201
|
LncRNA HOTAIR regulates lipopolysaccharide-induced cytokine expression and inflammatory response in macrophages. Sci Rep 2018; 8:15670. [PMID: 30353135 PMCID: PMC6199307 DOI: 10.1038/s41598-018-33722-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as major regulators of a variety of cell signaling processes. Many lncRNAs are expressed in immune cells and appear to play critical roles in the regulation of immune response. Here, we have investigated the potential role of a well-known lncRNA, HOTAIR, in inflammatory and immune response. Our studies demonstrate that HOTAIR expression is induced in immune cells (macrophages) upon treatment with lipopolysaccharide (LPS). Knockdown of HOTAIR reduces NF-κB-mediated inflammatory gene and cytokine expression in macrophages. Inhibition of NF-κB resulted in down-regulation of LPS-induced expression of HOTAIR as well as IL-6 and iNOS expression. We further demonstrated that HOTAIR regulates activation of NF-κB and its target genes (IL-6 and iNOS) expression via facilitating the degradation of IκBα. HOTAIR knockdown reduces the expression of NF-κB target gene expression via inhibiting the recruitment of NF-κB and associated cofactors at the target gene promoters. Taken together, our findings suggest that HOTAIR is a critical player in NF-κB activation in macrophages suggesting its potential functions in inflammatory and immune response.
Collapse
|
202
|
Huang M, Wang H, Hu X, Cao X. lncRNA MALAT1 binds chromatin remodeling subunit BRG1 to epigenetically promote inflammation-related hepatocellular carcinoma progression. Oncoimmunology 2018; 8:e1518628. [PMID: 30546959 DOI: 10.1080/2162402x.2018.1518628] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one type of cancers whose carcinogenesis and progression are closely related to chronic inflammation. Identifying the molecular mechanisms for inflammation-related HCC progression will contribute to improve the efficacy of current therapeutics for HCC patients. Many kinds of epigenetic factors, including long non-coding RNAs (lncRNAs), have been discovered to be important in HCC growth and metastasis. However, how the lncRNAs promote HCC progression and what's the application of lncRNA silencing in vivo in suppressing HCC remain to be further investigated. Here, we found that lncRNA metastasis associated lung adenocarcinoma transcript1 (MALAT1) was upregulated in HCC tumor tissues, and knockdown of MALAT1 suppressed proliferation, cell cycle and invasion of HCC cells in response to lipopolysaccharide (LPS) stimulation. Knockdown of MALAT1 significantly inhibited LPS-induced pro-inflammatory mediators IL-6 and CXCL8 expression in HCC cells, which could be restored by overexpressing MALAT1. Mechanistically, MALAT1 recruited Brahma-related gene 1 (BRG1), a catalytic subunit of chromatin remodeling complex switching/sucrose non-fermentable (SWI/SNF), to the promoter region of IL-6 and CXCL8, and thus facilitated NF-κB to induce the expression of these inflammatory factors. Importantly, in vivo silencing of MALAT1 in HCC tissues inhibited growth of HCC xenografts, and also suppressed the expression of pro-inflammatory factors in HCC tissues accordingly. Our results demonstrate that MALAT1 promotes HCC progression by binding BRG1 to epigenetically enhance inflammatory response in HCC tissues, and silencing of MALAT1 may be a potential approach to the treatment of HCC.
Collapse
Affiliation(s)
- Mingyan Huang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai China
| | - Huamin Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai China.,National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing China
| | - Xiang Hu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai China.,National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou China.,College of Life Science, Nankai University, Tianjin China
| |
Collapse
|
203
|
Li W, Ren Y, Si Y, Wang F, Yu J. Long non-coding RNAs in hematopoietic regulation. CELL REGENERATION 2018; 7:27-32. [PMID: 30671227 PMCID: PMC6326246 DOI: 10.1016/j.cr.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 02/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have crucial roles via tethering with DNA, RNA or protein in diverse biological processes. These lncRNA-mediated interactions enhance gene regulatory networks and modulate a wide range of downstream genes. It has been demonstrated that several lncRNAs act as key regulators in hematopoiesis. This review highlights the roles of lncRNAs in normal hematopoietic development and discusses how lncRNA dysregulation correlates with disease prognoses and phenotypes.
Collapse
Affiliation(s)
- Weiqian Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
204
|
McMaster ML, Berndt SI, Zhang J, Slager SL, Li SA, Vajdic CM, Smedby KE, Yan H, Birmann BM, Brown EE, Smith A, Kleinstern G, Fansler MM, Mayr C, Zhu B, Chung CC, Park JH, Burdette L, Hicks BD, Hutchinson A, Teras LR, Adami HO, Bracci PM, McKay J, Monnereau A, Link BK, Vermeulen RCH, Ansell SM, Maria A, Diver WR, Melbye M, Ojesina AI, Kraft P, Boffetta P, Clavel J, Giovannucci E, Besson CM, Canzian F, Travis RC, Vineis P, Weiderpass E, Montalvan R, Wang Z, Yeager M, Becker N, Benavente Y, Brennan P, Foretova L, Maynadie M, Nieters A, de Sanjose S, Staines A, Conde L, Riby J, Glimelius B, Hjalgrim H, Pradhan N, Feldman AL, Novak AJ, Lawrence C, Bassig BA, Lan Q, Zheng T, North KE, Tinker LF, Cozen W, Severson RK, Hofmann JN, Zhang Y, Jackson RD, Morton LM, Purdue MP, Chatterjee N, Offit K, Cerhan JR, Chanock SJ, Rothman N, Vijai J, Goldin LR, Skibola CF, Caporaso NE. Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia. Nat Commun 2018; 9:4182. [PMID: 30305637 PMCID: PMC6180091 DOI: 10.1038/s41467-018-06541-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40-31.03, P = 1.36 × 10-54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45-6.96, P = 8.75 × 10-19). Both risk alleles are observed at a low frequency among controls (~2-3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy.
