201
|
Chourasia R, Padhi S, Chiring Phukon L, Abedin MM, Singh SP, Rai AK. A Potential Peptide From Soy Cheese Produced Using Lactobacillus delbrueckii WS4 for Effective Inhibition of SARS-CoV-2 Main Protease and S1 Glycoprotein. Front Mol Biosci 2020; 7:601753. [PMID: 33363209 PMCID: PMC7759660 DOI: 10.3389/fmolb.2020.601753] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic caused by novel SARS-CoV-2 has resulted in an unprecedented loss of lives and economy around the world. In this study, search for potential inhibitors against two of the best characterized SARS-CoV-2 drug targets: S1 glycoprotein receptor-binding domain (RBD) and main protease (3CLPro), was carried out using the soy cheese peptides. A total of 1,420 peptides identified from the cheese peptidome produced using Lactobacillus delbrueckii WS4 were screened for antiviral activity by employing the web tools, AVPpred, and meta-iAVP. Molecular docking studies of the selected peptides revealed one potential peptide "KFVPKQPNMIL" that demonstrated strong affinity toward significant amino acid residues responsible for the host cell entry (RBD) and multiplication (3CLpro) of SARS-CoV-2. The peptide was also assessed for its ability to interact with the critical residues of S1 RBD and 3CLpro of other β-coronaviruses. High binding affinity was observed toward critical amino acids of both the targeted proteins in SARS-CoV, MERS-CoV, and HCoV-HKU1. The binding energy of KFVPKQPNMIL against RBD and 3CLpro of the four viruses ranged from -8.45 to -26.8 kcal/mol and -15.22 to -22.85 kcal/mol, respectively. The findings conclude that cheese, produced by using Lb. delbrueckii WS4, could be explored as a prophylactic food for SARS-CoV-2 and related viruses. In addition, the multi-target inhibitor peptide, which effectively inhibited both the viral proteins, could further be used as a terminus a quo for the in vitro and in vivo function against SARS-CoV-2.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| | - Sudhir P. Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Sikkim, India
| |
Collapse
|
202
|
Siddiqui S, Upadhyay S, Ahmad R, Gupta A, Srivastava A, Trivedi A, Husain I, Ahmad B, Ahamed M, Khan MA. Virtual screening of phytoconstituents from miracle herb nigella sativa targeting nucleocapsid protein and papain-like protease of SARS-CoV-2 for COVID-19 treatment. J Biomol Struct Dyn 2020; 40:3928-3948. [PMID: 33289456 PMCID: PMC7738213 DOI: 10.1080/07391102.2020.1852117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel etiological agent of coronavirus disease 2019 (COVID-19). Nigella sativa, commonly known as black seed or black cumin, has been a historical and traditional plant since thousands of years. Based on their therapeutic efficacy, the chief components of terpenoids and flavonoids were selected from N. sativa seeds and seed oil. This study was designed to check the antiviral efficacy of N. sativa main phytoconstituents against five potential targets of SARS-CoV-2 using in silico structure-based virtual screening approach. Out of twenty five phytocomponents, ten components showed best binding affinity against two viral proteins viz. N-terminal RNA binding domain (NRBD; PDB ID: 6M3M) of nucleocapsid protein and papain-like protease (PL-PRO; PDB ID: 6W9C) of SARS-CoV-2 using AutoDock 4.2.6, AutoDock Vina and iGEMDOCK. PASS analyses of all ten phytocomponents using Lipinski's Rule of five showed promising results. Further, druglikeness and toxicity assessment using OSIRIS Data Warrior v5.2.1 software exhibited the feasibility of phytocomponents as drug candidates with no predicted toxicity. Molecular dynamics simulation study of NRBD of SARS-CoV-2 nucleocapsid protein-alpha-spinasterol complex and PL-PRO-cycloeucalenol complex displayed strong stability at 300 K. Both these complexes exhibited constant root mean square deviation (RMSDs) of protein side chains and Cα atoms throughout the simulation run time. Interestingly, PL-PRO and NRBD are key proteins in viral replication, host cell immune evasion and viral assembly. Thus, NRBD and PL-PRO have the potential to serve as therapeutic targets for N. sativa phytoconstituents in drug discovery process against COVID-19.
Collapse
Affiliation(s)
- Sahabjada Siddiqui
- Deparment of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Shivbrat Upadhyay
- Deparment of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Anamika Gupta
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Anchal Trivedi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Ishrat Husain
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Bilal Ahmad
- Research Cell, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Ali Khan
- Chancellor, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
203
|
Alexandrova R, Beykov P, Vassilev D, Jukić M, Podlipnik Č. The virus that shook the world: questions and answers about SARS-CoV-2 and COVID-19. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1847683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Radostina Alexandrova
- Department of Pathology Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pencho Beykov
- Department of Pathology Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, Sofa, Bulgaria
| | - Dobrin Vassilev
- “Alexandrovska” University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Marko Jukić
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia
- Natural Sciences and Information Technologies, Faculty of Mathematics, University of Primorska, Koper, Slovenia
| | - Črtomir Podlipnik
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
204
|
Zaporozhets TS, Besednova NN. Biologically active compounds from marine organisms in the strategies for combating coronaviruses. AIMS Microbiol 2020; 6:470-494. [PMID: 33364539 PMCID: PMC7755586 DOI: 10.3934/microbiol.2020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the progress made in immunization and drug development, so far there are no prophylactic vaccines and effective therapies for many viral infections, including infections caused by coronaviruses. In this regard, the search for new antiviral substances continues to be relevant, and the enormous potential of marine resources are a stimulus for the study of marine compounds with antiviral activity in experiments and clinical trials. The highly pathogenic human coronaviruses-severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) remain a serious threat to human health. In this review, the authors hope to bring the attention of researchers to the use of biologically active substances of marine origin as potential broad-spectrum antiviral agents targeting common cellular pathways and various stages of the life cycle of different viruses, including coronaviruses. The review has been compiled using references from major databases such as Web of Science, PubMed, Scopus, Elsevier, Springer and Google Scholar (up to June 2020) and keywords such as 'coronaviruses', 'marine organisms', 'biologically active substances', 'antiviral drugs', 'SARS-CoV', 'MERS-CoV', 'SARS-CoV-2', '3CLpro', 'TMPRSS2', 'ACE2'. After obtaining all reports from the databases, the papers were carefully analysed in order to find data related to the topic of this review (98 references). Biologically active substances of marine origin, such as flavonoids, phlorotannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, lipids and others substances, can affect coronaviruses at the stages of penetration and entry of the viral particle into the cell, replication of the viral nucleic acid and release of the virion from the cell; they also can act on the host's cellular targets. These natural compounds could be a vital resource in the fight against coronaviruses.
Collapse
Affiliation(s)
- Tatyana S. Zaporozhets
- Immunology Laboratory, Somov Institute of Epidemiology and Microbiology, Vladivostok, Russian Federation
| | | |
Collapse
|
205
|
Nagu P, Parashar A, Behl T, Mehta V. CNS implications of COVID-19: a comprehensive review. Rev Neurosci 2020; 32:219-234. [PMID: 33550782 DOI: 10.1515/revneuro-2020-0070] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 was first reported in December 2019 in the Wuhan city of China, and since then it has spread worldwide taking a heavy toll on human life and economy. COVID-19 infection is commonly associated with symptoms like coughing, fever, and shortness of breath, besides, the reports of muscle pain, anosmia, hyposmia, and loss of taste are becoming evident. Recent reports suggest the pathogenic invasion of the SARS-CoV-2 into the CNS, that could thereby result in devastating long term complications, primarily because some of these complications may go unnoticed for a long time. Evidence suggest that the virus could enter the CNS through angiotensin-converting enzyme-2 (ACE-2) receptor, neuronal transport, haematogenous route, and nasal route via olfactory bulb, cribriform plate, and propagates through trans-synaptic signalling, and shows retrograde movement into the CNS along nerve fiber. COVID-19 induces CNS inflammation and neurological degenerative damage through a diverse mechanism which includes ACE-2 receptor damage, cytokine-associated injury or cytokine storm syndrome, secondary hypoxia, demyelination, blood-brain barrier disruption, neurodegeneration, and neuroinflammation. Viral invasion into the CNS has been reported to show association with complications like Parkinsonism, Alzheimer's disorder, meningitis, encephalopathy, anosmia, hyposmia, anxiety, depression, psychiatric symptoms, seizures, stroke, etc. This review provides a detailed discussion of the CNS pathogenesis of COVID-19. Authors conclude that the COVID-19 cannot just be considered as a disorder of the pulmonary or peripheral system, rather it has a significant CNS involvement. Therefore, CNS aspects of the COVID-19 should be monitored very closely to prevent long term CNS complications, even after the patient has recovered from COVID-19.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmaceutics, Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, India
| | - Arun Parashar
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, District Shimla, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru 171207, District Shimla, Himachal Pradesh, India
| |
Collapse
|
206
|
Prajapat M, Shekhar N, Sarma P, Avti P, Singh S, Kaur H, Bhattacharyya A, Kumar S, Sharma S, Prakash A, Medhi B. Virtual screening and molecular dynamics study of approved drugs as inhibitors of spike protein S1 domain and ACE2 interaction in SARS-CoV-2. J Mol Graph Model 2020; 101:107716. [PMID: 32866780 PMCID: PMC7442136 DOI: 10.1016/j.jmgm.2020.107716] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/15/2020] [Accepted: 08/09/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The receptor binding domain (RBD) of spike protein S1 domain SARS-CoV-2 plays a key role in the interaction with ACE2, which leads to subsequent S2 domain mediated membrane fusion and incorporation of viral RNA into host cells. In this study we tend to repurpose already approved drugs as inhibitors of the interaction between S1-RBD and the ACE2 receptor. METHODS 2456 approved drugs were screened against the RBD of S1 protein of SARS-CoV-2 (target PDB ID: 6M17). As the interacting surface between S1-RBD and ACE2 comprises of bigger region, the interacting surface was divided into 3 sites on the basis of interactions (site 1, 2 and 3) and a total of 5 grids were generated (site 1, site 2, site 3, site 1+site 2 and site 2+site 3). A virtual screening was performed using GLIDE implementing HTVS, SP and XP screening. The top hits (on the basis of docking score) were further screened for MM-GBSA. All the top hits were further evaluated in molecular dynamics studies. Performance of the virtual screening protocol was evaluated using enrichment studies. RESULT and discussion: We performed 5 virtual screening against 5 grids generated. A total of 42 compounds were identified after virtual screening. These drugs were further assessed for their interaction dynamics in molecular dynamics simulation. On the basis of molecular dynamics studies, we come up with 10 molecules with favourable interaction profile, which also interacted with physiologically important residues (residues taking part in the interaction between S1-RBD and ACE2. These are antidiabetic (acarbose), vitamins (riboflavin and levomefolic acid), anti-platelet agents (cangrelor), aminoglycoside antibiotics (Kanamycin, amikacin) bronchodilator (fenoterol), immunomodulator (lamivudine), and anti-neoplastic agents (mitoxantrone and vidarabine). However, while considering the relative side chain fluctuations when compared to the S1-RBD: ACE2 complex riboflavin, fenoterol, cangrelor and vidarabine emerged out as molecules with prolonged relative stability. CONCLUSION We identified 4 already approved drugs (riboflavin, fenoterol, cangrelor and vidarabine) as possible agents for repurposing as inhibitors of S1:ACE2 interaction. In-vitro validation of these findings are necessary for identification of a safe and effective inhibitor of S1: ACE2 mediated entry of SARS-CoV-2 into the host cell.
