201
|
|
202
|
Antwis RE, Edwards KL, Unwin B, Walker SL, Shultz S. Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino. MICROBIOME 2019; 7:27. [PMID: 30770764 PMCID: PMC6377766 DOI: 10.1186/s40168-019-0639-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/29/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Host microbiomes play a role in hormone production and subsequent fertility in humans, but this is less well understood in non-model organisms. This is of particular relevance to species in zoo-based conservation breeding programmes, as relationships between host microbiome composition and reproductive output may allow for the development of microbial augmentation strategies to improve success. Here, we characterise faecal bacterial communities of breeding and non-breeding eastern black rhino (Diceros bicornis michaeli) using 16S rRNA gene amplicon sequencing and quantify progestagen and glucocorticoid metabolite concentrations through enzyme immunoassays to identify such relationships. RESULTS We identified significant differences in black rhino gut microbiome composition according to ID, institution, breeding success and ovarian cycle phase. In particular, the gut microbiome during pregnancy and post-parturition was significantly altered. Around a third of bacterial genera showed more than ± 10% correlation with either progestagen and/or glucocorticoid concentration, and in general, microbial genera correlated with both hormones in the same direction. Through a combination of analyses, we identified four genera (Aerococcaceae, Atopostipes, Carnobacteriaceae and Solobacterium) that were significantly associated with breeding success, pregnancy and/or post-parturition, and higher faecal progestagen metabolite concentrations. These genera had a lower-than-average relative abundance in the gut microbiome. CONCLUSION Our results indicate that many members of the gut microbiome of black rhino are associated with hormone production and breeding success, and some members of the rare microbiota appear to be particularly important. Although the directionality of the relationship is unclear, the variation in gut microbiome communities represents a potential biomarker of reproductive health. We identified four genera that were associated with multiple indicators of reproductive output; these could be candidate probiotics to improve the breeding success of black rhino in zoo-based conservation breeding programmes. Further work is required to understand the efficacy and feasibility of this, either directly through microbial augmentation (e.g. probiotics) or indirectly via dietary manipulation or prebiotics.
Collapse
Affiliation(s)
- Rachael E Antwis
- School of Environment and Life Sciences, University of Salford, Salford, UK.
| | - Katie L Edwards
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Bryony Unwin
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Susan L Walker
- North of England Zoological Society, Chester Zoo, Upton-by-Chester, UK
| | - Susanne Shultz
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
203
|
McKeen S, Young W, Mullaney J, Fraser K, McNabb WC, Roy NC. Infant Complementary Feeding of Prebiotics for theMicrobiome and Immunity. Nutrients 2019; 11:nu11020364. [PMID: 30744134 PMCID: PMC6412789 DOI: 10.3390/nu11020364] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Complementary feeding transitions infants from a milk-based diet to solid foods, providing essential nutrients to the infant and the developing gut microbiome while influencing immune development. Some of the earliest microbial colonisers readily ferment select oligosaccharides, influencing the ongoing establishment of the microbiome. Non-digestible oligosaccharides in prebiotic-supplemented formula and human milk oligosaccharides promote commensal immune-modulating bacteria such as Bifidobacterium, which decrease in abundance during weaning. Incorporating complex, bifidogenic, non-digestible carbohydrates during the transition to solid foods may present an opportunity to feed commensal bacteria and promote balanced concentrations of beneficial short chain fatty acid concentrations and vitamins that support gut barrier maturation and immunity throughout the complementary feeding window.
Collapse
Affiliation(s)
- Starin McKeen
- AgResearch, Food Nutrition & Health, Grasslands Research Centre, Private Bag 11008, Palmerston north4442, New Zealand.
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Wayne Young
- AgResearch, Food Nutrition & Health, Grasslands Research Centre, Private Bag 11008, Palmerston north4442, New Zealand.
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Jane Mullaney
- AgResearch, Food Nutrition & Health, Grasslands Research Centre, Private Bag 11008, Palmerston north4442, New Zealand.
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Karl Fraser
- AgResearch, Food Nutrition & Health, Grasslands Research Centre, Private Bag 11008, Palmerston north4442, New Zealand.
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Warren C McNabb
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Nicole C Roy
- AgResearch, Food Nutrition & Health, Grasslands Research Centre, Private Bag 11008, Palmerston north4442, New Zealand.
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| |
Collapse
|
204
|
Abstract
The gut microbiota is a crucial actor in human physiology. Many of these effects are mediated by metabolites that are either produced by the microbes or derived from the transformation of environmental or host molecules. Among the array of metabolites at the interface between these microorganisms and the host is the essential aromatic amino acid tryptophan (Trp). In the gut, the three major Trp metabolism pathways leading to serotonin (5-hydroxytryptamine), kynurenine (Kyn), and indole derivatives are under the direct or indirect control of the microbiota. In this review, we gather the most recent advances concerning the central role of Trp metabolism in microbiota-host crosstalk in health and disease. Deciphering the complex equilibrium between these pathways will facilitate a better understanding of the pathogenesis of human diseases and open therapeutic opportunities.
