201
|
Gomes de Oliveira LI, Clementino JR, Salgaço MK, de Oliveira SPA, Dos Santos Lima M, Mesa V, de Souza EL, Vinderola CG, Magnani M, Sivieri K. Revealing the beneficial effects of a dairy infant formula on the gut microbiota of early childhood children with autistic spectrum disorder using static and SHIME® fermentation models. Food Funct 2023; 14:8964-8974. [PMID: 37724612 DOI: 10.1039/d3fo01156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
This study evaluated the impact of the Milnutri Profutura® (MNP) dairy infant formula on the gut microbiota of early childhood children (three to five years) with Autistic Spectrum Disorder (ASD) using static fermentation (time zero, 24, and 48 h) and the Simulator of the Human Intestinal Microbiol Ecosystem (SHIME®) (time zero, 72 h, and 7 days). The relative abundance of selected intestinal bacterial groups, pH values, organic acids, and sugars were verified at time zero, 24, and 48 h using flow cytometry and measurements. In addition, the diversity and changes in the gut microbiota, and the amounts of acetic, butyric, and propionic acids and ammonium ions (NH4+) in fermentation using the SHIME® were measured at time zero, 72 h, and 7 days. MNP increased Lactobacillus/Enterococcus and Bifidobacterium populations and decreased Bacteroides/Prevotella, Clostridium histolyticum and Eubacterium rectale/Clostridium coccoides populations (p < 0.05) at 24 and 48 h of static fermentation, showing a positive prebiotic activity score (65.18 ± 0.07). The pH, fructose and glucose decreased, while lactic, butyric, and propionic acids increased (p < 0.05) at 48 h of static fermentation. MNP increased (p < 0.05) the Firmicutes phylum during the fermentation in SHIME®. MNP decreased the diversity at 72 h of fermentation, mostly by the increase (p < 0.05) in the Lactobacillus genus. Microbial groups considered harmful such as Lachnospiraceae, Negativicoccus, and Lachnoclostridium were inhibited after administration with MNP. Propionic and butyric acids increased at 72 h and NH4+ decreased (p < 0.05) at the end of fermentation with MNP. The results indicate MNP as an infant formula which may benefit the gut microbiota of children with ASD.
Collapse
Affiliation(s)
- Louise Iara Gomes de Oliveira
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Jéssika Rodrigues Clementino
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Mateus Kawata Salgaço
- Department of Food and Nutrition, Laboratory of Food Microbiology, School of Pharmaceutical Sciences, São Paulo State University, Brazil
| | - Sônia Paula Alexandrino de Oliveira
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Campus Petrolina, Brazil
| | - Victoria Mesa
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Evandro Leite de Souza
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Celso Gabriel Vinderola
- Department of Biotechnology and Food Technology, Faculty of Chemical Engineering, Universidad Nacional del Litoral
| | - Marciane Magnani
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Katia Sivieri
- Department of Food and Nutrition, Laboratory of Food Microbiology, School of Pharmaceutical Sciences, São Paulo State University, Brazil
| |
Collapse
|
202
|
Antony MA, Patel S, Verma V, Kant R. The Role of Gut Microbiome Supplementation in COVID-19 Management. Cureus 2023; 15:e46960. [PMID: 38021562 PMCID: PMC10640765 DOI: 10.7759/cureus.46960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
COVID-19, which is caused by the RNA virus, SARS-CoV-2, mainly affects the respiratory system and has a varied clinical presentation. However, several studies have shown that COVID-19 can also affect the gastrointestinal (GI) system. Patients can experience various GI symptoms, such as vomiting and diarrhea, and the virus has been detected in the stool samples of patients hospitalized with COVID-19. There have also been rare reports of COVID-19 presenting with isolated GI symptoms and lack of respiratory symptoms, and the virus has also been detected for prolonged periods in the fecal samples of COVID-19 patients. Major alterations in the gut microbiome in the form of depletion of beneficial organisms and an abundance of pathogenic organisms have been reported in the fecal samples of hospitalized COVID-19 patients. Although the US FDA has approved several drugs to manage COVID-19, their efficacy remains modest. So, there is a constant ongoing effort to investigate novel treatment options for COVID-19. Health supplements like probiotics, prebiotics, postbiotics, and synbiotics have been popularly known for their various health benefits. In this review, we have summarized the current literature, which shows the potential benefit of these health supplements to mitigate and/or prevent the clinical presentation of COVID-19.
Collapse
Affiliation(s)
- Mc Anto Antony
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, USA
| | - Siddharth Patel
- Department of Internal Medicine, Decatur Morgan Hospital, Decatur, USA
| | - Vipin Verma
- Department of Internal Medicine, Medical University of South Carolina, Anderson, USA
| | - Ravi Kant
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, USA
| |
Collapse
|
203
|
Mohd Fuad AS, Amran NA, Nasruddin NS, Burhanudin NA, Dashper S, Arzmi MH. The Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Oral Cancer Management. Probiotics Antimicrob Proteins 2023; 15:1298-1311. [PMID: 36048406 PMCID: PMC9434094 DOI: 10.1007/s12602-022-09985-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Oral carcinogenesis is preceded by oral diseases associated with inflammation such as periodontitis and oral candidiasis, which are contributed by chronic alcoholism, smoking, poor oral hygiene, and microbial infections. Dysbiosis is an imbalance of microbial composition due to oral infection, which has been reported to contribute to oral carcinogenesis. Therefore, in this review, we summarised the role of probiotics, prebiotics, synbiotics, and postbiotics in promoting a balanced oral microbiome, which may prevent oral carcinogenesis due to oral infections. Probiotics have been shown to produce biofilm, which possesses antibacterial activity against oral pathogens. Meanwhile, prebiotics can support growth and increase the benefit of probiotics. In addition, postbiotics possess antibacterial, anticariogenic, and anticancer properties that potentially aid in oral cancer prevention and treatment. The use of probiotics, prebiotics, synbiotics, and postbiotics for oral cancer management is still limited despite their vast potential, thus, discovering their prospects could herald a novel approach to disease prevention and treatment while participating in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Aalina Sakiinah Mohd Fuad
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Nurul Aqilah Amran
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Jardin Pharma Berhad, Sunway Subang Business Park, Selangor, 40150, Shah Alam, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Diagnostic Craniofacial and Bioscience, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Nor Aszlitah Burhanudin
- Department of Oral Maxillofacial Surgery and Oral Diagnosis, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Stuart Dashper
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, 3055, Australia
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia.
- Jardin Pharma Berhad, Sunway Subang Business Park, Selangor, 40150, Shah Alam, Malaysia.
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia.
| |
Collapse
|
204
|
Bahuguna A, Dubey SK. Overview of the Mechanistic Potential of Probiotics and Prebiotics in Cancer Chemoprevention. Mol Nutr Food Res 2023; 67:e2300221. [PMID: 37552810 DOI: 10.1002/mnfr.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Indexed: 08/10/2023]
Abstract
Despite of strides in modern cancer therapeutic strategies, there has not been a successful cure for it until now and prognostic side effects and substantial toxicity to chemotherapy and subsequent homeostatic imbalance remains a major concern for professionals in this field. The significance of the human microbiome in the pathogenesis of cancer is being recognized, documented, and established worldwide. Probiotics and prebiotics are some of the most extensively researched approaches to modulate the microbiota for therapeutic purposes, and research on their potential to prevent and treat cancer has sparked an immense amount of interest. The characteristics of probiotics and prebiotics allow for an array of efficient applications in cancer preventive measures. Probiotics can also be administered coupled with chemotherapy and surgery to alleviate their side effects and help promote the effectiveness of chemotherapeutic drugs. Besides showing promising results they are accompanied by potential risks and controversies that may eventually result in clinical repercussions. This review emphasizes the mechanistic potential and oncosuppressive effects of probiotic and prebiotics through maintenance of intestinal barrier function, modifying innate immune system, immunomodulation, intestinal microbiota metabolism, inhibition of host cell proliferation, preventing pathogen colonization, and exerting selective cytotoxicity against tumor cells.
Collapse
Affiliation(s)
- Ananya Bahuguna
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Shiv Kumar Dubey
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| |
Collapse
|
205
|
Sinrod AJG, Shah IM, Surek E, Barile D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023; 9:e20499. [PMID: 37867799 PMCID: PMC10589784 DOI: 10.1016/j.heliyon.2023.e20499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Grape pomace is the primary wine coproduct consisting primarily of grape seeds and skins. Grape pomace holds immense potential as a functional ingredient to improve human health while its valorization can be beneficial for industrial sustainability. Pomace contains bioactive compounds, including phenols and oligosaccharides, most of which reach the colon intact, enabling interaction with the gut microbiome. Microbial analysis found that grape pomace selectively promotes the growth of many commensal bacteria strains, while other types of bacteria, including various pathogens, are highly sensitive to the pomace and its components and are inactivated. In vitro studies showed that grape pomace and its extracts inhibit the growth of pathogenic bacteria in Enterobacteriaceae family while increasing the growth and survival of some beneficial bacteria, including Bifidobacterium spp. and Lactobacillus spp. Grape pomace supplementation in mice and rats improves their gut microbiome complexity and decreases diet-induced obesity as well as related illnesses, including insulin resistance, indicating grape pomace could improve human health. A human clinical trial found that pomace, regardless of its phenolic content, had cardioprotective effects, suggesting that dietary fiber induced those health benefits. To shed light on the active components, this review explores the potential prebiotic capacity of select bioactive compounds in grape pomace.
Collapse
Affiliation(s)
- Amanda J G Sinrod
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ece Surek
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture, Istinye University, 34396, Istanbul, Turkey
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| |
Collapse
|
206
|
John Kenneth M, Tsai HC, Fang CY, Hussain B, Chiu YC, Hsu BM. Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer. J Adv Res 2023; 52:45-57. [PMID: 36596411 PMCID: PMC10555786 DOI: 10.1016/j.jare.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Over the last decade, studies have shown an increased incidence of colorectal cancer (CRC), particularly early onset colorectal cancer (EOCRC). Researchers have demonstrated that dietary behavior, especially among young adults, influences alterations in the gut microbial community, leading to an increased accumulation of pathogenic gut microbiota and a decrease in beneficial ones. Unfortunately, CRC is likely to be diagnosed at a late stage, increasing CRC-related mortality. However, this alteration in the gut microbiota (gut dysbiosis) can be harnessed as a biomarker for non-invasive diagnosis, prognosis, prevention, and treatment of CRC in an effort to prevent late diagnosis and poor prognosis associated with CRC. AIM OF REVIEW This review discusses identification of potential biomarkers by targeting diet-mediated gut dysbiosis for the stage-specific diagnosis, prognosis, treatment, and prevention of CRC. Our findings provide a comprehensive insight into the potential of protumorigenic bacteria (e.g.pathogenic Escherichia coli,enterotoxigenic Bacteroides fragilis and Fusobacterium nucleatum) and their metabolites (e.g., colibactin and B. fragilis toxin) from gut dysbiosis as biomarkers for the diagnosis of CRC. KEY SCIENTIFIC CONCEPTS OF REVIEW Collectively, a detailed understanding of the available data from current studies suggests that, further research on quantification of metabolites and stage-specific pathogenic microbial abundance is required for the diagnosis and treatment of CRC based on microbial dysbiosis. Specifically, future studies on faecal samples, from patient with CRC, should be conducted for F. nucleatum among different opportunistic bacteria, given its repeated occurrence in faecal samples and CRC biopsies in numerous studies. Finally, we discuss the potential of faecal microbial transplantation (FMT) as an intervention to restore damaged gut microbiota during CRC treatment and management.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.
