201
|
Wilkinson AR, DeMonaco SM, Panciera DL, Otoni CC, Leib MS, Larson MM. Bile duct obstruction associated with pancreatitis in 46 dogs. J Vet Intern Med 2020; 34:1794-1800. [PMID: 32852140 PMCID: PMC7517504 DOI: 10.1111/jvim.15879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background Pancreatitis is a common cause of extrahepatic bile duct obstruction (EHBDO) in dogs. Information describing the clinical course of dogs with pancreatitis associated bile duct obstruction (PABDO) is limited. Objectives To describe the clinical course of PABDO in dogs and determine if presumed markers of disease severity are predictors of survival. Animals Forty‐six client‐owned dogs with PABDO. Methods A retrospective review of medical records from dogs diagnosed with PABDO was performed. Data, including clinical signs and biochemical changes, were collected 6 times throughout the course of disease. Outcome was defined as either survival (discharge from the hospital) or death. Results Thirty‐three (79%) out of 42 dogs with PABDO survived. Thirty‐one (94%) of the 33 dogs that survived received medical management alone. Time from onset of clinical signs to initial documented increase in serum bilirubin concentration, peak bilirubin elevation, and initial decline in serum bilirubin concentration were 7 (median), 8, and 15 days, respectively. The median number of days from onset of clinical signs to outcome date was 13. Clinical signs of fever, vomiting, and anorexia were decreased in frequency from the onset of clinical signs to the time of peak bilirubin. Median bile duct dilatation at the time of ultrasonographic diagnosis of PABDO and peak bilirubin were not different between survivors (7.6 mm, 11.7 mg/dL) and nonsurvivors (6 mm, 10.6 mg/dL, P = .12, P = .8). Conclusions Dogs with PABDO often have a prolonged course of illness and improve clinically despite biochemical evidence of progression of EHBDO.
Collapse
Affiliation(s)
- Ashley R Wilkinson
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Stefanie M DeMonaco
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - David L Panciera
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | | | - Michael S Leib
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Martha M Larson
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
202
|
Hahn L, Helmrich N, Herebian D, Mayatepek E, Drebber U, Domann E, Olejniczak S, Weigel M, Hain T, Rath T, Wirtz S, Mollenkopf HJ, Schmidt N, Ewers C, Baier A, Churin Y, Windhorst A, Weiskirchen R, Steinhoff U, Roeb E, Roderfeld M. IL-13 as Target to Reduce Cholestasis and Dysbiosis in Abcb4 Knockout Mice. Cells 2020; 9:1949. [PMID: 32846954 PMCID: PMC7564366 DOI: 10.3390/cells9091949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/13/2023] Open
Abstract
The Th2 cytokine IL-13 is involved in biliary epithelial injury and liver fibrosis in patients as well as in animal models. The aim of this study was to investigate IL-13 as a therapeutic target during short term and chronic intrahepatic cholestasis in an Abcb4-knockout mouse model (Abcb4-/-). Lack of IL-13 protected Abcb4-/- mice transiently from cholestasis. This decrease in serum bile acids was accompanied by an enhanced excretion of bile acids and a normalization of fecal bile acid composition. In Abcb4-/-/IL-13-/- double knockout mice, bacterial translocation to the liver was significantly reduced and the intestinal microbiome resembled the commensal composition in wild type animals. In addition, 52-week-old Abcb4-/-IL-13-/- mice showed significantly reduced hepatic fibrosis. Abcb4-/- mice devoid of IL-13 transiently improved cholestasis and converted the composition of the gut microbiota towards healthy conditions. This highlights IL-13 as a potential therapeutic target in biliary diseases.
Collapse
Affiliation(s)
- Luisa Hahn
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Nora Helmrich
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, D-40225 Duesseldorf, Germany; (D.H.); (E.M.)
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, D-40225 Duesseldorf, Germany; (D.H.); (E.M.)
| | - Uta Drebber
- Institute for Pathology, University Hospital of Cologne, D-50937 Cologne, Germany;
| | - Eugen Domann
- Institute of Medical Microbiology, German Centre for Infection Research (DZIF Partner Site Giessen-Marburg-Langen), Justus-Liebig-University, D-35392 Giessen, Germany; (E.D.); (S.O.); (M.W.); (T.H.)
| | - Stefan Olejniczak
- Institute of Medical Microbiology, German Centre for Infection Research (DZIF Partner Site Giessen-Marburg-Langen), Justus-Liebig-University, D-35392 Giessen, Germany; (E.D.); (S.O.); (M.W.); (T.H.)
| | - Markus Weigel
- Institute of Medical Microbiology, German Centre for Infection Research (DZIF Partner Site Giessen-Marburg-Langen), Justus-Liebig-University, D-35392 Giessen, Germany; (E.D.); (S.O.); (M.W.); (T.H.)
| | - Torsten Hain
- Institute of Medical Microbiology, German Centre for Infection Research (DZIF Partner Site Giessen-Marburg-Langen), Justus-Liebig-University, D-35392 Giessen, Germany; (E.D.); (S.O.); (M.W.); (T.H.)
| | - Timo Rath
- Department of Medicine 1, Division of Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany; (T.R.); (S.W.)
| | - Stefan Wirtz
- Department of Medicine 1, Division of Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany; (T.R.); (S.W.)
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray, Max Planck Institute for Infection Biology, D-10117 Berlin, Germany;
| | - Nadine Schmidt
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; (N.S.); (C.E.)
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; (N.S.); (C.E.)
| | - Anne Baier
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Yuri Churin
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Anita Windhorst
- Institute for Medical Informatics, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University Marburg, D-35043 Marburg, Germany;
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University, D-35392 Giessen, Germany; (L.H.); (N.H.); (A.B.); (Y.C.); (E.R.)
| |
Collapse
|
203
|
Pérez A, Rivoira MA, Rodríguez V, Marchionatti A, Tolosa de Talamoni N. Role of mitochondria in the differential action of sodium deoxycholate and ursodeoxycholic acid on rat duodenum. Can J Physiol Pharmacol 2020; 99:270-277. [PMID: 32687730 DOI: 10.1139/cjpp-2019-0561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sodium deoxycholate (NaDOC) inhibits the intestinal Ca2+ absorption and ursodeoxycholic acid (UDCA) stimulates it. The aim of this study was to determine whether NaDOC and UDCA produce differential effects on the redox state of duodenal mitochondria altering the Krebs cycle and the electron transport chain (ETC) functioning, which could lead to perturbations in the mitochondrial dynamics and biogenesis. Rat intestinal mitochondria were isolated from untreated and treated animals with either NaDOC, UDCA, or both. Krebs cycle enzymes, ETC components, ATP synthase, and mitochondrial dynamics and biogenesis markers were determined. NaDOC decreased isocitrate dehydrogenase (ICDH) and malate dehydrogenase activities affecting the ETC and ATP synthesis. NaDOC also induced oxidative stress and increased the superoxide dismutase activity and impaired the mitochondrial biogenesis and functionality. UDCA increased the activities of ICDH and complex II of ETC. The combination of both bile acids conserved the functional activities of Krebs cycle enzymes, ETC components, oxidative phosphorylation, and mitochondrial biogenesis. In conclusion, the inhibitory effect of NaDOC on intestinal Ca2+ absorption is mediated by mitochondrial dysfunction, which is avoided by UDCA. The stimulatory effect of UDCA alone is associated with amelioration of mitochondrial functioning. This knowledge could improve treatment of diseases that affect the intestinal Ca2+ absorption.
Collapse
Affiliation(s)
- Adriana Pérez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María Angélica Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Valeria Rodríguez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Ana Marchionatti
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.,Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| |
Collapse
|
204
|
Gómez C, Stücheli S, Kratschmar DV, Bouitbir J, Odermatt A. Development and Validation of a Highly Sensitive LC-MS/MS Method for the Analysis of Bile Acids in Serum, Plasma, and Liver Tissue Samples. Metabolites 2020; 10:E282. [PMID: 32660078 PMCID: PMC7408441 DOI: 10.3390/metabo10070282] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Bile acids control lipid homeostasis by regulating uptake from food and excretion. Additionally, bile acids are bioactive molecules acting through receptors and modulating various physiological processes. Impaired bile acid homeostasis is associated with several diseases and drug-induced liver injury. Individual bile acids may serve as disease and drug toxicity biomarkers, with a great demand for improved bile acid quantification methods. We developed, optimized, and validated an LC-MS/MS method for quantification of 36 bile acids in serum, plasma, and liver tissue samples. The simultaneous quantification of important free and taurine- and glycine-conjugated bile acids of human and rodent species has been achieved using a simple workflow. The method was applied to a mouse model of statin-induced myotoxicity to assess a possible role of bile acids. Treatment of mice for three weeks with 5, 10, and 25 mg/kg/d simvastatin, causing adverse skeletal muscle effects, did not alter plasma and liver tissue bile acid profiles, indicating that bile acids are not involved in statin-induced myotoxicity. In conclusion, the established LC-MS/MS method enables uncomplicated sample preparation and quantification of key bile acids in serum, plasma, and liver tissue of human and rodent species to facilitate future studies of disease mechanisms and drug-induced liver injury.
Collapse
Affiliation(s)
| | | | | | | | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (C.G.); (S.S.); (D.V.K.); (J.B.)