Collapse
|
205
|
Tang C, Ding R, Sun J, Liu J, Kan J, Jin C. The impacts of natural polysaccharides on intestinal microbiota and immune responses – a review. Food Funct 2019; 10:2290-2312. [DOI: 10.1039/c8fo01946k] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents a comprehensive review of the impacts of natural polysaccharides on gut microbiota and immune responses as well as their interactions.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Ruoxi Ding
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Changhai Jin
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| |
Collapse
|
206
|
Wu XM, Tan RX. Interaction between gut microbiota and ethnomedicine constituents. Nat Prod Rep 2019; 36:788-809. [DOI: 10.1039/c8np00041g] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This highlight reviews the interaction processes between gut microbiota and ethnomedicine constituents, which may conceptualize future therapeutic strategies.
Collapse
Affiliation(s)
- Xue Ming Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
- State Key Laboratory of Pharmaceutical Biotechnology
| |
Collapse
|
207
|
Martin-Gallausiaux C, Larraufie P, Jarry A, Béguet-Crespel F, Marinelli L, Ledue F, Reimann F, Blottière HM, Lapaque N. Butyrate Produced by Commensal Bacteria Down-Regulates Indolamine 2,3-Dioxygenase 1 ( IDO-1) Expression via a Dual Mechanism in Human Intestinal Epithelial Cells. Front Immunol 2018; 9:2838. [PMID: 30619249 PMCID: PMC6297836 DOI: 10.3389/fimmu.2018.02838] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Commensal bacteria are crucial for the development and maintenance of a healthy immune system therefore contributing to the global well-being of their host. A wide variety of metabolites produced by commensal bacteria are influencing host health but the characterization of the multiple molecular mechanisms involved in host-microbiota interactions is still only partially unraveled. The intestinal epithelial cells (IECs) take a central part in the host-microbiota dialogue by inducing the first microbial-derived immune signals. Amongst the numerous effector molecules modulating the immune responses produced by IECs, indoleamine 2,3-dioxygenase-1 (IDO-1) is essential for gut homeostasis. IDO-1 expression is dependent on the microbiota and despites its central role, how the commensal bacteria impacts its expression is still unclear. Therefore, we investigated the impact of individual cultivable commensal bacteria on IDO-1 transcriptional expression and found that the short chain fatty acid (SCFA) butyrate was the main metabolite controlling IDO-1 expression in human primary IECs and IEC cell-lines. This butyrate-driven effect was independent of the G-protein coupled receptors GPR41, GPR43, and GPR109a and of the transcription factors SP1, AP1, and PPARγ for which binding sites were reported in the IDO-1 promoter. We demonstrated for the first time that butyrate represses IDO-1 expression by two distinct mechanisms. Firstly, butyrate decreases STAT1 expression leading to the inhibition of the IFNγ-dependent and phosphoSTAT1-driven transcription of IDO-1. In addition, we described a second mechanism by which butyrate impairs IDO-1 transcription in a STAT1-independent manner that could be attributed to its histone deacetylase (HDAC) inhibitor property. In conclusion, our results showed that IDO-1 expression is down-regulated by butyrate via a dual mechanism: the reduction of STAT1 level and the HDAC inhibitor property of SCFAs.
Collapse
Affiliation(s)
- Camille Martin-Gallausiaux
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,IFD, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Pierre Larraufie
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,MRC Metabolic Diseases Unit and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Anne Jarry
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Ludovica Marinelli
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,IFD, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Florence Ledue
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frank Reimann
- MRC Metabolic Diseases Unit and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,US 1367 MetaGenoPolis, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Lapaque
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
208
|
Li Y, Lei X, Lu H, Guo W, Wu S, Yin Z, Sun Q, Yang X. Age-Related Changes on CD40 Promotor Methylation and Immune Gene Expressions in Thymus of Chicken. Front Immunol 2018; 9:2731. [PMID: 30519246 PMCID: PMC6259354 DOI: 10.3389/fimmu.2018.02731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/06/2018] [Indexed: 12/29/2022] Open
Abstract
One hundred and twenty one-day-old breeder cocks, included 15 cages of 8 birds each, were fed to learn the aging's effect on chicken's thymus immunity. At 2 (2-W) and 40 (40-W) weeks of age, one chicken each cage was randomly chosen and slaughtered to get the thymus sample. The results showed that thymus weight and morphology of 40-W group were far different from that of 2-W group, and exhibited a property of degeneration. Considering this phenotype variance, we analyzed the thymus' transcriptome to investigate the molecular mechanism that had been implicated in this phenotype diversity with age. Pearson correlation coefficients and principal component analysis indicated that two major populations corresponding to 40-W and 2-W group were identified, and 1949 differentially expressed genes (DEGs, 1722 up-regulated and 127 down-regulated) were obtained. Results of GO and KEGG pathway enrichment found that 4 significantly enriched KEGG pathways (Cytokine-cytokine receptor interaction, Intestinal immune network for IgA production, Toll-like receptor signaling pathway, AGE-RAGE signaling pathway in diabetic complications) related to immunoregulation were screened between 40-W and 2-W group. These results confirmed that thymus immunity of chickens had a strong age-related correlation. DEGs related to these 4 enriched KEGG pathways were suppressed in the thymus of 2-W group, this indicated that thymus immunity of 2-weeks-age chick was down-regulated. CD40 is involved in 3 of the 4 significantly enriched pathways, and it is critical for thymus immune-regulation. CD40 promoter methylation level of 2-W group was higher than that of 40-W group, it is consistent with the transcriptional differences of the gene. Our study concluded that thymus immunity of chicken was varied with age. Compared to the 40-W group, thymus immunity of 2-W group was down-regulated, and in a status of hypo-activation on the whole, and these effects might be related to CD40 suppression induced by promoter hyper-methylation of the gene.
