express adrenergic receptors (ADRs) α1B, α1D, β1 and β2. A selective α1-ADR agonist, phenylephrine, increased intracellular Ca2+-levels in cultured HTPCs and induced COX-2, IL-6 and MCP-1 mRNA expression without affecting IL-1β mRNA. These changes were paralleled by a significant increase in the secretion of IL-6 and MCP-1. Epinephrine was also effective, but salbutamol, a selective β2-ADR agonist was not. Our results suggest that stress-associated elevation of catecholamines may be able to promote inflammatory events by targeting peritubular cells in the human testis. Blockage of α1-ADRs may therefore be a novel way to interfere with stress-related impairment of male reproductive functions.
Collapse
Affiliation(s)
- Soledad Paola Rossi
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany; Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lena Walenta
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany
| | - Verónica Rey-Ares
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany
| | | | | | - Harald Welter
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany
| | - Ricardo Saúl Calandra
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mónica Beatriz Frungieri
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany.
| |
Collapse
|
211
|
Minaei S, Shahabi S, Seyyedi S, Ziaali N, Mohammadzadeh Hajipirloo H. Propranolol efficacy as a novel adjuvant for immunization against Toxoplasma gondii tachyzoites. Exp Parasitol 2018; 194:60-66. [PMID: 30253134 DOI: 10.1016/j.exppara.2018.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 07/08/2018] [Accepted: 09/20/2018] [Indexed: 12/25/2022]
Abstract
Severe or lethal damages, caused by Toxoplasma gondii infection in congenital cases and immunocompromised patients implies the necessity for development of a vaccine and an appropriate adjuvant would be needed to elicit a protective Th1 biased-immune response. The adjuvant activity of propranolol was surveyed and compared with alum by immunization of BALB/c mice with protein components of T. gondii tachyzoites. Five groups of BALB/c mice were immunized with phosphate buffered saline (negative control), Toxoplasma lysate antigen (TLA), alum plus TLA, Propranolol plus TLA, and alum, propranolol and TLA. Immunization efficacy was evaluated by lymphocyte proliferation and DTH tests, challenge with live tachyzoites, IFN-γ production by spleen cells, serum TNF-α concentration and anti- Toxoplasma total IgG, IgG1 and IgG2a measurements. Mice of the PRP-TLA group induced significantly more IFN-γ and TNF-α production and lymphocyte proliferation than other groups. This group of mice also showed more anti-T. gondii IgG2a and DTH responses and showed a significantly increased survival time after challenge. These findings indicate that propranolol as an adjuvant in combination with TLA, may enhance cellular immunity against T. gondii.
Collapse
Affiliation(s)
- Samad Minaei
- Department of Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shahram Shahabi
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shahram Seyyedi
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Naser Ziaali
- Department of Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | | |
Collapse
|
212
|
Combined Effect of NF-κB Inhibitor and β2-Adrenoreceptor Agonist on Mouse Mortality and Blood Concentration of Proinflammatory Cytokines in Sepsis. Bull Exp Biol Med 2018; 165:445-448. [DOI: 10.1007/s10517-018-4190-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/30/2022]
|
213
|
Ben-Shaanan TL, Schiller M, Azulay-Debby H, Korin B, Boshnak N, Koren T, Krot M, Shakya J, Rahat MA, Hakim F, Rolls A. Modulation of anti-tumor immunity by the brain's reward system. Nat Commun 2018; 9:2723. [PMID: 30006573 PMCID: PMC6045610 DOI: 10.1038/s41467-018-05283-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Regulating immunity is a leading target for cancer therapy. Here, we show that the anti-tumor immune response can be modulated by the brain's reward system, a key circuitry in emotional processes. Activation of the reward system in tumor-bearing mice (Lewis lung carcinoma (LLC) and B16 melanoma) using chemogenetics (DREADDs), resulted in reduced tumor weight. This effect was mediated via the sympathetic nervous system (SNS), manifested by an attenuated noradrenergic input to a major immunological site, the bone marrow. Myeloid derived suppressor cells (MDSCs), which develop in the bone marrow, became less immunosuppressive following reward system activation. By depleting or adoptively transferring the MDSCs, we demonstrated that these cells are both necessary and sufficient to mediate reward system effects on tumor growth. Given the central role of the reward system in positive emotions, these findings introduce a physiological mechanism whereby the patient's psychological state can impact anti-tumor immunity and cancer progression.
Collapse
Affiliation(s)
- Tamar L Ben-Shaanan
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Maya Schiller
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Hilla Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Ben Korin
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Nadia Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Tamar Koren
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Maria Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Jivan Shakya
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Immunotherapy Lab, Carmel Medical Center, 3436212, Haifa, Israel
| | - Michal A Rahat
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Immunotherapy Lab, Carmel Medical Center, 3436212, Haifa, Israel
| | - Fahed Hakim
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel. .,Pediatric Pulmonary Unit, Rambam Health Care Campus, 3109601, Haifa, Israel. .,Cancer Research Center, EMMS Hospital, 16100, Nazareth, Israel.
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel. .,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel. .,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.
| |
Collapse
|
214
|
Kustrimovic N, Comi C, Magistrelli L, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Minafra B, Riboldazzi G, Sturchio A, Mauri M, Bono G, Marino F, Cosentino M. Parkinson's disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J Neuroinflammation 2018; 15:205. [PMID: 30001736 PMCID: PMC6044047 DOI: 10.1186/s12974-018-1248-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Parkinson’s disease (PD) affects an estimated 7 to 10 million people worldwide, and only symptomatic treatments are presently available to relieve the consequences of brain dopaminergic neurons loss. Neuronal degeneration in PD is the consequence of neuroinflammation in turn influenced by peripheral adaptive immunity, with CD4+ T lymphocytes playing a key role. CD4+ T cells may however acquire proinflammatory phenotypes, such as T helper (Th) 1 and Th17, as well as anti-inflammatory phenotypes, such as Th2 and the T regulatory (Treg) one, and to what extent the different CD4+ T cell subsets are imbalanced and their functions dysregulated in PD remains largely an unresolved issue. Methods We performed two cross-sectional studies in antiparkinson drug-treated and drug-naïve PD patients, and in age- and sex-matched healthy subjects. In the first one, we examined circulating Th1, Th2, Th17, and in the second one circulating Treg. Number and frequency of CD4+ T cell subsets in peripheral blood were assessed by flow cytometry and their functions were studied in ex vivo assays. In both studies, complete clinical assessment, blood count and lineage-specific transcription factors mRNA levels in CD4+ T cells were independently assessed and thereafter compared for their consistency. Results PD patients have reduced circulating CD4+ T lymphocytes, due to reduced Th2, Th17, and Treg. Naïve CD4+ T cells from peripheral blood of PD patients preferentially differentiate towards the Th1 lineage. Production of interferon-γ and tumor necrosis factor-α by CD4+ T cells from PD patients is increased and maintained in the presence of homologous Treg. This Th1-biased immune signature occurs in both drug-naïve patients and in patients on dopaminergic drugs, suggesting that current antiparkinson drugs do not affect peripheral adaptive immunity. Conclusions The complex phenotypic and functional profile of CD4+ T cell subsets in PD patients strengthen the evidence that peripheral adaptive immunity is involved in PD, and represents a target for the preclinical and clinical assessment of novel immunomodulating therapeutics. Electronic supplementary material The online version of this article (10.1186/s12974-018-1248-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Emanuela Rasini
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Massimiliano Legnaro
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Raffaella Bombelli
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Iva Aleksic
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Fabio Blandini
- Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Brigida Minafra
- Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Giulio Riboldazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andrea Sturchio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Mauri
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giorgio Bono
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy.