| |
Collapse
|
207
|
Perreau C, Thabuis C, Verstrepen L, Ghyselinck J, Marzorati M. Ex Vivo Colonic Fermentation of NUTRIOSE ® Exerts Immuno-Modulatory Properties and Strong Anti-Inflammatory Effects. Nutrients 2023; 15:4229. [PMID: 37836513 PMCID: PMC10574048 DOI: 10.3390/nu15194229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
NUTRIOSE® (Roquette, Lestrem, France) is a resistant dextrin with well-established prebiotic effects. This study evaluated the indirect effects of pre-digested NUTRIOSE® on host immune response and gut barrier integrity. Fecal samples from eight healthy donors were inoculated in a Colon-on-a-plate® system (ProDigest, Ghent, Belgium) with or without NUTRIOSE® supplementation. Following 48 h fermentation, colonic suspensions were tested in a Caco-2/THP1-Blue™ co-culture system to determine their effects on gut barrier activity (transepithelial electrical resistance) and immune response following lipopolysaccharide stimulation. Additionally, changes in short-chain fatty acid levels (SCFA) and microbial community composition following a 48 h fermentation in the Colon-on-a-plate® system were measured. Across all donors, immune-mediated intestinal barrier damage was significantly reduced with NUTRIOSE®-supplemented colonic suspensions versus blank. Additionally, IL-6 and IL-10 levels were significantly increased, and the level of the neutrophil chemoattractant IL-8 was significantly decreased with NUTRIOSE®-supplemented colonic suspensions versus blank in the co-culture models following lipopolysaccharide stimulation. These beneficial effects of NUTRIOSE® supplementation were likely due to increased acetate and propionate levels and the enrichment of SCFA-producing bacteria. NUTRIOSE® was well fermented by the colonic bacteria of all eight donors and had protective effects on inflammation-induced disruption of the intestinal epithelial barrier and strong anti-inflammatory effects.
Collapse
Affiliation(s)
- Caroline Perreau
- Nutrition and Health R&D, Roquette, 1 rue de la Haute Loge, 62136 Lestrem, France; (C.P.); (C.T.)
| | - Clementine Thabuis
- Nutrition and Health R&D, Roquette, 1 rue de la Haute Loge, 62136 Lestrem, France; (C.P.); (C.T.)
| | - Lynn Verstrepen
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
| | - Jonas Ghyselinck
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
| | - Massimo Marzorati
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
208
|
Thomas DJ, Shafiee M, Nosworthy MG, Lane G, Ramdath DD, Vatanparast H. Unveiling the Evidence for the Use of Pulses in Managing Type 2 Diabetes Mellitus: A Scoping Review. Nutrients 2023; 15:4222. [PMID: 37836506 PMCID: PMC10574713 DOI: 10.3390/nu15194222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Management of type 2 diabetes mellitus (T2DM) is a pressing global healthcare challenge. Innovative strategies that integrate superior medical and nutritional practices are essential for holistic care. As such, pulse consumption is encouraged for its potential benefit in reducing hypercholesterolaemia, dyslipidaemia, and triglyceride levels, as well as enhancing glycaemic control. This scoping review aims to assess the depth of evidence supporting the recommendation for pulse consumption in T2DM management and to identify gaps in the existing literature. We conducted a comprehensive search across the databases MEDLINE, Global Health, EMBASE, CINAHL, Web of Science, and the Cochrane Library (up to July 2023). We included population-based studies of any design, and excluded review-style articles. Articles published in languages other than English were also excluded. From the 2449 studies initially identified, 28 met our inclusion criteria. Acute postprandial trials demonstrated improved glucose responses and enhanced insulin responses to pulse-based intervention. Meanwhile, long-term trials reported meaningful improvements in T2DM indicators such as haemoglobin A1C (HbA1c), fasting glucose, fasting insulin, C-peptide, and markers of insulin resistance like homeostatic model assessment (HOMA). Integrating more pulses into the diets of diabetic individuals might offer an efficient and cost-effective strategy in the global initiative to combat T2DM.
Collapse
Affiliation(s)
- Daniel J. Thomas
- Caribbean Institute for Health Research, The University of the West Indies, Mona, Kingston 7, Jamaica;
- School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 4Z2, Canada
| | - Mojtaba Shafiee
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 4Z2, Canada; (M.S.); (M.G.N.)
| | - Matthew G. Nosworthy
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 4Z2, Canada; (M.S.); (M.G.N.)
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Ginny Lane
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - D. Dan Ramdath
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 4Z2, Canada; (M.S.); (M.G.N.)
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Hassan Vatanparast
- School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 4Z2, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 4Z2, Canada; (M.S.); (M.G.N.)
| |
Collapse
|
209
|
Erhardt R, Harnett JE, Steels E, Steadman KJ. Functional constipation and the effect of prebiotics on the gut microbiota: a review. Br J Nutr 2023; 130:1015-1023. [PMID: 36458339 PMCID: PMC10442792 DOI: 10.1017/s0007114522003853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
Functional constipation is a significant health issue impacting the lives of an estimated 14 % of the global population. Non-pharmaceutical treatment advice for cases with no underlying medical conditions focuses on exercise, hydration and an increase in dietary fibre intake. An alteration in the composition of the gut microbiota is thought to play a role in constipation. Prebiotics are non-digestible food ingredients that selectively stimulate the growth of a limited number of bacteria in the colon with a benefit for host health. Various types of dietary fibre, though not all, can act as a prebiotic. Short-chain fatty acids produced by these microbes play a critical role as signalling molecules in a range of metabolic and physiological processes including laxation, although details are unclear. Prebiotics have a history of safe use in the food industry spanning several decades and are increasingly used as supplements to alleviate constipation. Most scientific research on the effects of prebiotics and gut microbiota has focussed on inflammatory bowel disease rather than functional constipation. Very few clinical studies evaluated the efficacy of prebiotics in the management of constipation and their effect on the microbiota, with highly variable designs and conflicting results. Despite this, broad health claims are made by manufacturers of prebiotic supplements. This narrative review provides an overview of the literature on the interaction of prebiotics with the gut microbiota and their potential clinical role in the alleviation of functional constipation.
Collapse
Affiliation(s)
- Rene Erhardt
- School of Pharmacy, The University of Queensland, Brisbane, QLD4102, Australia
| | - Joanna E Harnett
- School of Pharmacy, The University of Sydney, Camperdown, NSW2006, Australia
| | - Elizabeth Steels
- School of Pharmacy, The University of Queensland, Brisbane, QLD4102, Australia
- Evidence Sciences, 3/884 Brunswick St, New Farm, QLD4005, Australia
| | - Kathryn J Steadman
- School of Pharmacy, The University of Queensland, Brisbane, QLD4102, Australia
| |
Collapse
|
210
|
Martinelli S, Nannini G, Cianchi F, Staderini F, Coratti F, Amedei A. Microbiota Transplant and Gynecological Disorders: The Bridge between Present and Future Treatments. Microorganisms 2023; 11:2407. [PMID: 37894065 PMCID: PMC10609601 DOI: 10.3390/microorganisms11102407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a procedure that involves transferring fecal bacteria from a healthy donor to a patients' intestines to restore gut-immunity homeostasis. While FMT was primarily supposed to treat gastrointestinal disorders such as inflammatory bowel disease and irritable bowel syndrome-and especially Clostridium difficile infection (currently the only used as clinical treatment)-recent research has suggested that it may also become a potential treatment for gynecological disorders, including endometriosis and polycystic ovary syndrome (PCOS). On the contrary, vaginal microbiota transplantation (VMT) is a newer and less commonly used procedure than the FMT approach, and its potential applications are still being explored. It involves direct grafting of the entire vaginal microbiota of healthy women into the vaginal tract of patients to easily rebuild the local microbiota environment, restoring vaginal eubiosis and relieving symptoms. Like FMT, VMT is thought to have potential in treating different microbiota-related conditions. In fact, many gynecological disorders, such as bacterial vaginosis and vulvovaginal candidiasis, are thought to be caused by an imbalance in the vaginal microbiota. In this review, we will summarize the development, current challenges, and future perspectives of microbiota transplant, with the aim of exploring new strategies for its employment as a promising avenue for treating a broad range of gynecological diseases.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.S.); (F.C.)
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.S.); (F.C.)
| | - Fabio Cianchi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.S.); (F.C.)
| | - Fabio Staderini
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.S.); (F.C.)
| | - Francesco Coratti
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.S.); (F.C.)
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.S.); (F.C.)