| |
Collapse
|
205
|
Tian Y, Gui W, Koo I, Smith PB, Allman EL, Nichols RG, Rimal B, Cai J, Liu Q, Patterson AD. The microbiome modulating activity of bile acids. Gut Microbes 2020; 11:979-996. [PMID: 32138583 PMCID: PMC7524280 DOI: 10.1080/19490976.2020.1732268] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bile acids are potent antibacterial compounds and play an important role in shaping the microbial ecology of the gut. Here, we combined flow cytometry, growth rate measurements (OD600), and NMR- and mass spectrometry-based metabolomics to systematically profile the impact of bile acids on the microbiome using in vitro and in vivo models. This study confirmed that (1) unconjugated bile acids possess more potent antibacterial activity than conjugated bile acids; (2) Gram-positive bacteria are more sensitive to bile acids than Gram-negative bacteria; (3) some probiotic bacteria such as Lactobacillus and Bifidobacterium and 7α-dehydroxylating bacteria such as Clostridium scindens show bile acid resistance that is associated with activation of glycolysis. Moreover, we demonstrated that (4) as one of most hydrophobic bile acids, lithocholic acid (LCA) shows reduced toxicity to bacteria in the cecal microbiome in both in vivo and in vitro models; (5) bile acids directly and rapidly affect bacterial global metabolism including membrane damage, disrupted amino acid, nucleotide, and carbohydrate metabolism; and (6) in vivo, short-term exposure to bile acids significantly affected host metabolism via alterations of the bacterial community structure. This study systematically profiled interactions between bile acids and gut bacteria providing validation of previous observation and new insights into the interaction of bile acids with the microbiome and mechanisms related to bile acid tolerance.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wei Gui
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Philip B. Smith
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erik L. Allman
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Robert G. Nichols
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Qing Liu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA,CONTACT Andrew D. Patterson 322 Life Science Bldg, University Park16802
| |
Collapse
|
206
|
Beaudoin JJ, Brouwer KLR, Malinen MM. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol Ther 2020; 211:107542. [PMID: 32247663 PMCID: PMC7480074 DOI: 10.1016/j.pharmthera.2020.107542] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Organic solute transporter alpha/beta (OSTα/β) is a heteromeric solute carrier protein that transports bile acids, steroid metabolites and drugs into and out of cells. OSTα/β protein is expressed in various tissues, but its expression is highest in the gastrointestinal tract where it facilitates the recirculation of bile acids from the gut to the liver. Previous studies established that OSTα/β is upregulated in liver tissue of patients with extrahepatic cholestasis, obstructive cholestasis, and primary biliary cholangitis (PBC), conditions that are characterized by elevated bile acid concentrations in the liver and/or systemic circulation. The discovery that OSTα/β is highly upregulated in the liver of patients with nonalcoholic steatohepatitis (NASH) further highlights the clinical relevance of this transporter because the incidence of NASH is increasing at an alarming rate with the obesity epidemic. Since OSTα/β is closely linked to the homeostasis of bile acids, and tightly regulated by the nuclear receptor farnesoid X receptor, OSTα/β is a potential drug target for treatment of cholestatic liver disease, and other bile acid-related metabolic disorders such as obesity and diabetes. Obeticholic acid, a semi-synthetic bile acid used to treat PBC, under review for the treatment of NASH, and in development for the treatment of other metabolic disorders, induces OSTα/β. Some drugs associated with hepatotoxicity inhibit OSTα/β, suggesting a possible role for OSTα/β in drug-induced liver injury (DILI). Furthermore, clinical cases of homozygous genetic defects in both OSTα/β subunits resulting in diarrhea and features of cholestasis have been reported. This review article has been compiled to comprehensively summarize the recent data emerging on OSTα/β, recapitulating the available literature on the structure-function and expression-function relationships of OSTα/β, the regulation of this important transporter, the interaction of drugs and other compounds with OSTα/β, and the comparison of OSTα/β with other solute carrier transporters as well as adenosine triphosphate-binding cassette transporters. Findings from basic to more clinically focused research efforts are described and discussed.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
207
|
Beaudoin JJ, Bezençon J, Sjöstedt N, Fallon JK, Brouwer KLR. Role of Organic Solute Transporter Alpha/Beta in Hepatotoxic Bile Acid Transport and Drug Interactions. Toxicol Sci 2020; 176:34-35. [PMID: 32294204 PMCID: PMC7357176 DOI: 10.1093/toxsci/kfaa052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organic solute transporter (OST) α/β is a key bile acid transporter expressed in various organs, including the liver under cholestatic conditions. However, little is known about the involvement of OSTα/β in bile acid-mediated drug-induced liver injury (DILI), a major safety concern in drug development. This study investigated whether OSTα/β preferentially transports more hepatotoxic, conjugated, primary bile acids and to what extent xenobiotics inhibit this transport. Kinetic studies with OSTα/β-overexpressing cells revealed that OSTα/β preferentially transported bile acids in the following order: taurochenodeoxycholate > glycochenodeoxycholate > taurocholate > glycocholate. The apparent half-maximal inhibitory concentrations for OSTα/β-mediated bile acid (5 µM) transport inhibition by fidaxomicin, troglitazone sulfate, and ethinyl estradiol were: 210, 334, and 1050 µM, respectively, for taurochenodeoxycholate; 97.6, 333, and 337 µM, respectively, for glycochenodeoxycholate; 140, 265, and 527 µM, respectively, for taurocholate; 59.8, 102, and 117 µM, respectively, for glycocholate. The potential role of OSTα/β in hepatocellular glycine-conjugated bile acid accumulation and cholestatic DILI was evaluated using sandwich-cultured human hepatocytes (SCHH). Treatment of SCHH with the farnesoid X receptor agonist chenodeoxycholate (100 µM) resulted in substantial OSTα/β induction, among other proteomic alterations, reducing glycochenodeoxycholate and glycocholate accumulation in cells+bile 4.0- and 4.5-fold, respectively. Treatment of SCHH with troglitazone and fidaxomicin together under cholestatic conditions resulted in increased hepatocellular toxicity compared with either compound alone, suggesting that OSTα/β inhibition may accentuate DILI. In conclusion, this study provides insights into the role of OSTα/β in preferential disposition of bile acids associated with hepatotoxicity, the impact of xenobiotics on OSTα/β-mediated bile acid transport, and the role of this transporter in SCHH and cholestatic DILI.
Collapse
Affiliation(s)
| | | | - Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|
208
|
Fang M, Zhang Q, Yu P, Ge C, Guo J, Zhang Y, Wang H. The effects, underlying mechanism and interactions of dexamethasone exposure during pregnancy on maternal bile acid metabolism. Toxicol Lett 2020; 332:97-106. [PMID: 32599024 DOI: 10.1016/j.toxlet.2020.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
As important members in steroids related signal pathways, bile acids are very important in regulating substance metabolism and immune homeostasis. However, bile acids are highly cytotoxic, and the excessive accumulation can induce several abnormalities such as cholestatic liver injury. It is known that the bile acid metabolism alters during pregnancy and mostly will not result in pathologies. However, the effect of dexamethasone exposure during pregnancy on bile acid metabolism is still unknown. In this study, pregnant Wistar rats were subcutaneously administered dexamethasone (0.2 mg/kg.d) or saline from gestation day 9-21, while virgin rats were given the same treatment for 13 days. We found that, physiological pregnancy or dexamethasone exposure during non-pregnancy did not affect maternal serum TBA level and liver function. Nevertheless, dexamethasone exposure during pregnancy increased serum TBA level and accompanied with liver injury. Furthermore, we discovered that the conservation of bile acid homeostasis under pregnancy or dexamethasone exposure was maintained through compensatory pathways. However, dexamethasone exposure during pregnancy tipped the balance of liver bile acid homeostasis by increasing classical synthesis and decreasing efflux and uptake. In addition, dexamethasone exposure during pregnancy also increased serum estrogen level and nuclear receptors mRNA expression levels. Finally, two-way ANOVA analysis showed that dexamethasone exposure during pregnancy could induce or facilitate maternal cholestasis and liver injury by up-regulating ERα and CYP7A1 expression. This study confirmed that dexamethasone exposure during pregnancy was related to maternal intrahepatic cholestasis of pregnancy and should be carefully monitored in clinical settings.
Collapse
Affiliation(s)
- Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
209
|
Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, Yu Q, Wang H, Sun L, Huang X, Zhang L, Jiang Z. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett 2020; 331:242-253. [PMID: 32579994 DOI: 10.1016/j.toxlet.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziteng Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qiongna Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
210
|
Navarro SL, Levy L, Curtis KR, Elkon I, Kahsai OJ, Ammar HS, Randolph TW, Hong NN, Carnevale Neto F, Raftery D, Chapkin RS, Lampe JW, Hullar MAJ. Effect of a Flaxseed Lignan Intervention on Circulating Bile Acids in a Placebo-Controlled Randomized, Crossover Trial. Nutrients 2020; 12:E1837. [PMID: 32575611 PMCID: PMC7374341 DOI: 10.3390/nu12061837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Plant lignans and their microbial metabolites, e.g., enterolactone (ENL), may affect bile acid (BA) metabolism through interaction with hepatic receptors. We evaluated the effects of a flaxseed lignan extract (50 mg/day secoisolariciresinol diglucoside) compared to a placebo for 60 days each on plasma BA concentrations in 46 healthy men and women (20-45 years) using samples from a completed randomized, crossover intervention. Twenty BA species were measured in fasting plasma using LC-MS. ENL was measured in 24-h urines by GC-MS. We tested for (a) effects of the intervention on BA concentrations overall and stratified by ENL excretion; and (b) cross-sectional associations between plasma BA and ENL. We also explored the overlap in bacterial metabolism at the genus level and conducted in vitro anaerobic incubations of stool with lignan substrate to identify genes that are enriched in response to lignan metabolism. There were no intervention effects, overall or stratified by ENL at FDR < 0.05. In the cross-sectional analysis, irrespective of treatment, five secondary BAs were associated with ENL excretion (FDR < 0.05). In vitro analyses showed positive associations between ENL production and bacterial gene expression of the bile acid-inducible gene cluster and hydroxysteroid dehydrogenases. These data suggest overlap in community bacterial metabolism of secondary BA and ENL.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Lisa Levy
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Keith R. Curtis
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Isaac Elkon
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Orsalem J. Kahsai
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Hamza S. Ammar
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Timothy W. Randolph
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Natalie N. Hong
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; (N.N.H.); (F.C.N.)
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; (N.N.H.); (F.C.N.)
| | - Daniel Raftery
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; (N.N.H.); (F.C.N.)
| | - Robert S. Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX 77843, USA;
| | - Johanna W. Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Meredith A. J. Hullar
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| |
Collapse
|
211
|
Dysregulation of Circulating FGF19 and Bile Acids in Primary Biliary Cholangitis-Autoimmune Hepatitis Overlap Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1934541. [PMID: 32626734 PMCID: PMC7306076 DOI: 10.1155/2020/1934541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Background Primary biliary cholangitis-autoimmune hepatitis overlap syndrome (PBC-AIH OS), which exhibits features between autoimmune hepatitis and cholestasis, is a common condition and usually shows a progressive course toward cirrhosis and liver failure without adequate treatment. Synthesis of bile acids (BAs) plays an important role in liver injury in cholestasis, and the process is regulated by fibroblast growth factor 19 (FGF19). The overall role of circulating FGF19 in BA synthesis and PBC-AIH OS requires further investigation. Methods We analyzed BA synthesis and correlated clinical parameters with serum BAs and FGF19 in 35 patients with PBC-AIH OS. Serum concentrations of 7alpha-hydroxycholest-4-en-3-one (C4) were used to quantify the synthesis of BA directly. Results Serum FGF19 levels were higher, while C4 levels were substantially lower in PBC-AIH OS patients than those in healthy controls. Circulating FGF19 levels strongly correlated with C4 (r = −0.695, p < 0.0001), direct bilirubin (r = 0.598, p = 0.0001), and total bile acids (r = 0.595, p = 0.002). Moreover, circulating FGF19 levels strongly correlated with the model for end-stage liver disease score (r = 0.574, p = 0.0005) and Mayo risk score (r = 0.578, p = 0.001). Conclusions Serum FGF19 is significantly increased in patients with PBC-AIH OS, while BA synthesis is suppressed. Circulating FGF19 primarily controls the regulation of BA synthesis in response to cholestasis and under cholestatic conditions. Therefore, modulation of circulating FGF19 could provide a promising targeted therapy for patients with PBC-AIH OS.