Collapse
Affiliation(s)
- Yulong Li
- College of Animal Science and Technology, Northwest A&F University, Xi'an, China
| | - Xinyu Lei
- College of Animal Science and Technology, Northwest A&F University, Xi'an, China
| | - Hong Lu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, China
| | - Wei Guo
- College of Animal Science and Technology, Northwest A&F University, Xi'an, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, China
| | - Zhenchen Yin
- College of Animal Science and Technology, Northwest A&F University, Xi'an, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Xi'an, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, China
| |
Collapse
|
209
|
O’Dwyer DN, Zhou X, Wilke CA, Xia M, Falkowski NR, Norman KC, Arnold KB, Huffnagle GB, Murray S, Erb-Downward JR, Yanik GA, Moore BB, Dickson RP. Lung Dysbiosis, Inflammation, and Injury in Hematopoietic Cell Transplantation. Am J Respir Crit Care Med 2018; 198:1312-1321. [PMID: 29878854 PMCID: PMC6290939 DOI: 10.1164/rccm.201712-2456oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Hematopoietic cell transplant (HCT) is a common treatment for hematological neoplasms and autoimmune disorders. Among HCT recipients, pulmonary complications are common, morbid, and/or lethal, and they have recently been associated with gut dysbiosis. The role of lung microbiota in post-HCT pulmonary complications is unknown. OBJECTIVES To investigate the role of lung microbiota in post-HCT pulmonary complications using animal modeling and human BAL fluid. METHODS For animal modeling, we used an established murine model of HCT with and without postengraftment herpes virus infection. For human studies, we characterized lung microbiota in BAL fluid from 43 HCT recipients. Lung bacteria were characterized using 16S ribosomal RNA gene sequencing and were compared with lung histology (murine) and with alveolar inflammation and pulmonary function testing (human). MEASUREMENTS AND MAIN RESULTS Both HCT and viral infection independently altered the composition of murine lung microbiota, but they had no effect on lung microbial diversity. By contrast, combined HCT and viral infection profoundly altered lung microbiota, decreasing community diversity with an associated pneumonitis. Among human HCT recipients, increased relative abundance of the Proteobacteria phylum was associated with impaired pulmonary function, and lung microbiota were significantly associated with alveolar concentrations of inflammatory cytokines. CONCLUSIONS In animal models and human subjects, lung dysbiosis is a prominent feature of HCT. Lung dysbiosis is correlated with histologic, immunologic, and physiologic features of post-HCT pulmonary complications. Our findings suggest the lung microbiome may be an unappreciated target for the prevention and treatment of post-HCT pulmonary complications.
Collapse
Affiliation(s)
- David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Xiaofeng Zhou
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Carol A. Wilke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Meng Xia
- Department of Biostatistics, School of Public Health, and
| | - Nicole R. Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Katy C. Norman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; and
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; and
| | - Gary B. Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
- Department of Microbiology and Immunology, and
| | - Susan Murray
- Department of Biostatistics, School of Public Health, and
| | - John R. Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Gregory A. Yanik
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
- Department of Microbiology and Immunology, and
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, Michigan
| |
Collapse
|
210
|
Geng S, Cheng S, Li Y, Wen Z, Ma X, Jiang X, Wang Y, Han X. Faecal Microbiota Transplantation Reduces Susceptibility to Epithelial Injury and Modulates Tryptophan Metabolism of the Microbial Community in a Piglet Model. J Crohns Colitis 2018; 12:1359-1374. [PMID: 30010734 DOI: 10.1093/ecco-jcc/jjy103] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Faecal microbiota transplantation [FMT] has shown promise as a treatment for inflammatory bowel disease [IBD]. Using a piglet model, our previous study indicated that exogenous faecal microbiota can increase the expressions of tight junction proteins, mucin and antimicrobial peptide in the intestinal mucosa, suggesting a beneficial effect of FMT on gut barrier and gastrointestinal health. However, specific connections between FMT-induced microbial changes and modulation of the intestinal barrier remain to be fully illustrated. Here, we aimed to determine the potential role of metabolic function of gut microbiota in the beneficial effects of FMT. METHODS The influence of FMT on the maintenance of intestinal homeostasis was assessed by early-life gut microbiota intervention on newborn piglets and subsequent lipopolysaccharide [LPS] challenge. Analysis of the gut microbiome and metabolome was carried out by 16S rRNA gene sequencing and multiple mass spectrometry platforms. RESULTS FMT modulated the diversity and composition of colonic microbiota and reduced the susceptibility to LPS-induced destruction of epithelial integrity and severe inflammatory response. Metabolomic analysis revealed functional changes of the gut metabolome along with a significant increase of the typical microbiota-derived tryptophan catabolite indole-3-acetic acid in the colonic lumen. In concordance with the metabolome data, metagenomics prediction analysis based on 16S rRNA gene sequencing also demonstrated that FMT modulated the metabolic functions of gut microbiota associated with indole alkaloid biosynthesis, cytochrome P450 and intestinal homeostasis, which coincided with up-regulation of cytokine interleukin-22 and enhanced activation of aryl hydrocarbon receptor in the recipient colon. CONCLUSIONS Our data reveal a regulatory effect of FMT on tryptophan metabolism of gut microbiota in the recipient colon, which may play a potential role in maintenance of the intestinal barrier.