Collapse
Affiliation(s)
- Mary L McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA.
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Jianqing Zhang
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, 55905, MN, USA
| | - Shengchao Alfred Li
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Claire M Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Karin E Smedby
- Department of Medicine, Solna Karolinska Institutet, Stockholm, 17176, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Huihuang Yan
- Department of Health Sciences Research, Mayo Clinic, Rochester, 55905, MN, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Elizabeth E Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Alex Smith
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Geffen Kleinstern
- Department of Health Sciences Research, Mayo Clinic, Rochester, 55905, MN, USA
| | - Mervin M Fansler
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, 10021, NY, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Charles C Chung
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Ju-Hyun Park
- Department of Statistics, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Laurie Burdette
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Lauren R Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, 30303, GA, USA
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Institute of Health and Society, Clinical Effectiveness Research Group, University of Oslo, Oslo, NO-0316, Norway
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, 94118, CA, USA
| | - James McKay
- International Agency for Research on Cancer (IARC), Lyon, 69372, France
| | - Alain Monnereau
- Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris, F-94807, France
- Université Paris Descartes, Paris, 75006, France
- Registry of Hematological Malignancies in Gironde, Institut Bergonié, University of Bordeaux, Inserm, Team EPICENE, UMR 1219, Bordeaux, 33000, France
| | - Brian K Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, 52242, IA, USA
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, 3508 TD, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Stephen M Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, 55905, MN, USA
| | - Ann Maria
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, 30303, GA, USA
| | - Mads Melbye
- Division of Health Surveillance and Research, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, 2300, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Akinyemi I Ojesina
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Paolo Boffetta
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Jacqueline Clavel
- Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris, F-94807, France
- Université Paris Descartes, Paris, 75006, France
| | - Edward Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Caroline M Besson
- Service d'hématologie et Oncologie, Centre Hospitalier de Versailles, Le Chesnay, Inserm U1018, Centre pour la Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, 78157, France
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, OX3 7LF, UK
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Human Genetics Foundation, Turin, 10126, Italy
| | - Elisabete Weiderpass
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, 9019, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, 0379, Norway
- Genetic Epidemiology Group, Folkhälsan Research Center and University of Helsinki, Helsinki, 00250, Finland
| | | | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, 38105, TN, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20877, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Baden-Württemberg, Germany
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, 69372, France
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and MF MU, Brno, 65653, Czech Republic
| | - Marc Maynadie
- EA 4184, Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, Dijon, 21070, France
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, 79108, Baden-Württemberg, Germany
| | - Silvia de Sanjose
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Anthony Staines
- School of Nursing and Human Sciences, Dublin City University, Dublin, 9, Ireland
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Jacques Riby
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, 94720, CA, USA
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 75105, Sweden
| | - Henrik Hjalgrim
- Division of Health Surveillance and Research, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, 2300, Denmark
- Department of Hematology, Rigshospitalet, Copenhagen, 2100, Denmark
| | - Nisha Pradhan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, 55905, MN, USA
| | - Anne J Novak
- Department of Internal Medicine, Mayo Clinic, Rochester, 55905, MN, USA
| | | | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, 02903, RI, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, 98117, WA, USA
| | - Wendy Cozen
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
- Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
| | - Richard K Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, 48201, MI, USA
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, 06520, CT, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, 43210, OH, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
- Ontario Health Study, Toronto, M5S 1C6, ON, Canada
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, 21205, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, 21205, MD, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, 55905, MN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - Lynn R Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Christine F Skibola
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, 30322, GA, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| |
Collapse
|
205
|
Zhao CN, Mao YM, Liu LN, Li XM, Wang DG, Pan HF. Emerging role of lncRNAs in systemic lupus erythematosus. Biomed Pharmacother 2018; 106:584-592. [DOI: 10.1016/j.biopha.2018.06.175] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
|
206
|
Sun W, Shi Y, Wang Z, Zhang J, Cai H, Zhang J, Huang D. Interaction of long-chain non-coding RNAs and important signaling pathways on human cancers (Review). Int J Oncol 2018; 53:2343-2355. [PMID: 30272345 DOI: 10.3892/ijo.2018.4575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/24/2018] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) usually refer to non-coding RNA transcripts >200 nucleotides in length. In terms of the full genomic transcript, the proportion of lncRNAs far exceeds that of coding RNA. Initially, lncRNAs were considered to be the transcriptional noise of genes, but it has since been demonstrated that lncRNAs serve an important role in the regulation of cellular activities through interaction with DNA, RNA and protein. Numerous studies have demonstrated that various intricate signaling pathways are closely related to lncRNAs. Here, we focus on a large number of studies regarding the interaction of lncRNAs with important signaling pathways. It is comprehensively illustrated that lncRNAs regulate key metabolic components and regulatory factors of signaling pathways to affect the biological activities of tumor cells. Evidence suggests that the abnormal expression or mutation of lncRNAs in human tumor cells, and their interaction with signaling pathways, may provide a basis and potential target for the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Wei Sun
- Department of Postgraduates, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Ying Shi
- Department of Obstetrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhifei Wang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jiye Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Hanhui Cai
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jungang Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Dongsheng Huang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
207
|
Liao K, Xu J, Yang W, You X, Zhong Q, Wang X. The research progress of LncRNA involved in the regulation of inflammatory diseases. Mol Immunol 2018; 101:182-188. [DOI: 10.1016/j.molimm.2018.05.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
|
208
|
He J, Tu C, Liu Y. Role of lncRNAs in aging and age-related diseases. Aging Med (Milton) 2018; 1:158-175. [PMID: 31942494 PMCID: PMC6880696 DOI: 10.1002/agm2.12030] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/10/2023] Open
Abstract
Aging is progressive physiological degeneration and consequently declined function, which is linked to senescence on both cellular and organ levels. Accumulating studies indicate that long noncoding RNAs (lncRNAs) play important roles in cellular senescence at all levels-transcriptional, post-transcriptional, translational, and post-translational. Understanding the molecular mechanism of lncRNAs underlying senescence could facilitate interpretation and intervention of aging and age-related diseases. In this review, we describe categories of known and novel lncRNAs that have been involved in the progression of senescence. We also identify the lncRNAs implicated in diseases arising from age-driven degeneration or dysfunction in some representative organs and systems (brains, liver, muscle, cardiovascular system, bone pancreatic islets, and immune system). Improved comprehension of lncRNAs in the aging process on all levels, from cell to organismal, may provide new insights into the amelioration of age-related pathologies and prolonged healthspan.