| |
Collapse
|
215
|
Crucian BE, Choukèr A, Simpson RJ, Mehta S, Marshall G, Smith SM, Zwart SR, Heer M, Ponomarev S, Whitmire A, Frippiat JP, Douglas GL, Lorenzi H, Buchheim JI, Makedonas G, Ginsburg GS, Ott CM, Pierson DL, Krieger SS, Baecker N, Sams C. Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Front Immunol 2018; 9:1437. [PMID: 30018614 PMCID: PMC6038331 DOI: 10.3389/fimmu.2018.01437] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have established that dysregulation of the human immune system and the reactivation of latent herpesviruses persists for the duration of a 6-month orbital spaceflight. It appears certain aspects of adaptive immunity are dysregulated during flight, yet some aspects of innate immunity are heightened. Interaction between adaptive and innate immunity also seems to be altered. Some crews experience persistent hypersensitivity reactions during flight. This phenomenon may, in synergy with extended duration and galactic radiation exposure, increase specific crew clinical risks during deep space exploration missions. The clinical challenge is based upon both the frequency of these phenomena in multiple crewmembers during low earth orbit missions and the inability to predict which specific individual crewmembers will experience these changes. Thus, a general countermeasure approach that offers the broadest possible coverage is needed. The vehicles, architecture, and mission profiles to enable such voyages are now under development. These include deployment and use of a cis-Lunar station (mid 2020s) with possible Moon surface operations, to be followed by multiple Mars flyby missions, and eventual human Mars surface exploration. Current ISS studies will continue to characterize physiological dysregulation associated with prolonged orbital spaceflight. However, sufficient information exists to begin consideration of both the need for, and nature of, specific immune countermeasures to ensure astronaut health. This article will review relevant in-place operational countermeasures onboard ISS and discuss a myriad of potential immune countermeasures for exploration missions. Discussion points include nutritional supplementation and functional foods, exercise and immunity, pharmacological options, the relationship between bone and immune countermeasures, and vaccination to mitigate herpes (and possibly other) virus risks. As the immune system has sentinel connectivity within every other physiological system, translational effects must be considered for all potential immune countermeasures. Finally, we shall discuss immune countermeasures in the context of their individualized implementation or precision medicine, based on crewmember specific immunological biases.
Collapse
Affiliation(s)
- Brian E. Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Alexander Choukèr
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Richard J. Simpson
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | | | - Gailen Marshall
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Scott M. Smith
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Sara R. Zwart
- University of Texas Medical Branch, Galveston, TX, United States
| | - Martina Heer
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | | | | | - Jean P. Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Nancy, France
| | - Grace L. Douglas
- Human Systems Engineering and Development Division, NASA Johnson Space Center, Houston, TX, United States
| | | | - Judith-Irina Buchheim
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | | | - Geoffrey S. Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Durham, NC, United States
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Duane L. Pierson
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | | | - Natalie Baecker
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | - Clarence Sams
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| |
Collapse
|
216
|
Peng WT, Sun WY, Li XR, Sun JC, Du JJ, Wei W. Emerging Roles of G Protein-Coupled Receptors in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19051366. [PMID: 29734668 PMCID: PMC5983678 DOI: 10.3390/ijms19051366] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Among a great variety of cell surface receptors, the largest superfamily is G protein-coupled receptors (GPCRs), also known as seven-transmembrane domain receptors. GPCRs can modulate diverse signal-transduction pathways through G protein-dependent or independent pathways which involve β-arrestins, G protein receptor kinases (GRKs), ion channels, or Src kinases under physiological and pathological conditions. Recent studies have revealed the crucial role of GPCRs in the tumorigenesis and the development of cancer metastasis. We will sum up the functions of GPCRs—particularly those coupled to chemokines, prostaglandin, lysophosphatidic acid, endothelin, catecholamine, and angiotensin—in the proliferation, invasion, metastasis, and angiogenesis of hepatoma cells and the development of hepatocellular carcinoma (HCC) in this review. We also highlight the potential avenues of GPCR-based therapeutics for HCC.