Collapse
Affiliation(s)
- Shijie Geng
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Saisai Cheng
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Li
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhengshun Wen
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xin Ma
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuemei Jiang
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyan Han
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
211
|
Jeffrey MP, Strap JL, Jones Taggart H, Green-Johnson JM. Suppression of Intestinal Epithelial Cell Chemokine Production by Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0389 Is Mediated by Secreted Bioactive Molecules. Front Immunol 2018; 9:2639. [PMID: 30524427 PMCID: PMC6262363 DOI: 10.3389/fimmu.2018.02639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Host intestinal epithelial cells (IEC) present at the gastrointestinal interface are exposed to pathogenic and non-pathogenic bacteria and their products. Certain probiotic lactic acid bacteria (LAB) have been associated with a range of host-immune modulatory activities including down-regulation of pro-inflammatory gene expression and cytokine production by IEC, with growing evidence suggesting that these bacteria secrete bioactive molecules with immunomodulatory activity. The aim of this study was to determine whether two lactobacilli with immunomodulatory activity [Lactobacillus rhamnosus R0011 (Lr) and Lactobacillus helveticus R0389 (Lh)], produce soluble mediators able to influence IEC responses to Pattern Recognition Receptor (PRR) ligands and pro-inflammatory cytokines [Tumor Necrosis Factor α (TNFα), Interleukin-1β (IL-1β)], signals inducing IEC chemokine production during infection. To this end, the effects of cell-free supernatants (CFS) from Lr and Lh on IEC production of the pro-inflammatory chemokines interleukin (IL)-8 and cytokine-induced neutrophil chemoattractant 1 (CINC-1) induced by a range of host- or pathogen-derived pro-inflammatory stimuli were determined, and the impact on human HT-29 IEC and a primary IEC line (rat IEC-6) was compared. The Lr-CFS and Lh-CFS did not significantly modulate basal IL-8 production from HT-29 IECs or CINC-1 production from IEC-6 cells. However, both Lr-CFS and Lh-CFS significantly down-regulated IL-8 production from HT-29 IECs challenged with varied PRR ligands. Lr-CFS and Lh-CFS had differential effects on PRR-induced CINC-1 production by rat IEC-6 IECs, with no significant down-regulation of CINC-1 observed from IEC-6 IECs cultured with Lh-CFS. Further analysis of the Lr-CFS revealed down-regulation of IL-8 production induced by the pro-inflammatory cytokines IL-1β and TNFα Preliminary characterization of the bioactive constituent(s) of the Lr-CFS indicates that it is resistant to treatment with DNase, RNase, and an acidic protease, but is sensitive to alterations in pH. Taken together, these results indicate that these lactobacilli secrete bioactive molecules of low molecular weight that may modulate host innate immune activity through interactions with IEC.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Janice L Strap
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Holly Jones Taggart
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| |
Collapse
|
212
|
Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metab 2018; 28:737-749.e4. [PMID: 30057068 DOI: 10.1016/j.cmet.2018.07.001] [Citation(s) in RCA: 361] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/11/2018] [Accepted: 07/06/2018] [Indexed: 02/08/2023]
Abstract
The extent to which microbiota alterations define or influence the outcome of metabolic diseases is still unclear, but the byproducts of microbiota metabolism are known to have an important role in mediating the host-microbiota interaction. Here, we identify that in both pre-clinical and clinical settings, metabolic syndrome is associated with the reduced capacity of the microbiota to metabolize tryptophan into derivatives that are able to activate the aryl hydrocarbon receptor. This alteration is not merely an effect of the disease as supplementation with AhR agonist or a Lactobacillus strain, with a high AhR ligand-production capacity, leads to improvement of both dietary- and genetic-induced metabolic impairments, particularly glucose dysmetabolism and liver steatosis, through improvement of intestinal barrier function and secretion of the incretin hormone GLP-1. These results highlight the role of gut microbiota-derived metabolites as a biomarker and as a basis for novel preventative or therapeutic interventions for metabolic disorders.