Collapse
Affiliation(s)
- Jieyu He
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chao Tu
- Department of OrthopedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Youshuo Liu
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
209
|
Pearson MJ, Jones SW. Review: Long Noncoding RNAs in the Regulation of Inflammatory Pathways in Rheumatoid Arthritis and Osteoarthritis. Arthritis Rheumatol 2018; 68:2575-2583. [PMID: 27214788 PMCID: PMC5347907 DOI: 10.1002/art.39759] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Mark J Pearson
- Institute of Inflammation and Ageing, MRC-ARK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
210
|
Qiu L, Chang G, Li Z, Bi Y, Liu X, Chen G. Comprehensive Transcriptome Analysis Reveals Competing Endogenous RNA Networks During Avian Leukosis Virus, Subgroup J-Induced Tumorigenesis in Chickens. Front Physiol 2018; 9:996. [PMID: 30093865 PMCID: PMC6070742 DOI: 10.3389/fphys.2018.00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that induces myeloid tumors and hemangiomas in chickens and causes severe economic losses with commercial layer chickens and meat-type chickens. High-throughput sequencing followed by quantitative real-time polymerase chain reaction and bioinformatics analyses were performed to advance the understanding of regulatory networks associated with differentially expressed non-coding RNAs and mRNAs that facilitate ALV-J infection. We examined the expression of mRNAs, long non-coding RNAs (lncRNAs), and miRNAs in the spleens of 20-week-old chickens infected with ALV-J and uninfected chickens. We found that 1723 mRNAs, 7,883 lncRNAs and 13 miRNAs in the spleen were differentially expressed between the uninfected and infected groups (P < 0.05). Transcriptome analysis showed that, compared to mRNA, chicken lncRNAs shared relatively fewer exon numbers and shorter transcripts. Through competing endogenous RNA and co-expression network analyses, we identified several tumor-associated or immune-related genes and lncRNAs. Along transcripts whose expression levels significantly decreased in both ALV-J infected spleen and tumor tissues, BCL11B showed the greatest change. These results suggest that BCL11B may be mechanistically involved in tumorigenesis in chicken and neoplastic diseases, may be related to immune response, and potentially be novel biomarker for ALV-J infection. Our results provide new insight into the pathology of ALV-J infection and high-quality transcriptome resource for in-depth study of epigenetic influences on disease resistance and immune system.
Collapse
Affiliation(s)
- Lingling Qiu
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Zhiteng Li
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yulin Bi
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiangping Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
211
|
Qiu L, Wang T, Tang Q, Li G, Wu P, Chen K. Long Non-coding RNAs: Regulators of Viral Infection and the Interferon Antiviral Response. Front Microbiol 2018; 9:1621. [PMID: 30072977 PMCID: PMC6060254 DOI: 10.3389/fmicb.2018.01621] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) are a family of cytokines providing a robust first line of host innate defense against pathogenic infection, and have now been part of the standard treatment for viral infection. However, IFN based therapy can best be described as modestly effective. Long non-coding RNAs (lncRNAs) are a novel class of non-protein-coding RNAs that are capable of regulating gene expression at different levels, including chromatin, transcription, post-transcription, and translation. Recently, lncRNAs are found to be deregulated upon viral infection or IFN treatment, and some of them can modulate viral infection in an IFN-dependent or -independent manner. Due to the crucial roles of lncRNAs in viral infection and the IFN antiviral response, the modulation of specific lncRNAs may be involved to increase the IFN antiviral response and improve the clinical result of IFN-based therapy. In this review, we summarize lncRNAs that are deregulated by viral infection, with special focus on the functions and underlying mechanisms of some essential lncRNAs, and discuss their roles in viral infection and the antiviral response of IFN.
Collapse
Affiliation(s)
- Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Tao Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Peng Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
212
|
Li R, Fang L, Pu Q, Bu H, Zhu P, Chen Z, Yu M, Li X, Weiland T, Bansal A, Ye SQ, Wei Y, Jiang J, Wu M. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal 2018; 11:11/536/eaao2387. [PMID: 29945883 DOI: 10.1126/scisignal.aao2387] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) regulate gene expression. We investigated the role of lncRNAs in the inflammatory response to bacterial infection in the lungs. We identified the lncRNA MEG3 as a tissue-specific modulator of inflammatory responses during bacterial infection. Among the 10 transcript isoforms of MEG3, transcript 4 (referred to as MEG3-4) encodes the isoform with the lowest abundance in mouse lungs. Nonetheless, we found that MEG3-4 bound to the microRNA miR-138 in a competitive manner with mRNA encoding the proinflammatory cytokine interleukin-1β (IL-1β), thereby increasing IL-1β abundance and intensifying inflammatory responses to bacterial infection in alveolar macrophages and lung epithelial cells in culture and in lung tissue in mice. MEG3-4-mediated sponging of miR-138 in the cytoplasm increased the autocrine activity of IL-1β that subsequently induced a negative feedback mechanism mediated by nuclear factor κB that decreased MEG3-4 abundance and inflammatory cytokine production. This timely reduction in MEG3-4 abundance tempered proinflammatory responses in mice with pulmonary bacterial infection, preventing the progression to sepsis. Together, these findings reveal that MEG3-4 dynamically modulates pulmonary inflammatory responses through transcriptional regulation of immune response genes, extending the decoy and sponge mechanism associated with lncRNAs to antibacterial immunity, which affects both response and disease progression.