Collapse
Affiliation(s)
| | | | - Phulen Sarma
- Dept. of Pharmacology, PGIMER, Chandigarh, India.
| | - Pramod Avti
- Dept. of Biophysics, PGIMER, Chandigarh, India.
| | - Sanjay Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India.
| | - Hardeep Kaur
- Dept. of Pharmacology, PGIMER, Chandigarh, India.
| | | | - Subodh Kumar
- Dept. of Pharmacology, PGIMER, Chandigarh, India.
| | | | - Ajay Prakash
- Dept. of Pharmacology, PGIMER, Chandigarh, India.
| | - Bikash Medhi
- Dept. of Pharmacology, PGIMER, Chandigarh, India.
| |
Collapse
|
207
|
Yadav M, Dhagat S, Eswari JS. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Eur J Pharm Sci 2020; 155:105522. [PMID: 32827661 PMCID: PMC7438372 DOI: 10.1016/j.ejps.2020.105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
The importance of coronaviruses as human pathogen has been highlighted by the recent outbreak of SARS-CoV-2 leading to the search of suitable drugs to overcome respiratory infections caused by the virus. Due to the lack of specific drugs against coronavirus, the existing antiviral and antimalarial drugs are currently being administered to the patients infected with SARS-CoV-2. The scientists are also considering repurposing of some of the existing drugs as a suitable option in search of effective drugs against coronavirus till the establishment of a potent drug and/or vaccine. Computer-aided drug discovery provides a promising attempt to enable scientists to develop new and target specific drugs to combat any disease. The discovery of novel targets for COVID-19 using computer-aided drug discovery tools requires knowledge of the structure of coronavirus and various target proteins present in the virus. Targeting viral proteins will make the drug specific against the virus, thereby, increasing the chances of viral mortality. Hence, this review provides the structure of SARS-CoV-2 virus along with the important viral components involved in causing infection. It also focuses on the role of various target proteins in disease, the mechanism by which currently administered drugs act against the virus and the repurposing of few drugs. The gap arising from the absence of specific drugs is addressed by proposing potential antiviral drug targets which might provide insights into structure-based drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India
| | - Swasti Dhagat
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India
| | - J Satya Eswari
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India.
| |
Collapse
|
208
|
Krishnaprasad B, Maity S, Mehta C, Suresh A, Nayak UY, Nayak Y. In Silico Drug Repurposing of Penicillins to Target Main Protease Mpro of SARS-CoV-2. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Baby Krishnaprasad
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal. India – 576104
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal. India – 576104
| | - Chetan Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal. India – 576104
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal. India – 576104
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal. India – 576104
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal. India – 576104
| |
Collapse
|
209
|
Parveen RS, Hegde S, Nayak V. Investigational Drugs for the COVID 19 Pandemic – A Concise Review. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Reena Sherin Parveen
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal , Karnataka, -576104, India
| | - Sherya Hegde
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal , Karnataka, -576104, India
| | - Veena Nayak
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal , Karnataka, -576104, India
| |
Collapse
|
210
|
Liscano Y, Oñate-Garzón J, Ocampo-Ibáñez ID. In Silico Discovery of Antimicrobial Peptides as an Alternative to Control SARS-CoV-2. Molecules 2020; 25:E5535. [PMID: 33255849 PMCID: PMC7728342 DOI: 10.3390/molecules25235535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
A serious pandemic has been caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The interaction between spike surface viral protein (Sgp) and the angiotensin-converting enzyme 2 (ACE2) cellular receptor is essential to understand the SARS-CoV-2 infectivity and pathogenicity. Currently, no drugs are available to treat the infection caused by this coronavirus and the use of antimicrobial peptides (AMPs) may be a promising alternative therapeutic strategy to control SARS-CoV-2. In this study, we investigated the in silico interaction of AMPs with viral structural proteins and host cell receptors. We screened the antimicrobial peptide database (APD3) and selected 15 peptides based on their physicochemical and antiviral properties. The interactions of AMPs with Sgp and ACE2 were performed by docking analysis. The results revealed that two amphibian AMPs, caerin 1.6 and caerin 1.10, had the highest affinity for Sgp proteins while interaction with the ACE2 receptor was reduced. The effective AMPs interacted particularly with Arg995 located in the S2 subunits of Sgp, which is key subunit that plays an essential role in viral fusion and entry into the host cell through ACE2. Given these computational findings, new potentially effective AMPs with antiviral properties for SARS-CoV-2 were identified, but they need experimental validation for their therapeutic effectiveness.
Collapse
Affiliation(s)
- Yamil Liscano
- Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Jose Oñate-Garzón
- Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Iván Darío Ocampo-Ibáñez
- Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
211
|
Rajendran M, Roy S, Ravichandran K, Mishra B, Gupta DK, Nagarajan S, Arul Selvaraj RC, Provaznik I. In silico screening and molecular dynamics of phytochemicals from Indian cuisine against SARS-CoV-2 M Pro. J Biomol Struct Dyn 2020; 40:3155-3169. [PMID: 33200680 DOI: 10.1080/07391102.2020.1845980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 cause fatal infection in 213 countries accounting for the death of millions of people globally. In the present study, phytochemicals from spices were assessed for their ability to interact with SARS-CoV-2 MPro. Structure based virtual screening was performed with 146 phytochemicals from spices using Autodock Vina. Phytochemicals with binding energy ≥ -8.0 kcal/mol were selected to understand their interaction with MPro. Virtual screening was further validated by performing molecular docking to generate favorable docked poses and the participation of important amino acid residues. Molecular dynamics simulation for the docked poses was performed to study thermodynamic properties of the protein, ligand and protein-ligand complexes. The finding shows that cinnamtannin B2 and cyanin showed favorable binding affinity values with SARS-CoV-2 MPro. The results are comparable in terms of docked poses, important amino acid participation and thermodynamic properties with the standard control drugs remdesivir, benazepril and hydroxychloroquine diphosphate. Prime MM-GBSA was employed for end-point binding energy calculation. Binding to domain I and II of MPro were mediated through the OH, SH, NH2 and non-polar side chain of amino acids. Cinnamtannin B2 and cyanin binds to MPro with many sub sites within the active site with RMSD and RMSF within 4 Å. The results computed using Prime MM-GBSA show that cinnamtannin B2 (-68.54940214 kcal/mol) and cyanin (-62.1902835 kcal/mol) have better binding affinity in comparison to hydroxychloroquine diphosphate (-54.00912412 kcal/mol) and benazepril (-53.70242369 kcal/mol). The results provide a basis for exploiting cinnamtannin B2 and cyanin as a starting point potential candidate for the development of drug against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mala Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Keerthana Ravichandran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | | | | | - Subash Nagarajan
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | | | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
212
|
Mann R, Perisetti A, Gajendran M, Gandhi Z, Umapathy C, Goyal H. Clinical Characteristics, Diagnosis, and Treatment of Major Coronavirus Outbreaks. Front Med (Lausanne) 2020; 7:581521. [PMID: 33282890 PMCID: PMC7691433 DOI: 10.3389/fmed.2020.581521] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Human coronavirus infections have been known to cause mild respiratory illness. It changed in the last two decades as three global outbreaks by coronaviruses led to significant mortality and morbidity. SARS CoV-1 led to the first epidemic of the twenty first century due to coronavirus. SARS COV-1 infection had a broad array of symptoms with respiratory and gastrointestinal as most frequent. The last known case was reported in 2004. Middle East respiratory syndrome coronavirus (MERS-CoV) led to the second outbreak in 2012, and case fatality was much higher than SARS. MERS-CoV has a wide array of clinical presentations from mild, moderate to severe, and some patients end up with acute respiratory distress syndrome (ARDS). The third and recent outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) started in December 2019, which lead to a global pandemic. Patients with SARS-CoV2 infection can be asymptomatic or have a range of symptoms with fever, cough, and shortness of breath being most common. Reverse transcriptase-Polymerase chain reaction (RT-PCR) is a diagnostic test of choice for SARS CoV-1, MERS-CoV, and SARS CoV-2 infections. This review aims to discuss epidemiological, clinical features, diagnosis, and management of human coronaviruses with a focus on SARS CoV-1, MERS-CoV, and SARS CoV-2.
Collapse
Affiliation(s)
- Rupinder Mann
- Department of Internal Medicine, Saint Agnes Medical Center, Fresno, CA, United States
| | - Abhilash Perisetti
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mahesh Gajendran
- Department of Internal Medicine, Paul L Foster School of Medicine, Texas Tech University, El Paso, TX, United States
| | - Zainab Gandhi
- Department of Medicine, Geisinger Community Medicine Center, Scranton, PA, United States
| | - Chandraprakash Umapathy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hemant Goyal
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Wright Center of Graduate Medical Education, Scranton, PA, United States
| |
Collapse
|
213
|
Xiu S, Dick A, Ju H, Mirzaie S, Abdi F, Cocklin S, Zhan P, Liu X. Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. J Med Chem 2020; 63:12256-12274. [PMID: 32539378 PMCID: PMC7315836 DOI: 10.1021/acs.jmedchem.0c00502] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Recently, a novel coronavirus initially designated 2019-nCoV but now termed SARS-CoV-2 has emerged and raised global concerns due to its virulence. SARS-CoV-2 is the etiological agent of "coronavirus disease 2019", abbreviated to COVID-19, which despite only being identified at the very end of 2019, has now been classified as a pandemic by the World Health Organization (WHO). At this time, no specific prophylactic or postexposure therapy for COVID-19 are currently available. Viral entry is the first step in the SARS-CoV-2 lifecycle and is mediated by the trimeric spike protein. Being the first stage in infection, entry of SARS-CoV-2 into host cells is an extremely attractive therapeutic intervention point. Within this review, we highlight therapeutic intervention strategies for anti-SARS-CoV, MERS-CoV, and other coronaviruses and speculate upon future directions for SARS-CoV-2 entry inhibitor designs.