Collapse
|
212
|
Kerawala AA, Jamal A. Bilio-thorax: an unrecognized complication of liver surgery. Int J Surg Case Rep 2020; 71:346-348. [PMID: 32502950 PMCID: PMC7270503 DOI: 10.1016/j.ijscr.2020.04.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 11/08/2022] Open
Abstract
Metastasis surgery is not very common in developing countries. Hence Surgeons are not aware of the complications Bile presence in Pleural cavity is rare and detrimental to patient. High index of suspicion is required in such cases.
Introduction Although a rare complication, Biliothorax, or chole-thorax as it has been called in literature, is a devastating entity if not recognized early. Various causes have been reported for biliothorax like inflammatory, abdominal trauma, neoplastic, the most frequent being percutaneous hepatic intervention. Case We present the case of a 60 year old male, treated for colon cancer, who developed this complication after liver surgery. He was promptly diagnosed, managed conservatively and responded to our treatment. This has been infrequently reported. Discussion Although a rare complication, Biliothorax, is a fatal complication if missed. The presence of bile in the pleural cavity is damaging and can lead to empyema, entrapped lung and even ARDS. Hence it is imperative to recognize early, find the cause and treat appropriately. Conclusion Biliothorax is an under reported complication of liver surgery which can have disastrous effects on the patient leading to morbidity and even mortality. It is vital to recognize it early and treat accordingly.
Collapse
Affiliation(s)
| | - Abid Jamal
- The Cancer Foundation Hospital, Karachi, Pakistan.
| |
Collapse
|
213
|
Yuan Y, Wu X, Hong Y, Zhang X, Wang Z, Yan H. Salidroside ameliorates liver metabonomics in relation to modified gut-liver FXR signaling in furan-induced mice. Food Chem Toxicol 2020; 140:111311. [DOI: 10.1016/j.fct.2020.111311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022]
|
214
|
Elnozahi NA, Said EA, Bistawroos AE, Aly RG. Effect of sodium butyrate on gastric ulcer aggravation and hepatic injury inflicted by bile duct ligation in rats. Saudi Pharm J 2020; 28:675-682. [PMID: 32550798 PMCID: PMC7292876 DOI: 10.1016/j.jsps.2020.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND AIM Cholestasis is positively associated with an increased risk of peptic ulceration. The present study investigated the aggravating effect of cholestasis on piroxicam-induced gastric ulceration. The study also evaluated the effect of sodium butyrate (SoB) on piroxicam-induced gastric ulceration in cholestatic animals and its effect on hepatic tissues and both effects were compared to ursodeoxycholic acid (UDCA) as a standard anticholestatic drug. METHODS Bile duct ligation was adopted for induction of cholestasis in rats. The cholestatic animals received saline, SoB (P.O, 400 mg/kg, twice daily) or UDCA (P.O, 30 mg/kg/day) for 4 days starting from the first day of surgery. On the 4th day, blood samples were collected for determination of serum hepatic markers, then gastric ulcers were induced by piroxicam administration (P.O, 50 mg/kg) and 4 h later, the stomach was isolated and gastric mucosa was collected for biochemical determinations. The ulcer indices for the investigated drugs were compared to omeprazole as a standard acid suppressive drug. RESULTS Piroxicam-induced ulceration was exacerbated in cholestatic rats. Gastric mucosa showed a significant elevation of MDA and TNF-α together with a significant decrease in GSH &VEGF levels. SoB treatment significantly attenuated ulcer development. The afforded protection was higher than that provided by UDCA and was not significantly different from that afforded by omeprazole. SoB significantly decreased gastric mucosal MDA and TNF-α level, whereas UDCA failed to alter these parameters. Both drugs significantly elevated GSH, VEGF and IL10 levels. Similar to UDCA, SoB showed a significant reduction in AST, ALT, GGT, ALP and bilirubin level. Histopathological examination confirmed the attenuating effect of SoB on gastric and hepatic injury. CONCLUSIONS Sodium butyrate effectively protected gastric and hepatic tissues against cholestasis-induced damage. Gastroprotection was mediated through antioxidant, anti-inflammatory and angiogenic activities.
Collapse
Affiliation(s)
- Neveen A. Elnozahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Esraa A. Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Azza E. Bistawroos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Rania G. Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
215
|
Siavashpour A, Khalvati B, Azarpira N, Mohammadi H, Niknahad H, Heidari R. Poly (ADP-Ribose) polymerase-1 (PARP-1) overactivity plays a pathogenic role in bile acids-induced nephrotoxicity in cholestatic rats. Toxicol Lett 2020; 330:144-158. [PMID: 32422328 DOI: 10.1016/j.toxlet.2020.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Cholestatic liver disease is a clinical complication with a wide range of etiologies. The liver is the primary organ influenced by cholestasis. Other organs, rather than the liver (e.g., kidneys), could also be affected by cholestatic liver disease. Cholestasis-induced renal injury is known as cholemic nephropathy (CN). Although the structural and functional alterations of the kidney in cholestasis have been well described, the cellular and molecular mechanisms of CN are not well understood. Some studies mentioned the role of oxidative stress and mitochondrial impairment in CN. Several cellular targets, including proteins, lipids, and DNA, could be affected by oxidative stress. Poly (ADP-Ribose) polymerase-1 (PARP-1) is an enzyme that its physiological activity plays a fundamental role in DNA repair. However, PARP-1 overexpression is associated with enhanced oxidative stress and cell death. The current study was designed to evaluate the role of PARP-1 activity in the pathogenesis of CN. Bile duct ligated (BDL) rats were treated with nicotinamide (NA) as a PARP-1 inhibitor. Kidney, urine, and plasma samples were collected at scheduled time intervals (3, 7, 14, and 28 days after BDL surgery). Serum and urine biomarkers of kidney injury, markers of oxidative stress and DNA damage, PARP-1 expression and activity in the kidney tissue, inflammatory response, renal fibrosis markers, and kidney histopathological alterations were assessed. Significant changes in the serum and urine biomarkers of kidney injury were evident in the BDL rats. Markers of oxidative stress were increased, and tissue ATP levels and antioxidant capacity were decreased in the kidney of cholestatic animals. A significant increase in PARP-1 expression and activity was evident in BDL rats (3, 7, 14, and 28 days after BDL). Moreover, inflammatory response (IL-1β and TNF-α expression; and myeloperoxidase activity), renal tissue histopathological alterations, and kidney fibrosis (α-SMA and TGF-β expression, as well as collagen deposition) were detected in cholestatic animals. It was found that the PARP-1 inhibitor, NA (50 and 100 mg/kg, i.p), significantly mitigated cholestasis-induced renal injury. The positive effects of NA were more significant at a lower dose and the early stage of CN. These data indicate a pathogenic role for PARP-1 overexpression in CN.
Collapse
Affiliation(s)
- Asma Siavashpour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
216
|
Araiza-Calahorra A, Wang Y, Boesch C, Zhao Y, Sarkar A. Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin. Curr Res Food Sci 2020; 3:178-188. [PMID: 32914133 PMCID: PMC7473359 DOI: 10.1016/j.crfs.2020.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to investigate the fate of curcumin (CUR)-loaded Pickering emulsions with complex interfaces during in vitro gastrointestinal transit and test the efficacy of such emulsions on improving the bioaccessibility and cellular uptake of CUR. CUR-loaded Pickering emulsions tested were whey protein nanogel particle-stabilized Pickering emulsions (CUR-EWPN) and emulsions displaying complex interfaces included 1) layer-by-layer dextran sulphate-coated nanogel-stabilized Pickering emulsions (CUR-DxS+EWPN) and 2) protein+dextran-conjugated microgel-stabilized Pickering emulsions (CUR-EWPDxM). The hypothesis was that the presence of complex interfacial material at the droplet surface would provide better protection to the droplets against physiological degradation, particularly under gastric conditions and thus, improve the delivery of CUR to Caco-2 intestinal cells. The emulsions were characterized using droplet sizing, apparent viscosity, confocal and cryo-scanning electron microscopy, zeta-potential, lipid digestion kinetics, bioaccessibility of CUR as well as cell viability and uptake by Caco-2 cells. Emulsion droplets with modified to complex interfacial composition (i.e. CUR-DxS+EWPN and CUR-EWPDxM) provided enhanced kinetic stability to the Pickering emulsion droplets against coalescence in the gastric regime as compared to droplets having unmodified interface (i.e. CUR-EWPN), whereas droplet coalescence occurred in intestinal conditions irrespective of the initial interfacial materials. A similar rate and extent of free fatty acid release occurred in all the emulsions during intestinal digestion (p > 0.05), which correlated with the bioaccessibility of CUR. Striking, CUR-DxS+EWPN and CUR-EWPDxM significantly improved cellular CUR uptake as compared to CUR-EWPN (p < 0.05). These results highlight a promising new strategy of designing gastric-stable Pickering emulsions with complex interfaces to improve the delivery of lipophilic bioactive compounds to the cells for the future design of functional foods.
Collapse
Affiliation(s)
- Andrea Araiza-Calahorra
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Yunqing Wang
- Nutritional Sciences and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine Boesch
- Nutritional Sciences and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
- Corresponding author.
| |
Collapse
|
217
|
The Detection of Bile Acids in the Lungs of Paediatric Cystic Fibrosis Patients Is Associated with Altered Inflammatory Patterns. Diagnostics (Basel) 2020; 10:diagnostics10050282. [PMID: 32384684 PMCID: PMC7277992 DOI: 10.3390/diagnostics10050282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Cystic fibrosis (CF) is a hereditary disorder in which persistent unresolved inflammation and recurrent airway infections play major roles in the initiation and progression of the disease. Little is known about triggering factors modulating the transition to chronic microbial infection and inflammation particularly in young children. Cystic fibrosis respiratory disease starts early in life, with the detection of inflammatory markers and infection evident even before respiratory symptoms arise. Thus, identifying factors that dysregulate immune responsiveness at the earliest stages of the disease will provide novel targets for early therapeutic intervention. Methods: We evaluated the clinical significance of bile acid detection in the bronchoalveolar lavage fluid of clinically stable preschool-aged children diagnosed with CF. Results: We applied an unbiased classification strategy to categorize these specimens based on bile acid profiles. We provide clear associations linking the presence of bile acids in the lungs with alterations in the expression of inflammatory markers. Using multiple regression analysis, we also demonstrate that clustering based on bile acid profiles is a meaningful predictor of the progression of structural lung disease. Conclusions: Altogether, our work has identified a clinically relevant host-derived factor that may participate in shaping early events in the aetiology of CF respiratory disease.