Collapse
Affiliation(s)
- Wen-Ting Peng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Xin-Ran Li
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Jia-Chang Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Jia-Jia Du
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
217
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
218
|
Marino F, Scanzano A, Pulze L, Pinoli M, Rasini E, Luini A, Bombelli R, Legnaro M, de Eguileor M, Cosentino M. β 2 -Adrenoceptors inhibit neutrophil extracellular traps in human polymorphonuclear leukocytes. J Leukoc Biol 2018; 104:603-614. [PMID: 29668114 DOI: 10.1002/jlb.3a1017-398rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
This study tests the hypothesis that in isolated human polymorphonuclear leukocytes (PMN) adrenergic ligands can affect neutrophil extracellular trap (NET) formation. We have previously shown that, in PMN, adrenaline (A), through the activation of adrenergic receptors (AR), reduces stimulus-dependent cell activation; we have, therefore, planned to investigate if AR are involved in NET production. PMN were obtained from venous blood of healthy subject. The ability of adrenergic ligands to affect reactive oxygen species (ROS) production, NET production, and cell migration was investigated in cells cultured under resting conditions or after activation with N-formyl-methionyl-leucyl-phenylalanine (fMLP), LPS, or IL-8. Stimuli-induced NET production measured as ROS, microscopic evaluation, and elastase production was reverted by A and this effect was blocked by the selective β2 -AR antagonist ICI-118,551. The stimulus-induced ROS generation and migration was prevented by A and by isoprenaline (ISO), and these effects were counteracted only by ICI-118,551 and not by the other two selective ligands for the β1 and β3 -AR. Finally, the presence of the β-ARs on PMN was confirmed, by means of microscopy and flow cytometry. The data of the present study suggest that adrenergic compounds, through the interaction of mainly β2 -AR, are able to affect neutrophil functions. These data are suggestive of a possible therapeutic role of β2 -AR ligands (in addition to their classical use), promoting the possible therapeutic relevance of adrenergic system in the modulation of innate immunity proposing their possible use as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Franca Marino
- Center of Research in Medical Pharmacology, Varese, Italy
| | | | - Laura Pulze
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Monica Pinoli
- Center of Research in Medical Pharmacology, Varese, Italy
| | | | | | | | | | - Magda de Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | |
Collapse
|
219
|
Le Ferrec E, Øvrevik J. G-protein coupled receptors (GPCR) and environmental exposure. Consequences for cell metabolism using the β-adrenoceptors as example. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
220
|
Abstract
SIGNIFICANCE Social and demographic changes have led to an increased prevalence of loneliness and social isolation in modern society. Recent Advances: Population-based studies have demonstrated that both objective social isolation and the perception of social isolation (loneliness) are correlated with a higher risk of mortality and that both are clearly risk factors for cardiovascular disease (CVD). Lonely individuals have increased peripheral vascular resistance and elevated blood pressure. Socially isolated animals develop more atherosclerosis than those housed in groups. CRITICAL ISSUES Molecular mechanisms responsible for the increased cardiovascular risk are poorly understood. In recent reports, loneliness and social stress were associated with activation of the hypothalamic-pituitary-adrenocortical axis and the sympathetic nervous system. Repeated and chronic social stress leads to glucocorticoid resistance, enhanced myelopoiesis, upregulated proinflammatory gene expression, and oxidative stress. However, the causal role of these mechanisms in the development of loneliness-associated CVD remains unclear. FUTURE DIRECTIONS Elucidation of the molecular mechanisms of how CVD is induced by loneliness and social isolation requires additional studies. Understanding of the pathomechanisms is essential for the development of therapeutic strategies to prevent the detrimental effects of social stress on health. Antioxid. Redox Signal. 28, 837-851.
Collapse
Affiliation(s)
- Ning Xia
- 1 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Huige Li
- 1 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany .,2 Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center , Mainz, Germany .,3 German Center for Cardiovascular Research (DZHK) , Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
221
|
Premature aging in behavior and immune functions in tyrosine hydroxylase haploinsufficient female mice. A longitudinal study. Brain Behav Immun 2018; 69:440-455. [PMID: 29341892 DOI: 10.1016/j.bbi.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 01/03/2023] Open
Abstract
Aging is accompanied by impairment in the nervous, immune, and endocrine systems as well as in neuroimmunoendocrine communication. In this context, there is an age-related alteration of the physiological response to acute stress, which is modulated by catecholamine (CA), final products of the sympathetic-adreno-medullary axis. The involvement of CA in essential functions of the nervous system is consistent with the neuropsychological deficits found in mice with haploinsufficiency (hemizygous; HZ) of tyrosine hydroxylase (TH) enzyme (TH-HZ). However, other possible alterations in regulatory systems have not been studied in these animals. The aim of the present work was to analyze whether adult TH-HZ female mice presented the impairment of behavioral traits and immunological responses that occurs with aging and whether they had affected their mean lifespan. ICR-CD1 female TH-HZ and wild type (WT) mice were used in a longitudinal study. Behavioral tests were performed on adult and old mice in order to evaluate their sensorimotor abilities and exploratory capacity, as well as anxiety-like behaviors. At the ages of 2 ± 1, 4 ± 1, 9 ± 1, 13 ± 1 and 20 ± 1 months, peritoneal leukocytes were extracted and several immune functions were assessed (phagocytic capacity, Natural Killer (NK) cytotoxicity, and lymphoproliferative response to lipopolysaccharide (LPS) and concanavalin A (ConA)). In addition, several oxidative stress parameters (catalase, glutathione reductase and glutathione peroxidase activities, and reduced glutathione (GSH) concentrations as antioxidant compounds as well as xanthine oxidase activity, oxidized glutathione (GSSG) concentrations, and GSSG/GSH ratio as oxidants) were analyzed. As inflammatory stress parameters TNF-alpha and IL-10 concentrations, and TNF-alpha/IL-10 ratios as inflammatory/anti-inflammatory markers, were measured. Animals were maintained in standard conditions until their natural death. The results indicate that adult TH-HZ mice presented worse sensorimotor abilities and exploratory capacity than their WT littermates as well as greater anxiety-like behaviors. With regards to the immune system, adult TH-HZ animals exhibited lower values of phagocytic capacity, NK cytotoxicity, and lymphoproliferative response to LPS and ConA than WT mice. Moreover, immune cells of TH-HZ mice showed higher oxidative and inflammatory stress than those of WT animals. Although these differences between TH-HZ and WT, in general, decreased with aging, this premature immunosenescence and impairment of behavior of TH-HZ mice was accompanied by a shorter mean lifespan in comparison to WT counterparts. In conclusion, haploinsufficiency of th gene in female mice appears to provoke premature aging of the regulatory systems affecting mean lifespan.