Collapse
Affiliation(s)
- Siyu Xiu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, Pennsylvania 19102, United States
| | - Han Ju
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj 6616935391, Iran
| | - Fatemeh Abdi
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran North Branch, Tehran 1651153311, Iran
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, Pennsylvania 19102, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
214
|
Khalili H, Nourian A, Ahmadinejad Z, Emadi Kouchak H, Jafari S, Dehghan Manshadi SA, Rasolinejad M, Kebriaeezadeh A. Efficacy and safety of sofosbuvir/ ledipasvir in treatment of patients with COVID-19; A randomized clinical trial. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020102. [PMID: 33525212 PMCID: PMC7927527 DOI: 10.23750/abm.v91i4.10877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Background: There is no study regarding the use of SOF/LDP in treatment of COVID-19. Objectives: In this study, the efficacy and safety of SOF/LDP were assessed in treatment of patients with mild to moderate COVID-19. Methods: Among an open-label randomized clinical trial, 82 patients with mild to moderated COVID-19 were assigned to receive either SOF/LDP 400/100 mg daily plus the standard of care (SOF/LDP group, n=42) or the standard of care alone (control group, n=40) for 10 days. Time to clinical response, rate of clinical response, duration of hospital and ICU stay and 14-day mortality were assessed. Results: Clinical response occurred in 91.46% of patients. Although rates of clinical response were comparable between the groups but it occurred faster in the SOF/LDP group than the control group (2 vs. 4 days respectively, P= 0.02). Supportive cares were provided in the medical wards for most patients but 17.07% of patients were transferred to ICU during the hospitalization course. However, durations of hospital and ICU stay were comparable between the groups. 14-day mortality rate was 7.14% and 7.5% in the SOF/ LDP and control groups respectively. No adverse effects leading to drug discontinuation occurred. Gastrointestinal events (nausea, vomiting and diarrhea) were the most common side effects (15.85%). Conclusion: Added to the standard of care, SOF/LDP accelerated time to the clinical response. However, rate of clinical response, duration of hospital and ICU stay and 14-day mortality were not different. No significant adverse event was detected. More randomized clinical trials with larger sample sizes are needed to confirm the efficacy and safety of SOF/LDP in the treatment of COVID-19. (www.actabiomedica.it)
Collapse
Affiliation(s)
| | | | | | | | - Sirous Jafari
- Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
215
|
Rathod SB, Prajapati PB, Punjabi LB, Prajapati KN, Chauhan N, Mansuri MF. Peptide modelling and screening against human ACE2 and spike glycoprotein RBD of SARS-CoV-2. In Silico Pharmacol 2020; 8:3. [PMID: 33184600 PMCID: PMC7649901 DOI: 10.1007/s40203-020-00055-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Outbreak of Coronavirus Disease 2019 (COVID-19) has become a great challenge for scientific community globally. Virus enters cell through spike glycoprotein fusion with ACE2 (Angiotensin-Converting Enzyme 2) human receptor. Hence, spike glycoprotein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a potential target for diagnostics, vaccines, and antibodies. Also, virus entry can be prevented by blocking ACE2 thus, ACE2 can be considered potential target for therapeutics. As being highly specific, safe and efficacious, peptides hold their place in therapeutics. In present study, we retrieved sequence of 70 peptides from Antiviral Peptide Database (AVPdb), modelled them using 3D structure predicting web tool and docked them with receptor binding domain (RBD) of spike protein and human host receptor ACE2 using peptide-protein docking. It was observed that peptides have more affinity towards ACE2 in comparison with spike RBD. Interestingly it was noticed that most of the peptides bind to RBM (residue binding motif) which is responsible for ACE2 binding at the interface of RBD while, for ACE2, peptides prefer to bind the core cavity rather than RBD binding interface. To further investigate how peptides at the interface of RBD or ACE2 alter the binding between RBD and ACE2, protein-protein docking of RBD and ACE2 with and without peptides was performed. Peptides, AVP0671 at RBD and AVP1244 at ACE2 interfaces significantly reduce the binding affinity and change the orientation of RBD and ACE2 binding. This finding suggests that peptides can be used as a drug to inhibit virus entry in cells to stop COVID-19 pandemic in the future after experimental evidences.
Collapse
Affiliation(s)
- Shravan B. Rathod
- Department of Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat India
| | | | - Lata B. Punjabi
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat India
| | | | - Neha Chauhan
- Department of Biosciences and Biotechnology, Banasthali Vidhyapith, Banasthali, Rajasthan India
| | | |
Collapse
|
216
|
Toor HG, Banerjee DI, Lipsa Rath S, Darji SA. Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19. Eur J Pharmacol 2020; 890:173720. [PMID: 33160938 PMCID: PMC7644434 DOI: 10.1016/j.ejphar.2020.173720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/12/2023]
Abstract
COVID-19 has intensified into a global pandemic with over a million deaths worldwide. Experimental research analyses have been implemented and executed with the sole rationale to counteract SARS-CoV-2, which has initiated potent therapeutic strategy development in coherence with computational biology validation focusing on the characterized viral drug targets signified by proteomic and genomic data. Spike glycoprotein is one of such potential drug target that promotes viral attachment to the host cellular membrane by binding to its receptor ACE-2 via its Receptor-Binding Domain (RBD). Multiple Sequence alignment and relative phylogenetic analysis revealed significant sequential disparities of SARS-CoV-2 as compared to previously encountered SARS-CoV and MERS-CoV strains. We implemented a drug re-purposing approach wherein the inhibitory efficacy of a cluster of thirty known drug candidates comprising of antivirals, antibiotics and phytochemicals (selection contingent on their present developmental status in underway clinical trials) was elucidated by subjecting them to molecular docking analyses against the spike protein RBD model (developed using homology modelling and validated using SAVES server 5.0) and the composite trimeric structures of spike glycoprotein of SARS-CoV-2. Our results indicated that Camostat, Favipiravir, Tenofovir, Raltegravir and Stavudine showed significant interactions with spike RBD of SARS-CoV-2. Proficient bioavailability coupled with no predicted in silico toxicity rendered them as prospective alternatives for designing and development of novel combinatorial therapy formulations for improving existing treatment regimes to combat COVID-19.
Collapse
Affiliation(s)
- Himanshu G Toor
- P.G. Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), Charutar Vidya Mandal University, P.O. Box No. 61, New Vallabh Vidyanagar, Vitthal Udyognagar, 388121, Anand, Gujarat, India; Sardar Patel University, Gujarat, India.
| | - Devjani I Banerjee
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Pratapganj, Vadodara, 390002, Gujarat, India.
| | - Soumya Lipsa Rath
- National Institute of Technology, Warangal, Telangana, 506004, India.
| | - Siddhi A Darji
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Pratapganj, Vadodara, 390002, Gujarat, India.
| |
Collapse
|
217
|
Dey A, Das R, Misra H, Uppal S. Coronavirus disease 2019: scientific overview of the global pandemic. New Microbes New Infect 2020; 38:100800. [PMID: 33133611 PMCID: PMC7591944 DOI: 10.1016/j.nmni.2020.100800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the disease caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genome sequencing of the virus revealed that it is a new zoonotic virus that might have evolved by jumping from bats to humans with one or more intermediate hosts. The immediate availability of the sequence information in the public domain has accelerated the development of quantitative RT-PCR-based diagnostics. Numerous clinical trials have been prioritized globally for testing new vaccines and treatments against this disease. This review provides a broad insight into different aspects of COVID-19, an introduction to SARS-CoV-2 mitigation strategies and the present status of diagnostics and therapeutics.
Collapse
Affiliation(s)
- A. Dey
- Molecular Genetics Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - R. Das
- Molecular Genetics Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - H.S. Misra
- Molecular Genetics Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - S. Uppal
- Molecular Genetics Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| |
Collapse
|
218
|
Negi M, Chawla PA, Faruk A, Chawla V. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorg Chem 2020; 104:104315. [PMID: 33007742 PMCID: PMC7513919 DOI: 10.1016/j.bioorg.2020.104315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/20/2020] [Indexed: 01/07/2023]
Abstract
Coronaviruses have led to severe emergencies in the world since the outbreak of SARS CoV in 2002, followed by MERS CoV in 2012. SARS CoV-2, the novel pandemic caused by coronaviruses that began in December 2019 in China has led to a total of 24,066,076 confirmed cases and a death toll of 823,572 as reported by World Health Organisation on 26 August 2020, spreading to 213 countries and territories. However, there are still no vaccines or medications available till date against SARS coronaviruses which is an urgent requirement to control the current pandemic like situations. Since many decades, heterocyclic scaffolds have been explored exhaustively for their anticancer, antimalarial, anti-inflammatory, antitubercular, antimicrobial, antidiabetic, antiviral and many more treatment capabilities. Therefore, through this review, we have tried to emphasize on the anticipated role of heterocyclic scaffolds in the design and discovery of the much-awaited anti-SARS CoV-2 therapy, by exploring the research articles depicting different heterocyclic moieties as targeting SARS, MERS and SARS CoV-2 coronaviruses. The heterocyclic motifs mentioned in the review can serve as crucial resources for the development of SARS coronaviruses treatment strategies.