Collapse
|
213
|
Adamovsky O, Buerger AN, Wormington AM, Ector N, Griffitt RJ, Bisesi JH, Martyniuk CJ. The gut microbiome and aquatic toxicology: An emerging concept for environmental health. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2758-2775. [PMID: 30094867 DOI: 10.1002/etc.4249] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The microbiome plays an essential role in the health and onset of diseases in all animals, including humans. The microbiome has emerged as a central theme in environmental toxicology because microbes interact with the host immune system in addition to its role in chemical detoxification. Pathophysiological changes in the gastrointestinal tissue caused by ingested chemicals and metabolites generated from microbial biodegradation can lead to systemic adverse effects. The present critical review dissects what we know about the impacts of environmental contaminants on the microbiome of aquatic species, with special emphasis on the gut microbiome. We highlight some of the known major gut epithelium proteins in vertebrate hosts that are targets for chemical perturbation, proteins that also directly cross-talk with the microbiome. These proteins may act as molecular initiators for altered gut function, and we propose a general framework for an adverse outcome pathway that considers gut dysbiosis as a major contributing factor to adverse apical endpoints. We present 2 case studies, nanomaterials and hydrocarbons, with special emphasis on the Deepwater Horizon oil spill, to illustrate how investigations into the microbiome can improve understanding of adverse outcomes. Lastly, we present strategies to functionally relate chemical-induced gut dysbiosis with adverse outcomes because this is required to demonstrate cause-effect relationships. Further investigations into the toxicant-microbiome relationship may prove to be a major breakthrough for improving animal and human health. Environ Toxicol Chem 2018;37:2758-2775. © 2018 SETAC.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Amanda N Buerger
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Alexis M Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Naomi Ector
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, USA
| | - Joseph H Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
214
|
Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S, Mazmanian SK. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 2018; 563:402-406. [PMID: 30356215 PMCID: PMC6237646 DOI: 10.1038/s41586-018-0634-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Catherine E Schretter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Jost Vielmetter
- Protein Expression Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Imre Bartos
- Department of Physics, Columbia University, New York, NY, USA
| | - Zsuzsa Marka
- Department of Physics, Columbia University, New York, NY, USA
| | - Szabolcs Marka
- Department of Physics, Columbia University, New York, NY, USA
| | - Sulabha Argade
- GlycoAnalytics Core, University of California, San Diego, CA, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
215
|
Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, Wu K. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 2018; 17:129. [PMID: 30139382 PMCID: PMC6107958 DOI: 10.1186/s12943-018-0864-3] [Citation(s) in RCA: 522] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
Programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) is a negative modulatory signaling pathway for activation of T cell. It is acknowledged that PD-1/PD-L1 axis plays a crucial role in the progression of tumor by altering status of immune surveillance. As one of the most promising immune therapy strategies, PD-1/PD-L1 inhibitor is a breakthrough for the therapy of some refractory tumors. However, response rate of PD-1/PD-L1 inhibitors in overall patients is unsatisfactory, which limits the application in clinical practice. Therefore, biomarkers which could effectively predict the efficacy of PD-1/PD-L1 inhibitors are crucial for patient selection. Biomarkers reflecting tumor immune microenvironment and tumor cell intrinsic features, such as PD-L1 expression, density of tumor infiltrating lymphocyte (TIL), tumor mutational burden, and mismatch-repair (MMR) deficiency, have been noticed to associate with treatment effect of anti-PD-1/anti-PD-L1 therapy. Furthermore, gut microbiota, circulating biomarkers, and patient previous history have been found as valuable predictors as well. Therefore establishing a comprehensive assessment framework involving multiple biomarkers would be meaningful to interrogate tumor immune landscape and select sensitive patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
216
|
Kim CH. Immune regulation by microbiome metabolites. Immunology 2018; 154:220-229. [PMID: 29569377 PMCID: PMC5980225 DOI: 10.1111/imm.12930] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/18/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Commensal microbes and the host immune system have been co-evolved for mutual regulation. Microbes regulate the host immune system, in part, by producing metabolites. A mounting body of evidence indicates that diverse microbial metabolites profoundly regulate the immune system via host receptors and other target molecules. Immune cells express metabolite-specific receptors such as P2X7 , GPR41, GPR43, GPR109A, aryl hydrocarbon receptor precursor (AhR), pregnane X receptor (PXR), farnesoid X receptor (FXR), TGR5 and other molecular targets. Microbial metabolites and their receptors form an extensive array of signals to respond to changes in nutrition, health and immunological status. As a consequence, microbial metabolite signals contribute to nutrient harvest from diet, and regulate host metabolism and the immune system. Importantly, microbial metabolites bidirectionally function to promote both tolerance and immunity to effectively fight infection without developing inflammatory diseases. In pathogenic conditions, adverse effects of microbial metabolites have been observed as well. Key immune-regulatory functions of the metabolites, generated from carbohydrates, proteins and bile acids, are reviewed in this article.
Collapse
Affiliation(s)
- Chang H. Kim
- Department of Pathology and Mary H. Weiser Food Allergy CenterUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
217
|
Wan SJ, Sullivan AB, Shieh P, Metruccio MME, Evans DJ, Bertozzi CR, Fleiszig SMJ. IL-1R and MyD88 Contribute to the Absence of a Bacterial Microbiome on the Healthy Murine Cornea. Front Microbiol 2018; 9:1117. [PMID: 29896179 PMCID: PMC5986933 DOI: 10.3389/fmicb.2018.01117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/11/2018] [Indexed: 01/09/2023] Open
Abstract
Microbial communities are important for the health of mucosal tissues. Traditional culture and gene sequencing have demonstrated bacterial populations on the conjunctiva. However, it remains unclear if the cornea, a transparent tissue critical for vision, also hosts a microbiome. Corneas of wild-type, IL-1R (-/-) and MyD88 (-/-) C57BL/6 mice were imaged after labeling with alkyne-functionalized D-alanine (alkDala), a probe that only incorporates into the peptidoglycan of metabolically active bacteria. Fluorescence in situ hybridization (FISH) was also used to detect viable bacteria. AlkDala labeling was rarely observed on healthy corneas. In contrast, adjacent conjunctivae harbored filamentous alkDala-positive forms, that also labeled with DMN-Tre, a Corynebacterineae-specific probe. FISH confirmed the absence of viable bacteria on healthy corneas, which also cleared deliberately inoculated bacteria within 24 h. Differing from wild-type, both IL-1R (-/-) and MyD88 (-/-) corneas harbored numerous alkDala-labeled bacteria, a result abrogated by topical antibiotics. IL-1R (-/-) corneas were impermeable to fluorescein suggesting that bacterial colonization did not reflect decreased epithelial integrity. Thus, in contrast to the conjunctiva and other mucosal surfaces, healthy murine corneas host very few viable bacteria, and this constitutive state requires the IL-1R and MyD88. While this study cannot exclude the presence of fungi, viruses, or non-viable or dormant bacteria, the data suggest that healthy murine corneas do not host a resident viable bacterial community, or microbiome, the absence of which could have important implications for understanding the homeostasis of this tissue.