Collapse
Affiliation(s)
- Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China.,Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P. R. China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Pengcheng Zhu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Zihan Chen
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Min Yu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | | | | | - Shui Qing Ye
- Department of Pediatrics and Department of Biomedical and Health Informatics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P. R. China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, Sichuan 400042, P. R. China.
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
213
|
Meydan C, Bekenstein U, Soreq H. Molecular Regulatory Pathways Link Sepsis With Metabolic Syndrome: Non-coding RNA Elements Underlying the Sepsis/Metabolic Cross-Talk. Front Mol Neurosci 2018; 11:189. [PMID: 29922126 PMCID: PMC5996041 DOI: 10.3389/fnmol.2018.00189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/15/2018] [Indexed: 01/04/2023] Open
Abstract
Sepsis and metabolic syndrome (MetS) are both inflammation-related entities with high impact for human health and the consequences of concussions. Both represent imbalanced parasympathetic/cholinergic response to insulting triggers and variably uncontrolled inflammation that indicates shared upstream regulators, including short microRNAs (miRs) and long non-coding RNAs (lncRNAs). These may cross talk across multiple systems, leading to complex molecular and clinical outcomes. Notably, biomedical and RNA-sequencing based analyses both highlight new links between the acquired and inherited pathogenic, cardiac and inflammatory traits of sepsis/MetS. Those include the HOTAIR and MIAT lncRNAs and their targets, such as miR-122, −150, −155, −182, −197, −375, −608 and HLA-DRA. Implicating non-coding RNA regulators in sepsis and MetS may delineate novel high-value biomarkers and targets for intervention.
Collapse
Affiliation(s)
- Chanan Meydan
- Department of Internal Medicine, Mayanei Hayeshua Medical Center, Bnei Brak, Israel
| | - Uriya Bekenstein
- The Department of Biological Chemistry, The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Department of Biological Chemistry, The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
214
|
Genome-wide screening differential long non-coding RNAs expression profiles discloses its roles involved in OHSS development. J Assist Reprod Genet 2018; 35:1473-1482. [PMID: 29869218 DOI: 10.1007/s10815-018-1199-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/25/2018] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVE To screen differentially expressed lncRNAs involved in OHSS. OHSS is defined as ovarian hyperstimulation syndrome. It is characterized as enlarged ovary and increased vascular permeability. DESIGN Case-control study. SETTING University-affiliated hospital. PATIENT(S) Patients with OHSS high risk (n = 30) and low risk (n = 30) were included in this study. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) LncRNAs from women with OHSS high risk and low risk were used for high-throughput sequencing profiling. The eight most differentially expressed lncRNAs in granulosa cells were validated by semi-quantitative reverse transcription-polymerase chain reaction analysis. RESULT(S) A total of 23,815 lncRNAs were detected and 482 were differentially expressed (fold-change ≥2; p < 0.05, FDR value < 0.001), of which 205 were upregulated and 277 were downregulated. Lnc-SEC16B.1-6, lnc-SNURF-13, lnc-LGR6-6, and lnc-H2AFY2-2 were up-regulated, while lnc-BRD2-2, lnc-HSPA6-2, and lnc-CLIC6-5 were downregulated significantly in granulosa cells. These results were confirmed by qRT-PCR. KEGG pathways and Gene Ontology enrichment analysis revealed that several biological processes were significantly associated. Meanwhile, the lncRNA/miRNA interaction network was established according to ceRNA network model. CONCLUSION(S) Comprehensive expression screening identified eight novel lncRNAs associated with risk factors of OHSS process. Although it is unclear how these altered lncRNAs regulate the process of OHSS, our findings suggest these lncRNAs may be novel players in OHSS development.