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50139 Florence, Italy
| |
Collapse
|
211
|
Yousof SM, Alghamdi BS, Alqurashi T, Alam MZ, Tash R, Tanvir I, Kaddam LA. Modulation of Gut Microbiome Community Mitigates Multiple Sclerosis in a Mouse Model: The Promising Role of Palmaria palmata Alga as a Prebiotic. Pharmaceuticals (Basel) 2023; 16:1355. [PMID: 37895826 PMCID: PMC10610500 DOI: 10.3390/ph16101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Red marine algae have shown the potential to reduce inflammation, influence microbiota, and provide neuroprotection. OBJECTIVE To examine the prebiotic properties of Palmaria palmata aqueous extract (Palmaria p.) and its potential as a neuroprotective agent in multiple sclerosis (MS). METHODS eighty-eight adult Swiss mice were divided into four male and four female groups, including a control group (distilled water), Palmaria p.-treated group (600 mg/kg b.w.), cuprizone (CPZ)-treated group (mixed chow 0.2%), and a group treated with both CPZ and Palmaria p. The experiment continued for seven weeks. CPZ treatment terminated at the end of the 5th week, with half of the mice sacrificed to assess the demyelination stage. To examine the spontaneous recovery, the rest of the mice continued until the end of week seven. Behavioral (grip strength (GS) and open field tests (OFT)), microbiome, and histological assessments for general morphology of corpus callous (CC) were all conducted at the end of week five and week 7. RESULTS Palmaria p. can potentially protect against CPZ-induced MS with variable degrees in male and female Swiss mice. This protection was demonstrated through three key findings: (1) increased F/B ratio and expansion of the beneficial Lactobacillus, Proteobacteria, and Bactriodia communities. (2) Protection against the decline in GS induced by CPZ and prevented CPZ-induced anxiety in OFT. (3) Preservation of structural integrity. CONCLUSIONS Because of its propensity to promote microbiota alterations, its antioxidant activity, and its content of -3 fatty acids, Palmaria p. could be a promising option for MS patients and could be beneficial as a potential probiotic for the at-risk groups as a preventive measure against MS.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Preclinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamer Alqurashi
- Faculty of Medicine in Rabigh, Pharmacology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reham Tash
- Department of Anatomy, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo 3753450, Egypt
| | - Imrana Tanvir
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Lamis AbdelGadir Kaddam
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Physiology Department Faculty of Medicine, Alneelain University, Khartoum 11211, Sudan
| |
Collapse
|
212
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R, Alhawamdeh R. Role of gastrointestinal health in managing children with autism spectrum disorder. World J Clin Pediatr 2023; 12:171-196. [PMID: 37753490 PMCID: PMC10518744 DOI: 10.5409/wjcp.v12.i4.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Children with autism spectrum disorders (ASD) or autism are more prone to gastrointestinal (GI) disorders than the general population. These disorders can significantly affect their health, learning, and development due to various factors such as genetics, environment, and behavior. The causes of GI disorders in children with ASD can include gut dysbiosis, immune dysfunction, food sensitivities, digestive enzyme deficiencies, and sensory processing differences. Many studies suggest that numerous children with ASD experience GI problems, and effective management is crucial. Diagnosing autism is typically done through genetic, neurological, functional, and behavioral assessments and observations, while GI tests are not consistently reliable. Some GI tests may increase the risk of developing ASD or exacerbating symptoms. Addressing GI issues in individuals with ASD can improve their overall well-being, leading to better behavior, cognitive function, and educational abilities. Proper management can improve digestion, nutrient absorption, and appetite by relieving physical discomfort and pain. Alleviating GI symptoms can improve sleep patterns, increase energy levels, and contribute to a general sense of well-being, ultimately leading to a better quality of life for the individual and improved family dynamics. The primary goal of GI interventions is to improve nutritional status, reduce symptom severity, promote a balanced mood, and increase patient independence.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Pediatric Department, Faculty of Medicine, Tanta University, Algharbia, Tanta 31511, Egypt
- Pediatrics, Univeristy Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Pathology Department, Salmaniya Medical Complex, Ministry of Health, Manama, Manama 12, Bahrain
- Medical Microbiology Section, Pathology Department, Irish Royal College of Surgeon, Bahrain, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Pulmonology Department, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
- Pulmonology Department, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| | - Rawan Alhawamdeh
- Pediatrics Research, and Development Department, Genomics Creativity and Play Center, Manama, Manama 0000, Bahrain
- Pediatrics Research, and Development Department, SENSORYME Dubai 999041, United Arab Emirates
| |
Collapse
|
213
|
Pantazi AC, Kassim MAK, Nori W, Tuta LA, Mihai CM, Chisnoiu T, Balasa AL, Mihai L, Lupu A, Frecus CE, Lupu VV, Chirila SI, Badescu AG, Hangan LT, Cambrea SC. Clinical Perspectives of Gut Microbiota in Patients with Chronic Kidney Disease and End-Stage Kidney Disease: Where Do We Stand? Biomedicines 2023; 11:2480. [PMID: 37760920 PMCID: PMC10525496 DOI: 10.3390/biomedicines11092480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) plays a vital role in human health, with increasing evidence linking its imbalance to chronic kidney disease and end-stage kidney disease. Although the exact methods underlying kidney-GM crosstalk are not fully understood, interventions targeting GM were made and lay in three aspects: diagnostic, predictive, and therapeutic interventions. While these interventions show promising results in reducing uremic toxins and inflammation, challenges remain in the form of patient-specific GM variability, potential side effects, and safety concerns. Our understanding of GMs role in kidney disease is still evolving, necessitating further research to elucidate the causal relationship and mechanistic interactions. Personalized interventions focusing on specific GM signatures could enhance patient outcomes. However, comprehensive clinical trials are needed to validate these approaches' safety, efficacy, and feasibility.
Collapse
Affiliation(s)
| | | | - Wassan Nori
- College of Medicine, Mustansiriyah University, Baghdad 10052, Iraq;
| | - Liliana Ana Tuta
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Corina Elena Frecus
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Sergiu Ioachim Chirila
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | | | - Laurentiu-Tony Hangan
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | - Simona Claudia Cambrea
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| |
Collapse
|
214
|
Atique U, Altaf M, Sinha D, Ghazanfar S, Haque, M, Chowdhury S. The Role of Probiotics and Prebiotics in Gut Modulation. THE GUT MICROBIOTA IN HEALTH AND DISEASE 2023:205-216. [DOI: 10.1002/9781119904786.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
215
|
Buahom J, Siripornadulsil S, Sukon P, Sooksawat T, Siripornadulsil W. Survivability of freeze- and spray-dried probiotics and their effects on the growth and health performance of broilers. Vet World 2023; 16:1849-1865. [PMID: 37859958 PMCID: PMC10583877 DOI: 10.14202/vetworld.2023.1849-1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Many strains of probiotics have been exploited and used as animal dietary supplements for broiler production. The efficacy and survival of probiotics during production may reflect better activities of the probiotics in the host. This study investigated the effects of freeze- and spray-drying on the survivability and properties of probiotics and their ability to improve the growth and health performance of broilers. Materials and Methods Probiotic powders of four strains of lactic acid bacteria, Enterococcus faecium CA4, Enterococcus durans CH33, Ligilactobacillus salivarius CH24, Pediococcus acidilactici SH8, and Bacillus subtilis KKU213, were prepared using rice bran/chitosan/carboxy methyl cellulose as the carrier. The survival of each probiotic strain was investigated under stress conditions, including freeze-drying, spray-drying, and simulated gastrointestinal conditions. The body weight gain (BWG) and intestinal histomorphology were determined to assess broiler growth performance. Results All dried probiotics yielded a high survival rate during freeze-drying (95.8-98.6%) and spray-drying (94.4-98.2%). In addition, an analysis of the main effect revealed that the effectiveness of freeze-drying was higher than that of spray-drying in minimizing the loss of cell viability. The antimicrobial activity of all immobilized dried probiotic strains against Salmonella was maintained. The immobilized probiotics tolerated a low pH value of 2.0 and 0.5% (w/v) bile salt. Probiotic administration of a mixture of the five dried probiotics to 1-day-old hatched male broilers at early and late ages resulted in potential colonization in the broiler intestine, and enhancements in the BWG, lipid metabolism, and gut health (villus height and cryptal depth) were observed in the probiotic-treated groups. Conclusion The administration of three doses of the spray-dried probiotic mixture at days 15, 17, and 19 after hatching was sufficient to achieve long-term growth and health benefits in broilers. This finding might provide a cost-effective alternative to the administration of commonly used antibiotics in broiler production.
Collapse
Affiliation(s)
- Juthamas Buahom
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
- Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peerapol Sukon
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Treerat Sooksawat
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
- Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
216
|
Zhang Y, Wang J, Zhang Q, Deng L, Miao S, Zhong G. Konjac-mulberry leaf compound powder alleviates OVA-induced allergic rhinitis in BALB/c mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
217
|
Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, Kuca K, Kumar D, Amarowicz R. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother 2023; 165:115183. [PMID: 37487442 DOI: 10.1016/j.biopha.2023.115183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis has evolved as an enormous health issue amongst critically ill patients. It is a major risk factor that results in multiple organ failure and shock. Acute kidney injury (AKI) is one of the most frequent complications underlying sepsis, which portends a heavy burden of mortality and morbidity. Thus, the present review is aimed to provide an insight into the recent progression in the molecular mechanisms targeting dysregulated immune response and cellular dysfunction involved in the development of sepsis-associated AKI, accentuating the phytoconstituents as eligible candidates for attenuating the onset and progression of sepsis-associated AKI. The pathogenesis of sepsis-mediated AKI entails a complicated mechanism and is likely to involve a distinct constellation of hemodynamic, inflammatory, and immune mechanisms. Novel biomarkers like neutrophil gelatinase-associated lipocalin, soluble triggering receptor expressed on myeloid cells 1, procalcitonin, alpha-1-microglobulin, and presepsin can help in a more sensitive diagnosis of sepsis-associated AKI. Many bioactive compounds like curcumin, resveratrol, baicalin, quercetin, and polydatin are reported to play an important role in the prevention and management of sepsis-associated AKI by decreasing serum creatinine, blood urea nitrogen, cystatin C, lipid peroxidation, oxidative stress, IL-1β, TNF-α, NF-κB, and increasing the activity of antioxidant enzymes and level of PPARγ. The plant bioactive compounds could be developed into a drug-developing candidate in managing sepsis-mediated acute kidney injury after detailed follow-up studies. Lastly, the gut-kidney axis may be a more promising therapeutic target against the onset of septic AKI, but a deeper understanding of the molecular pathways is still required.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Sugandh Sinha
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India.
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ajay Kumar Gautam
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
218
|
Wang Z, Wang S, Xu Q, Kong Q, Li F, Lu L, Xu Y, Wei Y. Synthesis and Functions of Resistant Starch. Adv Nutr 2023; 14:1131-1144. [PMID: 37276960 PMCID: PMC10509415 DOI: 10.1016/j.advnut.2023.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023] Open
Abstract
Resistant starch (RS) has become a popular topic of research in recent years. Most scholars believe that there are 5 types of RS. However, accumulating evidence indicates that in addition to starch-lipid complexes, which are the fifth type of RS, complexes containing starch and other substances can also be generated. The physicochemical properties and physiologic functions of these complexes are worth exploring. New physiologic functions of several original RSs are constantly being discovered. Research shows that RS can provide health improvements in many patients with chronic diseases, including diabetes and obesity, and even has potential benefits for kidney disease and colorectal cancer. Moreover, RS can alter the short-chain fatty acids and microorganisms in the gut, positively regulating the body's internal environment. Despite the increase in its market demand, RS production remains limited. Upscaling RS production is thus an urgent requirement. This paper provides detailed insights into the classification, synthesis, and efficacy of RS, serving as a starting point for the future development and applications of RS based on the current status quo.
Collapse
Affiliation(s)
- Zhanggui Wang
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Shuli Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinhong Xu
- Department of Acupuncture and Massage, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Qi Kong
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Fei Li
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Lin Lu
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Yibiao Xu
- Department of Neurosurgery, The Fifth People's Hospital of Huai 'an, Huai' an, China
| | - Yali Wei
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China; Department of Women's Health, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children's Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
219
|
Ersanli C, Tzora A, Voidarou C(C, Skoufos S, Zeugolis DI, Skoufos I. Biodiversity of Skin Microbiota as an Important Biomarker for Wound Healing. BIOLOGY 2023; 12:1187. [PMID: 37759587 PMCID: PMC10525143 DOI: 10.3390/biology12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Cutaneous wound healing is a natural and complex repair process that is implicated within four stages. However, microorganisms (e.g., bacteria) can easily penetrate through the skin tissue from the wound bed, which may lead to disbalance in the skin microbiota. Although commensal and pathogenic bacteria are in equilibrium in normal skin, their imbalance in the wound area can cause the delay or impairment of cutaneous wounds. Moreover, skin microbiota is in constant crosstalk with the immune system and epithelial cells, which has significance for the healing of a wound. Therefore, understanding the major bacteria species in the cutaneous wound as well as their communication with the immune system has gained prominence in a way that allows for the emergence of a new perspective for wound healing. In this review, the major bacteria isolated from skin wounds, the role of the crosstalk between the cutaneous microbiome and immune system to heal wounds, the identification techniques of these bacteria populations, and the applied therapies to manipulate the skin microbiota are investigated.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Stylianos Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
| |
Collapse
|
220
|
Campagnoli LIM, Varesi A, Barbieri A, Marchesi N, Pascale A. Targeting the Gut-Eye Axis: An Emerging Strategy to Face Ocular Diseases. Int J Mol Sci 2023; 24:13338. [PMID: 37686143 PMCID: PMC10488056 DOI: 10.3390/ijms241713338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The human microbiota refers to a large variety of microorganisms (bacteria, viruses, and fungi) that live in different human body sites, including the gut, oral cavity, skin, and eyes. In particular, the presence of an ocular surface microbiota with a crucial role in maintaining ocular surface homeostasis by preventing colonization from pathogen species has been recently demonstrated. Moreover, recent studies underline a potential association between gut microbiota (GM) and ocular health. In this respect, some evidence supports the existence of a gut-eye axis involved in the pathogenesis of several ocular diseases, including age-related macular degeneration, uveitis, diabetic retinopathy, dry eye, and glaucoma. Therefore, understanding the link between the GM and these ocular disorders might be useful for the development of new therapeutic approaches, such as probiotics, prebiotics, symbiotics, or faecal microbiota transplantation through which the GM could be modulated, thus allowing better management of these diseases.