Collapse
Affiliation(s)
- Meenakshi Negi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India,Corresponding author at: Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| |
Collapse
|
219
|
Sarma P, Bhattacharyya A, Kaur H, Prajapat M, Prakash A, Kumar S, Bansal S, Kirubakaran R, Reddy DH, Muktesh G, Kaushal K, Sharma S, Shekhar N, Avti P, Thota P, Medhi B. Efficacy and safety of steroid therapy in COVID-19: A rapid systematic review and Meta-analysis. Indian J Pharmacol 2020; 52:535-550. [PMID: 33666200 PMCID: PMC8092185 DOI: 10.4103/ijp.ijp_1146_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Although the use of steroids in the management of COVID-19 has been addressed by a few systematic review and meta-analysis, however, they also used data from "SARS-CoV" and "MERS-CoV." Again, most of these studies addressed only one severity category of patients or addressed only one efficacy endpoint (mortality). In this context, we conducted this meta-analysis to evaluate the efficacy and safety of steroid therapy among all severity categories of patients with COVID-19 (mild to moderate and severe to critical category) in terms of "mortality," "requirement of mechanical ventilation," "requirement of ICU" and clinical cure parameters. METHODS 11 databases were screened. Only randomized controlled trials (RCTs) or high quality (on the basis of risk of bias analysis) comparative-observational studies were included in the analysis. RevMan5.3 was used for the meta-analysis. RESULTS A total of 15 studies (3 RCT and 12 comparative-observational studies) were included. In the mechanically-ventilated COVID-19 population, treatment with dexamethasone showed significant protection against mortality (single study). Among severe and critically ill combined population, steroid administration was significantly associated with lowered mortality (risk ratio [RR] 0.83 [0.76-0.910]), lowered requirement of mechanical ventilation (RR 0.59 [0.51-0.69]), decreased requirement of intensive care unit (ICU) (RR 0.62 [0.45-0.86]), lowered length of ICU stay (single-study) and decreased duration of mechanical ventilation (two-studies). In mild to moderate population, steroid treatment was associated with a higher "duration of hospital stay," while no difference was seen in other domains. In patients at risk of progression to "acute respiratory distress syndrome," steroid administration was associated with "reduced requirement of mechanical ventilation" (single-study). CONCLUSION This study guides the use of steroid across patients with different severity categories of COVID-19. Among mechanically ventilated patients, steroid therapy may be beneficial in terms of reduced mortality. Among "severe and critical" patients; steroid therapy was associated with lowered mortality, decreased requirement of mechanical ventilation, and ICU. However, no benefit was observed in "mild to moderate" population. To conclude, among properly selected patient populations (based-upon clinical severity and biomarker status), steroid administration may prove beneficial in patients with COVID-19.
Collapse
Affiliation(s)
- Phulen Sarma
- Department of of Pharmacology, PGIMER Chandigarh, India
| | | | - Hardeep Kaur
- Department of of Pharmacology, PGIMER Chandigarh, India
| | | | - Ajay Prakash
- Department of of Pharmacology, PGIMER Chandigarh, India
| | - Subodh Kumar
- Department of of Pharmacology, PGIMER Chandigarh, India
| | - Seema Bansal
- Department of of Pharmacology, PGIMER Chandigarh, India
| | | | | | | | - Karanvir Kaushal
- Department of Clinical Biochemistry, AIIMS, Rishikesh, Uttarakhand, India
| | | | | | - Pramod Avti
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Prasad Thota
- Department of pharmacology, Indian Pharmacopoeia Commission, Ghaziabad, UP, India
| | - Bikash Medhi
- Department of of Pharmacology, PGIMER Chandigarh, India
| |
Collapse
|
220
|
Feyaerts AF, Luyten W. Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19? Nutrition 2020; 79-80:110948. [PMID: 32911430 PMCID: PMC7381407 DOI: 10.1016/j.nut.2020.110948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 causes the potentially fatal coronavirus disease 2019 (COVID-19). Already during the outbreak of the severe acute respiratory syndrome coronavirus 1, the use of vitamin C was suggested. Many patients with severe COVID-19 have elevated levels of the mediators interleukin-6 and endothelin-1. These mediators may explain the age dependence of COVID-19 pneumonia, the preponderance of male and obese or hypertensive patients, as well as of persons of color and smokers. There is clear evidence that vitamin C in high doses can reduce these mediators. Vitamin C is cheap and safe. Hence, using a relatively low dose of vitamin C as prophylaxis, and in cases of severe COVID-19, an (intravenous) high-dose regimen may be beneficial. Ongoing clinical trials are expected to provide more definitive evidence.
Collapse
Affiliation(s)
- Adam F Feyaerts
- VIB Center for Microbiology, KU Leuven, Leuven, Belgium; Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium; Department of Technology, UCLL, Leuven, Belgium.
| | | |
Collapse
|
221
|
Yepes-Pérez AF, Herrera-Calderon O, Quintero-Saumeth J. Uncaria tomentosa (cat's claw): a promising herbal medicine against SARS-CoV-2/ACE-2 junction and SARS-CoV-2 spike protein based on molecular modeling. J Biomol Struct Dyn 2020; 40:2227-2243. [PMID: 33118480 PMCID: PMC7657399 DOI: 10.1080/07391102.2020.1837676] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
COVID-19 is a novel severe acute respiratory syndrome coronavirus. Currently, there is no effective treatment and vaccines seem to be the solution in the future. Virtual screening of potential drugs against the S protein of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) has provided small molecular compounds with a high binding affinity. Unfortunately, most of these drugs do not attach with the binding interface of the receptor-binding domain (RBD)–angiotensin-converting enzyme-2 (ACE-2) complex in host cells. Molecular modeling was carried out to evaluate the potential antiviral properties of the components of the medicinal herb Uncaria tomentosa (cat’s claw) focusing on the binding interface of the RBD–ACE-2 and the viral spike protein. The in silico approach starts with protein–ligand docking of 26 Cat’s claw key components followed by molecular dynamics simulations and re-docked calculations. Finally, we carried out drug-likeness calculations for the most qualified cat’s claw components. The structural bioinformatics approaches led to the identification of several bioactive compounds of U. tomentosa with potential therapeutic effect by dual strong interaction with interface of the RBD–ACE-2 and the ACE-2 binding site on SARS-CoV-2 RBD viral spike. In addition, in silico drug-likeness indices for these components were calculated and showed good predicted therapeutic profiles of these phytochemicals found in U. tomentosa (cat’s claw). Our findings suggest the potential effectiveness of cat’s claw as complementary and/or alternative medicine for COVID-19 treatment. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Andres F Yepes-Pérez
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia-UdeA, Medellin, Colombia
| | - Oscar Herrera-Calderon
- Academic Department of Pharmacology Bromatology and Toxicology,Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | |
Collapse
|
222
|
Sen Gupta PS, Biswal S, Panda SK, Ray AK, Rana MK. Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin. J Biomol Struct Dyn 2020; 40:2217-2226. [PMID: 33111618 PMCID: PMC7605516 DOI: 10.1080/07391102.2020.1839564] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While an FDA approved drug Ivermectin was reported to dramatically reduce the cell line of SARS-CoV-2 by ∼5000 folds within 48 h, the precise mechanism of action and the COVID-19 molecular target involved in interaction with this in-vitro effective drug are unknown yet. Among 12 different COVID-19 targets along with Importin-α studied here, the RNA dependent RNA polymerase (RdRp) with RNA and Helicase NCB site show the strongest affinity to Ivermectin amounting -10.4 kcal/mol and -9.6 kcal/mol, respectively, followed by Importin-α with -9.0 kcal/mol. Molecular dynamics of corresponding protein-drug complexes reveals that the drug bound state of RdRp with RNA has better structural stability than the Helicase NCB site and Importin-α, with MM/PBSA free energy of -187.3 kJ/mol, almost twice that of Helicase (-94.6 kJ/mol) and even lower than that of Importin-α (-156.7 kJ/mol). The selectivity of Ivermectin to RdRp is triggered by a cooperative interaction of RNA-RdRp by ternary complex formation. Identification of the target and its interaction profile with Ivermectin can lead to more powerful drug designs for COVID-19 and experimental exploration.
Collapse
Affiliation(s)
- Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| | - Abhik Kumar Ray
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| |
Collapse
|
223
|
Bhatia R, Ganti SS, Narang RK, Rawal RK. Strategies and Challenges to Develop Therapeutic Candidates against COVID-19 Pandemic. Open Virol J 2020. [DOI: 10.2174/1874357902014010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
224
|
Evolutionary Analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Reveals Genomic Divergence with Implications for Universal Vaccine Efficacy. Vaccines (Basel) 2020; 8:vaccines8040591. [PMID: 33050053 PMCID: PMC7720133 DOI: 10.3390/vaccines8040591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the pressing contemporary public health challenges. Investigations into the genomic structure of SARS-CoV-2 may inform ongoing vaccine development efforts and/or provide insights into vaccine efficacy to fight against COVID-19. Evolutionary analysis of 540 genomes spanning 20 different countries/territories was conducted and revealed an increase in the genomic divergence across successive generations. The ancestor of the phylogeny was found to be the isolate from the 2019/2020 Wuhan outbreak. Its transmission was outlined across 20 countries/territories as per genomic similarity. Our results demonstrate faster evolving variations in the genomic structure of SARS-CoV-2 when compared to the isolates from early stages of the pandemic. Genomic alterations were predominantly located and mapped onto the reported vaccine candidates of structural genes, which are the main targets for vaccine candidates. S protein showed 34, N protein 25, E protein 2, and M protein 3 amino acid variations in 246 genomes among 540. Among identified mutations, 23 in S protein, 1 in E, 2 from M, and 7 from N protein were mapped with the reported vaccine candidates explaining the possible implications on universal vaccines. Hence, potential target regions for vaccines would be ideally chosen from the structural regions of the genome that lack high variation. The increasing variations in the genome of SARS-CoV-2 together with our observations in structural genes have important implications for the efficacy of a successful universal vaccine against SARS-CoV-2.
Collapse
|
225
|
Das S, K.R. A, Birangal SR, Nikam AN, Pandey A, Mutalik S, Joseph A. Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: A review. Life Sci 2020; 258:118202. [PMID: 32758625 PMCID: PMC7397991 DOI: 10.1016/j.lfs.2020.118202] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
Pandemic coronavirus disease-2019, commonly known as COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious disease with a high mortality rate. Various comorbidities and their associated symptoms accompany SARS-CoV-2 infection. Among the various comorbidities like hypertension, cardiovascular disease and chronic obstructive pulmonary disease, diabetes considered as one of the critical comorbidity, which could affect the survival of infected patients. The severity of COVID-19 disease intensifies in patients with elevated glucose level probably via amplified pro-inflammatory cytokine response, poor innate immunity and downregulated angiotensin-converting enzyme 2. Thus, the use of ACE inhibitors or angiotensin receptor blockers could worsen the glucose level in patients suffering from novel coronavirus infection. It also observed that the direct β-cell damage caused by virus, hypokalemia and cytokine and fetuin-A mediated increase in insulin resistance could also deteriorate the diabetic condition in COVID-19 patients. This review highlights the current scenario of coronavirus disease in pre-existing diabetic patients, epidemiology, molecular perception, investigations, treatment and management of COVID-19 disease in patients with pre-existing diabetes. Along with this, we have also discussed unexplored therapies and future perspectives for coronavirus infection.