Collapse
|
218
|
Huang JF, Zhao Q, Dai MY, Xiao XR, Zhang T, Zhu WF, Li F. Gut microbiota protects from triptolide-induced hepatotoxicity: Key role of propionate and its downstream signalling events. Pharmacol Res 2020; 155:104752. [DOI: 10.1016/j.phrs.2020.104752] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/16/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
|
219
|
Arafa A, Dong JY. Association between intrahepatic cholestasis of pregnancy and risk of gestational diabetes and preeclampsia: a systematic review and meta-analysis. Hypertens Pregnancy 2020; 39:354-360. [PMID: 32326772 DOI: 10.1080/10641955.2020.1758939] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the association between intrahepatic cholestasis of pregnancy (ICP) and the risk of gestational diabetes mellitus (GDM) and preeclampsia via meta-analysis. METHODS Pooled odds ratio (OR) and confidence interval (CI) of GDM and preeclampsia for women with ICP were calculated using the fixed- or random-effects model. RESULTS Women with ICP were more likely to have GDM (pooled OR = 2.19, 95% CI: 1.58, 3.03, I 2 = 88.25%) and preeclampsia (pooled OR = 2.58, 95% CI: 2.37, 2.81, I 2 = 0%) than women without ICP. CONCLUSION The present study supports the concept that ICP is associated with the risk of GDM and preeclampsia.
Collapse
Affiliation(s)
- Ahmed Arafa
- Department of Public Health, Graduate School of Medicine, Osaka University , Osaka, Japan.,Department of Public Health, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| | - Jia-Yi Dong
- Department of Public Health, Graduate School of Medicine, Osaka University , Osaka, Japan
| |
Collapse
|
220
|
Yamamoto S, Sato I, Fukuhama N, Akiyama N, Sakai M, Kumazaki S, Ran S, Hirohata S, Kitamori K, Yamori Y, Watanabe S. Bile acids aggravate nonalcoholic steatohepatitis and cardiovascular disease in SHRSP5/Dmcr rat model. Exp Mol Pathol 2020; 114:104437. [PMID: 32246926 DOI: 10.1016/j.yexmp.2020.104437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Nonalcoholic steatohepatitis (NASH) is linked to an increased risk of cardiovascular disease, regardless of the risk factors in metabolic syndrome. However, the intermediary factors between NASH and cardiovascular disease are still unknown. A previous study revealed that serum and hepatic bile acid (BA) levels are increased in some NASH patients. We aimed to examine whether NASH and cardiovascular disease were aggravated by BA using an animal model. METHOD AND RESULTS From 10 to 18 weeks of age, SHRSP5/Dmcr rats divided into 3 groups were fed 3 types of high-fat and high-cholesterol (HFC) diets which were changed in the cholic acid (CA) concentration (0%, 2%, or 4%). The nitro oxide synthase inhibition (L-NAME) was administered intraperitoneally from 16 to 18 weeks of age. The 4% CA groups showed the worst LV dysfunction and myocardial fibrosis, and demonstrated severe hepatic fibrosis and lipid depositions. In addition, a large amount of lipid accumulation was observed in the aortas of the 4% CA group, and NFκB and VCAM-1 gene expression levels were increased. These findings were not seen in the 0% CA group. CONCLUSION In the SHRSP5/Dmcr rat model, NASH and cardiovascular disease were aggravated with increasing BAs concentrations in an HFC diet.
Collapse
Affiliation(s)
- Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ikumi Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Natsuki Fukuhama
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Natsumi Akiyama
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Miku Sakai
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Shota Kumazaki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Shang Ran
- Advanced Institute for Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, Liaoning Province 116-044, China
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, 2-1723, Omori, Moriyama-ku, Nagoya-shi, Aichi 463-8521, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, 4-16, Edagawa-cho, Nishinomiya-shi, Hyogo 663-8143, Japan
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
221
|
Differential Metabolomic Analysis of Liver Tissues from Rat Models of Parenteral Nutrition-Associated Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9156359. [PMID: 32280707 PMCID: PMC7115143 DOI: 10.1155/2020/9156359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Parenteral nutrition (PN) is a life-saving therapy for patients with intestinal failure, but parenteral nutrition-associated liver disease (PNALD) limits its long-term use. The present study is aimed at determining which pathways are altered most notably in a rat model of PNALD. We randomly assigned male Sprague-Dawley (SD) rats into two different groups, whereby they received either enteral nutrition (EN) or PN. Liver tissues were harvested from all rats 7 days later for metabolomic profiling. The composition of primary conjugated bile acids was altered, the synthesis of polyunsaturated fatty acids was reduced, the conversion of pyruvate to acetyl-CoA was blocked, and the synthesis of phosphatidylcholine was inhibited in rats with PNALD. Riboflavin, which is involved in the electron transfer process in the mitochondrial electron transport chain, was remarkably decreased in PNALD rats. A deficiency of polyunsaturated fatty acids, riboflavin, choline, and taurine might be involved in the progression of PNALD. The implications of these findings for the field of medicine are that supplementation with polyunsaturated fatty acids, riboflavin, choline, and taurine might have potential as therapeutic strategies for PNALD and also shed light on the mechanisms of PNALD.
Collapse
|
222
|
Yoon S, Lee H, Ji SC, Yoon SH, Cho JY, Chung JY. Pharmacokinetics and Pharmacodynamics of Ursodeoxycholic Acid in an Overweight Population With Abnormal Liver Function. Clin Pharmacol Drug Dev 2020; 10:68-77. [PMID: 32191400 DOI: 10.1002/cpdd.790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/12/2020] [Indexed: 01/01/2023]
Abstract
Ursodeoxycholic acid (UDCA) is a secondary bile acid that is used to treat primary biliary cholangitis. Although UDCA has a hepatoprotective effect in some diseases, its benefit in nonalcoholic fatty liver disease (NAFLD) remains controversial. We aimed to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) of UDCA in overweight subjects with elevated liver enzymes after multiple administrations of UDCA and compare these changes with vitamin E treatment. Overweight subjects (body mass index, 25-30 kg/m2 ) with elevated alanine aminotransferase (ALT) level (40-200 IU/L) were enrolled. Subjects received one of the following three 8-week treatments: UDCA 300 mg twice daily UDCA 300 mg twice daily for 4 weeks followed by UDCA 300 mg twice daily and metformin 500 mg twice daily for 4 weeks, and vitamin E 400 IU twice daily. PK and PD (liver function, lipid profiles, insulin sensitivity, and miR-122) analyses were performed. Thirty subjects were enrolled; 1 subject withdrew his consent during the study. The PK characteristics were similar to those of healthy volunteers. The ALT and miR-122 levels decreased in the UDCA groups, whereas the ALT and aspartate aminotransferase levels decreased in the vitamin E group. The lipid profiles and insulin sensitivity did not show significant changes among the groups. There was no serious adverse event, and the safety profiles were similar among the treatment groups. The liver enzyme and miR-122 levels were decreased by UDCA. Considering UDCA and vitamin E have a hepatoprotective effect and different mechanisms of action, combination therapy could be an option for NAFLD.
Collapse
Affiliation(s)
- Seonghae Yoon
- Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Heechan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Chun Ji
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seo Hyun Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yong Chung
- Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
223
|
Ji H, Song N, Ren J, Li W, Zhang L, Xu B, Li H, Shen G, Li H. Systems Toxicology Approaches Reveal the Mechanisms of Hepatotoxicity Induced by Diosbulbin B in Male Mice. Chem Res Toxicol 2020; 33:1389-1402. [PMID: 32148032 DOI: 10.1021/acs.chemrestox.9b00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diosbulbin B (DIOB) is an effective component of air potato yam with antitumor and anti-inflammatory activities, and it is the main toxic component leading to hepatotoxicity. However, the mechanism of its hepatotoxicity remains unclear. In this study, we aimed to systematically elucidate the molecular action of DIOB on liver metabolic function through systems toxicology approaches. C57BL/6 mice were orally treated with DIOB (10, 30, 60 mg/kg) for 28 days, and the liver metabonomics and histopathology, molecular docking, mRNA expression levels, and activities of enzymes were analyzed. The results illustrated that DIOB could affect fatty acid and glucose metabolism, block the TCA cycle, and DIOB also could disorder bile acid synthesis and transport and promote the occurrence of hyperbilirubinemia. In addition, DIOB increased Cyp3a11 expression in a dose-dependent manner. Thus, these results provide new insights into the mechanism of hepatotoxicity caused by DIOB.
Collapse
Affiliation(s)
- Hainan Ji
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Naining Song
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Juan Ren
- Pneumology Department, The Rocket Army General Hospital of the PLA, Beijing, China
| | - Wentao Li
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lei Zhang
- Asia Regenerative Medicine Ltd., Shenzhen, China
| | - Baoliang Xu
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Haishan Li
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Guolin Shen
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hua Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
224
|
Miura S, Suzuki A. Induction of Steatohepatitis and Liver Tumorigenesis by Enforced Snail Expression in Hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1271-1283. [PMID: 32188584 DOI: 10.1016/j.ajpath.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Snail is a transcription factor that regulates many cellular events involved in development, homeostasis, and disease. In hepatocellular carcinoma (HCC), Snail induces epithelial-to-mesenchymal transition that confers invasive properties on tumor cells during HCC progression and malignancy. Snail activation observed in HCC mouse models suggests its involvement not only in progression, but also onset of HCC. However, it remains unclear whether Snail directly contributes to HCC initiation or whether it supports HCC initiation promoted by other oncogenes. In this study, we generated mouse models for liver-specific and hepatocyte-specific overexpression of Snail to show the independent roles of Snail in liver homeostasis and disease. Enforced Snail expression resulted in liver and hepatocyte enlargement, inflammatory cell infiltration in the liver, lipid accumulation in hepatocytes, substantial increases in serum alanine aminotransferase and bile acids, yellow discoloration of tissues caused by bilirubin accumulation, and liver tumorigenesis. Snail overexpression suppressed mRNA expression of the tight junction components claudins and occludin and that of proteins associated with bile acid metabolism, leading to disruption of the biliary canaliculus formed among hepatocytes and excretion of abnormal amounts of unusual bile acids from hepatocytes. In conclusion, enforced Snail expression in hepatocytes is sufficient for induction of steatohepatitis and liver tumorigenesis through disruption of the biliary canaliculus and bile acid homeostasis in the liver.