Collapse
Affiliation(s)
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Annalisa Barbieri
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Alessia Pascale
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| |
Collapse
|
221
|
Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics Progress Shifts in the Intestinal Microbiome That Benefits Patients with Type 2 Diabetes Mellitus. Biomolecules 2023; 13:1307. [PMID: 37759707 PMCID: PMC10526165 DOI: 10.3390/biom13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoglycemic medications that could be co-administered with prebiotics and functional foods can potentially reduce the burden of metabolic diseases such as Type 2 Diabetes Mellitus (T2DM). The efficacy of drugs such as metformin and sulfonylureas can be enhanced by the activity of the intestinal microbiome elaborated metabolites. Functional foods such as prebiotics (e.g., oligofructose) and dietary fibers can treat a dysbiotic gut microbiome by enhancing the diversity of microbial niches in the gut. These beneficial shifts in intestinal microbiome profiles include an increased abundance of bacteria such as Faecalibacterium prauznitzii, Akkermancia muciniphila, Roseburia species, and Bifidobacterium species. An important net effect is an increase in the levels of luminal SCFAs (e.g., butyrate) that provide energy carbon sources for the intestinal microbiome in cross-feeding activities, with concomitant improvement in intestinal dysbiosis with attenuation of inflammatory sequalae and improved intestinal gut barrier integrity, which alleviates the morbidity of T2DM. Oligosaccharides administered adjunctively with pharmacotherapy to ameliorate T2DM represent current plausible treatment modalities.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick N. Gorgani
- OzStar Therapeutics Pty Ltd., Pennant Hills, NSW 2120, Australia
| | - Gemma Vitetta
- Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Jeremy D. Henson
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
222
|
Shrifteylik A, Maiolini M, Dufault M, Austin DL, Subhadra B, Lamichhane P, Deshmukh RR. A Current Review on the Role of Prebiotics in Colorectal Cancer. BIOLOGICS 2023; 3:209-231. [DOI: 10.3390/biologics3030012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death in the United States and worldwide. Recent evidence has corroborated a strong correlation between poor diet and the development of CRC, and further research is being conducted to investigate the association between intestinal microbiome and the development of cancer. New studies have established links with certain foods and synthetic food compounds that may be effective in reducing the risk for carcinogenesis by providing protection against cancer cell proliferation and antagonizing oncogenic pathways. Prebiotics are gaining popularity as studies have demonstrated chemo-preventive as well as anticancer potential of prebiotics. This paper aims to discuss the wide definition and scope of prebiotics by reviewing the studies that provide insights into their effects on human health in the context of colorectal cancer.
Collapse
Affiliation(s)
- Anna Shrifteylik
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Matthew Dufault
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Daniel L. Austin
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | | | | | | |
Collapse
|
223
|
Naghipour A, Amini-Salehi E, Orang Gorabzarmakhi M, Shahdkar M, Fouladi B, Alipourfard I, Sanat ZM. Effects of gut microbial therapy on lipid profile in individuals with non-alcoholic fatty liver disease: an umbrella meta-analysis study. Syst Rev 2023; 12:144. [PMID: 37605283 PMCID: PMC10441764 DOI: 10.1186/s13643-023-02299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), the most common liver disease, is closely associated with metabolic conditions such as obesity and diabetes mellitus, which significantly impact human health outcomes. The impaired lipid profiles observed in NAFLD individuals can further contribute to cardiovascular events. Despite the high prevalence of NAFLD, there is currently no confirmed intervention approved for its treatment. This study aimed to summarize the results of meta-analysis studies of randomized control trials assessing the impact of gut microbial therapy (probiotics, synbiotics, and prebiotics) on the lipid profile of individuals with NAFLD. METHODS A systematic search was conducted on PubMed, Scopus, Web of Science, and Cochrane Library up to November 1, 2022. Meta-analyses surveying the impact of microbial therapy on lipid profile parameters (triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and total cholesterol (TC)) in the NAFLD population were included in our umbrella review. The final effect size (ES) was estimated, and sensitivity and subgroup analyses were performed to explore heterogeneity. RESULTS Fifteen studies were included in this umbrella review. Microbial therapy significantly reduced TG (ES - 0.31, 95% CI - 0.51, - 0.11, P < 0.01), TC (ES - 1.04, 95% CI - 1.46, - 0.61, P < 0.01), and LDL (ES - 0.77, 95% CI - 1.15, - 0.39, P < 0.01) in individuals with NAFLD. However, the effect on HDL was not statistically significant (ES - 0.06; 95% CI - 0.19, 0.07, P = 0.39). CONCLUSION Considering the absence of approved treatments for NAFLD and the promising role of microbial therapies in improving the three lipid profiles components in individuals with NAFLD, the use of these agents as alternative treatment options could be recommended. The findings underscore the potential of gut microbial therapy, including probiotics, synbiotics, and prebiotics, in managing NAFLD and its associated metabolic complications. TRIAL REGISTRATION PROSPERO ( CRD42022346998 ).
Collapse
Affiliation(s)
- Amirhossein Naghipour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Bahman Fouladi
- Pediatric Gastroenterology and Hepatoloy Research center, Zabol University of Medical Sciences, Zabol, Iran
- Department of Parasitology and Mycology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marsaw, Poland
| | - Zahra Momayez Sanat
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
224
|
Mocanu A, Bogos RA, Lazaruc TI, Trandafir LM, Lupu VV, Ioniuc I, Alecsa M, Ivanov A, Lupu A, Starcea IM. Exploring a Complex Interplay: Kidney-Gut Axis in Pediatric Chronic Kidney Disease. Nutrients 2023; 15:3609. [PMID: 37630799 PMCID: PMC10457891 DOI: 10.3390/nu15163609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The human intestinal microbiota is a highly intricate structure with a crucial role in promoting health and preventing disease. It consists of diverse microbial communities that inhabit the gut and contribute to essential functions such as food digestion, nutrient synthesis, and immune system development. The composition and function of the gut microbiota are influenced by a variety of factors, including diet, host genetics, and environmental features. In pediatric patients, the gut microbiota is particularly dynamic and vulnerable to disruption from endogenous and exogenous factors. Recent research has focused on understanding the interaction between the gut and kidneys. In individuals with chronic kidney disease, there is often a significant disturbance in the gut microbiota. This imbalance can be attributed to factors like increased levels of harmful toxins from the gut entering the bloodstream, inflammation, and oxidative stress. This review looks at what is known about the link between a child's gut-kidney axis, how dysbiosis, or an imbalance in the microbiome, affects chronic kidney disease, and what treatments, both pharmaceutical and non-pharmaceutical, are available for this condition.
Collapse
Affiliation(s)
- Adriana Mocanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Nephrology Division, St. Mary’s Emergency Children Hospital, 700309 Iasi, Romania
| | - Roxana Alexandra Bogos
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Tudor Ilie Lazaruc
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mirabela Alecsa
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Ivanov
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iuliana Magdalena Starcea
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Nephrology Division, St. Mary’s Emergency Children Hospital, 700309 Iasi, Romania
| |
Collapse
|
225
|
Pathare NN, Fayet-Moore F, Fogarty JA, Jacka FN, Strandwitz P, Strangman GE, Donoviel DB. Nourishing the brain on deep space missions: nutritional psychiatry in promoting resilience. Front Neural Circuits 2023; 17:1170395. [PMID: 37663891 PMCID: PMC10469890 DOI: 10.3389/fncir.2023.1170395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The grueling psychological demands of a journey into deep space coupled with ever-increasing distances away from home pose a unique problem: how can we best take advantage of the benefits of fresh foods in a place that has none? Here, we consider the biggest challenges associated with our current spaceflight food system, highlight the importance of supporting optimal brain health on missions into deep space, and discuss evidence about food components that impact brain health. We propose a future food system that leverages the gut microbiota that can be individually tailored to best support the brain and mental health of crews on deep space long-duration missions. Working toward this goal, we will also be making investments in sustainable means to nourish the crew that remains here on spaceship Earth.
Collapse
Affiliation(s)
- Nihar N. Pathare
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Jennifer A. Fogarty
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
| | - Felice N. Jacka
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | | | - Gary E. Strangman
- Neural Systems Group, Division of Health Sciences and Technology, Massachusetts General Hospital, Harvard Medical School and Harvard-MIT, Charlestown, MA, United States
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Dorit B. Donoviel
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
226
|
Chen S, Tang L, Nie T, Fang M, Cao X. Fructo-oligofructose ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions and psychiatric comorbidities in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5004-5018. [PMID: 36987580 DOI: 10.1002/jsfa.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by pruritus and eczema lesions and psychiatric comorbidities. The gut-brain-skin axis plays a pivotal role during AD development, which might suggest a novel therapeutic strategy for AD. The present study aims to uncover the protective effects and underlying mechanisms of fructo-oligofructose (FOS), a type of prebiotic, on AD-like skin manifestations and comorbid anxiety and depression in AD mice. RESULTS Female Kunming mice were treated topically with 2,4-dinitrofluorobenzene (DNFB) to induce AD-like symptoms and FOS was administered daily for 14 days. The results showed that FOS could alleviate AD-like skin lesions markedly as evidenced by dramatic decreases in severity score, scratching bouts, the levels of immunoglobulin E (IgE) and T helper 1(Th1)/Th2-related cytokines, and the infiltration of inflammatory cells and mast cells to the dermal tissues. The comorbid anxiety and depressive-like behaviors, estimated by the forced swimming test (FST), the tail-suspension test (TST), the open-field test (OFT), and the zero maze test (ZMT) in AD mice, were significantly attenuated by FOS. Fructo-oligofructose significantly upregulated brain neurotransmitters levels of 5-hydroxytryptamine (5-HT) and dopamine (DA). Furthermore, FOS treatment increased the relative abundance of gut microbiota, such as Prevotella and Lactobacillus and the concentrations of short-chain fatty acids (SCFAs), especially acetate and iso-butyrate in the feces of AD mice. The correlation analysis indicated that the reshaped gut microbiome composition and enhanced SCFAs formation are associated with skin inflammation and behavioral alteration. CONCLUSION Collectively, these data identify FOS as a promising microbiota-targeted treatment for AD-like skin inflammation and comorbid anxiety and depressive-like behaviors. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaoze Chen
- School of Medicine, Jianghan University, Wuhan, China
| | - Liu Tang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Nie
- School of Medicine, Jianghan University, Wuhan, China
| | - Mingyu Fang
- School of Medicine, Jianghan University, Wuhan, China
| | - Xiaoqin Cao
- School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
227
|
Devi R, Sharma E, Thakur R, Lal P, Kumar A, Altaf MA, Singh B, Tiwari RK, Lal MK, Kumar R. Non-dairy prebiotics: Conceptual relevance with nutrigenomics and mechanistic understanding of the effects on human health. Food Res Int 2023; 170:112980. [PMID: 37316060 DOI: 10.1016/j.foodres.2023.112980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
The increasing health awareness of consumers has made a shift towards vegan and non-dairy prebiotics counterparts. Non-dairy prebiotics when fortified with vegan products have interesting properties and widely found its applications in food industry. The chief vegan products that have prebiotics added include water-soluble plant-based extracts (fermented beverages, frozen desserts), cereals (bread, cookies), and fruits (juices & jelly, ready to eat fruits). The main prebiotic components utilized are inulin, oligofructose, polydextrose, fructooligosaccharides, and xylooligosaccharides. Prebiotics' formulations, type and food matrix affect food products, host health, and technological attributes. Prebiotics from non-dairy sources have a variety of physiological effects that help to prevent and treat chronic metabolic diseases. This review focuses on mechanistic insight on non-dairy prebiotics affecting human health, how nutrigenomics is related to prebiotics development, and role of gene-microbes' interactions. The review will provide industries and researchers with important information about prebiotics, mechanism of non-dairy prebiotics and microbe interaction as well as prebiotic based vegan products.