Collapse
|
222
|
De Miguel C, Obi IE, Ho DH, Loria AS, Pollock JS. Early life stress induces immune priming in kidneys of adult male rats. Am J Physiol Renal Physiol 2018; 314:F343-F355. [PMID: 28971994 PMCID: PMC5899229 DOI: 10.1152/ajprenal.00590.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Early life stress (ELS) in humans is associated with elevated proinflammatory markers. We hypothesized that ELS induces activation of the immune response in a rat model of ELS, maternal separation (MatSep), in adulthood. MatSep involves separating pups from the dam from postnatal day 2 to postnatal day 14 for 3 h/day. Control rats are nonseparated littermates. We determined circulating and renal immune cell numbers, renal immune cell activation markers, renal cytokine levels, and the renal inflammatory gene expression response to low-dose lipopolysaccharide (LPS) in male MatSep and control rats. We observed that MatSep did not change the percentage of gated events for circulating CD3+, CD4+, CD8+, and CD4+/Foxp3+ cells or absolute numbers of mononuclear and T cells in the circulation and kidneys; however, MatSep led to an increase in activation of renal neutrophils as well as CD44+ cells. Renal toll-like receptor 4 (TLR4) and interleukin 1 beta (IL-1β) was significantly increased in MatSep rats, specifically in the outer and inner medulla and distal nephron, respectively. Evaluation of renal inflammatory genes showed that in response to a low-dose LPS challenge (2 mg/kg iv) a total of 20 genes were significantly altered in kidneys from MatSep rats (17 genes were upregulated and 3 were downregulated), as opposed to no significant differences in gene expression in control vs. control + LPS groups. Taken together, these findings indicate that MatSep induces priming of the immune response in the kidney.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ijeoma E Obi
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Dao H Ho
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Medicine, Augusta University , Augusta, Georgia
| |
Collapse
|
223
|
Jean Wrobel L, Bod L, Lengagne R, Kato M, Prévost-Blondel A, Le Gal FA. Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget 2018; 7:77825-77837. [PMID: 27788481 PMCID: PMC5363624 DOI: 10.18632/oncotarget.12833] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
In a previous study on a xenograft model of melanoma, we showed that the beta-adrenergic receptor antagonist propranolol inhibits melanoma development by modulating angiogenesis, proliferation and cell survival. Stress hormones can influence tumor development in different ways and norepinephrine was shown to downregulate antitumor immune responses by favoring the accumulation of immunosuppressive cells, impairing the function of lymphocytes. We assessed the effect of propranolol on antitumor immune response in the MT/Ret mouse model of melanoma. Propranolol treatment delayed primary tumor growth and metastases development in MT/Ret mice. Consistent with our previous observations in human melanoma xenografts, propranolol induces a decrease in cell proliferation and vessel density in the primary tumors and in metastases. In this immunocompetent model, propranolol significantly reduced the infiltration of myeloid cells, particularly neutrophils, in the primary tumor. Inversely, cytotoxic tumor infiltrating lymphocytes were more frequent in the tumor stroma of treated mice. In a consistent manner, we observed the same shift in the proportions of infiltrating leukocytes in the metastases of treated mice. Our results suggest that propranolol, by decreasing the infiltration of immunosuppressive myeloid cells in the tumor microenvironment, restores a better control of the tumor by cytotoxic cells.
Collapse
Affiliation(s)
- Ludovic Jean Wrobel
- Hôpitaux Universitaires de Genève, Service de Dermatologie, Genève, Switzerland
| | - Lloyd Bod
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Renée Lengagne
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Armelle Prévost-Blondel
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | | |
Collapse
|
224
|
Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis 2018; 109:226-248. [PMID: 28011307 PMCID: PMC5972535 DOI: 10.1016/j.nbd.2016.12.013] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Olfactory deficits are present in numerous neurodegenerative disorders and are accompanied by pathology in related brain regions. In several of these disorders, olfactory disturbances appear early and are considered as prodromal symptoms of the disease. In addition, pathological protein aggregates affect olfactory regions prior to other regions, suggesting that the olfactory system might be particularly vulnerable to neurodegenerative diseases. Exposed to the external environment, the olfactory epithelium and olfactory bulb allow pathogen and toxin penetration into the brain, a process that has been proposed to play a role in neurodegenerative diseases. Determining whether the olfactory bulb could be a starting point of pathology and of pathology spread is crucial to understanding how neurodegenerative diseases evolve. We argue that pathological changes following environmental insults contribute to the initiation of protein aggregation in the olfactory bulb, which then triggers the spread of the pathology within the brain by a templating mechanism in a prion-like manner. We review the evidence for the early involvement of olfactory structures in neurodegenerative diseases and the relationship between neuropathology and olfactory function. We discuss the vulnerability and putative underlying mechanisms by which pathology could be initiated in the olfactory bulb, from the entry of pathogens (promoted by increased permeability of the olfactory epithelium with aging or inflammation) to the sensitivity of the olfactory system to oxidative stress and inflammation. Finally, we review changes in protein expression and neural excitability triggered by pathogenic proteins that can promote pathogenesis in the olfactory bulb and beyond.
Collapse
Affiliation(s)
- Nolwen L Rey
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Daniel W Wesson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
225
|
Zabrodskii PF, Gromov MS, Maslyakov VV. Role of β2-Adrenoreceptors in Adrenergic Anti-Inflammatory Mechanism in Sepsis. Bull Exp Biol Med 2017; 163:710-713. [PMID: 29063336 DOI: 10.1007/s10517-017-3886-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 12/30/2022]
Abstract
Experiments on random-bred albino mice showed that of β2-adrenoreceptor agonist hexaprenaline sulfate significantly reduced mortality of mice from experimental sepsis (intraperitoneal administration of E. coli) in 4 and 24 h after modeling by reducing blood levels of proinflammatory cytokines TNFα, IL-1β, and IL-6. The antagonist of β2AR ICI-118,551 eliminated this effect.
Collapse
Affiliation(s)
| | - M S Gromov
- REAVIZ Saratov Medical University, Saratov, Russia
| | | |
Collapse
|
226
|
Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat Rev Rheumatol 2017; 13:648-656. [PMID: 28855694 DOI: 10.1038/nrrheum.2017.134] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.
Collapse
|
227
|
Intermediate CD14++CD16+ monocytes decline after transcatheter aortic valve replacement and correlate with functional capacity and left ventricular systolic function. PLoS One 2017; 12:e0183670. [PMID: 28829829 PMCID: PMC5568735 DOI: 10.1371/journal.pone.0183670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
Background Transcatheter aortic valve replacement (TAVR) is the method of choice for patients with severe aortic valve stenosis, who are ineligible or at high risk for surgery. Though TAVR leads to a significant reduction in mortality, a notable amount of patients are re-hospitalized early after TAVR. Parameters or biomarkers predicting outcome are therefore needed to identify patients who benefit most. Specific monocyte subsets have been associated with cardiovascular diseases and were shown to possess prognostic value. Methods Peripheral blood was drawn before and after transfemoral TAVR with the self-expanding CoreValve, Boston Lotus or the balloon-expanding Edwards Sapien prosthesis. Classical (CD14++CD16−), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) monocyte subsets were determined by flow cytometry. Transthoracic echocardiography was performed before, early after as well as 3 months after the TAVR procedure. Results No significant differences in the absolute monocyte counts were found after TAVR. A significant decline in the intermediate monocyte population was though observed early after TAVR (pre 4.01±0.38%, post 2.803±0.34%, p≤0.05). Creatinine levels stayed stable after TAVR procedure and intermediate monocytes were associated with worse renal function. Monocyte decline was not related to changes in CRP-, noradrenaline, cortisol or aldosterone-levels. The amount of intermediate monocytes correlated with worse cardiac function and predicted the possibility to reach an improvement in NYHA functional class at 3 months after TAVR. Conclusions A significant decline of intermediate monocytes occurs shortly after TAVR. High levels of intermediate monocytes were associated with worse cardiac function and predicted poor functional capacity, hinting at a possible prognostic value.