Collapse
|
215
|
Liu K, Beck D, Thoms JAI, Liu L, Zhao W, Pimanda JE, Zhou X. Annotating function to differentially expressed LincRNAs in myelodysplastic syndrome using a network-based method. Bioinformatics 2018; 33:2622-2630. [PMID: 28472271 DOI: 10.1093/bioinformatics/btx280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/22/2017] [Indexed: 02/01/2023] Open
Abstract
Motivation Long non-coding RNAs (lncRNAs) have been implicated in the regulation of diverse biological functions. The number of newly identified lncRNAs has increased dramatically in recent years but their expression and function have not yet been described from most diseases. To elucidate lncRNA function in human disease, we have developed a novel network based method (NLCFA) integrating correlations between lncRNA, protein coding genes and noncoding miRNAs. We have also integrated target gene associations and protein-protein interactions and designed our model to provide information on the combined influence of mRNAs, lncRNAs and miRNAs on cellular signal transduction networks. Results We have generated lncRNA expression profiles from the CD34+ haematopoietic stem and progenitor cells (HSPCs) from patients with Myelodysplastic syndromes (MDS) and healthy donors. We report, for the first time, aberrantly expressed lncRNAs in MDS and further prioritize biologically relevant lncRNAs using the NLCFA. Taken together, our data suggests that aberrant levels of specific lncRNAs are intimately involved in network modules that control multiple cancer-associated signalling pathways and cellular processes. Importantly, our method can be applied to prioritize aberrantly expressed lncRNAs for functional validation in other diseases and biological contexts. Availability and implementation The method is implemented in R language and Matlab. Contact xizhou@wakehealth.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Keqin Liu
- Department of Radiology, Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Dominik Beck
- Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia.,Centre for Health Technologies and School of Software, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Julie A I Thoms
- Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia
| | - Liang Liu
- Department of Radiology, Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Weiling Zhao
- Department of Radiology, Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - John E Pimanda
- Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia.,Centre for Health Technologies and School of Software, University of Technology Sydney, Sydney, NSW, 2007, Australia.,Department of Haematology, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Xiaobo Zhou
- Department of Radiology, Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
216
|
Abstract
Cytokines and long noncoding RNAs (lncRNAs) are intertwined in the regulatory circuit controlling immunity. lncRNA expression levels are altered following cytokine stimulation in a cell-type-specific fashion. lncRNAs, in turn, regulate the inducible expression of cytokines following immune activation. These studies position lncRNAs as important regulators of gene expression within the complex pathways of the immune system. Our understanding of the functions of lncRNAs is just beginning. Current methodologies for functionally understanding how these transcripts mediate their effects are unable to keep up with the speed of genomic outputs cataloging thousands of these novel genes. In this review, we highlight the interplay between cytokines and lncRNAs and speculate on the future utility of these genes as potential biomarkers and therapeutic targets for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01655
- Centre for Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, NTNU, 7491 Trondheim, Norway
| |
Collapse
|
217
|
On the Relationships between LncRNAs and Other Orchestrating Regulators: Role of the Circadian System. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2020009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
218
|
Sloop GD, Pop G, Weidman JJ, St Cyr JA. Apolipoprotein(a) is the Product of a Pseudogene: Implications for the Pathophysiology of Lipoprotein(a). Cureus 2018; 10:e2715. [PMID: 30079281 PMCID: PMC6067813 DOI: 10.7759/cureus.2715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 12/03/2022] Open
Abstract
Apolipoprotein(a) [apo(a)] is an apolipoprotein unique to lipoprotein(a) [Lp(a)]. Although it has no known function, Lp(a) is a risk factor for accelerated atherothrombosis. We hypothesize that LPA, the gene which encodes apo(a), is a heretofore unrecognized unprocessed pseudogene created by duplication of PLG, the gene which encodes plasminogen. Unprocessed pseudogenes are genes which were created by duplication of functional genes and subsequently lost function after acquiring various mutations. This hypothesis explains many of the unusual features of Lp(a) and apo(a). Also, this hypothesis has implications for the therapy of elevated Lp(a) and atherothrombosis theory. Because apo(a) is functionless, the diseases associated with elevated levels of Lp(a) are due to its impact on blood viscosity.
Collapse
Affiliation(s)
- Gregory D Sloop
- Pathology, Idaho College of Osteopathic Medicine, Meridian, USA
| | - Gheorghe Pop
- Cardiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands, Nijmegen, NLD
| | | | - John A St Cyr
- Research and Development, Jacqmar, Inc., Minneapolis, USA
| |
Collapse
|
219
|
Seo W, Taniuchi I. Regulation of hematopoiesis and immune responses by long non-coding RNAs. Int Immunol 2018; 29:165-172. [PMID: 28444293 DOI: 10.1093/intimm/dxx021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022] Open
Abstract
Since the first draft of the human genome sequence was released in 2001, unprecedentedly rapid progress has been made in whole genome-wide approaches by utilizing next-generation-sequencing technologies. The last decade alone has generated enormous data in the forms of exome sequencing, transcriptomes, transcription factor occupancy, genomic variation profiling and epigenetic modifications. One of the most striking realizations from sequencing studies has been the discovery and characterization of non-coding RNAs (ncRNAs). Although the extent to which ncRNAs are functional in vivo is still a controversial topic, there is at least a consensus that some ncRNAs are functional and that they play various roles in biology. Among the several kinds of ncRNAs, long ncRNAs (lncRNAs) in particular have received more attention because they have a larger potential to act as multifunctional regulators. Not surprisingly, researchers in the field of immunology have started to examine ncRNAs as new regulatory mechanisms. In this review, we will summarize some lncRNAs that have been reported to function in the immune system and then argue that there is still a long way to go before we can achieve a complete understanding of lncRNAs.
Collapse
Affiliation(s)
- Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
220
|
Ahmed W, Liu ZF. Long Non-Coding RNAs: Novel Players in Regulation of Immune Response Upon Herpesvirus Infection. Front Immunol 2018; 9:761. [PMID: 29706968 PMCID: PMC5906719 DOI: 10.3389/fimmu.2018.00761] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses have developed a variety of sophisticated immune evasion strategies to establish lifelong latent infection, including the use of long non-coding RNAs (lncRNAs). In this review, we summarize the lncRNA action modes, i.e., RNA-protein, RNA-RNA, and RNA-DNA interactions, involved in regulating important aspects of immunity by controlling gene expression at various stages. Upon herpesvirus infection, host lncRNAs, such as nuclear paraspeckle assembly transcript 1, negative regulator of antiviral, and B-cell integration cluster have been functionally characterized as negative or positive antiviral regulators in the immune response. Herpesviruses have also evolved multiple strategies to modulate the host immune response using lncRNAs, such as latency-associated transcript, β 2.7 RNA, 5 kb and 7.2 kb lncRNAs, Epstein-Barr virus-encoded non-coding RNA, BamH I-A rightward transcripts, polyadenylated nuclear, and herpesvirus saimiri U-rich RNAs. We discuss the various mechanisms of immune-related lncRNAs, and their diversified and important functions in the modulation of innate and adaptive immunity upon herpesvirus infection as well as in host-pathogen interactions, which will facilitate our understanding of rational design of novel strategies to combat herpesvirus infection.