Collapse
Affiliation(s)
- Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Richa Thakur
- Division of Silviculture and Forest Management, Himalayan Forest Research Institute, Conifer Campus, Shimla, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | | | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, India.
| |
Collapse
|
228
|
Vega-Sagardía M, Delgado J, Ruiz-Moyano S, Garrido D. Proteomic analyses of Bacteroides ovatus and Bifidobacterium longum in xylan bidirectional culture shows sugar cross-feeding interactions. Food Res Int 2023; 170:113025. [PMID: 37316088 DOI: 10.1016/j.foodres.2023.113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The intestinal microbiome is a community of anaerobic microorganisms whose activities significantly impact human health. Its composition can be modulated by consuming foods rich in dietary fiber, such as xylan, a complex polysaccharide that can be considered an emerging prebiotic. In this work, we evaluated how certain gut bacteria acted as primary degraders, fermenting dietary fibers, and releasing metabolites that other bacteria can further use. Different bacterial strains of Lactobacillus, Bifidobacterium, and Bacteroides were evaluated for their ability to consume xylan and interact with one another. Results from unidirectional assays gave indications of possible cross-feeding between bacteria using xylan as a carbon source. Bidirectional assays showed that Bifidobacterium longum PT4 increased its growth in the presence of Bacteroides ovatus HM222. Proteomic analyses indicated that B. ovatus HM222 synthesizes enzymes facilitating xylan degradation, such as β-xylanase, arabinosidase, L-arabinose isomerase, and xylosidase. Interestingly, the relative abundance of these proteins remains largely unaffected in the presence of Bifidobacterium longum PT4. In the presence of B. ovatus, B. longum PT4 increased the production of enzymes such as α-L-arabinosidase, L-arabinose isomerase, xylulose kinase, xylose isomerase, and sugar transporters. These results show an example of positive interaction between bacteria mediated by xylan consumption. Bacteroides degraded this substrate to release xylooligosaccharides, or monosaccharides (xylose, arabinose), which might support the growth of secondary degraders such as B. longum.
Collapse
Affiliation(s)
- Marco Vega-Sagardía
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, Universidad de Extremadura, Avenida de las Ciencias s/n, 10003 Caceres, Spain.
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
229
|
Guerra L, Ureta M, Romanini D, Woitovich N, Gómez-Zavaglia A, Clementz A. Enzymatic synthesis of fructooligosaccharides: From carrot discards to prebiotic juice. Food Res Int 2023; 170:112991. [PMID: 37316066 DOI: 10.1016/j.foodres.2023.112991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
A great volume of carrots is discarded daily worldwide because they do not meet the required shape and size standards. However, they have the same nutritional characteristics as those commercialized, and can be used in different food products. Carrot juice is an excellent matrix for the development of functional foods with prebiotic compounds, such as fructooligosaccharides (FOS). In this work, the production of FOS in situ in carrot juice was evaluated using a fructosyltransferase from Aspergillus niger, produced by solid-state fermentation on carrot bagasse. The enzyme was partially purified 12.5-fold with a total yield of 93 %, and specific activity of 59 U/mg of protein by Sephadex G-105 molecular exclusion chromatography. It was identified by nano LC-MS/MS as a β-fructofuranosidase with a 63.6 kDa MW and it allowed obtaining a FOS yield of 31.6 % in carrot juice. The result was a prebiotic juice with a final concentration of 32.4 mg/mL of FOS. Using the commercial enzyme Viscozyme L a higher yield of FOS (39.8 %) was obtained in carrot juice, corresponding to a total amount of FOS of 54.6 mg/mL. This circular economy scheme allowed the obtention of a functional juice, that may contribute to improve health of consumers.
Collapse
Affiliation(s)
- Laureana Guerra
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina.
| | - Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata B1900AJJ, Argentina
| | - Diana Romanini
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina
| | - Nadia Woitovich
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata B1900AJJ, Argentina
| | - Adriana Clementz
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina
| |
Collapse
|
230
|
Zhu C, Zhang M, Wang S, Gao X, Lin T, Yu J, Tian J, Hu Z. Phenolic compound profile and gastrointestinal action of Solanaceae fruits: Species-specific differences. Food Res Int 2023; 170:112968. [PMID: 37316011 DOI: 10.1016/j.foodres.2023.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
In this study, the presence of phenolic compounds derived from four Solanaceae fruits (tomato, pepino, tamarillo, and goldenberry) during gastrointestinal digestion and the effect of these compounds on human gut microbiota was investigated. The results indicated that the total phenolic content of all Solanaceae fruits were increased during digestion. Furthermore, the targeted metabolic analysis identified 296 compounds, of which 71 were changed after gastrointestinal digestion in all Solanaceae fruits. Among these changed phenolic compounds, 51.3% phenolic acids and 91% flavonoids presented higher bioaccessibility in pepino and tamarillo, respectively. Moreover, higher levels of glycoside-formed phenolic acids, including dihydroferulic acid glucoside and coumaric acid glucoside, were found in tomato fruits. In addition, tachioside showed the highest bioaccessibility in goldenberry fruits. The intake of Solanaceae fruits during the in vitro fermentation decreased the Firmicutes/Bacteroidetes ratio (F/B) compared with the control (∼15-fold change on average), and goldenberry fruits showed the best effect (F/B = 2.1). Furthermore, tamarillo significantly promoted the growth of Bifidobacterium and short-chain fatty acids production. Overall, this study revealed that Solanaceae fruits had different phenolic compound profiles and health-promoting effects on the gut microbiota. It also provided relevant information to improve the consumption of Solanaceae fruits, mainly tamarillo and goldenberry fruits, due to their gut health-promoting properties, as functional foods.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shuwen Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xinhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572000, China.
| |
Collapse
|
231
|
Anegkamol W, Kamkang P, Hunthai S, Kaewwongse M, Taweevisit M, Chuaypen N, Rattanachaisit P, Dissayabutra T. The Usefulness of Resistant Maltodextrin and Chitosan Oligosaccharide in Management of Gut Leakage and Microbiota in Chronic Kidney Disease. Nutrients 2023; 15:3363. [PMID: 37571302 PMCID: PMC10420640 DOI: 10.3390/nu15153363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Microbiota-dysbiosis-induced gut leakage is a pathophysiologic change in chronic kidney disease (CKD), leading to the production of several uremic toxins and their absorption into the bloodstream to worsen the renal complications. We evaluate the benefits of resistant maltodextrin (RMD) and chitosan oligosaccharide (COS) supplements in cell culture and CKD-induced rats. The RMD exerted a significant anti-inflammatory effect in vitro and intestinal occludin and zonula occluden-1 up-regulation in CKD rats compared with inulin and COS. While all prebiotics slightly improved gut dysbiosis, RMD remarkably promoted the relative abundance and the combined abundance of Lactobacillus, Bifidobacteria, Akkermansia, and Roseburia in CKD rats. Supplements of RMD should be advantageous in the treatment of gut leakage and microbiota dysbiosis in CKD.
Collapse
Affiliation(s)
- Weerapat Anegkamol
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| | - Panumas Kamkang
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| | - Sittiphong Hunthai
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| | - Maroot Kaewwongse
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Natthaya Chuaypen
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pakkapon Rattanachaisit
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thasinas Dissayabutra
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| |
Collapse
|
232
|
Hashem NM, Hosny NS, El-Desoky N, Soltan YA, Elolimy AA, Sallam SMA, Abu-Tor ESM. Alginate Nanoencapsulated Synbiotic Composite of Pomegranate Peel Phytogenics and Multi-Probiotic Species as a Potential Feed Additive: Physicochemical, Antioxidant, and Antimicrobial Activities. Animals (Basel) 2023; 13:2432. [PMID: 37570241 PMCID: PMC10417444 DOI: 10.3390/ani13152432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
A synbiotic composed of alginate nanoencapsulated prebiotic (pomegranate peel phytogenics) and multi-species probiotics (Lactococcus lactis, Lactobacillus plantarum, Lactobacillus paracasei, and Saccharomyces cerevisiae) has been developed as a potential eco-friendly alternative to antibiotics. The physicochemical properties of the encapsulated synbiotic were evaluated, and its gastric and storage tolerance, as well as its antioxidant and antimicrobial activity, were tested and compared to that of the non-encapsulated synbiotic (free synbiotic). The results showed that the prebiotic pomegranate peel ethanolic extract contained seven phenolic compounds, with cinnamic being the most abundant (13.26 µL/mL). Sodium alginate-CaCl2 nanocapsules were effective in encapsulating 84.06 ± 1.5% of the prebiotic's phenolic compounds and 98.85 ± 0.57% of the probiotics. The particle size of the alginate-CaCl2 nanoencapsulated synbiotic was 544.5 nm, and the polydispersity index and zeta potential values were 0.593 and -12.3 mV, respectively. Thermogravimetric analysis showed that the alginate-CaCl2 nanoencapsulated synbiotic had high thermal stability at high temperatures, with only 2.31% of its weight being lost within the temperature range of 70-100 °C. The count of viable probiotics in the nanoencapsulated synbiotic was significantly higher than that in the free synbiotic after exposure to gastric acidity and storage for six months at room temperature. The percent inhibition values of the nanoencapsulated synbiotic and ascorbic acid (as a standard antioxidant) were comparable and significantly greater than those of the free synbiotic. The half-maximal inhibitory concentrations (IC50) of the nanoencapsulated synbiotic and ascorbic acid were significantly lower than those of the free synbiotic (3.96 ± 0.42 µg/mL and 4.08 ± 0.79 µg/mL for nanoencapsulated synbiotic and ascorbic acid, respectively, vs. 65.75 ± 2.14 µg/mL for free synbiotic). The nanoencapsulated synbiotic showed the highest significant antimicrobial activity against Escherichia coli (ATCC 8739). Both the nanoencapsulated and free synbiotics showed antimicrobial activity against Staphylococcus aureus (ATCC 6538), similar to that of gentamicin, although the nanoencapsulated synbiotic showed significantly higher inhibition activity compared to the free synbiotic. The nanoencapsulated synbiotic showed antimicrobial activity comparable to gentamicin against Pseudomonas aeruginosa (ATCC 90274), whereas the free synbiotic showed the least antimicrobial activity (p < 0.05). Both synbiotics showed significantly higher antimicrobial activity against Salmonella typhi (ATCC 6539) than gentamicin. Both synbiotics showed antifungal activity against Aspergillus niger and Aspergillus flavus, with a stronger effect observed for the nanoencapsulated synbiotic. However, the activity of both synbiotics was significantly lower than that of fluconazole (an antifungal drug).