Collapse
|
228
|
Zangeneh FZ, Naghizadeh MM, Masoumi M. Polycystic ovary syndrome and circulating inflammatory markers. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.6.375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
229
|
Pinoli M, Marino F, Cosentino M. Dopaminergic Regulation of Innate Immunity: a Review. J Neuroimmune Pharmacol 2017; 12:602-623. [PMID: 28578466 DOI: 10.1007/s11481-017-9749-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) is a neurotransmitter in the central nervous system as well as in peripheral tissues. Emerging evidence however points to DA also as a key transmitter between the nervous system and the immune system as well as a mediator produced and released by immune cells themselves. Dopaminergic pathways have received so far extensive attention in the adaptive branch of the immune system, where they play a role in health and disease such as multiple sclerosis, rheumatoid arthritis, cancer, and Parkinson's disease. Comparatively little is known about DA and the innate immune response, although DA may affect innate immune system cells such as dendritic cells, macrophages, microglia, and neutrophils. The present review aims at providing a complete and exhaustive summary of currently available evidence about DA and innate immunity, and to become a reference for anyone potentially interested in the fields of immunology, neurosciences and pharmacology. A wide array of dopaminergic drugs is used in therapeutics for non-immune indications, such as Parkinson's disease, hyperprolactinemia, shock, hypertension, with a usually favorable therapeutic index, and they might be relatively easily repurposed for immune-mediated disease, thus leading to innovative treatments at low price, with benefit for patients as well as for the healthcare systems.
Collapse
Affiliation(s)
- Monica Pinoli
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy.
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| |
Collapse
|
230
|
Zafari Zangeneh F, Naghizadeh MM, Masoumi M. Polycystic ovary syndrome and circulating inflammatory markers. Int J Reprod Biomed 2017; 15:375-382. [PMID: 29177240 PMCID: PMC5605859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human and experimental studies suggest that the sympathetic regulatory drive in the ovary may be unbalanced (hyperactivity) in polycystic ovary syndrome (PCOS). Dysfunctional secretion of interleukin (IL) -1 (α & β) or related cytokines may thus be related to abnormal ovulation and luteinization. OBJECTIVE The aim of this study was the evaluation of cytokines' pattern in PCOS women and discussion about the explanation of cross-talk between two super systems: sympathetic and immune systems and explanation sympatho-excitation and relationship with interleukins. MATERIALS AND METHODS In this study, 171 PCOS women aged between 20-40 years were studied the. Their body mass index was <28. The patients were divided into two groups: study group (n=85, PCOS women) and control group (n=86 normal women). The blood sample was obtained on the 3rd day of menstruation cycle. IL-17, IL-1α, IL-1β, and TNF-α concentrations were determined in both groups. RESULTS The median serum level of IL-1α in the PCOS group was higher than the control group (293.3 and 8.0, respectively, p<0.001). Also, the median serum level of IL-1β was higher than the control group (5.9 and 3.1 respectively). But the median serum of level IL-17 in women with PCOS was significantly lower than the control group (p<0.001). CONCLUSION Our results confirm that PCOS is a low-level chronic inflammation.
Collapse
Affiliation(s)
| | | | - Masoumeh Masoumi
- Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
231
|
Weiser C, Schwameis M, Sterz F, Herkner H, Lang IM, Schwarzinger I, Spiel AO. Mortality in patients resuscitated from out-of-hospital cardiac arrest based on automated blood cell count and neutrophil lymphocyte ratio at admission. Resuscitation 2017; 116:49-55. [PMID: 28476480 DOI: 10.1016/j.resuscitation.2017.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/05/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The neutrophil lymphocyte ratio(NLR) is a marker of systemic inflammation. We hypothesized that admission NLR is related to mortality and that epinephrine application during resuscitation influences NLR in patients after successful resuscitation from out of hospital cardiac arrest (OHCA). METHODS This retrospective cohort study is based on a registry including all OHCA patients who had a presumed cardiac cause of cardiac arrest and achieved sustained ROSC prior to admission between 2005 and 2014. Patients were categorized into three groups according to the calculated NLR at admission (NLR <6, ≥6, and 'abnormal differential' indicating no differential blood cell count on patients report due to exceedance of machine predefined parameter limits). The primary outcome measure was long-term mortality after OHCA. Cox proportional hazards models were used for multivariable analysis. RESULTS Out of 2273 OHCA patients during the study period a total of 1188(52%) patients were eligible for analysis, of those 274(23%) were female and mean age was 64 (25-75 IQR:52-72). Compared to a NLR<6 (n=442), adjusted hazard ratio for long-term mortality was significantly higher in patients with a NLR≥6 (n=447; 1.52 (95%CI 1.03-2.24)) and in patients with abnormal differential (n=299; 3.16 (95%CI 2.02-4.97)). Epinephrine application during resuscitation did not explain the effect of NLR on mortality. CONCLUSION In this large retrospective cohort study of altogether >1000 OHCA patients, hospital admission NLR<6 compared to abnormal differential or NLR≥6 was associated with mortality independently from epinephrine application.
Collapse
Affiliation(s)
- Christoph Weiser
- Departments of Emergency Medicine, Medical University of Vienna, Austria.