Collapse
Affiliation(s)
- Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anu K.R.
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
226
|
Shehroz M, Zaheer T, Hussain T. Computer-aided drug design against spike glycoprotein of SARS-CoV-2 to aid COVID-19 treatment. Heliyon 2020; 6:e05278. [PMID: 33083627 PMCID: PMC7561340 DOI: 10.1016/j.heliyon.2020.e05278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 10/13/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND SARS-CoV-2 has the Spike glycoprotein (S) which is crucial in attachment with host receptor and cell entry leading to COVID-19 infection. The current study was conducted to explore drugs against Receptor Binding Domain (RBD) of SARS-CoV-2 using in silico pharmacophore modelling and virtual screening approach to combat COVID-19. METHODS All the available sequences of RBD in NCBI were retrieved and multiple aligned to get insight into its diversity. The 3D structure of RBD was modelled and the conserved region was used as a template to design pharmacophore using LigandScout. Lead compounds were screened using Cambridge, Drugbank, ZINC and TIMBLE databases and these identified lead compounds were screened for their toxicity and Lipinski's rule of five. Molecular docking of shortlisted lead compounds was performed using AutoDock Vina and interacting residues were visualized. RESULTS Active residues of Receptor Binding Motif (RBM) in S, involved in interaction with receptor, were found to be conserved in all 483 sequences. Using this RBM motif as a pharmacophore a total of 1327 lead compounds were predicted initially from all databases, however, only eight molecules fit the criteria for safe oral drugs. Conclusion: The RBM region of S interacts with Angiotensin Converting Enzyme 2 (ACE2) receptor and Glucose Regulated Protein 78 (GRP78) to mediate viral entry. Based on in silico analysis, the lead compounds scrutinized herewith interact with S, hence, can prevent its internalization in cell using ACE2 and GRP78 receptor.The compounds predicted in this study are based on rigorous computational analysis and the evaluation of predicted lead compounds can be promising in experimental studies.
Collapse
Affiliation(s)
- Muhammad Shehroz
- Department of Biotechnology, Virtual University of Pakistan, Peshawar, Pakistan
| | - Tahreem Zaheer
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| |
Collapse
|
227
|
Mahendiratta S, Batra G, Sarma P, Kumar H, Bansal S, Kumar S, Prakash A, Sehgal R, Medhi B. Molecular diagnosis of COVID-19 in different biologic matrix, their diagnostic validity and clinical relevance: A systematic review. Life Sci 2020; 258:118207. [PMID: 32777301 PMCID: PMC7411381 DOI: 10.1016/j.lfs.2020.118207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/18/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Due to COVID 19 outbreak many studies are being conducted for therapeutic strategies and vaccines but detection methods play an important role in the containment of the disease. Hence, this systematic review aims to evaluate the effectiveness of the molecular detection techniques in COVID-19. For framing the systematic review 6 literature databases (PubMed, EMBASE, OVID, Web of Science, Scopus and Google Scholar) were searched for relevant studies and articles were screened for relevant content till 25th April 2020. Observations from this systematic review reveal the utility of RT-PCR with serological testing as one such method cannot correlate with accurate results. Availability of point of care devices do not conform to sensitivity and specificity in comparison to the conventional methods due to lack of clinical investigations. Pivotal aim of molecular and serological research is the development of detection methods that can support the clinical decision making of patients suspected with SARS-CoV-2. However, none of the methods were 100% sensitive and specific; hence additional studies are required to overcome the challenges addressed here. We hope that the present article with its observations and suggestions will assist the researchers to realize this vision in future.
Collapse
Affiliation(s)
| | - Gitika Batra
- Department of Neurology, PGIMER, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Harish Kumar
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Seema Bansal
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Rakesh Sehgal
- Department of Parasitology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India.
| |
Collapse
|
228
|
Vallamkondu J, John A, Wani WY, Ramadevi SP, Jella KK, Reddy PH, Kandimalla R. SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165889. [PMID: 32603829 PMCID: PMC7320676 DOI: 10.1016/j.bbadis.2020.165889] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
The novel Coronavirus disease of 2019 (nCOV-19) is a viral outbreak noted first in Wuhan, China. This disease is caused by Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV)-2. In the past, other members of the coronavirus family, such as SARS and Middle East Respiratory Syndrome (MERS), have made an impact in China and the Arabian peninsula respectively. Both SARS and COVID-19 share similar symptoms such as fever, cough, and difficulty in breathing that can become fatal in later stages. However, SARS and MERS infections were epidemic diseases constrained to limited regions. By March 2020 the SARS-CoV-2 had spread across the globe and on March 11th, 2020 the World Health Organization (WHO) declared COVID-19 as pandemic disease. In severe SARS-CoV-2 infection, many patients succumbed to pneumonia. Higher rates of deaths were seen in older patients who had co-morbidities such as diabetes mellitus, hypertension, cardiovascular disease (CVD), and dementia. In this review paper, we discuss the effect of SARS-CoV-2 on CNS diseases, such as Alzheimer's-like dementia, and diabetes mellitus. We also focus on the virus genome, pathophysiology, theranostics, and autophagy mechanisms. We will assess the multiorgan failure reported in advanced stages of SARS-CoV-2 infection. Our paper will provide mechanistic clues and therapeutic targets for physicians and investigators to combat COVID-19.
Collapse
Affiliation(s)
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Willayat Yousuf Wani
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | | | | | - P Hemachandra Reddy
- Professor of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Internal Medicine, Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India; Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.
| |
Collapse
|
229
|
Manivannan S, Ponnuchamy K. Quantum dots as a promising agent to combat COVID-19. Appl Organomet Chem 2020; 34:e5887. [PMID: 32836625 PMCID: PMC7361141 DOI: 10.1002/aoc.5887] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022]
Abstract
Approximately every 100 years, as witnessed in the last two centuries, we are facing an influenza pandemic, necessitating the need to combat a novel virus strain. As a result of the new coronavirus (severe acute respiratory syndrome coronavirus type 2 [SARS-CoV-2] outbreak in January 2020, many clinical studies are being carried out with the aim of combating or eradicating the disease altogether. However, so far, developing coronavirus disease 2019 (COVID-19) detection kits or vaccines has remained elusive. In this regard, the development of antiviral nanomaterials by surface engineering with enhanced specificity might prove valuable to combat this novel virus. Quantum dots (QDs) are multifaceted agents with the ability to fight against/inhibit the activity of COVID-19 virus. This article exclusively discusses the potential role of QDs as biosensors and antiviral agents for attenuation of viral infection.
Collapse
Affiliation(s)
- Selvambigai Manivannan
- Department of Biomedical Science and Centre for Membrane Interactions and Dynamics (CMIAD)The University of SheffieldWestern BankSheffieldS10 2TNUK
| | - Kumar Ponnuchamy
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia630003India
| |
Collapse
|
230
|
Lotfinejad P, Asadzadeh Z, Najjary S, Somi MH, Hajiasgharzadeh K, Mokhtarzadeh A, Derakhshani A, Roshani E, Baradaran B. COVID-19 Infection: Concise Review Based on the Immunological Perspective. Immunol Invest 2020; 51:246-265. [PMID: 32981399 DOI: 10.1080/08820139.2020.1825480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has posed a serious threat to public health. There is an urgent need for discovery methods for the prevention and treatment of COVID-19 infection. Understanding immunogenicity together with immune responses are expected to provide further information about this virus. We hope that this narrative review article may create new insights for researchers to take great strides toward designing vaccines and novel therapies in the near future. The functional properties of the immune system in COVID-19 infection is not exactly clarified yet. This is compounded by the many gaps in our understanding of the SARS-CoV-2 immunogenicity properties. Possible immune responses according to current literature are discussed as the first line of defense and acquired immunity. Here, we focus on proposed modern preventive immunotherapy methods in COVID-19 infection.
Collapse
Affiliation(s)
- Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Najjary
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Roshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
231
|
Jafari A, Rezaei-Tavirani M, Karami S, Yazdani M, Zali H, Jafari Z. Cancer Care Management During the COVID-19 Pandemic. Risk Manag Healthc Policy 2020; 13:1711-1721. [PMID: 33061705 PMCID: PMC7520144 DOI: 10.2147/rmhp.s261357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
New cases of the novel coronavirus, also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are increasing around the world. Currently, health care services are mainly focused on responding to and controlling the unique challenges of the coronavirus disease 2019 (COVID-19) pandemic. These changes, along with the higher susceptibility of patients with cancer to infections, have profound effects on other critical aspects of care and pose a serious challenge for the treatment of such patients. During the COVID-19 pandemic, it is important to provide strategies for managing the treatment of patients with cancer to limit COVID-19-associated risks at this difficult time. The present study set out to summarize the latest research on epidemiology, pathogenesis, and clinical features of COVID-19. We also address some of the current challenges associated with the management of patients with cancer during the COVID-19 pandemic and provide practical guidance to clinically deal with these challenges.
Collapse
Affiliation(s)
- Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samira Karami
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdani
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Jafari
- 9Dey Manzariye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
232
|
In Silico Structure-Based Repositioning of Approved Drugs for Spike Glycoprotein S2 Domain Fusion Peptide of SARS-CoV-2: Rationale from Molecular Dynamics and Binding Free Energy Calculations. mSystems 2020; 5:5/5/e00382-20. [PMID: 32963099 PMCID: PMC7511214 DOI: 10.1128/msystems.00382-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The membrane-anchored spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a pivotal role in directing the fusion of the virus particle mediated by the host cell receptor angiotensin-converting enzyme 2 (ACE-2). The fusion peptide region of the S protein S2 domain provides SARS-CoV-2 with the biological machinery needed for direct fusion to the host lipid membrane. In our present study, computer-aided drug design strategies were used for the identification of FDA-approved small molecules using the optimal structure of the S2 domain, which exhibits optimal interaction ratios, structural features, and energy variables, which were evaluated based on their performances in molecular docking, molecular dynamics simulations, molecular mechanics/generalized Born model and solvent accessibility binding free energy calculations of molecular dynamics trajectories, and statistical inferences. Among the 2,625 FDA-approved small molecules, chloramphenicol succinate, imipenem, and imidurea turned out to be the molecules that bound the best at the fusion peptide hydrophobic pocket. The principal interactions of the selected molecules suggest that the potential binding site at the fusion peptide region is centralized amid the Lys790, Thr791, Lys795, Asp808, and Gln872 residues.IMPORTANCE The present study provides the structural identification of the viable binding residues of the SARS-CoV-2 S2 fusion peptide region, which holds prime importance in the virus's host cell fusion and entry mechanism. The classical molecular mechanics simulations were set on values that mimic physiological standards for a good approximation of the dynamic behavior of selected drugs in biological systems. The drug molecules screened and analyzed here have relevant antiviral properties, which are reported here and which might hint toward their utilization in the coronavirus disease 2019 (COVID-19) pandemic owing to their attributes of binding to the fusion protein binding region shown in this study.