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - Nourhan S. Hosny
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Nagwa El-Desoky
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - Yosra A. Soltan
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - Ahmed A. Elolimy
- Animal Production Department, National Research Centre, Giza 12622, Egypt;
| | - Sobhy M. A. Sallam
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - El-Sayed M. Abu-Tor
- Food Science and Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| |
Collapse
|
233
|
Ansari F, Neshat M, Pourjafar H, Jafari SM, Samakkhah SA, Mirzakhani E. The role of probiotics and prebiotics in modulating of the gut-brain axis. Front Nutr 2023; 10:1173660. [PMID: 37565035 PMCID: PMC10410452 DOI: 10.3389/fnut.2023.1173660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Pro-and prebiotics have been indicated to modulate the gut-brain axis, which have supportive impacts on central nervous systems, and decrease or control the incidence of some mental disorders such as depression, anxiety, autism, Schizophrenia, and Alzheimer's. In this review, complex communications among microbiota, gut, and the brain, and also recent scientific findings of the impacts and possible action mechanisms of pro-and prebiotics on mental disorders have been discussed. The results have shown that pro-and prebiotics can improve the function of central nervous system and play an important role in the prevention and treatment of some brain disorders; however, in order to prove these effects conclusively and firmly and to use these compounds in a therapeutic and supportive way, more studies are needed, especially human studies/clinical trials.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Mehrdad Neshat
- Department of Clinical Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Hadi Pourjafar
- Alborz University of Medical Sciences, Dietary Supplements and Probiotic Research Center, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shohreh Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
234
|
Jiang W, Xu Y, Chen JC, Lee YH, Hu Y, Liu CH, Chen E, Tang H, Zhang H, Wu D. Role of extracellular vesicles in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1196831. [PMID: 37534206 PMCID: PMC10392952 DOI: 10.3389/fendo.2023.1196831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that affects approximately one-quarter of the global population and is becoming increasingly prevalent worldwide. The lack of current noninvasive tools and efficient treatment is recognized as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) are nanoscale vesicles released by various cells and deliver bioactive molecules to target cells, thereby mediating various processes, including the development of NAFLD. Scope of review There is still a long way to actualize the application of EVs in NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD and highlight their prospects for clinical application as a novel noninvasive diagnostic tool as well as a promising therapy for NAFLD, owing to their unique physiochemical characteristics. We summarize the literatures on the mechanisms by which EVs act as mediators of intercellular communication by regulating metabolism, insulin resistance, inflammation, immune response, intestinal microecology, and fibrosis in NAFLD. We also discuss future challenges that must be resolved to improve the therapeutic potential of EVs. Major conclusions The levels and contents of EVs change dynamically at different stages of diseases and this phenomenon may be exploited for establishing sensitive stage-specific markers. EVs also have high application potential as drug delivery systems with low immunogenicity and high biocompatibility and can be easily engineered. Research on the mechanisms and clinical applications of EVs in NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and treatment is expected to grow with technological progress.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jou-Chen Chen
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi-Hung Lee
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yushin Hu
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
235
|
Mirmajidi SH, Irajie C, Savardashtaki A, Negahdaripour M, Nezafat N, Ghasemi Y. Identification of potential RapJ hits as sporulation pathway inducer candidates in Bacillus coagulans via structure-based virtual screening and molecular dynamics simulation studies. J Mol Model 2023; 29:256. [PMID: 37464224 DOI: 10.1007/s00894-023-05664-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND The bacterium Bacillus coagulans has attracted interest because of its ability to produce spores and advantageous probiotic traits, such as facilitating food digestion in the intestine, managing some disorders, and controlling the symbiotic microbiota. Spore-forming probiotic bacteria are especially important in the probiotic industry compared to non-spore-forming bacteria due to their stability during production and high resistance to adverse factors such as stomach acid. When spore-forming bacteria are exposed to environmental stresses, they enter the sporulation pathway to survive. This pathway is activated by the final phosphorylation of the master regulator of spore response, Spo0A, and upon achieving the phosphorylation threshold. Spo0A is indirectly inhibited by some enzymes of the aspartate response regulator phosphatase (Rap) family, such as RapJ. RapJ is one of the most important Rap enzymes in the sporogenesis pathway, which is naturally inhibited by the pentapeptides. METHODS This study used structure-based virtual screening and molecular dynamics (MD) simulation studies to find potential RapJ hits that could induce the sporulation pathway. The crystal structures of RapJ complexed with pentapeptide clearly elucidated their interactions with the enzyme active site. RESULTS Based on the binding compartment, through molecular docking, MD simulation, hydrogen bonds, and binding-free energy calculations, a series of novel hits against RapJ named tandutinib, infigratinib, sitravatinib, linifanib, epertinib, surufatinib, and acarbose were identified. Among these compounds, acarbose obtained the highest score, especially in terms of the number of hydrogen bonds, which plays a major role in stabilizing RapJ-ligand complexes, and also according to the occupancy percentages of hydrogen bonds, its hydrogen bonds were more stable during the simulation time. Consequently, acarbose is probably the most suitable hit for RapJ enzyme. Notably, experimental validation is crucial to confirm the effectiveness of the selected ligands.
Collapse
Affiliation(s)
- Seyedeh Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
236
|
Alam S, Westmark CJ, McCullagh EA. Diet in treatment of autism spectrum disorders. Front Neurosci 2023; 16:1031016. [PMID: 37492195 PMCID: PMC10364988 DOI: 10.3389/fnins.2022.1031016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 07/27/2023] Open
Abstract
Altering the diet to treat disease dates to c. 400 BC when starvation was used to reduce seizures in persons with epilepsy. The current diversity of symptomology and mechanisms underlying autism spectrum disorders (ASDs) and a corresponding lack of disorder-specific effective treatments prompts an evaluation of diet as a therapeutic approach to improve symptoms of ASDs. In this review article, we summarize the main findings of nutritional studies in ASDs, with an emphasis on the most common monogenic cause of autism, Fragile X Syndrome (FXS), and the most studied dietary intervention, the ketogenic diet as well as other dietary interventions. We also discuss the gut microbiota in relation to pre- and probiotic therapies and provide insight into future directions that could aid in understanding the mechanism(s) underlying dietary efficacy.
Collapse
Affiliation(s)
- Sabiha Alam
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| | - Elizabeth A. McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
237
|
Martyniak A, Zakrzewska Z, Schab M, Zawartka A, Wędrychowicz A, Skoczeń S, Tomasik PJ. Prevention and Health Benefits of Prebiotics, Probiotics and Postbiotics in Acute Lymphoblastic Leukemia. Microorganisms 2023; 11:1775. [PMID: 37512947 PMCID: PMC10384688 DOI: 10.3390/microorganisms11071775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in children, comprising 75-85% of cases. Aggressive treatment of leukemias includes chemotherapy and antibiotics that often disrupt the host microbiota. Additionally, the gut microbiota may play a role in the development and progression of acute leukemia. Prebiotics, probiotics, and postbiotics are considered beneficial to health. The role of prebiotics in the treatment and development of leukemia is not well understood, but inulin can be potentially used in the treatment of leukemia. Some probiotic bacteria such as Lactobacillus shows anticancer activity in in vitro studies. Additionally, Bifidobacterium spp., as a consequence of the inhibition of growth factor signaling and mitochondrial-mediated apoptosis, decrease the proliferation of cancer cells. Many bacterial metabolites have promising anticancer potential. The available research results are promising. However, more research is needed in humans, especially in the child population, to fully understand the relationship between the gut microbiota and acute leukemia.
Collapse
Affiliation(s)
- Adrian Martyniak
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Zuzanna Zakrzewska
- Department of Pediatric Oncology and Hematology, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Magdalena Schab
- Department of Pediatric Oncology and Hematology, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Aleksandra Zawartka
- Department of Paediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Andrzej Wędrychowicz
- Department of Paediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Przemysław J Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
238
|
Dong CD, Tsai ML, Nargotra P, Kour B, Chen CW, Sun PP, Sharma V. Bioprocess development for the production of xylooligosaccharide prebiotics from agro-industrial lignocellulosic waste. Heliyon 2023; 9:e18316. [PMID: 37519746 PMCID: PMC10372396 DOI: 10.1016/j.heliyon.2023.e18316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The development of sustainable biorefineries and bioeconomy has been the mandate of most of the governments with major focus on restricting the climate change concerns and finding new strategies to maintain the global food supply chain. Xylooligosaccharides (XOS) are short-chain oligomers which due to their excellent prebiotic potential in the nutraceutical sector has attracted intense research focus in the recent years. The agro-industrial crop and food waste can be utilized for the production of XOS which are derived from hemicellulose fraction (xylan) of the lignocellulosic materials. The extraction of xylan, is traditionally achieved by acidic and alkaline pretreatments which, however, have limited industrial applications. The inclusion of cutting-edge and environmentally beneficial pretreatment methods and technologies such as deep eutectic solvents and green catalysts are preferred. Moreover, the extraction of xylans from biomass using combinatorial pretreatment approaches may help in economizing the whole bioprocess. The current review outlines the factors involved in the xylan extraction and depolymerization processes from different lignocellulosic biomass and the subsequent enzymatic hydrolysis for XOS production. The different types of oligosaccharides and their prebiotic potential for the growth of healthy gut bacteria have also been explained. The introduction of modern molecular technologies has also made it possible to identify enzymes and microorganisms with the desired characteristics for usage in XOS industrial production processes.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- School of Biotechnology, University of Jammu, India
| |
Collapse
|
239
|
Sobstyl A, Chałupnik A, Mertowska P, Grywalska E. How Do Microorganisms Influence the Development of Endometriosis? Participation of Genital, Intestinal and Oral Microbiota in Metabolic Regulation and Immunopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:10920. [PMID: 37446108 DOI: 10.3390/ijms241310920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Microorganisms inhabiting the human body play an extremely key role in its proper functioning, as well as in the development of the immune system, which, by maintaining the immune balance, allows you to enjoy health. Dysbiosis of the intestinal microbiota, or in the oral cavity or reproductive tract, understood as a change in the number and diversity of all microorganisms inhabiting them, may correlate with the development of many diseases, including endometriosis, as researchers have emphasized. Endometriosis is an inflammatory, estrogen-dependent gynecological condition defined by the growth of endometrial cells outside the uterine cavity. Deregulation of immune homeostasis resulting from microbiological disorders may generate chronic inflammation, thus creating an environment conducive to the increased adhesion and angiogenesis involved in the development of endometriosis. In addition, research in recent years has implicated bacterial contamination and immune activation, reduced gastrointestinal function by cytokines, altered estrogen metabolism and signaling, and abnormal progenitor and stem cell homeostasis, in the pathogenesis of endometriosis. The aim of this review was to present the influence of intestinal, oral and genital microbiota dysbiosis in the metabolic regulation and immunopathogenesis of endometriosis.