| | - Michael Schwameis
- Departments of Emergency Medicine, Medical University of Vienna, Austria
| | - Fritz Sterz
- Departments of Emergency Medicine, Medical University of Vienna, Austria
| | - Harald Herkner
- Departments of Emergency Medicine, Medical University of Vienna, Austria
| | - Irene M Lang
- Departments of Cardiology, Medical University of Vienna, Austria
| | - Ilse Schwarzinger
- Departments of Laboratory Medicine, Medical University of Vienna, Austria
| | - Alexander O Spiel
- Departments of Emergency Medicine, Medical University of Vienna, Austria
| |
Collapse
|
232
|
Skendros P, Chrysanthopoulou A, Rousset F, Kambas K, Arampatzioglou A, Mitsios A, Bocly V, Konstantinidis T, Pellet P, Angelidou I, Apostolidou E, Ritis D, Tsironidou V, Galtsidis S, Papagoras C, Stakos D, Kouklakis G, Dalla V, Koffa M, Mitroulis I, Theodorou I, Ritis K. Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1β-mediated familial Mediterranean fever attack through autophagy-driven neutrophil extracellular traps. J Allergy Clin Immunol 2017; 140:1378-1387.e13. [PMID: 28342915 DOI: 10.1016/j.jaci.2017.02.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is an IL-1β-dependent autoinflammatory disease caused by mutations of Mediterranean fever (MEFV) encoding pyrin and characterized by inflammatory attacks induced by physical or psychological stress. OBJECTIVE We investigated the underlying mechanism that links stress-induced inflammatory attacks with neutrophil activation and release of IL-1β-bearing neutrophil extracellular traps (NETs) in patients with FMF. METHODS RNA sequencing was performed in peripheral neutrophils from 3 patients with FMF isolated both during attacks and remission, 8 patients in remission, and 8 healthy subjects. NET formation and proteins were analyzed by using confocal immunofluorescence microscopy, immunoblotting, myeloperoxidase-DNA complex ELISA, and flow cytometry. Samples from patients with Still's disease and bacterial infections were used also. RESULTS The stress-related protein regulated in development and DNA damage responses 1 (REDD1) is significantly overexpressed during FMF attacks. Neutrophils from patients with FMF during remission are resistant to autophagy-mediated NET release, which can be overcome through REDD1 induction. Stress-related mediators (eg, epinephrine) decrease this threshold, leading to autophagy-driven NET release, whereas the synchronous inflammatory environment of FMF attack leads to intracellular production of IL-1β and its release through NETs. REDD1 in autolysosomes colocalizes with pyrin and nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing 3. Mutated pyrin prohibits this colocalization, leading to higher IL-1β levels on NETs. CONCLUSIONS This study provides a link between stress and initiation of inflammatory attacks in patients with FMF. REDD1 emerges as a regulator of neutrophil function upstream to pyrin, is involved in NET release and regulation of IL-1β, and might constitute an important piece in the IL-1β-mediated inflammation puzzle.
Collapse
Affiliation(s)
- Panagiotis Skendros
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - François Rousset
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - Konstantinos Kambas
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros Mitsios
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Veronique Bocly
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | | | - Philippe Pellet
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - Iliana Angelidou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Apostolidou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Dimitrios Ritis
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sotiris Galtsidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Papagoras
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Dimitrios Stakos
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Kouklakis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Vasiliki Dalla
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Ioannis Theodorou
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece.
| |
Collapse
|
233
|
Pérez-Pérez A, Vilariño-García T, Fernández-Riejos P, Martín-González J, Segura-Egea JJ, Sánchez-Margalet V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev 2017; 35:71-84. [PMID: 28285098 DOI: 10.1016/j.cytogfr.2017.03.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
Abstract
Leptin is an adipocyte-derived hormone not only with an important role in the central control of energy metabolism, but also with many pleiotropic effects in different physiological systems. One of these peripheral functions of leptin is a regulatory role in the interplay between energy metabolism and the immune system, being a cornerstone of the new field of immunometabolism. Leptin receptor is expressed throughout the immune system and the regulatory effects of leptin include cells from both the innate and adaptive immune system. Leptin is one of the adipokines responsible for the inflammatory state found in obesity that predisposes not only to type 2 diabetes, metabolic syndrome and cardiovascular disease, but also to autoimmune and allergic diseases. Leptin is an important mediator of the immunosuppressive state in undernutrition status. Placenta is the second source of leptin and it may play a role in the immunomodulation during pregnancy. Finally, recent work has pointed to the participation of leptin and leptin receptor in the pathophysiology of inflammation in oral biology. Therefore, leptin and leptin receptor should be considered for investigation as a marker of inflammation and immune activation in the frontier of innate-adaptive system, and as possible targets for intervention in the immunometabolic mediated pathophysiology.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain
| | - Patricia Fernández-Riejos
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain
| | - Jenifer Martín-González
- Department of Stomatology (Endodontics Section), School of Dentistry, University of Seville, Seville, Spain
| | - Juan José Segura-Egea
- Department of Stomatology (Endodontics Section), School of Dentistry, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain.
| |
Collapse
|
234
|
Coelho M, Soares-Silva C, Brandão D, Marino F, Cosentino M, Ribeiro L. β-Adrenergic modulation of cancer cell proliferation: available evidence and clinical perspectives. J Cancer Res Clin Oncol 2017; 143:275-291. [PMID: 27709364 DOI: 10.1007/s00432-016-2278-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE In this review, we aimed to present and discuss the available preclinical and epidemiological evidences regarding the modulation of cancer cell proliferation by β-adrenoceptors (β-AR), with a specific focus on the putative effects of β-blockers according to their pharmacological properties. METHODS A comprehensive review of the published literature was conducted, and the evidences concerning the involvement of β-AR in cancer as well as the possible role of β-blockers were selected and discussed. RESULTS The majority of reviewed studies show that: (1) All the cancer types express both β1- and β2-AR, with the exception of neuroblastoma only seeming to express β2-AR; (2) adrenergic agonists are able to increase proliferation of several types of cancers; (3) the proliferative effect seems to be mediated by both β1- and β2-AR; (4) binding to β-AR results in a cAMP transient flux which activates two major downstream effector systems: protein kinase A and EPAC and (5) β-blockers might be putative adjuvants for cancer treatment. CONCLUSIONS Overall, the reviewed studies show strong evidences that β-AR activation, through several intracellular mechanisms, modulate tumor cell proliferation suggesting β-blockers can be a feasible therapeutic approach to antagonize β-adrenergic response or have a protective effect per se. This review highlight the need for intensifying the research not only on the molecular mechanisms underlying the β-adrenergic influence in cancer, but also on the implications of biased agonism of β-blockers as potential antitumor agents.
Collapse
Affiliation(s)
- Marisa Coelho
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Cátia Soares-Silva
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Daniela Brandão
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Medical Education and Simulation, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Laura Ribeiro
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Department of Medical Education and Simulation, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
235
|
Mackos AR, Maltz R, Bailey MT. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation. Horm Behav 2017; 88:70-78. [PMID: 27760302 PMCID: PMC5303636 DOI: 10.1016/j.yhbeh.2016.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023]
Abstract
Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies.