Collapse
Affiliation(s)
- Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
225
|
Sydor S, Best J, Messerschmidt I, Manka P, Vilchez-Vargas R, Brodesser S, Lucas C, Wegehaupt A, Wenning C, Aßmuth S, Hohenester S, Link A, Faber KN, Moshage H, Cubero FJ, Friedman SL, Gerken G, Trauner M, Canbay A, Bechmann LP. Altered Microbiota Diversity and Bile Acid Signaling in Cirrhotic and Noncirrhotic NASH-HCC. Clin Transl Gastroenterol 2020; 11:e00131. [PMID: 32352707 PMCID: PMC7145043 DOI: 10.14309/ctg.0000000000000131] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The precipitous increase in nonalcoholic steatohepatitis (NASH) is accompanied by a dramatic increase in the incidence of NASH-related hepatocellular carcinoma (HCC). HCC in NASH has a higher propensity to arise without pre-existing cirrhosis compared with other chronic liver diseases. METHODS To identify the potential links between liver and gut in NASH-related hepatocarcinogenesis, we compared the gut microbiota and mediators of bile acid (BA) signaling in the absence or presence of cirrhosis through the analysis of stool and serum samples from patients with NASH non-HCC and NASH-HCC and healthy volunteers. RESULTS Serum levels of total and individual BA were higher in NASH compared with healthy controls. Furthermore, serum levels of the primary conjugated BAs glycine-conjugated cholic acid, taurine-conjugated cholic acid, glycine-conjugated chenodeoxycholic acid, and taurine-conjugated chenodeoxycholic acid were significantly increased in cirrhotic vs noncirrhotic patients, independent of the occurrence of HCC. By contrast, serum FGF19 levels were higher in patients with NASH-HCC and associated with tumor markers as well as an attenuation of BA synthesis. Specific alterations in the gut microbiome were found for several bacteria involved in the BA metabolism including Bacteroides and Lactobacilli. Specifically, the abundance of Lactobacilli was associated with progressive disease, serum BA levels, and liver injury in NASH and NASH-HCC. DISCUSSION Here, we demonstrate a clear association of the altered gut microbiota and primary conjugated BA composition in cirrhotic and noncirrhotic patients with NASH-HCC. Microbiota-associated alterations in BA homeostasis and farnesoid X receptor signaling, via FGF19, might thus contribute to fibrogenesis, liver injury, and tumorigenesis in NASH-HCC.
Collapse
Affiliation(s)
- Svenja Sydor
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
| | - Jan Best
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
| | - Insa Messerschmidt
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany;
| | - Paul Manka
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany;
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
| | - Susanne Brodesser
- CECAD Research Center, CECAD Lipidomics Facility, University of Cologne, Cologne, Germany
| | - Christina Lucas
- CECAD Research Center, CECAD Lipidomics Facility, University of Cologne, Cologne, Germany
| | - Annemarie Wegehaupt
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany;
| | - Chiara Wenning
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany;
| | - Sophia Aßmuth
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany;
| | - Simon Hohenester
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany;
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas 12), Madrid, Spain
| | - Scott L. Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany;
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ali Canbay
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Lars P. Bechmann
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| |
Collapse
|
226
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
227
|
Bile acid bio-nanoencapsulation improved drug targeted-delivery and pharmacological effects via cellular flux: 6-months diabetes preclinical study. Sci Rep 2020; 10:106. [PMID: 31919411 PMCID: PMC6952395 DOI: 10.1038/s41598-019-53999-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023] Open
Abstract
The antilipidemic drug, probucol (PB), has demonstrated potential applications in Type 2 diabetes (T2D) through its protective effects on pancreatic β-cells. PB has poor solubility and bioavailability, and despite attempts to improve its oral delivery, none has shown dramatic improvements in absorption or antidiabetic effects. Preliminary data has shown potential benefits from bile acid co-encapsulation with PB. One bile acid has shown best potential improvement of PB oral delivery (ursodeoxycholic acid, UDCA). This study aimed to examine PB and UDCA microcapsules (with UDCA microcapsules serving as control) in terms of the microcapsules’ morphology, biological effects ex vivo, and their hypoglycemic and antilipidemic and anti-inflammatory effects in vivo. PBUDCA and UDCA microcapsules were examined in vitro (formulation studies), ex vivo and in vivo. PBUDCA microcapsules exerted positive effects on β-cells viability at hyperglycemic state, and brought about hypoglycemic and anti-inflammatory effects on the prediabetic mice. In conclusion, PBUDCA co-encapsulation have showed beneficial therapeutic impact of dual antioxidant-bile acid effects in diabetes treatment.
Collapse
|
228
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
229
|
Dobreva I, Karagyozov P. Drug-induced Bile Duct Injury - A Short Review. Curr Drug Metab 2020; 21:256-259. [PMID: 32310045 DOI: 10.2174/1389200221666200420100129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 01/23/2023]
Abstract
The liver represents the major site of drug metabolism, i.e. the key organ in the processes of detoxification and elimination of drugs from the organism. It is therefore often affected by toxic metabolites and suffers sometimes fatal consequences. The spectrum of pathologies differs by the cell type primarily damaged and the group of the cholangiopathies includes those conditions affecting the bile duct epithelium or the cholangiocytes. They can range from transient cholestasis to vanishing bile duct syndrome and sclerosing cholangitis, both leading eventually to the development of biliary fibrosis and cirrhosis. In this review article, we focus on the etiology, predisposing factors, clinical manifestations, and histopathological characteristics of bile duct injury as a consequence of drug treatment and discuss separately the different bile duct pathologies.
Collapse
Affiliation(s)
- Inna Dobreva
- Interventional Gastroenterology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
| | - Petko Karagyozov
- Interventional Gastroenterology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
| |
Collapse
|
230
|
Siemienowicz KJ, Filis P, Shaw S, Douglas A, Thomas J, Mulroy S, Howie F, Fowler PA, Duncan WC, Rae MT. Fetal androgen exposure is a determinant of adult male metabolic health. Sci Rep 2019; 9:20195. [PMID: 31882954 PMCID: PMC6934666 DOI: 10.1038/s41598-019-56790-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Androgen signalling is a critical driver of male development. Fetal steroid signalling can be dysregulated by a range of environmental insults and clinical conditions. We hypothesised that poor adult male health was partially attributable to aberrant androgen exposure during development. Testosterone was directly administered to developing male ovine fetuses to model excess prenatal androgenic overexposure associated with conditions such as polycystic ovary syndrome (PCOS). Such in utero androgen excess recreated the dyslipidaemia and hormonal profile observed in sons of PCOS patients. 1,084 of 15,134 and 408 of 2,766 quantifiable genes and proteins respectively, were altered in the liver during adolescence, attributable to fetal androgen excess. Furthermore, prenatal androgen excess predisposed to adolescent development of an intrahepatic cholestasis-like condition with attendant hypercholesterolaemia and an emergent pro-fibrotic, pro-oxidative stress gene and protein expression profile evident in both liver and circulation. We conclude that prenatal androgen excess is a previously unrecognised determinant of lifelong male metabolic health.
Collapse
Affiliation(s)
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alex Douglas
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Jennifer Thomas
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Sally Mulroy
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Forbes Howie
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Mick T Rae
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.
| |
Collapse
|
231
|
Osadchuk MA, Svistunov AA, Mironova ED, Vasil'eva IN, Kireeva NV. [Diseases of biliary tract in the context of association with oncological diseases of the digestive system]. TERAPEVT ARKH 2019; 91:98-104. [PMID: 32598596 DOI: 10.26442/00403660.2019.12.000455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/16/2022]
Abstract
Cancers of the gastrointestinal tract are widespread among the population and cause significant damage to the health care system. In order to improve the strategy of preventive measures and the detection of oncological diseases at the early stages, it is necessary to provide timely impact on possible risk factors contributing to the onset and progression of malignant neoplasms. This review demonstrates the association between the pathology of the biliary tract and oncological diseases of the digestive system, discusses the possible mechanisms of the influence of cholelithiasis and cholecystectomy on the development of malignant neoplasms of various parts of the gastrointestinal tract.
Collapse
Affiliation(s)
- M A Osadchuk
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E D Mironova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I N Vasil'eva
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N V Kireeva
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
232
|
Xu J, Wang W, Yang X, Xiong A, Yang L, Wang Z. Pyrrolizidine alkaloids: An update on their metabolism and hepatotoxicity mechanism. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
233
|
Ommati MM, Farshad O, Niknahad H, Arabnezhad MR, Azarpira N, Mohammadi HR, Haghnegahdar M, Mousavi K, Akrami S, Jamshidzadeh A, Heidari R. Cholestasis-associated reproductive toxicity in male and female rats: The fundamental role of mitochondrial impairment and oxidative stress. Toxicol Lett 2019; 316:60-72. [DOI: 10.1016/j.toxlet.2019.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/01/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
|
234
|
Kenna JG, Taskar KS, Battista C, Bourdet DL, Brouwer KLR, Brouwer KR, Dai D, Funk C, Hafey MJ, Lai Y, Maher J, Pak YA, Pedersen JM, Polli JW, Rodrigues AD, Watkins PB, Yang K, Yucha RW. Can Bile Salt Export Pump Inhibition Testing in Drug Discovery and Development Reduce Liver Injury Risk? An International Transporter Consortium Perspective. Clin Pharmacol Ther 2019; 104:916-932. [PMID: 30137645 PMCID: PMC6220754 DOI: 10.1002/cpt.1222] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Bile salt export pump (BSEP) inhibition has emerged as an important mechanism that may contribute to the initiation of human drug‐induced liver injury (DILI). Proactive evaluation and understanding of BSEP inhibition is recommended in drug discovery and development to aid internal decision making on DILI risk. BSEP inhibition can be quantified using in vitro assays. When interpreting assay data, it is important to consider in vivo drug exposure. Currently, this can be undertaken most effectively by consideration of total plasma steady state drug concentrations (Css,plasma). However, because total drug concentrations are not predictive of pharmacological effect, the relationship between total exposure and BSEP inhibition is not causal. Various follow‐up studies can aid interpretation of in vitro BSEP inhibition data and may be undertaken on a case‐by‐case basis. BSEP inhibition is one of several mechanisms by which drugs may cause DILI, therefore, it should be considered alongside other mechanisms when evaluating possible DILI risk.
Collapse
Affiliation(s)
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, IVIVT, GlaxoSmithKline, Ware, Hertfordshire, UK
| | - Christina Battista
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - David L Bourdet
- Drug Metabolism and Pharmacokinetics, Theravance Biopharma, South San Francisco, California, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - David Dai
- Clinical Pharmacology, Research and Development Sciences, Agios Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Christoph Funk
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael J Hafey
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, Kenilworth, New Jersey, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, South San Francisco, California, USA
| | - Y Anne Pak
- Lilly Research Laboratory, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jenny M Pedersen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Novum, Huddinge, Sweden
| | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | | - Paul B Watkins
- Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyunghee Yang
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - Robert W Yucha
- Takeda Pharmaceuticals, Global Drug Metabolism and Pharmacokinetics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
235
|
Beneficial and Deleterious Effects of Female Sex Hormones, Oral Contraceptives, and Phytoestrogens by Immunomodulation on the Liver. Int J Mol Sci 2019; 20:ijms20194694. [PMID: 31546715 PMCID: PMC6801544 DOI: 10.3390/ijms20194694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is considered the laboratory of the human body because of its many metabolic processes. It accomplishes diverse activities as a mixed gland and is in continuous cross-talk with the endocrine system. Not only do hormones from the gastrointestinal tract that participate in digestion regulate the liver functions, but the sex hormones also exert a strong influence on this sexually dimorphic organ, via their receptors expressed in liver, in both health and disease. Besides, the liver modifies the actions of sex hormones through their metabolism and transport proteins. Given the anatomical position and physiological importance of liver, this organ is evidenced as an immune vigilante that mediates the systemic immune response, and, in turn, the immune system regulates the hepatic functions. Such feedback is performed by cytokines. Pro-inflammatory and anti-inflammatory cytokines are strongly involved in hepatic homeostasis and in pathological states; indeed, female sex hormones, oral contraceptives, and phytoestrogens have immunomodulatory effects in the liver and the whole organism. To analyze the complex and interesting beneficial or deleterious effects of these drugs by their immunomodulatory actions in the liver can provide the basis for either their pharmacological use in therapeutic treatments or to avoid their intake in some diseases.