Collapse
Affiliation(s)
- Stephanie J Wan
- Vision Science Program, University of California, Berkeley, Berkeley, CA, United States
| | - Aaron B Sullivan
- School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| | - Peyton Shieh
- College of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Matteo M E Metruccio
- School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| | - David J Evans
- School of Optometry, University of California, Berkeley, Berkeley, CA, United States
- College of Pharmacy, Touro University California, Vallejo, CA, United States
| | - Carolyn R Bertozzi
- School of Optometry, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, Berkeley, CA, United States
- Graduate Groups in Vision Sciences, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
218
|
Yi M, Yu S, Qin S, Liu Q, Xu H, Zhao W, Chu Q, Wu K. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J Hematol Oncol 2018; 11:47. [PMID: 29580257 PMCID: PMC5870075 DOI: 10.1186/s13045-018-0592-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/11/2018] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy is a novel strategy for cancer treatments in recent years. However, it was observed that most patients treated with ICIs could not get benefit from the therapy, which led to the limitation of clinical application. Motivated by potent and durable efficacy of ICIs, oncologists endeavor to explore the mechanisms of resistance to ICIs and increase the drug sensitivity. It is known that heterogeneity of gut microbiome in populations may result in different outcomes of therapy. In xenograft model, bacteria in gut have been proved as a crucial factor regulating immunotherapy efficacy. And the similar phenomenon was obtained in patients. In this review, we summarized relevant advancements about gut microbiome and ICIs. Furthermore, we focused on modulatory function of gut microbiome in ICIs therapy and possible antitumor mechanism of specific commensals in ICIs treatment. We propose that gut microbiome is an important predictive factor, and manipulation of gut microbiome is feasible to elevate response rate in ICIs therapy.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
219
|
Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine Microbiota: Residents, Tourists, or Invaders? Front Immunol 2018; 9:208. [PMID: 29552006 PMCID: PMC5840171 DOI: 10.3389/fimmu.2018.00208] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
Uterine microbiota have been reported under various conditions and populations; however, it is uncertain the level to which these bacteria are residents that maintain homeostasis, tourists that are readily eliminated or invaders that contribute to human disease. This review provides a historical timeline and summarizes the current status of this topic with the aim of promoting research priorities and discussion on this controversial topic. Discrepancies exist in current reports of uterine microbiota and are critically reviewed and examined. Established and putative routes of bacterial seeding of the human uterus and interactions with distal mucosal sites are discussed. Based upon the current literature, we highlight the need for additional robust clinical and translational studies in this area. In addition, we discuss the necessity for investigating host–microbiota interactions and the physiologic and functional impact of these microbiota on the local endometrial microenvironment as these mechanisms may influence poor reproductive, obstetric, and gynecologic health outcomes and sequelae.
Collapse
Affiliation(s)
- James M Baker
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Dana M Chase
- Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Creighton University School of Medicine at St. Joseph's Hospital, Phoenix, AZ, United States
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
220
|
Kather JN, Halama N, Jaeger D. Genomics and emerging biomarkers for immunotherapy of colorectal cancer. Semin Cancer Biol 2018; 52:189-197. [PMID: 29501787 DOI: 10.1016/j.semcancer.2018.02.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a common and lethal disease with a high therapeutic need. For most patients with metastatic CRC, chemotherapy is the only viable option. Currently, immunotherapy is restricted to the particular genetic subgroup of mismatch-repair deficient (MMRd)/microsatellite instable (MSI) CRC. Anti-PD1 therapy was recently FDA-approved as a second-line treatment in this subgroup. However, in a metastatic setting, these MMRd/MSI tumors are vastly outnumbered by mismatch-repair proficient (MMRp)/microsatellite stable (MSS) tumors. These MMRp/MSS tumors do not meaningfully respond to any traditional immunotherapy approach including checkpoint blockade, adoptive cell transfer and vaccination. This resistance to immunotherapy is due to a complex tumor microenvironment that counteracts antitumor immunity through a combination of poorly antigenic tumor cells and an immunosuppressive tumor microenvironment. To find ways of overcoming immunotherapy resistance in the majority of CRC patients, it is necessary to analyze the immunological makeup in an in-depth and personalized way and in the context of their tumor genetic makeup. Flexible, biomarker-guided early-phase immunotherapy trials are needed to optimize this workflow. In this review, we detail key mechanisms for immune evasion and emerging immune biomarkers for personalized immunotherapy in CRC. Also, we present a template for biomarker-guided clinical trials that are needed to move new immunotherapy approaches closer to clinical application.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niels Halama
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dirk Jaeger
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
221
|
Ma N, Guo P, Zhang J, He T, Kim SW, Zhang G, Ma X. Nutrients Mediate Intestinal Bacteria-Mucosal Immune Crosstalk. Front Immunol 2018; 9:5. [PMID: 29416535 PMCID: PMC5787545 DOI: 10.3389/fimmu.2018.00005] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
The intestine is the shared site of nutrient digestion, microbiota colonization and immune cell location and this geographic proximity contributes to a large extent to their interaction. The onset and development of a great many diseases, such as inflammatory bowel disease and metabolic syndrome, will be caused due to the imbalance of body immune. As competent assistants, the intestinal bacteria are also critical in disease prevention and control. Moreover, the gut commensal bacteria are essential for development and normal operation of immune system and the pathogens are also closely bound up with physiological disorders and diseases mediated by immune imbalance. Understanding how our diet and nutrient affect bacterial composition and dynamic function, and the innate and adaptive status of our immune system, represents not only a research need but also an opportunity or challenge to improve health. Herein, this review focuses on the recent discoveries about intestinal bacteria–immune crosstalk and nutritional regulation on their interplay, with an aim to provide novel insights that can aid in understanding their interactions.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
222
|
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC, Hwu WJ, Patel SP, Woodman SE, Amaria RN, Davies MA, Gershenwald JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futreal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jenq RR, Wargo JA. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359:97-103. [PMID: 29097493 PMCID: PMC5827966 DOI: 10.1126/science.aan4236] [Citation(s) in RCA: 2944] [Impact Index Per Article: 490.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
Preclinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti-programmed cell death 1 protein (PD-1) immunotherapy (n = 112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders versus nonresponders. Analysis of patient fecal microbiome samples (n = 43, 30 responders, 13 nonresponders) showed significantly higher alpha diversity (P < 0.01) and relative abundance of bacteria of the Ruminococcaceae family (P < 0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in responders, including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- V Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | - C N Spencer
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L Nezi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M C Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - T V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - P A Prieto
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - D Vicente
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - K Hoffman
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - S C Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A P Cogdill
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C W Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - D S Hutchinson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - T Manzo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M Petaccia de Macedo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - T Cotechini
- Department of Cell, Developmental and Cell Biology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - T Kumar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - W S Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - S M Reddy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - R Szczepaniak Sloane
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J Galloway-Pena
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - H Jiang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - P L Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E J Shpall
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - K Rezvani
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A M Alousi
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - R F Chemaly
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - S Shelburne
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L M Vence
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - P C Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - V B Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A G Swennes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - F McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E Marcelo Riquelme Sanchez
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E Le Chatelier
- Centre de Recherche de Jouy-en-Josas, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas, France
| | - L Zitvogel
- Centre d'Investigation Clinique Biothérapie, Institut Gustave-Roussy, 94805 Villejuif Cedex, France
| | - N Pons
- Centre de Recherche de Jouy-en-Josas, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas, France
| | - J L Austin-Breneman
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L E Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E M Burton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J M Gardner
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E Sirmans
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J Hu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A J Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - T Tsujikawa
- Department of Cell, Developmental and Cell Biology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - A Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - H Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - I C Glitza
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - W J Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - S P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - S E Woodman
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - R N Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - P Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L M Coussens
- Department of Cell, Developmental and Cell Biology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Z A Cooper
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - P A Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | - N J Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - J F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M T Tetzlaff
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - P Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - R R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
223
|
Freedman SN, Shahi SK, Mangalam AK. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics 2018; 15:109-125. [PMID: 29204955 PMCID: PMC5794701 DOI: 10.1007/s13311-017-0588-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.
Collapse
Affiliation(s)
- Samantha N Freedman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh K Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh K Mangalam
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
224
|
The Microbiota Regulates Immunity and Immunologic Diseases in Dogs and Cats. Vet Clin North Am Small Anim Pract 2017; 48:307-322. [PMID: 29198905 DOI: 10.1016/j.cvsm.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex commensal microbiota found on body surfaces controls immune responses and the development of allergic and inflammatory diseases. New genetic technologies permit investigators to determine the composition of the complex microbial populations found on these surfaces. Changes in the microbiota (dysbiosis) as a result of antibiotic use, diet, or other factors thus influence the development of many diseases in the dog and cat. The most important of these include chronic gastrointestinal disease; respiratory allergies, such as asthma; skin diseases, especially atopic dermatitis; and some autoimmune diseases.
Collapse
|
225
|
Esposito S, Principi N. Impact of nasopharyngeal microbiota on the development of respiratory tract diseases. Eur J Clin Microbiol Infect Dis 2017; 37:1-7. [PMID: 28795339 DOI: 10.1007/s10096-017-3076-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Abstract
Knowledge of whether and how respiratory microbiota composition can prime the immune system and provide colonisation resistance, limiting consecutive pathobiont overgrowth and infections, is essential to improving the prevention and therapy of respiratory disorders. Modulation of dysbiotic ecosystems or reconstitution of missing microbes might be a possible measure to reduce respiratory diseases. The aim of this review is to analyse the role of nasopharyngeal microbiota in the development of respiratory tract disease in paediatric-age subjects. PubMed was used to search for all studies published over the last 15 years using the following key words: "microbiota" or "microbioma" and "nasopharyngeal" or "respiratory" or "nasal" and "children" or "paediatric" or "infant". Analysis of the literature showed that respiratory microbiota can regulate health and disease development in the respiratory tract. Like the gut microbiota, the respiratory microbiota is established at birth, and early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Protective and dangerous bacteria have been identified, and this can be considered the base for developing new approaches to diseases that respond poorly to traditional interventions. Reconstitution of missing microbes can be achieved by the administration of pre- and probiotics. Modulation of respiratory microbiota by favouring colonisation of the upper respiratory tract by beneficial commensals can interfere with the proliferation and activity of resident pathobionts and is a possible new measure to reduce the risk of disease. However, further studies are needed because a deeper understanding of these and related issues can be transferred to clinical practice.