Collapse
Affiliation(s)
- Amy R Mackos
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, United States.
| | - Ross Maltz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, United States; Department of Gastroenterology, Nationwide Children's Hospital, Columbus, OH 43205, United States
| | - Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| |
Collapse
|
236
|
Walters ET. How is chronic pain related to sympathetic dysfunction and autonomic dysreflexia following spinal cord injury? Auton Neurosci 2017; 209:79-89. [PMID: 28161248 DOI: 10.1016/j.autneu.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/29/2022]
Abstract
Autonomic dysreflexia (AD) and neuropathic pain occur after severe injury to higher levels of the spinal cord. Mechanisms underlying these problems have rarely been integrated in proposed models of spinal cord injury (SCI). Several parallels suggest significant overlap of these mechanisms, although the relationships between sympathetic function (dysregulated in AD) and nociceptive function (dysregulated in neuropathic pain) are complex. One general mechanism likely to be shared is central sensitization - enhanced responsiveness and synaptic reorganization of spinal circuits that mediate sympathetic reflexes or that process and relay pain-related information to the brain. Another is enhanced sensory input to spinal circuits caused by extensive alterations in primary sensory neurons. Both AD and SCI-induced neuropathic pain are associated with spinal sprouting of peptidergic nociceptors that might increase synaptic input to the circuits involved in AD and SCI pain. In addition, numerous nociceptors become hyperexcitable, hypersensitive to chemicals associated with injury and inflammation, and spontaneously active, greatly amplifying sensory input to sensitized spinal circuits. As discussed with the aid of a preliminary functional model, these effects are likely to have mutually reinforcing relationships with each other, and with consequences of SCI-induced interruption of descending excitatory and inhibitory influences on spinal circuits, with SCI-induced inflammation in the spinal cord and in DRGs, and with activity in sympathetic fibers within DRGs that promotes local inflammation and spontaneous activity in sensory neurons. This model suggests that interventions selectively targeting hyperactivity in C-nociceptors might be useful for treating chronic pain and AD after high SCI.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
237
|
Leite F, Leite Â, Santos A, Lima M, Barbosa J, Cosentino M, Ribeiro L. Predictors of Subclinical Inflammatory Obesity: Plasma Levels of Leptin, Very Low-Density Lipoprotein Cholesterol and CD14 Expression of CD16+ Monocytes. Obes Facts 2017; 10:308-322. [PMID: 28738359 PMCID: PMC5644939 DOI: 10.1159/000464294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Predictors of subclinical inflammatory obesity (SIO) can be important tools for early therapeutic interventions in obesity-related comorbidities. Waist circumference (WC) and BMI have different SIO sensitivity. We aimed to i) identify SIO predictors and ii) investigate whether CD16+ monocytes are associated with BMI- (generally) or WC-defined (centrally) obesity. METHODS Anthropometric and metabolic/endocrine (namely catecholamines, adrenaline and noradrenaline) parameters were evaluated, and CD16+ monocytes were studied by flow cytometry in the peripheral blood from 63 blood donors, and compared and correlated to each other. Multiple linear regression analysis was performed to identify variables that best predict SIO. RESULTS CD16+ monocyte counts were similar in BMI and WC groups. CD16+ monocytes from centrally obese (CO) showed a more inflammatory pattern, as compared to non-CO subjects. WC was sensitive to lipidemia and, in CO subjects, lipidemia was associated with a more inflammatory phenotype of CD16+ monocytes. These differences were not noticed between BMI groups. Adrenaline was correlated with CD16+ monocyte expansion with a lower inflammatory pattern. Leptin, very low-density lipoprotein cholesterol (VLDL-C), and CD14 expression of CD16+ monocytes were found to be CO predictors. CONCLUSIONS WC-, but not BMI-defined obesity, was associated with a more inflammatory pattern of CD16+ monocytes, without monocyte expansion, suggesting that a monocyte maturation process rather than an independent arise of CD16+ monocytes occurs in CO. Thus, in a population with low cardiovascular risk, leptin, VLDL-C, and CD14 expression of CD16+ monocytes predict CO, constituting a putative tool for screening of SIO.
Collapse
Affiliation(s)
- Fernanda Leite
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Clinical Haematology, Centro Hospitalar do Porto, Porto, Portugal
- UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
- *Dr. Fernanda Leite, Department of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal,
| | - Ângela Leite
- Lusophone University of Oporto, Oporto, Portugal
| | - Ana Santos
- Department of Clinical Haematology, Centro Hospitalar do Porto, Porto, Portugal
- UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Margarida Lima
- Department of Clinical Haematology, Centro Hospitalar do Porto, Porto, Portugal
- UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Joselina Barbosa
- Department of Medical Education and Simulation, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Laura Ribeiro
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Medical Education and Simulation, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
238
|
Johnston S, Staines D, Klein A, Marshall-Gradisnik S. A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. BMC MEDICAL GENETICS 2016; 17:79. [PMID: 27835969 PMCID: PMC5105265 DOI: 10.1186/s12881-016-0342-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/28/2016] [Indexed: 11/12/2022]
Abstract
Background Chronic Fatigue Syndrome, also known as Myalgic Encephalomyelitis (CFS/ME) is a debilitating condition of unknown aetiology. It is characterized by a range of physiological effects including neurological, sensory and motor disturbances. This study examined candidate genes for the above clinical manifestations to identify single nucleotide polymorphism (SNP) alleles associated with CFS/ME compared with healthy controls. Methods DNA was extracted and whole genome genotyping was performed using the HumanOmniExpress BeadChip array. Gene families for transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors, and acetylcholinesterase were targeted. The frequency of each SNP and their association between CFS/ME and healthy controls was examined using Fisher’s exact test, and to adjust for multiple testing, False Detection Rate (FDR) and Bonferroni corrections were applied (p < 0.05). Results The study included 172 participants, consisting of 95 Fukuda defined CFS/ME patients (45.8 ± 8.9; 69 % female) and 77 healthy controls (42.3 ± 10.3; 63 % female). A total of 950 SNPs were included for analysis. 60 significant SNPs were associated with CFS/ME compared with healthy controls. After applying FDR and Bonferroni corrections, SNP rs2322333 in adrenergic receptor α1 (ADRA1A) was higher in CFS/ME compared with healthy controls (45.3 % vs. 23.4 %; p = 0.059). The genotype class that was homozygous minor (AA) was substantially lower in CFS/ME compared with healthy controls (4.2 % vs. 24.7 %). Conclusions This study reports for the first time the identification of ADRA1A and a possible association between CFS/ME and genotype classes. Further examination of the functional role of this class of adrenergic receptors may elucidate the cause of particular clinical manifestations observed in CFS/ME.