Collapse
|
233
|
Otręba M, Kośmider L, Rzepecka-Stojko A. Antiviral activity of chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine towards RNA-viruses. A review. Eur J Pharmacol 2020; 887:173553. [PMID: 32949606 PMCID: PMC7493736 DOI: 10.1016/j.ejphar.2020.173553] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 01/11/2023]
Abstract
In 2020 the whole world focused on antivirus drugs towards SARS-CoV-2. Most of the researchers focused on drugs used in other viral infections or malaria. We have not seen such mobilization towards one topic in this century. The whole situation makes clear that progress needs to be made in antiviral drug development. The first step to do it is to characterize the potential antiviral activity of new or already existed drugs on the market. Phenothiazines are antipsychotic agents used previously as antiseptics, anthelminthics, and antimalarials. Up to date, they are tested for a number of other disorders including the broad spectrum of viruses. The goal of this paper was to summarize the current literature on activity toward RNA-viruses of such drugs like chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine. We identified 49 papers, where the use of the phenothiazines for 23 viruses from different families were tested. Chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine possess anti-viral activity towards different types of viruses. These drugs inhibit clathrin-dependent endocytosis, cell-cell fusion, infection, replication of the virus, decrease viral invasion as well as suppress entry into the host cells. Additionally, since the drugs display activity at nontoxic concentrations they have therapeutic potential for some viruses, still, further research on animal and human subjects are needed in this field to verify cell base research. Phenothiazines possess antiviral activity towards RNA viruses. An antiviral activity can be achieved below toxic serum concentration. Phenothiazines are characterized by multidirectional points of action.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Leon Kośmider
- Department of General and Inorganic Chemistry, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Jagiellonska 4, 41-200, Sosnowiec, Poland
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Jednosci 8, 41-200, Sosnowiec, Poland
| |
Collapse
|
234
|
Cirri D, Pratesi A, Marzo T, Messori L. Metallo therapeutics for COVID-19. Exploiting metal-based compounds for the discovery of new antiviral drugs. Expert Opin Drug Discov 2020; 16:39-46. [PMID: 32915656 DOI: 10.1080/17460441.2020.1819236] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The COVID-19 pandemic poses an unprecedented challenge for the rapid discovery of drugs against this life-threatening disease. Owing to the peculiar features of the metal centers that are currently used in medicinal chemistry, metallodrugs might offer an excellent opportunity to achieve this goal. AREAS COVERED Two main strategies for developing metal-based drugs against the SARS-CoV-2 are herein illustrated. Firstly, a few clinically approved metallodrugs could be evaluated in patients according to a 'drug repurposing' approach. To this respect, the gold drug auranofin seems a promising candidate, but some other clinically established metal compounds are worthy of a careful evaluation as well. On the other hand, libraries of inorganic compounds, featuring a large chemical diversity, should be screened to identify the most effective molecules. This second strategy might be assisted by a pathway-driven discovery approach arising from a preliminary knowledge of the mode of action, exploitable to inhibit the functional activities of the key viral proteins. Also, attention must be paid to selectivity and toxicity issues. EXPERT OPINION The medicinal inorganic chemistry community may offer a valuable contribution against COVID-19. The screening of metallodrugs' libraries can expand the explored 'chemical space' and increase the chance of finding effective anti-COVID agents.
Collapse
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa , Pisa, Italy.,Laboratory of Metals in Medicine (Metmed), Department of Chemistry "U. Schiff", University of Florence , Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa , Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa , Pisa, Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine (Metmed), Department of Chemistry "U. Schiff", University of Florence , Sesto Fiorentino, Italy
| |
Collapse
|
235
|
Witkowska D. Mass Spectrometry and Structural Biology Techniques in the Studies on the Coronavirus-Receptor Interaction. Molecules 2020; 25:E4133. [PMID: 32927621 PMCID: PMC7571139 DOI: 10.3390/molecules25184133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mass spectrometry and some other biophysical methods, have made substantial contributions to the studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human proteins interactions. The most interesting feature of SARS-CoV-2 seems to be the structure of its spike (S) protein and its interaction with the human cell receptor. Mass spectrometry of spike S protein revealed how the glycoforms are distributed across the S protein surface. X-ray crystallography and cryo-electron microscopy made huge impact on the studies on the S protein and ACE2 receptor protein interaction, by elucidating the three-dimensional structures of these proteins and their conformational changes. The findings of the most recent studies in the scope of SARS-CoV-2-Human protein-protein interactions are described here.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin-Converting Enzyme 2
- Betacoronavirus/chemistry
- Betacoronavirus/pathogenicity
- Binding Sites
- COVID-19
- Coronavirus Infections/epidemiology
- Coronavirus Infections/virology
- Gene Expression
- Host-Pathogen Interactions
- Humans
- Models, Molecular
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Severe acute respiratory syndrome-related coronavirus/chemistry
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- SARS-CoV-2
- Sequence Alignment
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Danuta Witkowska
- Institute of Health Sciences, Opole University, Katowicka 68, 45-060 Opole, Poland
| |
Collapse
|
236
|
Bhatia R, Narang RK, Rawal RK. Repurposing of RdRp Inhibitors against SARS-CoV-2 through Molecular Docking Tools. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2666796701999200617155629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present hour, the COVID-19 pandemic needs no introduction. There is continuous and
keen research in progress in order to discover or develop a suitable therapeutic candidate/vaccine against
the fatal, severe acute respiratory syndrome causing coronavirus (SARS-CoV-2). Drug repurposing is an
approach of utilizing the therapeutic potentials of previously approved drugs against some new targets or
pharmacological responses. In the presented work, we have evaluated the RNA dependent RNA polymerase
(RdRp) inhibitory potentials of FDA approved anti-viral drugs remdesivir, ribavirin, sofosbuvir
and galidesivir through molecular docking. The studies were carried out using MOE 2019.0102 software
against RdRp (PDB ID:7BTF, released on 8th April, 2020). All four drugs displayed good docking
scores and significant binding interactions with the amino acids of the receptor. The docking protocol
was validated by redocking of the ligands and the root mean square deviation (RMSD) value was found
to be less than 2. The 2D and 3D binding patterns of the drugs were studied and evaluated with the help
of poses. The drugs displayed excellent hydrogen bonding interactions within the cavity of the receptor
and displayed comparable docking scores. These drugs may serve as new therapeutic candidates or leads
against SARS-CoV-2.
Collapse
Affiliation(s)
- Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ferozepur G.T. Road, Moga-142 001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Ferozepur G.T. Road, Moga-142 001, Punjab, India
| | - Ravindra Kumar Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Haryana, India
| |
Collapse
|
237
|
An immunoinformatics study on the spike protein of SARS-CoV-2 revealing potential epitopes as vaccine candidates. Heliyon 2020; 6:e04865. [PMID: 32923731 PMCID: PMC7472982 DOI: 10.1016/j.heliyon.2020.e04865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background The pandemic situation of SARS-CoV-2 infection has sparked global concern due to the disease COVID-19 caused by it. Since the first cluster of confirmed cases in China in December 2019, the infection has been reported across the continents and inflicted upon a substantial number of populations. Method This study is focused on immunoinformatics analyses of the SARS-CoV-2 spike glycoprotein (S protein) which is key for the viral attachment to human host cells. Computational analyses were carried out for the prediction of B-cell and T-cell (MHC class I and II) epitopes of S protein and the analyses were extended further for the prediction of their immunogenic properties. The interaction and binding affinity of T-cell epitopes with HLA-B7 were also investigated by molecular docking. Result Three distinct epitopes for vaccine design were predicted from the sequence of S protein. The potential B-cell epitope was KNHTSPDVDLG possessing the highest antigenicity score of 1.4039 among other B-cell epitopes. T-cell epitope for human MHC class I was VVVLSFELL with an antigenicity score of 1.0909 and binding ability to 29 MHC-I alleles. The predicted T-cell epitope for human MHC class II molecule was VVIGIVNNT with a corresponding 1.3063 antigenicity score, less digesting enzymes, and 7 MHC-II alleles binding ability. All these three peptides were predicted to be highly antigenic, non-allergenic, and non-toxic. Analyses of the physiochemical properties of these predicted epitopes indicate their stable nature for plausible vaccine design. Furthermore, molecular docking investigation between the MHC class-I epitopes and human HLA-B7 reflects the stable interaction with high affinity among them. Conclusion The present study posits three potential epitopes of S protein of SARS-CoV-2 predicted by immunoinformatic methods based on their immunogenic properties and interactions with the host counterpart that can facilitate the development of vaccine against SARS-CoV-2. This study can act as the springboard for the future development of the COVID-19 vaccine.