Collapse
|
236
|
Hayashi K, Morimoto K, Kamei T, Mieda E, Ichikawa S, Kuroiwa T, Fujita S, Nakamura H, Umakoshi H. Effect of dehydrocholic acid conjugated with a hydrocarbon on a lipid bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine. Colloids Surf B Biointerfaces 2019; 181:58-65. [PMID: 31121382 DOI: 10.1016/j.colsurfb.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/19/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
The effects of bile acids, dehydrocholic acid (DHA) and DHA conjugated with a hydrocarbon (6-aminohexanoate; 6A-DHA) were evaluated using a lipid bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). DOPC formed a homogenous thin membrane in presence or absence of the DHA, while 20 mol% 6A-DHA induced phase separation on the DOPC thin membrane. It was observed formation of a stomatocyte-like liposomes when these membranes were suspended in a basic solvent. Generally, liposome formation can be prevented by some bile acids. It was found that DHA and 6A-DHA did not disrupt liposome formation, while DHA and 6A-DHA perturbed the liposomal membrane, resulting in increased local-fluidity due to the bent structure of DHA and 6A-DHA. DHA and 6A-DHA showed completely different effects on the hydrophobicity of the boundary surface of DOPC liposome membranes. The steroidal backbone of DHA was found to prevent the insertion of water molecules into the liposomal membrane, whereas 6A-DHA did not show the same behavior which was attributed to its conjugated hydrocarbon.
Collapse
Affiliation(s)
- Keita Hayashi
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara, 639-1080, Japan.
| | - Kazutoshi Morimoto
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara, 639-1080, Japan
| | - Toshiyuki Kamei
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara, 639-1080, Japan
| | - Eiko Mieda
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara, 639-1080, Japan
| | - Sosaku Ichikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takashi Kuroiwa
- Department of Chemistry and Energy Engineering, Faculty of Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo, 158-8557, Japan
| | - Sakiko Fujita
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hidemi Nakamura
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara, 639-1080, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
237
|
Cao Y, Xiao Y, Zhou K, Yan J, Wang P, Yan W, Cai W. FXR agonist GW4064 improves liver and intestinal pathology and alters bile acid metabolism in rats undergoing small intestinal resection. Am J Physiol Gastrointest Liver Physiol 2019; 317:G108-G115. [PMID: 30920307 DOI: 10.1152/ajpgi.00356.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mortality associated with liver disease has been observed in patients with short bowel syndrome (SBS); however, its mechanism remains unclear, but bile acid (BA) dysmetabolism has been proposed as a possible cause. The farnesoid X receptor (FXR) is the key regulator of BA synthesis. Here, we showed that, in a rat model of short bowel resection associated with liver disease (SBR-ALD), the BA composition of hepatic tissues reflected a larger proportion of primary and secondary unconjugated BAs, whereas that of the colon contents and serum showed an increased ratio of secondary unconjugated BAs. Both hepatic and intestinal regulation of BA synthesis was characterized by a blunted hepatic FXR activation response. The mRNA expression levels of cholesterol 7a-hydroxylase (CYP7A1), sterol 12a-hydroxylase (CYP8B1), and sterol 27 hydroxylase (CYP27A1), the key enzymes in BA synthesis, were upregulated. After intervention with the FXR agonist GW4064, both the liver histology and serum transaminase activity were improved, which demonstrated the attenuation of SBR-ALD. The BA compositions of hepatic tissue, the colon contents, and serum recovered and were closer to those of the sham group. The expression levels of hepatic FXR increased, and its target genes were activated. Consistent with this, the expression levels of CYP7A1, CYP8B1, and CYP27A1 were downregulated. Ileum tissue FXR and its target genes were slightly elevated. This study showed that the FXR agonist GW4064 could correct BA dysmetabolism to alleviate hepatotoxicity in SBR animals. GW4064 intervention resulted in a decrease in fecal bile excretion and elevated plasma/hepatic conjugated BA levels. GW4064 increased the reabsorption of conjugated BAs by inducing apical sodium-dependent bile salt transporter expression in the ileum. Concomitantly, FXR activation in the presence of GW4064 decreased BA production by repressing the expression of key synthetases, including CYP7A1, CYP8B1, and CYP27A1. These findings provide a clinical research direction for the prevention of liver disease in patients with SBS.NEW & NOTEWORTHY This study assessed the impact of treatment with GW4064, a farnesoid X receptor agonist, on the development of short bowel resection (SBR) associated with liver disease in a rat model of SBR. GW4064 was able to correct bile acid dysmetabolism and alleviate hepatotoxicity in SBR animals.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yongtao Xiao
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - KeJun Zhou
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Junkai Yan
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Panliang Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Weihui Yan
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
238
|
Sanoh S, Tamura Y, Fujino C, Sugahara G, Yoshizane Y, Yanagi A, Kisoh K, Ishida Y, Tateno C, Ohta S, Kotake Y. Changes in Bile Acid Concentrations after Administration of Ketoconazole or Rifampicin to Chimeric Mice with Humanized Liver. Biol Pharm Bull 2019; 42:1366-1375. [DOI: 10.1248/bpb.b19-00249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yuka Tamura
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Chieri Fujino
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | | | | | | | - Yuji Ishida
- R&D Department, PhoenixBio, Co., Ltd
- Research Center for Hepatology and Gastroenterology, Hiroshima University
| | - Chise Tateno
- R&D Department, PhoenixBio, Co., Ltd
- Research Center for Hepatology and Gastroenterology, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University
- Wakayama Medical University
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
239
|
Ma Z, Wang X, Yin P, Wu R, Zhou L, Xu G, Niu J. Serum metabolome and targeted bile acid profiling reveals potential novel biomarkers for drug-induced liver injury. Medicine (Baltimore) 2019; 98:e16717. [PMID: 31374067 PMCID: PMC6708818 DOI: 10.1097/md.0000000000016717] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study aims to determine the non-invasive, reliable and sensitive biochemical parameters for the diagnosis of drug-induced liver injury (DILI).Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and selected reaction monitoring (SRM) were used to profile the serum metabolome and quantify 15 targeted bile acid metabolites, respectively, in samples obtained from 38 DILI patients and 30 healthy controls.A comparison of the resulting serum metabolome profiles of the study participants revealed significant differences between DILI patients and healthy controls. Specifically, serum palmitic acid, taurochenodeoxycholic acid, glycocholic acid (GCA), and tauroursodeoxycholic acid (TUDCA) levels were significantly higher, and serum lysophosphatidylethanolamine levels were significantly lower in DILI patients vs healthy controls (P < .001). Furthermore, the SRM assay of bile acids revealed that the increase in GCA, taurocholic acid (TCA), TUDCA, glycochenodeoxycholic acid (GCDCA), glycochenodeoxycholic sulfate (GCDCS), and taurodeoxycholic acid (TDCA) corresponded to a higher degree of liver damage. These results also indicate that serum concentrations of chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and lithocholic acid (LCA) were significantly lower in patients with severe DILI, when compared to healthy controls, and that this decrease was closely correlated to the severity of liver damage.Taken together, these results demonstrate that bile acids could serve as potential biomarkers for the early diagnosis and severity of DILI.
Collapse
Affiliation(s)
- Zhenhua Ma
- Department of Hepatology, the First Hospital of Jilin University, Changchun
- Department of Hepatology, the Affiliated Hospital of Beihua University, Jilin
| | - Xiaomei Wang
- Department of Hepatology, the First Hospital of Jilin University, Changchun
| | - Peiyuan Yin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Ruihong Wu
- Department of Hepatology, the First Hospital of Jilin University, Changchun
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Junqi Niu
- Department of Hepatology, the First Hospital of Jilin University, Changchun
| |
Collapse
|
240
|
Alomari M, Covut F, Al Momani L, Chadalavada P, Hitawala A, Young MF, Romero-Marrero C. Evaluation of the United Kingdom-primary biliary cholangitis and global primary biliary cholangitis group prognostic models for primary biliary cholangitis patients treated with ursodeoxycholic acid in the U.S. population. JGH OPEN 2019; 4:132-139. [PMID: 32280755 PMCID: PMC7144790 DOI: 10.1002/jgh3.12223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
Abstract
Background and Aim The United Kingdom‐primary biliary cholangitis (UK‐PBC) and global primary biliary cholangitis group (GLOBE) prognostic models have been recently developed to predict long‐term outcomes in primary biliary cholangitis (PBC). However, these predictive scores have not yet been well evaluated in the U.S. population. Methods We retrospectively reviewed newly diagnosed PBC patients at the Cleveland Clinic between November 1998 and February 2017. Adverse events were defined as liver transplantation, liver‐related mortality, and all‐cause mortality. Transplant‐free survival (TFS) was estimated using the Kaplan–Meier method. Predictive performances of all prognostic models were evaluated using the C‐statistic. Results We identified 352 patients who used ursodeoxycholic acid therapy. Of them, 311 (88.4%) only had PBC, while 41 (11.6%) were diagnosed with PBC‐autoimmune hepatitis overlap. A total of 22 (6%), 47 (13%), and 55 (16%) patients had adverse events within 5, 10, and 15 years after diagnosis, respectively. In patients with PBC only, the C‐statistic in predicting 15‐year adverse events was 0.75 per GLOBE compared to 0.74 per UK‐PBC (P = 0.94), 0.73 per Rotterdam (P = 0.44), 0.66 per Barcelona (P = 0.004), 0.65 per Paris 1 (P = 0.005), 0.62 per Paris 2 (P < 0.0001), 0.60 per Toronto (P < 0.0001), and 0.60 per Mayo (P < 0.0001) scores. Median follow‐up was 9.2 years. Ten‐year TFS for patients who had optimal versus suboptimal treatment response was 92 versus 74% per Paris 1 (P < 0.0001), 95 versus 79% per Paris 2 (P = 0.0002), 93 versus 65% per Barcelona (P < 0.0001), and 96 versus 68% per Rotterdam (P < 0.0001) risk scores, respectively. Conclusion In our cohort of PBC patients, the UK‐PBC and GLOBE scores were both accurate and reasonably valid prognostic models in the U.S. population.