Collapse
Affiliation(s)
- Samantha Johnston
- School of Medical Science, Griffith University, Gold Coast, Australia. .,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, Gold Coast, QLD, 4222, Australia.
| | - Donald Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, Gold Coast, QLD, 4222, Australia
| | - Anne Klein
- School of Medical Science, Griffith University, Gold Coast, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, Gold Coast, QLD, 4222, Australia
| | - Sonya Marshall-Gradisnik
- School of Medical Science, Griffith University, Gold Coast, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, Gold Coast, QLD, 4222, Australia
| |
Collapse
|
239
|
Dopaminergic receptors and adrenoceptors in circulating lymphocytes as putative biomarkers for the early onset and progression of multiple sclerosis. J Neuroimmunol 2016; 298:82-9. [DOI: 10.1016/j.jneuroim.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022]
|
240
|
Claus M, Dychus N, Ebel M, Damaschke J, Maydych V, Wolf OT, Kleinsorge T, Watzl C. Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans. Arch Toxicol 2016; 90:2481-95. [DOI: 10.1007/s00204-016-1809-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
|
241
|
Well-being and immune response: a multi-system perspective. Curr Opin Pharmacol 2016; 29:34-41. [PMID: 27318753 DOI: 10.1016/j.coph.2016.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022]
Abstract
Whereas it is well-established that inflammation and other immune responses can change how we feel, most people are still surprised to hear that, conversely, well-being and its violations also affect our immune system. Here we show that those effects are highly adaptive and bear potential for both research and therapeutic applications. The studies discussed in this review demonstrate that immunity is tuned by ones emotions, personality, and social status as well as by other life style variables like sleep, nutrition, obesity, or exercise. We further provide a short excursion on the effects of stress and depression on immunity and discuss acute experimental endotoxemia as a model to study the effects of well-being on the innate immune response in humans.
Collapse
|
242
|
Inhibition of catecholamine degradation ameliorates while chemical sympathectomy aggravates the severity of acute Friend retrovirus infection in mice. Brain Behav Immun 2016; 54:252-259. [PMID: 26880342 DOI: 10.1016/j.bbi.2016.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/29/2016] [Accepted: 02/11/2016] [Indexed: 11/21/2022] Open
Abstract
Several lines of evidence indicate that the sympathetic nervous system (SNS) might be involved in the pathogenesis and progression of retroviral infections. However, experimental data are scarce and findings inconsistent. Here, we investigated the role of the SNS during acute infection with Friend virus (FV), a pathogenic murine retrovirus that causes polyclonal proliferation of erythroid precursor cells and splenomegaly in adult mice. Experimental animals were infected with FV complex, and viral load, spleen weight, and splenic noradrenaline (NA) concentration was analyzed until 25 days post infection. Results show that FV infection caused a massive but transient depletion in splenic NA during the acute phase of the disease. At the peak of the virus-induced splenomegaly, splenic NA concentration was reduced by about 90% compared to naïve uninfected mice. Concurrently, expression of the catecholamine degrading enzymes monoamine oxidase A (MAO-A) and catechol-O-methyltransferase (COMT) was significantly upregulated in immune cells of the spleen. Pharmacological inhibition of MAO-A and COMT by the selective inhibitors clorgyline and 3,5-dinitrocatechol, respectively, efficiently blocked NA degradation and significantly reduced viral load and virus-induced splenomegaly. In contrast, chemical sympathectomy prior to FV inoculation aggravated the acute infection and extended the duration of the disease. Together these findings demonstrate that catecholamine availability at the site of viral replication is an important factor affecting the course of retroviral infections.
Collapse
|
243
|
Abstract
Sepsis is a leading cause of death and long-term sequels worldwide. For more than a decade, the scientific community is providing physicians, patients and policy makers with regularly updated guidelines. There is some evidence that implementation of the Surviving Sepsis Campaign guidelines is associated with improved patients outcomes. Though there were major advances in the understanding of sepsis, the management of sepsis mainly relies on anti-infective treatments and restoration of cardiovascular and respiratory function according to quantitative protocolized care. Except some hormonal interventions such as insulin to maintain blood glucose levels of less than 180mg/dL and low doses of corticosteroids and vasopressin in highly selected patients, there is no adjunct therapy for the routine management of sepsis. Recent years have shown some interest in revolutionary concepts such as selective beta-1 receptor antagonists or interventions to boost the immune system. These provocative approaches yielded promising results in various experimental models of sepsis and in preliminary data in humans. The current narrative review summarized some of the numerous adjunct therapies that are currently being investigated in sepsis.
Collapse
Affiliation(s)
- Djillali Annane
- AP-HP, université de Versailles SQY, Inserm, U1173, laboratoire infection et inflammation, hôpital Raymond-Poincaré, service de réanimation, 104, boulevard Raymond-Poincaré, 92380 Garches, France.
| |
Collapse
|
244
|
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem 2016; 139 Suppl 2:154-178. [PMID: 26968403 DOI: 10.1111/jnc.13447] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Aside from its roles in as a classical neurotransmitter involved in regulation of behavior, noradrenaline (NA) has other functions in the CNS. This includes restricting the development of neuroinflammatory activation, providing neurotrophic support to neurons, and providing neuroprotection against oxidative stress. In recent years, it has become evident that disruption of physiological NA levels or signaling is a contributing factor to a variety of neurological diseases and conditions including Alzheimer's disease (AD) and Multiple Sclerosis. The basis for dysregulation in these diseases is, in many cases, due to damage occurring to noradrenergic neurons present in the locus coeruleus (LC), the major source of NA in the CNS. LC damage is present in AD, multiple sclerosis, and a large number of other diseases and conditions. Studies using animal models have shown that experimentally induced lesion of LC neurons exacerbates neuropathology while treatments to compensate for NA depletion, or to reduce LC neuronal damage, provide benefit. In this review, we will summarize the anti-inflammatory and neuroprotective actions of NA, summarize examples of how LC damage worsens disease, and discuss several approaches taken to treat or prevent reductions in NA levels and LC neuronal damage. Further understanding of these events will be of value for the development of treatments for AD, multiple sclerosis, and other diseases and conditions having a neuroinflammatory component. The classical neurotransmitter noradrenaline (NA) has critical roles in modulating behaviors including those involved in sleep, anxiety, and depression. However, NA can also elicit anti-inflammatory responses in glial cells, can increase neuronal viability by inducing neurotrophic factor expression, and can reduce neuronal damage due to oxidative stress by scavenging free radicals. NA is primarily produced by tyrosine hydroxylase (TH) expressing neurons in the locus coeruleus (LC), a relatively small brainstem nucleus near the IVth ventricle which sends projections throughout the brain and spinal cord. It has been known for close to 50 years that LC neurons are lost during normal aging, and that loss is exacerbated in neurological diseases including Parkinson's disease and Alzheimer's disease. LC neuronal damage and glial activation has now been documented in a variety of other neurological conditions and diseases, however, the causes of LC damage and cell loss remain largely unknown. A number of approaches have been developed to address the loss of NA and increased inflammation associated with LC damage, and several methods are being explored to directly minimize the extent of LC neuronal cell loss or function. In this review, we will summarize some of the consequences of LC loss, consider several factors that likely contribute to that loss, and discuss various ways that have been used to increase NA or to reduce LC damage. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA. .,Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - David Braun
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|