Collapse
Affiliation(s)
- Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
240
|
Tavares LM, de Jesus LCL, Batista VL, Barroso FAL, Dos Santos Freitas A, Campos GM, Américo MF, da Silva TF, Coelho-Rocha ND, Belo GA, Drumond MM, Mancha-Agresti P, Vital KD, Fernandes SOA, Cardoso VN, Birbrair A, Ferreira E, Martins FS, Laguna JG, Azevedo V. Synergistic synbiotic containing fructooligosaccharides and Lactobacillus delbrueckii CIDCA 133 alleviates chemotherapy-induced intestinal mucositis in mice. World J Microbiol Biotechnol 2023; 39:235. [PMID: 37365380 DOI: 10.1007/s11274-023-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.
Collapse
Affiliation(s)
- Laísa Macedo Tavares
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane Lima Batista
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovanna Angeli Belo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Martins Drumond
- Federal Center for Technological Education of Minas Gerais, Department of Biological Sciences, Belo Horizonte, Brazil
- Federal Center for Technological Education of Minas Gerais, Materials Engineering Post- Graduation Program, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Federal Center for Technological Education of Minas Gerais, Department of Biological Sciences, Belo Horizonte, Brazil
- Federal Center for Technological Education of Minas Gerais, Materials Engineering Post- Graduation Program, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Enio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
241
|
Ioannidis O, Chatzakis C, Tirta M, Anestiadou E, Zapsalis K, Symeonidis S, Bitsianis S, Kotidis E, Pramateftakis MG, Mantzoros I, Angelopoulos S. The Efficacy of Probiotics, Prebiotics, and Synbiotics in Patients Who Have Undergone Abdominal Operation, in Terms of Bowel Function Post-Operatively: A Network Meta-Analysis. J Clin Med 2023; 12:4150. [PMID: 37373843 DOI: 10.3390/jcm12124150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Abdominal operations may lead to post-operative bowel dysfunction, while administration of probiotics, prebiotics and synbiotics may limit its manifestation. Τhe study aimed to assess the efficacy of probiotics, prebiotics and synbiotics in patients who undergone abdominal operation, in terms of bowel function post-operatively. METHODS PubMed, Scopus, Cochrane Central Register of Controlled Trials (Central), Embase, US Registry of clinical trials, and sources of grey literature were searched. The relative effect sizes were estimated, and we obtained the relative ranking of the interventions using cumulative ranking curves. RESULTS In total, 30 studies were included in the analysis. For the outcome of post-operative ileus, probiotics was superior to placebo/no intervention (relative risk, RR: 0.38; 95%CI: 0.14-0.98) with the highest SUCRA (surface under the cumulative ranking) value (92.1%). For time to first flatus, probiotics (MD: -0.47; 95%CI: -0.78 to -0.17) and synbiotics (MD: -0.53; 95%CI: -0.96 to -0.09) were superior to placebo/no intervention. For time to first defecation and for post-operative abdominal distension probiotics were superior to placebo/no intervention. For post-operative hospitalization days, synbiotics were superior to placebo/no intervention (MD: -3.07; 95%CI: -4.80 to -1.34). CONCLUSIONS Administration of probiotics in patients who had undergone abdominal surgery reduced the prevalence of post-operative ileus, time to first flatus, time to first defecation, and prevalence of post-operative abdominal distension. Synbiotics reduce time to first flatus and post-operative hospitalization days.
Collapse
Affiliation(s)
- Orestis Ioannidis
- Fourth Surgical Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Chatzakis
- Second Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Tirta
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elissavet Anestiadou
- Fourth Surgical Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Zapsalis
- Fourth Surgical Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Savvas Symeonidis
- Fourth Surgical Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefanos Bitsianis
- Fourth Surgical Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstathios Kotidis
- Fourth Surgical Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Ioannis Mantzoros
- Fourth Surgical Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stamatios Angelopoulos
- Fourth Surgical Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
242
|
Glycosidic linkage of rare and new-to-nature disaccharides reshapes gut microbiota in vitro. Food Chem 2023; 411:135440. [PMID: 36701921 DOI: 10.1016/j.foodchem.2023.135440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
The impact of glycosidic linkage of seven rare and new-to-nature disaccharides on gut bacteria was assessed in vitro. The community shift of the inocula from four donors in response to 1 % (w/v) disaccharide supplementation was captured by sequencing the 16S rRNA gene. A significant loss of bacterial alpha diversity, short lag time, low pH, and high total short-chain fatty acid displayed a faster fermentation of trehalose(Glc-α1,1α-Glc) and fibrulose(fructan, DP2-10). Bacteroides reduced in relative abundance under disaccharide supplementation suggesting a loss in complex carbohydrates metabolizing capacity. Fibrulose and l-arabinose glucoside(Glc-α1,3-l-Ara) significantly stimulated bifidobacteria but was suppressed with trehalose, ribose glucoside(Glc-α1,2-Rib), and 4'-epitrehalose(Glc-α1,1α-Gal) supplementation. Albeit insignificant, bifidobacteria increased with 4'-epikojibiose(Glc-α1,2-Gal), nigerose(Glc-α1,3-Glc), and kojibiose(Glc-α1,2-Glc). Prior conditioning of inoculum in kojibiose medium profoundly induced bifidobacteria by 44 % and 55 % upon reinoculation into kojibiose and fibrulose-supplemented media respectively. This study has demonstrated the importance of the disaccharide structure-function relationship in driving the gut bacterial community.
Collapse
|
243
|
Lou X, Xue J, Shao R, Mo C, Wang F, Chen G. Postbiotics as potential new therapeutic agents for sepsis. BURNS & TRAUMA 2023; 11:tkad022. [PMID: 37334140 PMCID: PMC10271603 DOI: 10.1093/burnst/tkad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/01/2023] [Indexed: 06/20/2023]
Abstract
Sepsis is the main cause of death in critically ill patients and gut microbiota dysbiosis plays a crucial role in sepsis. On the one hand, sepsis leads to the destruction of gut microbiota and induces and aggravates terminal organ dysfunction. On the other hand, the activation of pathogenic gut flora and the reduction in beneficial microbial products increase the susceptibility of the host to sepsis. Although probiotics or fecal microbiota transplantation preserve gut barrier function on multiple levels, their efficacy in sepsis with intestinal microbiota disruptions remains uncertain. Postbiotics consist of inactivated microbial cells or cell components. They possess antimicrobial, immunomodulatory, antioxidant and antiproliferative activities. Microbiota-targeted therapy strategies, such as postbiotics, may reduce the incidence of sepsis and improve the prognosis of patients with sepsis by regulating gut microbial metabolites, improving intestinal barrier integrity and changing the composition of the gut microbiota. They offer a variety of mechanisms and might even be superior to more conventional 'biotics' such as probiotics and prebiotics. In this review, we present an overview of the concept of postbiotics and summarize what is currently known about postbiotics and their prospective utility in sepsis therapy. Overall, postbiotics show promise as a viable adjunctive therapy option for sepsis.
Collapse
Affiliation(s)
- Xiran Lou
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Chunyan Mo
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming 650034, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming 650034, China
| |
Collapse
|
244
|
Liu ZS, Chen PW. Featured Prebiotic Agent: The Roles and Mechanisms of Direct and Indirect Prebiotic Activities of Lactoferrin and Its Application in Disease Control. Nutrients 2023; 15:2759. [PMID: 37375663 DOI: 10.3390/nu15122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Lactoferrin (LF) is a glycoprotein found in mammalian milk, and lactoferricin is a peptide derived from LF hydrolysate. Both LF and lactoferricin (LFcin) have diverse functions that could benefit mammals. Bovine LF (BLF) and BLFcin exhibit a wide range of antimicrobial activities, but most probiotic strains are relatively resistant to their antibacterial effects. BLF and BLF hydrolysate can promote the growth of specific probiotics depending on the culture conditions, the dose of BLF or BLF-related peptides, and the probiotic strains used. BLF supplementation has been shown to modulate several central molecular pathways or genes in Lacticaseibacillus rhamnosus GG under cold conditions, which may explain the prebiotic roles of BLF. LF alone or in combination with selected probiotics can help control bacterial infections or metabolic disorders, both in animal studies and in human clinical trials. Various LF-expressing probiotics, including those expressing BLF, human LF, or porcine LF, have been developed to facilitate the combination of LFs with specific probiotics. Supplementation with LF-expressing probiotics has positive effects in animal studies. Interestingly, inactivated LF-expressing probiotics significantly improved diet-induced nonalcoholic fatty liver disease (NAFLD) in a mouse model. This review highlights the accumulated evidence supporting the use of LF in combination with selected LF-resistant probiotics or LF-expressing probiotics in the field.
Collapse
Affiliation(s)
- Zhen-Shu Liu
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan
| |
Collapse
|
245
|
Logoń K, Świrkosz G, Nowak M, Wrześniewska M, Szczygieł A, Gomułka K. The Role of the Microbiome in the Pathogenesis and Treatment of Asthma. Biomedicines 2023; 11:1618. [PMID: 37371713 DOI: 10.3390/biomedicines11061618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the microbiome in the pathogenesis and treatment of asthma is significant. The purpose of this article is to show the interplay between asthma and the microbiome, and main areas that require further research are also highlighted. The literature search was conducted using the PubMed database. After a screening process of studies published before May 2023, a total of 128 articles were selected in our paper. The pre-treatment bronchial microbiome in asthmatic patients plays a role in their responsiveness to treatment. Gut microbiota and its dysbiosis can contribute to immune system modulation and the development of asthma. The association between the microbiome and asthma is complex. Further research is necessary to clarify which factors might moderate that relationship. An appropriate gut microbiome and its intestinal metabolites are a protective factor for asthma development. Prebiotics and certain dietary strategies may have a prophylactic or therapeutic effect, but more research is needed to establish final conclusions. Although the evidence regarding probiotics is ambiguous, and most meta-analyses do not support the use of probiotic intake to reduce asthma, several of the most recent studies have provided promising effects. Further studies should focus on the investigation of specific strains and the examination of their mechanistic and genetic aspects.