Collapse
Affiliation(s)
- Mohammad Alomari
- Department of Internal Medicine Cleveland Clinic Foundation Cleveland Ohio USA
| | - Fahrettin Covut
- Department of Internal Medicine Cleveland Clinic Foundation Cleveland Ohio USA
| | - Laith Al Momani
- Department of Internal Medicine East Tennessee State University Johnson City Tennessee USA
| | | | - Asif Hitawala
- Department of Internal Medicine Cleveland Clinic Foundation Cleveland Ohio USA
| | - Mark F Young
- Department of Gastroenterology and Hepatology East Tennessee State University Johnson City Tennessee USA
| | - Carlos Romero-Marrero
- Department of Gastroenterology Hepatology and Nutrition, Cleveland Clinic Foundation Cleveland Ohio USA
| |
Collapse
|
241
|
Suga T, Yamaguchi H, Ogura J, Shoji S, Maekawa M, Mano N. Altered bile acid composition and disposition in a mouse model of non-alcoholic steatohepatitis. Toxicol Appl Pharmacol 2019; 379:114664. [PMID: 31306673 DOI: 10.1016/j.taap.2019.114664] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/07/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive inflammatory and fibrotic disease. However, the progression mechanism of NASH is not well understood. Bile acids are endogenous molecules that regulate cholesterol homeostasis, lipid solubilization in the intestinal lumen, and metabolic signaling via several receptors. In this study, we investigated the relationship between bile acid composition and NASH-associated fibrosis using a mouse model fed choline-deficient, L-amino-acid-defined, high-fat diet with 0.1% methionine (CDAHFD). C57BL/6 J mice fed CDAHFD developed NASH and fibrosis within few weeks. With the progress of NASH-associated liver fibrosis, altered bile acid composition was observed in the liver, bile, and peripheral plasma. Decreased mRNA levels of bile acid metabolizing enzymes such as Cyp7a1 and Baat were observed in contrast to increased Sult2a1 level in the liver. Increased mRNA levels of Ostβ and Abcc4 and decreased in mRNA levels of Bsep, Abcc2, Ntcp, and Oatp1b2, suggesting that bile acids efflux from hepatocytes into the peripheral plasma rather than into bile. In conclusion, the changes in bile acid metabolizing enzymes and transporters expression, resulting in increasing the total bile acid concentration in the plasma, signify a protection mechanism by the hepatocyte to reduce hepatotoxicity during disease progression to NASH but may promote liver fibrosis.
Collapse
Affiliation(s)
- Takahiro Suga
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroaki Yamaguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Saori Shoji
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
242
|
Penman SL, Sharma P, Aerts H, Park BK, Weaver RJ, Chadwick AE. Differential toxic effects of bile acid mixtures in isolated mitochondria and physiologically relevant HepaRG cells. Toxicol In Vitro 2019; 61:104595. [PMID: 31288073 PMCID: PMC6853172 DOI: 10.1016/j.tiv.2019.104595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Bile acids (BAs) are recognised as the causative agents of toxicity in drug-induced cholestasis (DIC). Research in isolated mitochondria and HepG2 cells have demonstrated BA-mediated mitochondrial dysfunction as a key mechanism of toxicity in DIC. However, HepG2 cells are of limited suitability for DIC studies as they do not express the necessary physiological characteristics. In this study, the mitotoxic potentials of BA mixtures were assessed in isolated mitochondria and a better-suited hepatic model, HepaRG cells. BAs induced structural alterations and a loss of mitochondrial membrane potential (MMP) in isolated mitochondria however, this toxicity did not translate to HepaRG cells. There were no changes in oxygen consumption rate, MMP or ATP levels in glucose and galactose media, indicating that there was no direct mitochondrial toxicity mediated via electron transport chain dysfunction in HepaRG cells. Assessment of key biliary transporters revealed that there was a time-dependent reduction in the expression and activity of multi-drug resistance protein 2 (MRP2), which was consistent with the induction of cytotoxicity in HepaRG cells. Overall, the findings from this study have demonstrated that mitochondrial dysfunction is not a mechanism of BA-induced toxicity in HepaRG cells. HepaRG cells are a better suited in vitro model for cholestatic studies than HepG2 cell. Bile acids cause mitochondrial toxicity in isolated mitochondria but not in HepaRG cells. Time-dependent alterations in biliary transporters are consistent with the cytotoxicity of bile acid mixtures. There are important mechanistic differences when bile acids interact at the organelle level versus the whole cell.
Collapse
Affiliation(s)
- Sophie L Penman
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Parveen Sharma
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Hélène Aerts
- Biologie Servier, 905 Rue de Saran, 45520 Gidy, France
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Richard J Weaver
- Institute de Recherches Internationales Servier, Biopharmacy, rue Carnot, 92284 Suresnes, France
| | - Amy E Chadwick
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
243
|
Vitamin E analogues differentially inhibit human cytochrome P450 3A (CYP3A)-mediated oxidative metabolism of lithocholic acid: Impact of δ-tocotrienol on lithocholic acid cytotoxicity. Toxicology 2019; 423:62-74. [PMID: 31102695 DOI: 10.1016/j.tox.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022]
Abstract
Lithocholic acid is a cytotoxic bile acid oxidized at the C-3 position by human cytochrome P450 3A (CYP3A) to form 3-ketocholanoic acid, but it is not known whether this metabolite is cytotoxic. Tocotrienols, in their various isomeric forms, are vitamin E analogues. In the present study, the hypothesis to be tested is that tocotrienols inhibit CYP3A-catalyzed lithocholic acid 3-oxidation, thereby influencing lithocholic acid cytotoxicity. Our enzyme catalysis experiments indicated that human recombinant CYP3A5 in addition to CYP3A4, liver microsomes, and intestinal microsomes catalyzed lithocholic acid 3-oxidation to form 3-ketocholanoic acid. Liver microsomes with the CYP3A5*1/*3 and CYP3A5*3/*3 genotypes were associated with decreased lithocholic acid 3-oxidation. α-Tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture, but not α-tocopherol (a vitamin E analogue), differentially inhibited lithocholic acid 3-oxidation catalyzed by liver and intestinal microsomes and recombinant CYP3A4 and CYP3A5. Compared to lithocholic acid 3-oxidation, CYP3A-catalyzed testosterone 6β-hydroxylation was inhibited to a lesser extent by α-tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture. δ-Tocotrienol inhibited lithocholic acid 3-oxidation by a mixed mode. Like lithocholic acid, 3-ketocholanoic acid was also cytotoxic in human intestinal and liver cell models. δ-Tocotrienol decreased the extent of lithocholic acid 3-oxidation and this inhibition was associated with enhanced cytotoxicity in LS180 cells treated with δ-tocotrienol and lithocholic acid. Overall, vitamin E analogues inhibited in vitro lithocholic acid 3-oxidation in an isomer-dependent manner, with inhibition occurring with tocotrienols, but not α-tocopherol. The enhanced lithocholic acid toxicity by δ-tocotrienol in a human intestinal cell model warrants future investigations in vivo.
Collapse
|
244
|
Wang P, Zhong H, Song Y, Yuan P, Li Y, Lin S, Zhang X, Li J, Che L, Feng B, Lin Y, Xu S, Zhuo Y, Tian G, Chen D, Wu D, Burrin DG, Fang Z. Targeted metabolomics analysis of maternal-placental-fetal metabolism in pregnant swine reveals links in fetal bile acid homeostasis and sulfation capacity. Am J Physiol Gastrointest Liver Physiol 2019; 317:G8-G16. [PMID: 31021171 DOI: 10.1152/ajpgi.00056.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholestasis of pregnancy endangers fetal and neonatal survival, yet systematic knowledge of the cause and effect of disrupted bile acid (BA) homeostasis in pregnancy is limited. Here we show that gestation stage-associated BA dysregulation in swine correlated with fetal death resulting from compromised capacity for BA secretion and increased alternative systemic efflux. The balance of BA input and output in the developing uterus suggested little uptake and metabolism of maternal BA by the placenta-fetus unit, implying a protection role of placenta in preventing maternal BA transported into the fetus. We showed that the maternal origin of BA accounted for the increase in placental total BA, leading to dysregulated expression of genes involved in BA transport and potentially impaired transplacental export of fetus-derived BA. Correspondingly, the secondary BA, mainly derived from the mother, gradually decreased in the fetus. Finally, we identified that sulfation rather than glucuronidation played pivotal roles in maintaining BA homeostasis of the developing fetus. These novel and systemic findings contribute to a whole picture of BA metabolism in pregnancy and provide new insights into mechanisms responsible for maternal and fetal BA homeostasis. NEW & NOTEWORTHY We used a swine model to demonstrate the potentially impaired transplacental bile acid (BA) export, immaturity of fetal hepatic excretory function, and elevated BA synthesis in the developing fetus. Under these conditions, we have further identified that BA sulfation plays a pivotal role in regulation of fetal BA homeostasis, which appears to depend on the balance of BA synthesis and sulfation capacity. These novel findings have uncovered a previously unknown mechanism of BA homeostasis regulation in the developing fetus.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Heju Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Yumo Song
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Peiqiang Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Yunxia Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Sen Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Gang Tian
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Daiwen Chen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| | - Douglas G Burrin
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
245
|
Semisynthetic bile acids: a new therapeutic option for metabolic syndrome. Pharmacol Res 2019; 146:104333. [PMID: 31254667 DOI: 10.1016/j.phrs.2019.104333] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Bile acids are endogenous emulsifiers synthesized from cholesterol having a peculiar amphiphilic structure. Appreciation of their beneficial effects on human health, recognized since ancient times, has expanded enormously since the discovery of their role as signaling molecules. Activation of farnesoid X receptor (FXR) and Takeda G-protein receptor-5 (TGR5) signaling pathways by bile acids, regulating glucose, lipid and energy metabolism, have become attractive avenue for metabolic syndrome treatment. Therefore, extensive effort has been directed into the research and synthesis of bile acid derivatives with improved pharmacokinetic properties and high potency and selectivity for these receptors. Minor modifications in the structure of bile acids and their derivatives may result in fine-tuning modulation of their biological functions, and most importantly, in an evasion of undesired effect. A great number of semisynthetic bile acid analogues have been designed and put in preclinical and clinical settings. Obeticholic acid (INT-747) has achieved the biggest clinical success so far being in use for the treatment of primary biliary cholangitis. This review summarizes and critically evaluates the key chemical modifications of bile acids resulting in development of novel semisynthetic derivatives as well as the current status of their preclinical and clinical evaluation in the treatment of metabolic syndrome, an aspect that is so far lacking in the scientific literature. Taking into account the balance between therapeutic benefits and potential adverse effects associated with specific structure and mechanism of action, recommendations for future studies are proposed.