Collapse
Affiliation(s)
- Waqas Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
221
|
Chiu HS, Somvanshi S, Patel E, Chen TW, Singh VP, Zorman B, Patil SL, Pan Y, Chatterjee SS, Sood AK, Gunaratne PH, Sumazin P. Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Rep 2018; 23:297-312.e12. [PMID: 29617668 PMCID: PMC5906131 DOI: 10.1016/j.celrep.2018.03.064] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are commonly dysregulated in tumors, but only a handful are known to play pathophysiological roles in cancer. We inferred lncRNAs that dysregulate cancer pathways, oncogenes, and tumor suppressors (cancer genes) by modeling their effects on the activity of transcription factors, RNA-binding proteins, and microRNAs in 5,185 TCGA tumors and 1,019 ENCODE assays. Our predictions included hundreds of candidate onco- and tumor-suppressor lncRNAs (cancer lncRNAs) whose somatic alterations account for the dysregulation of dozens of cancer genes and pathways in each of 14 tumor contexts. To demonstrate proof of concept, we showed that perturbations targeting OIP5-AS1 (an inferred tumor suppressor) and TUG1 and WT1-AS (inferred onco-lncRNAs) dysregulated cancer genes and altered proliferation of breast and gynecologic cancer cells. Our analysis indicates that, although most lncRNAs are dysregulated in a tumor-specific manner, some, including OIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergistically dysregulate cancer pathways in multiple tumor contexts.
Collapse
Affiliation(s)
- Hua-Sheng Chiu
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sonal Somvanshi
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ektaben Patel
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting-Wen Chen
- Bioinformatics Center, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Vivek P Singh
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barry Zorman
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sagar L Patil
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77030, USA
| | - Yinghong Pan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77030, USA
| | - Sujash S Chatterjee
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77030, USA
| | - Pavel Sumazin
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
222
|
Long non-coding RNAs regulating macrophage functions in homeostasis and disease. Vascul Pharmacol 2018; 114:122-130. [PMID: 29548902 DOI: 10.1016/j.vph.2018.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 02/26/2018] [Indexed: 12/29/2022]
Abstract
Non-coding RNAs, once considered "genomic junk", are now known to play central roles in the dynamic control of transcriptional and post-transcriptional gene expression. Long non-coding RNAs (lncRNAs) are an expansive class of transcripts broadly described as greater than 200 nucleotides in length. While most lncRNAs are species-specific, their lack of conservation does not imbue a lack of function. LncRNAs have been found to regulate numerous diverse biological functions, including those central to macrophage differentiation and activation. Through their ability to form RNA-DNA, RNA-protein and RNA-RNA interactions, lncRNAs have been implicated in the regulation of myeloid lineage determination, and innate and adaptive immune functions, among others. In this review, we discuss recent advances, current challenges and future opportunities in understanding the roles of lncRNAs in macrophage functions in homeostasis and disease.
Collapse
|
223
|
Noh JH, Kim KM, McClusky WG, Abdelmohsen K, Gorospe M. Cytoplasmic functions of long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018. [PMID: 29516680 DOI: 10.1002/wrna.1471] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides found throughout the cell that lack protein-coding function. Their functions are closely linked to their interaction with RNA-binding proteins (RBPs) and nucleic acids. Nuclear lncRNAs have been studied extensively, revealing complexes with structural and regulatory roles that enable gene organization and control transcription. Cytoplasmic lncRNAs are less well understood, but accumulating evidence indicates that they also form complexes with diverse structural and regulatory functions. Here, we review our current knowledge of cytoplasmic lncRNAs and the different levels of gene regulation controlled by cytoplasmic lncRNA complexes, including mRNA turnover, translation, protein stability, sponging of cytosolic factors, and modulation of signaling pathways. We conclude by discussing areas of future study needed to elucidate comprehensively the biology of lncRNAs, to further understand the impact of lncRNAs on physiology and design lncRNA-centered therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Waverly G McClusky
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
224
|
lncRNAs Regulate Innate Immune Responses and Their Roles in Macrophage Polarization. Mediators Inflamm 2018; 2018:8050956. [PMID: 29599646 PMCID: PMC5828099 DOI: 10.1155/2018/8050956] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is the first line of defense against microbial pathogens. The activated innate immune system plays important roles in eliciting antimicrobial defenses. Despite the benefits of innate immune responses, excessive inflammation will cause host damage. Thus, tight regulation of these processes is required for the maintenance of immune homeostasis. Recently, a new class of long noncoding RNAs (lncRNAs) has emerged as important regulators in many physiological and pathological processes. Dysregulated lncRNAs have been found to be associated with excessive or uncontrolled inflammation. In this brief review, we summarize the roles of functional lncRNAs in regulating innate immune responses. We also discuss the roles of lncRNAs in macrophage polarization, an important molecular event in the innate immune responses.
Collapse
|
225
|
Leung A, Amaram V, Natarajan R. Linking diabetic vascular complications with LncRNAs. Vascul Pharmacol 2018; 114:139-144. [PMID: 29398367 DOI: 10.1016/j.vph.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/26/2022]
Abstract
Diabetes leads to markedly accelerated rates of many associated macrovascular complications like hypertension and atherosclerosis, and microvascular complications like nephropathy and retinopathy. High glucose, the hallmark of diabetes, drives changes in vascular and inflammatory cells that promote the development of these complications. Understanding the molecular processes involved in the development of diabetes and its debilitating complications can lead to much needed newer clinical therapies. Recently, long-noncoding RNAs (lncRNAs) have been shown to be important in the biology of vascular cells and there is growing evidence that lncRNAs are also involved in the cell biology relevant to diabetic vascular complications. In this review, we provide an overview of lncRNAs that function in vascular cells, and those that have been linked to diabetic complications.