Collapse
Affiliation(s)
- Katarzyna Logoń
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Gabriela Świrkosz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Monika Nowak
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Martyna Wrześniewska
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Aleksandra Szczygieł
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
246
|
Hassan ZR, Salama DEA, Ibrahim HF, Ahmed SG. Ultrastructural changes and IgA modulatory effect of commercial prebiotic and probiotic in murine giardiasis. J Parasit Dis 2023; 47:224-237. [PMID: 37193505 PMCID: PMC10182204 DOI: 10.1007/s12639-022-01552-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Giardiasis, a parasitic infection of the gastrointestinal tract, is prevalent worldwide. The integrity of the intestinal epithelial barrier plays an important defensive role in giardiasis, and as Oral supplementation with prebiotics and probiotics is known to reinforce the intestinal barrier in many gastrointestinal diseases, this study assessed the effects of prebiotic and probiotic supplementation in giardiasis and compared the results with those obtained after nitazoxanide therapy. Swiss albino male lab-bred mice (n = 50) were divided into three major groups; Group I (control group), i.e., negative (noninfected nontreated) and positive controls (infected nontreated); Group II (preventive group), in which mice were provided prebiotic, probiotic, or a combination for 7 days before of infection, and Group III (therapy group), in which mice were administered prebiotic, probiotic, combined supplements and nitazoxanide from day 12 post-infection. The assessment was achieved through Giardia cyst count, histopathological examination and ultrastructure study. Also, Serological and immunohistochemical parameters were done to evaluate the modulation of IgA levels. Oral supplementation with prebiotic and probiotic, either before or after infection (in preventive or therapy groups respectively) resulted in a significant reduction in Giardia cyst shedding. Remarkable histological and ultrastructure improvement in the intestinal changes, along with a significant increase in the serological and immunohistochemical IgA levels, were seen in mice provided combined supplements and nitazoxanide (in therapy group). Thus, our results indicate that combined prebiotic and probiotic supplementation has promising anti-Giardia activity and that it can restore intestinal structures and modulate IgA response, apart from providing synergistic effects when added to nitazoxanide.
Collapse
Affiliation(s)
- Zeinab R. Hassan
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11651 Egypt
| | - Doaa E. A. Salama
- Departments of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11651 Egypt
- Department of Pathology, School of Medicine, Badr University in Cairo (BUC), Cairo, 11829 Egypt
| | - Hanan F. Ibrahim
- Departments of Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11651 Egypt
| | - Samah G. Ahmed
- Departments of Histology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11651 Egypt
| |
Collapse
|
247
|
Sharif S, Oddie SJ, Heath PT, McGuire W. Prebiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev 2023; 6:CD015133. [PMID: 37262358 PMCID: PMC10234253 DOI: 10.1002/14651858.cd015133.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Dietary supplementation with prebiotic oligosaccharides to modulate the intestinal microbiome has been proposed as a strategy to reduce the risk of necrotising enterocolitis (NEC) and associated mortality and morbidity in very preterm or very low birth weight (VLBW) infants. OBJECTIVES To assess the benefits and harms of enteral supplementation with prebiotics (versus placebo or no treatment) for preventing NEC and associated morbidity and mortality in very preterm or VLBW infants. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, the Maternity and Infant Care database and the Cumulative Index to Nursing and Allied Health Literature (CINAHL), from the earliest records to July 2022. We searched clinical trials databases and conference proceedings, and examined the reference lists of retrieved articles. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs comparing prebiotics with placebo or no prebiotics in very preterm (< 32 weeks' gestation) or VLBW (< 1500 g) infants. The primary outcomes were NEC and all-cause mortality, and the secondary outcomes were late-onset invasive infection, duration of hospitalisation since birth, and neurodevelopmental impairment. DATA COLLECTION AND ANALYSIS Two review authors separately evaluated risk of bias of the trials, extracted data, and synthesised effect estimates using risk ratio (RR), risk difference (RD), and mean difference (MD), with associated 95% confidence intervals (CIs). The primary outcomes of interest were NEC and all-cause mortality; our secondary outcome measures were late-onset (> 48 hours after birth) invasive infection, duration of hospitalisation, and neurodevelopmental impairment. We used the GRADE approach to assess the level of certainty of the evidence. MAIN RESULTS We included seven trials in which a total of 705 infants participated. All the trials were small (mean sample size 100). Lack of clarity on methods to conceal allocation and mask caregivers or investigators were potential sources of bias in three of the trials. The studied prebiotics were fructo- and galacto-oligosaccharides, inulin, and lactulose, typically administered daily with enteral feeds during birth hospitalisation. Meta-analyses of data from seven trials (686 infants) suggest that prebiotics may result in little or no difference in NEC (RR 0.97, 95% CI 0.60 to 1.56; RD none fewer per 1000, 95% CI 50 fewer to 40 more; low-certainty evidence), all-cause mortality (RR 0.43, 95% CI 0.20 to 0.92; 40 per 1000 fewer, 95% CI 70 fewer to none fewer; low-certainty evidence), or late-onset invasive infection (RR 0.79, 95% CI 0.60 to 1.06; 50 per 1000 fewer, 95% CI 100 fewer to 10 more; low-certainty evidence) prior to hospital discharge. The certainty of this evidence is low because of concerns about the risk of bias in some trials and the imprecision of the effect size estimates. The data available from one trial provided only very low-certainty evidence about the effect of prebiotics on measures of neurodevelopmental impairment (Bayley Scales of Infant Development (BSID) Mental Development Index score < 85: RR 0.84, 95% CI 0.25 to 2.90; very low-certainty evidence; BSID Psychomotor Development Index score < 85: RR 0.24, 95% 0.03 to 2.00; very low-certainty evidence; cerebral palsy: RR 0.35, 95% CI 0.01 to 8.35; very low-certainty evidence). AUTHORS' CONCLUSIONS The available trial data provide low-certainty evidence about the effects of prebiotics on the risk of NEC, all-cause mortality before discharge, and invasive infection, and very low-certainty evidence about the effect on neurodevelopmental impairment for very preterm or VLBW infants. Our confidence in the effect estimates is limited; the true effects may be substantially different. Large, high-quality trials are needed to provide evidence of sufficient validity to inform policy and practice decisions.
Collapse
Key Words
- humans
- infant, newborn
- enterocolitis, necrotizing
- enterocolitis, necrotizing/etiology
- enterocolitis, necrotizing/prevention & control
- infant, extremely premature
- infant, premature, diseases
- infant, premature, diseases/etiology
- infant, premature, diseases/prevention & control
- infant, very low birth weight
- infections
Collapse
Affiliation(s)
- Sahar Sharif
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Sam J Oddie
- Bradford Neonatology, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Paul T Heath
- Division of Child Health and Vaccine Institute, St. George's, University of London, London, UK
| | - William McGuire
- Centre for Reviews and Dissemination, University of York, York, UK
| |
Collapse
|
248
|
Yuanita I, Silitonga L, Suthama N. Evaluation of health status in broilers fed with a mixture of Dayak onion extract and Lactobacillus acidophilus. J Adv Vet Anim Res 2023; 10:269-274. [PMID: 37534086 PMCID: PMC10390671 DOI: 10.5455/javar.2023.j678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
Objective The feeding effects of DoLa (a combination of Dayak onion extract and probiotic Lactobacillus acidophilus) on hematological indices and lymphoid organs as indicators of broiler health status were evaluated in the present study. Materials and Methods 192 1-day-old unsexed broilers of the CP 707 strain with a body weight of 46.43 ± 1.65 gm were randomly divided into 4 dietary treatments with 6 replications. The dietary treatments applied were basal diet (BD) as a control with a code of DoLa0, BD + 0.1% DoLa (DoLa1), BD + 0.2% DoLa (DoLa2), and BD + 0.3% DoLa (DoLa3). The parameters monitored included hemoglobin (Hb), red blood cell (RBC), heterophile (H), lymphocyte (L), white blood cell (WBC), heterophile-lymphocyte (H/L) ratio, the lymphoid organs (bursa Fabricius, spleen, and thymus) relative weight, as well as carcass weight. Results The results indicated a significant improvement in WBC, L, and carcass weight (p < 0.05) as the feeding level of DoLa increased while the H and H/L ratio decreased. However, the dietary inclusion of DoLa did not affect the lymphoid organs' relative weight, RBC, and Hb concentrations. Conclusion The mixture at 0.3% significantly improved health status through the indicators of hematological indices, lymphoid organs, and carcass weight of broilers.
Collapse
Affiliation(s)
- Iis Yuanita
- Animal Science Study Program, Faculty of Agriculture, University of Palangka Raya, Palangka Raya, Indonesia
| | - Lisnawaty Silitonga
- Animal Science Study Program, Faculty of Agriculture, University of Palangka Raya, Palangka Raya, Indonesia
| | - Nyoman Suthama
- Departement of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
249
|
Stribling P, Ibrahim F. Dietary fibre definition revisited - The case of low molecular weight carbohydrates. Clin Nutr ESPEN 2023; 55:340-356. [PMID: 37202067 DOI: 10.1016/j.clnesp.2023.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
Low molecular weight (LMW) non-digestible carbohydrates (namely, oligosaccharides and inulin) are accepted as dietary fibre in many countries worldwide. The inclusion of oligosaccharides as dietary fibre was made optional within the Codex Alimentarius definition in 2009, which has caused great controversy. Inulin is accepted as dietary fibre by default, due to being a non-digestible carbohydrate polymer. Oligosaccharides and inulin occur naturally in numerous foods and are frequently incorporated into commonly consumed food products for a variety of purposes, such as to increase dietary fibre content. LMW non-digestible carbohydrates, due to their rapid fermentation in the proximal colon, may cause deleterious effects in individuals with functional bowel disorders (FBDs) and, as such, are excluded on the low FODMAP (fermentable oligosaccharides, disaccharides, and polyols) diet and similar protocols. Their addition to food products as dietary fibre allows the use of associated nutrition/health claims, causing a paradox for those with FBDs, which is further complicated by lack of clarity on food labelling. Therefore, this review aimed to discuss whether the inclusion of LMW non-digestible carbohydrates within the Codex definition of dietary fibre is warranted. This review provides justification for the exclusion of oligosaccharides and inulin from the Codex definition of dietary fibre. LMW non-digestible carbohydrates could, instead, be placed in their own category as prebiotics, recognised for their specific functional properties, or considered food additives, whereby they are not promoted for being beneficial for health. This would preserve the concept of dietary fibre being a universally beneficial dietary component for all individuals.
Collapse
Affiliation(s)
- Philippa Stribling
- UCL Division of Medicine, 5 University Street, London, WC1E 6JF, United Kingdom.
| | - Fandi Ibrahim
- University of Suffolk, Life Sciences, Ipswich, IP4 1QJ, United Kingdom.
| |
Collapse
|
250
|
de Carvalho NM, Oliveira DL, Costa CM, Pintado ME, Madureira AR. Strategies to Assess the Impact of Sustainable Functional Food Ingredients on Gut Microbiota. Foods 2023; 12:2209. [PMID: 37297454 PMCID: PMC10253045 DOI: 10.3390/foods12112209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Nowadays, it is evident that food ingredients have different roles and distinct health benefits to the consumer. Over the past years, the interest in functional foods, especially those targeting gut health, has grown significantly. The use of industrial byproducts as a source of new functional and sustainable ingredients as a response to such demands has raised interest. However, the properties of these ingredients can be affected once incorporated into different food matrices. Therefore, when searching for the least costly and most suitable, beneficial, and sustainable formulations, it is necessary to understand how such ingredients perform when supplemented in different food matrices and how they impact the host's health. As proposed in this manuscript, the ingredients' properties can be first evaluated using in vitro gastrointestinal tract (GIT) simulation models prior to validation through human clinical trials. In vitro models are powerful tools that mimic the physicochemical and physiological conditions of the GIT, enabling prediction of the potentials of functional ingredients per se and when incorporated into a food matrix. Understanding how newly developed ingredients from undervalued agro-industrial sources behave as supplements supports the development of new and more sustainable functional foods while scientifically backing up health-benefits claims.
Collapse
Affiliation(s)
- Nelson Mota de Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Diana Luazi Oliveira
- Research and Innovation Unit—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal;
| | - Célia Maria Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Manuela Estevez Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| |
Collapse
|