Collapse
|
238
|
J A, Francis D, C S S, K G A, C S, Variyar EJ. Repurposing simeprevir, calpain inhibitor IV and a cathepsin F inhibitor against SARS-CoV-2 and insights into their interactions with M pro. J Biomol Struct Dyn 2020; 40:325-336. [PMID: 32873185 DOI: 10.1080/07391102.2020.1813200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The world has come to a sudden halt due to the incessant spread of a viral pneumonia dubbed COVID-19 caused by the beta-coronavirus, SARS-CoV-2. The main protease of SARS-CoV-2 plays a key role in the replication and propagation of the virus in the host cells. Inhibiting the protease blocks the replication of the virus; therefore it is considered as an attractive therapeutic target. Here we describe the screening of the DrugBank database, a public repository for small molecule therapeutics, to identify approved or experimental phase drugs that can be repurposed against the main protease of SARS-CoV-2. The initial screening was performed on more than 13,000 drug entries in the target database using an energy optimised pharmacophore hypothesis AARRR. A sub-set of the molecules selected based on the fitness score was further screened using molecular docking by sequentially filtering the molecules through the high throughput virtual screening, extra precision and standard precision docking modalities. The best hits were subjected to binding free energy estimation using the MM-GBSA method. Approved drugs viz, Cobicistat, Larotrectinib and Simeprevir were identified as potential candidates for repurposing. Drugs in the discovery phase identified as inhibitors include the known cysteine protease inhibitors, Calpain inhibitor IV and an experimental cathepsin F inhibitor. In order to analyse the stability of the binding interactions, the known cysteine protease inhibitors viz, Simeprevir, calpain inhibitor IV and the cathepsin F inhibitor in complex Mpro were subjected to molecular dynamics simulations at 100 ns. Based on the results Simeprevir was found to be a strong inhibitor of SARS-CoV-2 Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhithaj J
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Sharanya C S
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - Arun K G
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - Sadasivan C
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| |
Collapse
|
239
|
Prakash A, Singh H, Kaur H, Semwal A, Sarma P, Bhattacharyya A, Dhibar DP, Medhi B. Systematic review and meta-analysis of effectiveness and safety of favipiravir in the management of novel coronavirus (COVID-19) patients. Indian J Pharmacol 2020; 52:414-421. [PMID: 33283773 PMCID: PMC8025763 DOI: 10.4103/ijp.ijp_998_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple options are being tried for the management of 2019-nCoV infection since its pandemic started. Favipiravir (FPV) is one of drugs, which is also being tried for the management of 2019-nCoV infection. The present study aimed to evaluate the efficacy and safety of FPV in published literature. Comparative randomized or nonrandomized controlled clinical trials comparing FPV to the standard of care (SOC)/control or other antiviral agent/combinations were included. A total of 12 databases were searched and identify four studies which were further used for final analysis. The data analysis was done as pooled prevalence using a random effect model by "RevMan manager version 5.4.1 and "R" software. The point estimate, odds ratio (OR) with 95% confidence interval (CI) was calculated for dichotomous data. In the present study, the marginal beneficial effect was seen in the FPV group in overall clinical improvement comparison to SOC/control, i.e., (4 studies, log OR [95% CI] (-0.19 [-0.51, 0.13]). However, in all other outcomes, it was found to be comparable to the SOC/control arm namely "clinical improvement on day 7-10" (3 studies, OR [95% CI] 1.63 [1.07, 2.48]) while "clinical improvement on day 10-14" (3 studies, OR [95% CI] 1.37 [0.24, 7.82]) and viral negativity was seen (4 studies, OR [95% CI] 1.91 [0.91, 4.01]). No difference in efficacy was found between FPV versus lopinavir/ritonavir or arbidol groups. Regarding adverse effects, except for the occurrence of rash (higher in the FPV group), safety was comparable to SOC. In our study, there was a marginal difference between the FPV and the SOC arm in terms of "clinical improvement" on day 7-10 or 10-14, and "virological negativity" on day 10-14." However, some benefit was observed in a few studies, but it was also comparable to the control drugs or SOC.
Collapse
Affiliation(s)
- Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harvinder Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Semwal
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anusuya Bhattacharyya
- Ophthalmology, GMCH, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deba Prasad Dhibar
- Department of Internal Medicine (Emergency), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
240
|
Sahu KK, Mishra AK, Lal A, Sahu SA. India Fights Back: COVID-19 Pandemic. Heart Lung 2020; 49:446-448. [PMID: 32527575 PMCID: PMC7177138 DOI: 10.1016/j.hrtlng.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Kamal Kant Sahu
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, Massachusetts United States, 01608.
| | - Ajay Kumar Mishra
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, Massachusetts United States, 01608
| | - Amos Lal
- Division of Pulmonary and Critical care, Mayo Clinic, Rochester, Minnesota, Massachusetts United States, 55902
| | - Shamendra Anand Sahu
- Department of Burns and Plastic Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh, 492099, India
| |
Collapse
|
241
|
Ahangarzadeh S, Payandeh Z, Arezumand R, Shahzamani K, Yarian F, Alibakhshi A. An update on antiviral antibody-based biopharmaceuticals. Int Immunopharmacol 2020; 86:106760. [PMID: 32645633 PMCID: PMC7336121 DOI: 10.1016/j.intimp.2020.106760] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023]
Abstract
Due to the vastness of the science virology, it is no longer an offshoot solely of the microbiology. Viruses have become as the causative agents of major epidemics throughout history. Many therapeutic strategies have been used for these microorganisms, and in this way the recognizing of potential targets of viruses is of particular importance for success. For decades, antibodies and antibody fragments have occupied a significant body of the treatment approaches against infectious diseases. Because of their high affinity, they can be designed and engineered against a variety of purposes, mainly since antibody fragments such as scFv, nanobody, diabody, and bispecific antibody have emerged owing to their small size and interesting properties. In this review, we have discussed the antibody discovery and molecular and biological design of antibody fragments as inspiring therapeutic and diagnostic agents against viral targets.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (IGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Alibakhshi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
242
|
Rudrapal M, Khairnar SJ, Borse LB, Jadhav AG. Coronavirus Disease-2019 (COVID-19): An Updated Review. Drug Res (Stuttg) 2020; 70:389-400. [PMID: 32746481 PMCID: PMC7516369 DOI: 10.1055/a-1217-2397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
The current outbreak of novel Coronavirus Disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major pandemic situation and a catastrophe for humans. COVID-19 is a severe infectious disease particularly of the respiratory system characterized by fatal complications such as severe acute respiratory distress syndrome (SARS), pneumonia, cardiac arrhythmia, kidney failure/ multiple organ failure and even death. Since its discovery, the SARS-CoV-2 has spread across 213 countries or territories, causing more than 8.5 million people with a rising death toll over 5.5 million people (as of June 2020, WHO). In fact, the current looming crisis of COVID-19 has become an increasingly serious concern to public health. It has affected lives of millions of people with severe impact on health systems and economies globally. Since there are no specific drugs and/or vaccines available so far, combating COVID-19 remains to be a major challenging task. Therefore, development of potential and effective treatment regimens (prophylactic/therapeutic) is urgently required which could resolve the issue. In this review, we summarize the current knowledge about the coronavirus, disease epidemiology, clinical manifestations and risk factors, replication of the virus, pathophysiology and host immune responses of SARS-CoV-2 infection. The therapeutic interventions and prophylactic measures along with precautionary measures are the frontline approaches that could be undertaken in order to control and prevent the spread of the deadly and highly contagious COVID-19 are also detailed herein.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Sandip Institute of Pharmaceutical Sciences, Sandip Foundation, Nashik,
Maharashtra, India
| | - Shubham J. Khairnar
- Sandip Institute of Pharmaceutical Sciences, Sandip Foundation, Nashik,
Maharashtra, India
| | - Laxmikant B. Borse
- Sandip Institute of Pharmaceutical Sciences, Sandip Foundation, Nashik,
Maharashtra, India
| | - Anil G. Jadhav
- Sandip Institute of Pharmaceutical Sciences, Sandip Foundation, Nashik,
Maharashtra, India
| |
Collapse
|
243
|
Bryce S, Heath KN, Issi L, Ryder EF, P. Rao R. Using COVID-19 as a teaching tool in a time of remote learning: A workflow for bioinformatic approaches to identifying candidates for therapeutic and vaccine development. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:492-498. [PMID: 33463080 PMCID: PMC7590178 DOI: 10.1002/bmb.21413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 06/12/2023]
Abstract
The COVID-19 pandemic has led to an urgent need for engaging computational alternatives to traditional laboratory exercises. Here we introduce a customizable and flexible workflow, designed with the SARS CoV-2 virus that causes COVID-19 in mind, as a means of reinforcing fundamental biology concepts using bioinformatics approaches. This workflow is accessible to a wide range of students in life science majors regardless of their prior bioinformatics knowledge, and all software is freely available, thus eliminating potential cost barriers. Using the workflow can thus provide a diverse group of students the opportunity to conduct inquiry-driven research. Here we demonstrate the utility of this workflow and outline the logical steps involved in the identification of therapeutic or vaccine targets against SARS CoV-2. We also provide an example of how the workflow may be adapted to other infectious microbes. Overall, our workflow anchors student understanding of viral biology and genomics and allows students to develop valuable bioinformatics expertise as well as to hone critical thinking and problem-solving skills, while also creating an opportunity to better understand emerging information surrounding the COVID-19 pandemic.
Collapse
Affiliation(s)
- Samantha Bryce
- Biology and Biotechnology DepartmentWorcester Polytechnic InstituteWorcesterMassachusettsUSA
| | - Kevin N. Heath
- Bioinformatics and Computational Biology ProgramWorcester Polytechnic InstituteWorcesterMassachusettsUSA
| | - Luca Issi
- Biology and Biotechnology DepartmentWorcester Polytechnic InstituteWorcesterMassachusettsUSA
| | - Elizabeth F. Ryder
- Biology and Biotechnology DepartmentWorcester Polytechnic InstituteWorcesterMassachusettsUSA
- Bioinformatics and Computational Biology ProgramWorcester Polytechnic InstituteWorcesterMassachusettsUSA
| | - Reeta P. Rao
- Biology and Biotechnology DepartmentWorcester Polytechnic InstituteWorcesterMassachusettsUSA
| |
Collapse
|
244
|
Noor R. Antiviral drugs against severe acute respiratory syndrome coronavirus 2 infection triggering the coronavirus disease-19 pandemic. Tzu Chi Med J 2020; 33:7-12. [PMID: 33505872 PMCID: PMC7821824 DOI: 10.4103/tcmj.tcmj_100_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
So far, lots of analyses have been conducted to invent the appropriate therapeutic targets for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The category and the strategies for treating the virus are described in this review together with mentioning some specific drugs. Of them, saikosaponin possesses affinity of the drug toward nonstructural protein 15 and the spike glycoprotein of the SARS-CoV-2. The nucleotide inhibitors such as sofosbuvir, ribavirin, galidesivir, remdesivir, favipiravir, cefuroxime, tenofovir, and hydroxychloroquine (HCHL), setrobuvir, YAK, and IDX-184 were found to be effective in binding to SARS-CoV-2 RNA-dependent RNA polymerase. From the antimalarial and anti-inflammatory category, chloroquine and its derivative HCHL have already been approved by the U.S. Food and Drug Administration for emergency treatment of SARS-CoV-2 infection. The other drugs such as favipiravir and lopinavir/ritonavir under the antiviral category, the angiotensin-converting enzyme 2 (the renin-angiotensin system inhibitors), remdesivir (RNA polymerase inhibitor) from antiviral category, cepharanthine from anti-inflammatory category, etc., have been pointed based on the previous literature published. Besides, the assessment of the drug repositioning candidates with the related targets is also significant for the viral mitigation.