Collapse
Affiliation(s)
- Amy Leung
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Vishnu Amaram
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, United States.
| |
Collapse
|
226
|
Abstract
It is estimated that more than 90% of the mammalian genome is transcribed as non-coding RNAs. Recent evidences have established that these non-coding transcripts are not junk or just transcriptional noise, but they do serve important biological purpose. One of the rapidly expanding fields of this class of transcripts is the regulatory lncRNAs, which had been a major challenge in terms of their molecular functions and mechanisms of action. The emergence of high-throughput technologies and the development in various conventional approaches have led to the expansion of the lncRNA world. The combination of multidisciplinary approaches has proven to be essential to unravel the complexity of their regulatory networks and helped establish the importance of their existence. Here, we review the current methodologies available for discovering and investigating functions of long non-coding RNAs (lncRNAs) and focus on the powerful technological advancement available to specifically address their functional importance.
Collapse
|
227
|
Hu J, Hu Z, Wang X, Gu M, Gao Z, Liang Y, Ma C, Liu X, Hu S, Chen S, Peng D, Jiao X, Liu X. Deep sequencing of the mouse lung transcriptome reveals distinct long non-coding RNAs expression associated with the high virulence of H5N1 avian influenza virus in mice. Virulence 2018; 9:1092-1111. [PMID: 30052469 PMCID: PMC6086314 DOI: 10.1080/21505594.2018.1475795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 01/22/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play multiple key regulatory roles in various biological processes. However, their function in influenza A virus (IAV) pathogenicity remains largely unexplored. Here, using next generation sequencing, we systemically compared the whole-transcriptome response of the mouse lung infected with either the highly pathogenic (A/Chicken/Jiangsu/k0402/2010, CK10) or the nonpathogenic (A/Goose/Jiangsu/k0403/2010, GS10) H5N1 virus. A total of 126 significantly differentially expressed (SDE) lncRNAs from three replicates were identified to be associated with the high virulence of CK10, whereas 94 SDE lncRNAs were related with GS10. Functional category analysis suggested that the SDE lncRNAs-coexpressed mRNAs regulated by CK10 were highly related with aberrant and uncontrolled inflammatory responses. Further canonical pathway analysis also confirmed that these targets were highly enriched for inflammatory-related pathways. Moreover, 9 lncRNAs and 17 lncRNAs-coexpressed mRNAs associated with a large number of targeted genes were successfully verified by qRT-PCR. One targeted lncRNA (NONMMUT011061) that was markedly activated and correlated with a great number of mRNAs was selected for further in-depth analysis, including predication of transcription factors, potential interacting proteins, genomic location, coding ability and construction of the secondary structure. More importantly, NONMMUT011061 was also distinctively stimulated during the highly pathogenic H5N8 virus infection in mice, suggesting a potential universal role of NONMMUT011061 in the pathogenesis of different H5 IAV. Altogether, these results provide a subset of lncRNAs that might play important roles in the pathogenesis of influenza virus and add the lncRNAs to the vast repertoire of host factors utilized by IAV for infection and persistence.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Daxing Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
228
|
Huang Q, Ma C, Chen L, Luo D, Chen R, Liang F. Mechanistic Insights Into the Interaction Between Transcription Factors and Epigenetic Modifications and the Contribution to the Development of Obesity. Front Endocrinol (Lausanne) 2018; 9:370. [PMID: 30034368 PMCID: PMC6043677 DOI: 10.3389/fendo.2018.00370] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: The development of obesity is inseparable from genetic and epigenetic factors, and transcription factors (TFs) play an essential role in these two mechanisms. This review analyzes the interaction of TFs with epigenetic modifications and the epigenetic mechanisms underlying peroxisome proliferator-activated receptor (PPAR)γ, an important transcription factor, in the development of obesity. Methods: We describe the relationship between TFs and different epigenetic modifications and illustrate the several mechanisms described. Next, we summarize the epigenetic mechanisms of PPARs, an important class of transcription factors involved in obesity, that induce obesity with different triggering factors. Finally, we discuss the mechanisms of epigenetic modification of PPAR-related ligands in lipid metabolism and propose future avenues of research. Results: TFs participate in epigenetic modifications in different forms, causing changes in gene expression. The interactions between the different epigenetic modifications and PPARs are important biological developments that affect fat tissue differentiation, lipogenesis, and lipid metabolism, thereby inducing or inhibiting the development of obesity. We then highlight the need for more research to understand the role of epigenetic modifications and PPARs. Conclusions: Epigenetic mechanisms involved in the regulation of PPARs may be excellent therapeutic targets for obesity treatment. However, there is a need for a deeper understanding of how PPARs and other obesity-related transcription factors interact with epigenetic modifications.
Collapse
Affiliation(s)
- Qi Huang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| | - Chaoyang Ma
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong Science and Technology University, Wuhan, China
| | - Li Chen
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| | - Dan Luo
- Department of Traditional Chinese Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Rui Chen
- Department of Integrated TCM and Western Medicine, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan, China
- *Correspondence: Rui Chen
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
- Fengxia Liang
| |
Collapse
|
229
|
Ma X, Wang T, Zhao ZL, Jiang Y, Ye S. Propofol Suppresses Proinflammatory Cytokine Production by Increasing ABCA1 Expression via Mediation by the Long Noncoding RNA LOC286367. Mediators Inflamm 2018; 2018:8907143. [PMID: 30647536 PMCID: PMC6311839 DOI: 10.1155/2018/8907143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/14/2018] [Indexed: 02/05/2023] Open
Abstract
We previously reported that propofol upregulated the expression of ATP-binding cassette transporter subfamily A member 1 (ABCA1) via peroxisome proliferator-activated receptor gamma/liver X receptor in macrophage-derived foam cells. Here, we provide evidence that in addition to inducing ABCA1 expression, propofol represses proinflammatory cytokine production by increasing ABCA1 expression in a LOC286367-dependent manner. Western blot analysis showed that ABCA1 expression was elevated in macrophages by propofol treatment and this effect was markedly reduced by LOC286367 overexpression. Moreover, propofol treatment downregulated the production of the proinflammatory cytokines interleukin-6, tumor necrosis factor, and interferon gamma in lipopolysaccharide-stimulated macrophages by enhancing ABCA1 expression. Notably, propofol achieved this effect in a LOC286367-dependent manner. To the best of our knowledge, this is the first report of the mechanism in which propofol represses proinflammatory cytokine production mediated by ABCA1.