Collapse
|
246
|
Salic K, Kleemann R, Wilkins-Port C, McNulty J, Verschuren L, Palmer M. Apical sodium-dependent bile acid transporter inhibition with volixibat improves metabolic aspects and components of non-alcoholic steatohepatitis in Ldlr-/-.Leiden mice. PLoS One 2019; 14:e0218459. [PMID: 31233523 PMCID: PMC6590809 DOI: 10.1371/journal.pone.0218459] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Interruption of bile acid recirculation through inhibition of the apical sodium-dependent bile acid transporter (ASBT) is a promising strategy to alleviate hepatic cholesterol accumulation in non-alcoholic steatohepatitis (NASH), and improve the metabolic aspects of the disease. Potential disease-attenuating effects of the ASBT inhibitor volixibat (5, 15, and 30 mg/kg) were investigated in high-fat diet (HFD)-fed Ldlr-/-.Leiden mice over 24 weeks. Plasma and fecal bile acid levels, plasma insulin, lipids, and liver enzymes were monitored. Final analyses included liver histology, intrahepatic lipids, mesenteric white adipose tissue mass, and liver gene profiling. Consistent with its mechanism of action, volixibat significantly increased the total amount of bile acid in feces. At the highest dose, volixibat significantly attenuated the HFD-induced increase in hepatocyte hypertrophy, hepatic triglyceride and cholesteryl ester levels, and mesenteric white adipose tissue deposition. Non-alcoholic fatty liver disease activity score (NAS) was significantly lower in volixibat-treated mice than in the HFD controls. Gene profiling showed that volixibat reversed the inhibitory effect of the HFD on metabolic master regulators, including peroxisome proliferator-activated receptor-γ coactivator-1β, insulin receptor, and sterol regulatory element-binding transcription factor 2. Volixibat may have beneficial effects on physiological and metabolic aspects of NASH pathophysiology.
Collapse
Affiliation(s)
- Kanita Salic
- TNO, Department of Metabolic Health Research, Leiden, Netherlands
| | - Robert Kleemann
- TNO, Department of Metabolic Health Research, Leiden, Netherlands
| | - Cynthia Wilkins-Port
- Shire LLC, now part of Takeda, Cambridge, Massachusetts, United States of America
| | - John McNulty
- Shire LLC, now part of Takeda, Cambridge, Massachusetts, United States of America
| | - Lars Verschuren
- TNO, Department of Microbiology and Systems Biology, Zeist, Netherlands
| | - Melissa Palmer
- Shire LLC, now part of Takeda, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
247
|
Lickteig AJ, Zhang Y, Klaassen CD, Csanaky IL. Effects of Absence of Constitutive Androstane Receptor (CAR) on Bile Acid Homeostasis in Male and Female Mice. Toxicol Sci 2019; 171:132-145. [PMID: 31225615 PMCID: PMC6735724 DOI: 10.1093/toxsci/kfz143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023] Open
Abstract
Accumulation of BAs in hepatocytes has a role in liver disease and also in drug-induced liver injury. The Constitutive Androstane Receptor (CAR) has been shown to protect against BA-induced liver injury. The polymorphism of CAR has recently been shown to modify the pharmacokinetics and pharmacodynamics of various drugs. Thus it was hypothesized that polymorphism of CAR may also influence BA homeostasis. Using CAR-null and WT mice, this study modeled the potential consequences of CAR polymorphism on BA homeostasis. Our previous study showed that chemical activation of CAR decreases the total BA concentrations in livers of mice. Surprisingly the absence of CAR also decreased the BA concentrations in livers of mice, but to a lesser extent than in CAR-activated mice. Neither CAR activation nor elimination of CAR altered the biliary excretion of total BAs, but CAR activation increased the proportion of 6-OH BAs (TMCA), whereas the lack of CAR increased the excretion of TCA, TCDCA and TDCA. Serum BA concentrations did not parallel the decrease in BA concentrations in the liver in either the mice after CAR activation or mice lacking CAR. Gene expression of BA synthesis, transporter and regulator genes were mainly similar in livers of CAR-null and WT mice. In summary, CAR activation decreases primarily the 12-OH BA concentrations in liver, whereas lack of CAR decreases the concentrations of 6-OH BAs in liver. In bile, CAR activation increases the biliary excretion of 6-OH BAs, whereas absence of CAR increases the biliary excretion of 12-OH BAs and TCDCA.
Collapse
Affiliation(s)
- Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital, Kansas City, Missouri, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
248
|
Mao F, Liu T, Hou X, Zhao H, He W, Li C, Jing Z, Sui J, Wang F, Liu X, Han J, Borchers CH, Wang JS, Li W. Increased sulfation of bile acids in mice and human subjects with sodium taurocholate cotransporting polypeptide deficiency. J Biol Chem 2019; 294:11853-11862. [PMID: 31201272 DOI: 10.1074/jbc.ra118.007179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP, encoded by Slc10a1/SLC10A1) deficiency can result in hypercholanemia but no obvious symptoms in both mice and humans. However, the consequence of and response to long-term hypercholanemia caused by NTCP deficiency remain largely unexplored. Here, we analyzed lifelong dynamics of serum total bile acid (TBA) levels in Slc10a1 -/- mice, and we also assessed changes of TBA levels in 33 young individuals with SLC10A1 loss-of-function variant p.Ser267Phe. We found that overall serum TBA levels tended to decrease gradually with age in both Slc10a1 -/- mice and p.Ser267Phe individuals. Liver mRNA profiling revealed notable transcription alterations in hypercholanemic Slc10a1 -/- mice, including inhibition of bile acid (BA) synthesis, enhancement of BA detoxification, and altered BA transport. Members of the sulfotransferase (SULT) family showed the most dramatic increases in livers of hypercholanemic Slc10a1 -/- mice, and one of their BA sulfates, taurolithocholic acid 3-sulfate, significantly increased. Importantly, consistent with the mouse studies, comprehensive profiling of 58 BA species in sera of p.Ser267Phe individuals revealed a markedly increased level of BA sulfates. Together, our findings indicate that the enhanced BA sulfation is a major mechanism for BA detoxification and elimination in both mice and humans with Slc10a1/SLC10A1 deficiency.
Collapse
Affiliation(s)
- Fengfeng Mao
- School of Life Sciences, Beijing Normal University, Beijing 100875, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Teng Liu
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China.,Department of Pediatrics, Shanghai Medical College of Fudan University, Shanghai 200333, China.,Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai 201512, China
| | - Xinfeng Hou
- National Institute of Biological Sciences, Beijing 102206, China.,School of Life Sciences, Peking University, Beijing 100091, China
| | - Hanqing Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing 102206, China
| | - Cong Li
- National Institute of Biological Sciences, Beijing 102206, China.,School of Life Sciences, Peking University, Beijing 100091, China
| | - Zhiyi Jing
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jianhua Sui
- School of Life Sciences, Beijing Normal University, Beijing 100875, China.,National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100091, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100091, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing 100091, China
| | - Jun Han
- UVic-Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 5N3, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Christoph H Borchers
- UVic-Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 5N3, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H4A 3T2, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - Jian-She Wang
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China .,Department of Pediatrics, Shanghai Medical College of Fudan University, Shanghai 200333, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, China .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100091, China
| |
Collapse
|
249
|
Xie C, Takahashi S, Brocker CN, He S, Chen L, Xie G, Jang K, Gao X, Krausz KW, Qu A, Levi M, Gonzalez FJ. Hepatocyte peroxisome proliferator-activated receptor α regulates bile acid synthesis and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1396-1411. [PMID: 31195146 DOI: 10.1016/j.bbalip.2019.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/05/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) controls lipid homeostasis through regulation of lipid transport and catabolism. PPARα activators are clinically used for hyperlipidemia treatment. The role of PPARα in bile acid (BA) homeostasis is beginning to emerge. Herein, Ppara-null and hepatocyte-specific Ppara-null (Ppara∆Hep) as well as the respective wild-type mice were treated with the potent PPARα agonist Wy-14,643 (Wy) and global metabolomics performed to clarify the role of hepatocyte PPARα in the regulation of BA homeostasis. Levels of all serum BAs were markedly elevated in Wy-treated wild-type mice but not in Ppara-null and Ppara∆Hep mice. Gene expression analysis showed that PPARα activation (1) down-regulated the expression of sodium-taurocholate acid transporting polypeptide and organic ion transporting polypeptide 1 and 4, responsible for the uptake of BAs into the liver; (2) decreased the expression of bile salt export pump transporting BA from hepatocytes into the bile canaliculus; (3) upregulated the expression of multidrug resistance-associated protein 3 and 4 transporting BA from hepatocytes into the portal vein. Moreover, there was a notable increase in the compositions of serum, hepatic and biliary cholic acid and taurocholic acid following Wy treatment, which correlated with the upregulated expression of the Cyp8b1 gene encoding sterol 12α-hydroxylase. The effects of Wy were identical between the Ppara∆Hep and Ppara-null mice. Hepatocyte PPARα controlled BA synthesis and transport not only via direct transcriptional regulation but also via crosstalk with hepatic farnesoid X receptor signaling. These findings underscore a key role for hepatocyte PPARα in the control of BA homeostasis.
Collapse
Affiliation(s)
- Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States of America.
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| | - Shijun He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Li Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| | - Katrina Jang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| | - Xiaoxia Gao
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States of America.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| |
Collapse
|
250
|
Wang Y, Xie LF, Lin J. Gallstones and cholecystectomy in relation to risk of liver cancer. Eur J Cancer Prev 2019; 28:61-67. [PMID: 29738324 DOI: 10.1097/cej.0000000000000421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The association between gallstones or cholecystectomy and the incidence risk of liver cancer is controversial. This is a meta-analysis of observational studies on the role of gallstones or cholecystectomy in primary liver cancer. Relevant studies were identified after the literature search via electronic databases until June 2014. A random-effects model was used to generate pooled multivariable adjusted odds ratios (ORs) and 95% confidence intervals (CIs). Heterogeneity among studies was evaluated using Cochran's Q and I statistics. A total of 14 studies (four case-control, 10 cohort) were included in this study. Our study showed the pooled OR was 2.66 (95% CI: 2.05-3.28) for gallstones with liver cancer risk and OR was 1.47 (95% CI: 1.24-1.71) for cholecystectomy. Though there was obvious heterogeneity among these studies, the risk of incidence was consistent in the subgroup analyses and sensitivity analysis. The findings from meta-analysis provided that patients with gallstones or cholecystectomy had significant increased the risk of liver cancer, although the biological mechanisms underlying the link still need to be clarified.
Collapse
Affiliation(s)
- Yue Wang
- Department of General Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Long-Fei Xie
- Department of Biology, University of California, Berkeley, California, USA
| | - Jie Lin
- Department of General Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|