Collapse
Affiliation(s)
- Rashed Noor
- Department of Microbiology, School of Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
245
|
Ashary N, Bhide A, Chakraborty P, Colaco S, Mishra A, Chhabria K, Jolly MK, Modi D. Single-Cell RNA-seq Identifies Cell Subsets in Human Placenta That Highly Expresses Factors Driving Pathogenesis of SARS-CoV-2. Front Cell Dev Biol 2020; 8:783. [PMID: 32974340 PMCID: PMC7466449 DOI: 10.3389/fcell.2020.00783] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Infection by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) results in the novel coronavirus disease COVID-19, which has posed a serious threat globally. Infection of SARS-CoV-2 during pregnancy is associated with complications such as preterm labor and premature rupture of membranes, and a proportion of neonates born to infected mothers are also positive for the virus. During pregnancy, the placental barrier protects the fetus from pathogens and ensures healthy development. To predict if the placenta is permissive to SARS-CoV-2, we utilized publicly available single-cell RNA-seq data to identify if the placental cells express the necessary factors required for infection. SARS-CoV-2 binding receptor ACE2 and the S protein priming protease TMPRSS2 are co-expressed by a subset of syncytiotrophoblasts (STB) in the first trimester and extravillous trophoblasts (EVT) in the second trimester human placenta. In addition, the non-canonical receptor BSG/CD147 and other proteases (CTSL, CTSB, and FURIN) are detected in most of the placental cells. Other coronavirus family receptors (ANPEP and DPP4) were also expressed in the first and second trimester placental cells. Additionally, the term placenta of multiple species including humans expressed ACE2, DPP4, and ANPEP along with the viral S protein proteases. The ACE2- and TMPRSS2-positive (ACE2 + TMPRSS2 +) placental subsets expressed mRNA for proteins involved in viral budding and replication. These cells also had the mRNA for proteins that physically interact with SARS-CoV-2 in host cells. Further, we discovered unique signatures of genes in ACE2 + TMPRSS2 + STBs and EVTs. The ACE2 + TMPRSS2 + STBs are highly differentiated cells and express genes involving mitochondrial metabolism and glucose transport. The second trimester ACE2 + TMPRSS2 + EVTs are enriched for markers of endovascular trophoblasts. Both these subtypes abundantly expressed genes in the Toll-like receptor pathway. The second trimester EVTs are also enriched for components of the JAK-STAT pathway that drives inflammation. We carried out a systematic review and identified that in 12% of pregnant women with COVID-19, the placenta was infected with SARS-CoV-2, and the virus was detected in STBs. To conclude, herein we have uncovered the cellular targets for SARS-CoV-2 entry and have shown that these cells can potentially drive viremia in the developing human placenta. Our results provide a basic framework toward understanding the paraphernalia involved in SARS-CoV-2 infections in pregnancy.
Collapse
Affiliation(s)
- Nancy Ashary
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Priyanka Chakraborty
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Stacy Colaco
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Anuradha Mishra
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Karisma Chhabria
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| |
Collapse
|
246
|
Debnath SK, Srivastava R, Omri A. Emerging therapeutics for the management of COVID 19. Expert Opin Emerg Drugs 2020; 25:337-351. [PMID: 32799566 DOI: 10.1080/14728214.2020.1810663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The coronavirus-19 (COVID-19) disease pandemic can be characterized as the most critical and changeable hazard to healthcare systems in eras. The high fatality rate associated with coronavirus infection underlines the urgent need for an effective treatment to reduce disease severity and mortality. AREAS COVERED A detailed search for treatments related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) was carried out using PubMed. Components of the virus relevant to the infectious mechanism were identified. We have highlighted all the latest emerging and repurposed drugs that were found to be active against this novel coronavirus and classified these drugs according to their category. Different drug targets are discussed in order to identify new molecules or new combinations as candidates to manage SARS-CoV2/COVID-19 infections. EXPERT OPINION The development of novel molecules and vaccines has been a challenge during this urgent crisis. Nucleoside analogs and IL-6 receptor antagonists have been identified as the best candidates for treatment of this disease. Multi-drug therapy by targeting different pathways will need to be corroborated and then confirmed through clinical trials. Until a vaccine is available, an alternative drug regimen needs to be adopted by clinicians in the management of coronavirus symptoms.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Nanobios Lab, Department of Biosciences and Bioengineering, IIT Bombay , Mumbai, India
| | - Rohit Srivastava
- Nanobios Lab, Department of Biosciences and Bioengineering, IIT Bombay , Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University , Sudbury, Ontario, Canada
| |
Collapse
|
247
|
Mukherjee S, Bhattacharyya D, Bhunia A. Host-membrane interacting interface of the SARS coronavirus envelope protein: Immense functional potential of C-terminal domain. Biophys Chem 2020; 266:106452. [PMID: 32818817 PMCID: PMC7418743 DOI: 10.1016/j.bpc.2020.106452] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
The Envelope (E) protein in SARS Coronavirus (CoV) is a small structural protein, incorporated as part of the envelope. A major fraction of the protein has been known to be associated with the host membranes, particularly organelles related to intracellular trafficking, prompting CoV packaging and propagation. Studies have elucidated the central hydrophobic transmembrane domain of the E protein being responsible for much of the viroporin activity in favor of the virus. However, newer insights into the organizational principles at the membranous compartments within the host cells suggest further complexity of the system. The lesser hydrophobic Carboxylic-terminal of the protein harbors interesting amino acid sequences- suggesting at the prevalence of membrane-directed amyloidogenic properties that remains mostly elusive. These highly conserved segments indicate at several potential membrane-associated functional roles that can redefine our comprehensive understanding of the protein. This should prompt further studies in designing and characterizing of effective targeted therapeutic measures. The SARS CoV Envelope protein is a small structural protein of the virus, responsible for viroporin like activity. Membrane- E protein interaction provides an useful insight into gaining mechanistic insight into its viroporin functions. The central hydrophobic transmembrane domain of E protein, known to affect ion-channel formation. The C-terminal region of the protein show further potential host-membrane directed functional roles. The highly conserved amyloidogenic amino acid stretches of the C-terminal suggest for its contribution to CoV propagation.
Collapse
Affiliation(s)
- Shruti Mukherjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Dipita Bhattacharyya
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India.
| |
Collapse
|
248
|
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Front Med (Lausanne) 2020; 7:444. [PMID: 32850918 PMCID: PMC7427128 DOI: 10.3389/fmed.2020.00444] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive research works have been reported in recent days on the development of effective therapeutics against this global health crisis, there is still no approved therapy against SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs) have been prioritized to make a review focusing on the efficacy of plant-originated therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless medicinal compounds, while the diversity of multidimensional chemical structures has made them superior to treat serious diseases. Some have already been reported as promising alternative medicines and lead compounds for drug repurposing and discovery. The versatility of secondary metabolites may provide novel antibiotics to tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant metabolites that have the therapeutic potential to treat a wide range of viral pathogens. The study includes the search of remedies belonging to plant families, susceptible viral candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in the collection of an enormous number of natural therapeutics that might be suggested for the treatment of COVID-19. About 219 plants from 83 families were found to have antiviral activity. Among them, 149 plants from 71 families were screened for the identification of the major plant secondary metabolites (PSMs) that might be effective for this pandemic. Our investigation revealed that the proposed plant metabolites can serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses. This review will stimulate further analysis by the scientific community and boost antiviral plant-based research followed by novel drug designing.
Collapse
Affiliation(s)
- Farhana Rumzum Bhuiyan
- Department of Botany, University of Chittagong, Chittagong, Bangladesh
- Laboratory of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chittagong, Bangladesh
| | - Sabbir Howlader
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
249
|
Mirzaie A, Halaji M, Dehkordi FS, Ranjbar R, Noorbazargan H. A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19). Complement Ther Clin Pract 2020; 40:101214. [PMID: 32891290 PMCID: PMC7831809 DOI: 10.1016/j.ctcp.2020.101214] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) as a life-threatening disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is accounted as global public health concern. Treatment of COVID-19 is primarily supportive and the role of antiviral agents is yet to be established. However, there are no specific anti-COVID-19 drugs and vaccine until now. This review focuses on traditional medicine such as medicinal plant extracts as promising approaches against COVID-19. Chinese, Indian and Iranian traditional medicine, suggests some herbs for prevention, treatment and rehabilitation of the diseases including COVID-19. Although, inhibition of viral replication is considered as general mechanism of herbal extracts, however some studies demonstrated that traditional herbal extracts can interact with key viral proteins which are associated with virus virulence. Chinese, Indian and Iranian traditional medicine, suggests some herbs for prevention, treatment and rehabilitation of the diseases including COVID-19. However the beneficial effects of these traditional medicines and their clinical trials remained to be known. Herein, we reviewed the latest updates on traditional medicines proposed for treatment of COVID-19.
Collapse
Affiliation(s)
- Amir Mirzaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Halaji
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hassan Noorbazargan
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
250
|
Tiwari V, Beer JC, Sankaranarayanan NV, Swanson-Mungerson M, Desai UR. Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discov Today 2020; 25:1535-1544. [PMID: 32574699 PMCID: PMC7305878 DOI: 10.1016/j.drudis.2020.06.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global health pandemic. The lack of effective treatments, coupled with its etiology, has resulted in more than 400,000 deaths at the time of writing. The SARS-CoV-2 genome is highly homologous to that of SARS-CoV, the causative agent behind the 2003 SARS outbreak. Based on prior reports, clinicians have pursued the off-label use of several antiviral drugs, while the scientific community has responded by seeking agents against traditional targets, especially viral proteases. However, several avenues remain unexplored, including disrupting E and M protein oligomerization, outcompeting host glycan-virus interactions, interfering with the heparan sulfate proteoglycans-virus interaction, and others. In this review, we highlight some of these opportunities while summarizing the drugs currently in use against coronavirus 2019 (COVID-19).
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University Downers Grove, IL 6051, USA; Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | - Jacob C Beer
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 2321, USA
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University Downers Grove, IL 6051, USA; Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 2321, USA.
| |
Collapse
|