Collapse
Affiliation(s)
- S Esposito
- Pediatric Clinic, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy.
| | - N Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
226
|
Abstract
The human gut contains trillions of bacteria (microbiome) that play a major role in maintaining a healthy state for the host. Perturbation of this healthy gut microbiome might be an important environmental factor in the pathogenesis of inflammatory autoimmune diseases such as multiple sclerosis (MS). Others and we have recently reported that MS patients have gut microbial dysbiosis (altered microbiota) with the depletion of some and enrichment of other bacteria. However, the significance of gut bacteria that show lower or higher abundance in MS is unclear. The majority of gut bacteria are associated with certain metabolic pathways, which in turn help in the maintenance of immune homeostasis of the host. Here we discuss recent MS microbiome studies and the possible mechanisms through which gut microbiome might contribute to the pathogenesis of MS.
Collapse
Affiliation(s)
- Shailesh K. Shahi
- Department of Pathology, Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Samantha N. Freedman
- Department of Pathology, Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh K. Mangalam
- Department of Pathology, Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA,CONTACT Ashutosh K. Mangalam, Ph.D. Department of Pathology, University of Iowa Carver College of Medicine, 25 S. Grand Avenue, 1080A ML Iowa City, IA 52242
| |
Collapse
|
227
|
Rescigno M. The microbiota revolution: Excitement and caution. Eur J Immunol 2017; 47:1406-1413. [PMID: 28675439 DOI: 10.1002/eji.201646576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/05/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Scientific progress is characterized by important technological advances. Next-generation DNA sequencing has, in the past few years, led to a major scientific revolution: the microbiome revolution. It has become possible to generate a fingerprint of the whole microbiota of any given environment. As it becomes clear that the microbiota affects several aspects of our lives, each new scientific finding should ideally be analyzed in light of these communities. For instance, animal experimentation should consider animal sources and husbandry; human experimentation should include analysis of microenvironmental cues that might affect the microbiota, including diet, antibiotic, and drug use, genetics. When analyzing the activity of a drug, we should remember that, according to the microbiota of the host, different drug activities might be observed, either due to modification or degradation by the microbiota, or because the microbiota changes the immune system of the host in a way that makes that drug more or less effective. This minireview will not be a comprehensive review on the interaction between the host and microbiota, but it will aim at creating awareness on why we should not forget the contribution of the microbiota in any single aspect of biology.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Dipartimento di Scienze della Salute, Universita' di Milano, Milan, Italy
| |
Collapse
|
228
|
Redhu NS, Bakthavatchalu V, Conaway EA, Shouval DS, Tsou A, Goettel JA, Biswas A, Wang C, Field M, Muller W, Bleich A, Li N, Gerber GK, Bry L, Fox JG, Snapper SB, Horwitz BH. Macrophage dysfunction initiates colitis during weaning of infant mice lacking the interleukin-10 receptor. eLife 2017; 6. [PMID: 28678006 PMCID: PMC5531923 DOI: 10.7554/elife.27652] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/01/2017] [Indexed: 01/19/2023] Open
Abstract
Infants with defects in the interleukin 10 receptor (IL10R) develop very early onset inflammatory bowel disease. Whether IL10R regulates lamina propria macrophage function during infant development in mice and whether macrophage-intrinsic IL10R signaling is required to prevent colitis in infancy is unknown. Here we show that although signs of colitis are absent in IL10R-deficient mice during the first two weeks of life, intestinal inflammation and macrophage dysfunction begin during the third week of life, concomitant with weaning and accompanying diversification of the intestinal microbiota. However, IL10R did not directly regulate the microbial ecology during infant development. Interestingly, macrophage depletion with clodronate inhibited the development of colitis, while the absence of IL10R specifically on macrophages sensitized infant mice to the development of colitis. These results indicate that IL10R-mediated regulation of macrophage function during the early postnatal period is indispensable for preventing the development of murine colitis.
Collapse
Affiliation(s)
- Naresh S Redhu
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, United States
| | - Evan A Conaway
- Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | - Dror S Shouval
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, United States.,Division of Pediatric Gastroenterology and Nutrition, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy Tsou
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Amlan Biswas
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Chuanwu Wang
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, United States
| | - Werner Muller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Ning Li
- Department of Pathology, Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Boston, United States
| | - Georg K Gerber
- Department of Pathology, Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Boston, United States
| | - Lynn Bry
- Department of Pathology, Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Boston, United States
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, United States
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, United States
| | - Bruce H Horwitz
- Harvard Medical School, Boston, United States.,Department of Pathology, Brigham and Women's Hospital, Boston, United States
| |
Collapse
|
229
|
Abstract
It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Matteo Antonio Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy.,Fondazione San Raffaele, Ceglie Messapica, Italy
| |
Collapse
|
230
|
Fink PJ. The Macro Influence of the Microbiome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:553. [PMID: 28069748 DOI: 10.4049/jimmunol.1690022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|