Collapse
Affiliation(s)
- Xin Ma
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Teng Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen-Long Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Jiang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
- Shantou University Medical College, Shantou, China
| |
Collapse
|
230
|
Han Y, Ma J, Wang J, Wang L. Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol 2018; 93:107-114. [DOI: 10.1016/j.molimm.2017.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/27/2017] [Accepted: 11/18/2017] [Indexed: 02/08/2023]
|
231
|
Johnson TS, Li S, Kho JR, Huang K, Zhang Y. Network analysis of pseudogene-gene relationships: from pseudogene evolution to their functional potentials. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018; 23:536-547. [PMID: 29218912 PMCID: PMC5744670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pseudogenes are fossil relatives of genes. Pseudogenes have long been thought of as "junk DNAs", since they do not code proteins in normal tissues. Although most of the human pseudogenes do not have noticeable functions, ∼20% of them exhibit transcriptional activity. There has been evidence showing that some pseudogenes adopted functions as lncRNAs and work as regulators of gene expression. Furthermore, pseudogenes can even be "reactivated" in some conditions, such as cancer initiation. Some pseudogenes are transcribed in specific cancer types, and some are even translated into proteins as observed in several cancer cell lines. All the above have shown that pseudogenes could have functional roles or potentials in the genome. Evaluating the relationships between pseudogenes and their gene counterparts could help us reveal the evolutionary path of pseudogenes and associate pseudogenes with functional potentials. It also provides an insight into the regulatory networks involving pseudogenes with transcriptional and even translational activities.In this study, we develop a novel approach integrating graph analysis, sequence alignment and functional analysis to evaluate pseudogene-gene relationships, and apply it to human gene homologs and pseudogenes. We generated a comprehensive set of 445 pseudogene-gene (PGG) families from the original 3,281 gene families (13.56%). Of these 438 (98.4% PGG, 13.3% total) were non-trivial (containing more than one pseudogene). Each PGG family contains multiple genes and pseudogenes with high sequence similarity. For each family, we generate a sequence alignment network and phylogenetic trees recapitulating the evolutionary paths. We find evidence supporting the evolution history of olfactory family (both genes and pseudogenes) in human, which also supports the validity of our analysis method. Next, we evaluate these networks in respect to the gene ontology from which we identify functions enriched in these pseudogene-gene families and infer functional impact of pseudogenes involved in the networks. This demonstrates the application of our PGG network database in the study of pseudogene function in disease context.
Collapse
Affiliation(s)
- Travis S Johnson
- Dept. Biomedical Informatics, Ohio State University, 5000 HITS, 410 W. 10th St. Indianapolis, Indiana, 46202, USA,
| | | | | | | | | |
Collapse
|
232
|
Hu Y, Kang C, Zhao J, Nie Y, Zheng L, Li H, Li X, Wang Q, Qiu Y. LncRNA PLAC2 down-regulates RPL36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT1. J Cell Mol Med 2018; 22:497-510. [PMID: 28922548 PMCID: PMC5742712 DOI: 10.1111/jcmm.13338] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
Current glioma therapies allow in situ delivery of cytotoxic drugs to the tumour; however, gliomas show early recurrence due to their highly proliferative character. Long non-coding (lnc)RNAs play critical roles in tumorigenesis by controlling cell proliferation and cycling. However, the mechanism of action of lncRNAs in glioma development remains unclear. Here, we report that the lncRNA PLAC2 induces cell cycle arrest by targeting ribosomal protein (RP)L36 in glioma. RPL36 promoted cell proliferation and G1/S cell cycle progression. Mass spectrometry analysis revealed that signal transducer and activator of transcription (STAT)1 interacted with both lncRNA PLAC2 and the RPL36 promoter. We also found that the nucleus PLAC2 bind with STAT1 and interact with RPL36 promoters but the cytoplasmic lncRNA PLAC2 inhibited STAT1 nuclear transfer, thereby decreasing RP36 expression, inhibiting cell proliferation and inducing cell cycle arrest. These results provide evidence for a novel cell cycle regulatory network in glioma comprising the lncRNA PLAC2 along with STAT1 and RPL36 that can serve as a therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Yan‐Wei Hu
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Chun‐Min Kang
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jing‐Jing Zhao
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ying Nie
- Department of AnesthesiologyGuangdong 999 Brain HospitalGuangzhouGuangdongChina
| | - Lei Zheng
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hai‐Xia Li
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xin Li
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qian Wang
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yu‐Rong Qiu
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
233
|
Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res 2018; 191:29-44. [PMID: 29154757 PMCID: PMC5776711 DOI: 10.1016/j.trsl.2017.10.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022]
Abstract
Chronic overnutrition and obesity induces low-grade inflammation throughout the body. Termed "meta-inflammation," this chronic state of inflammation is mediated by macrophages located within the colon, liver, muscle, and adipose tissue. A sentinel orchestrator of immune activity and homeostasis, macrophages adopt variable states of activation as a function of time and environmental cues. Meta-inflammation phenotypically skews these polarization states and has been linked to numerous metabolic disorders. The past decade has revealed several key regulators of macrophage polarization, including the signal transducer and activator of transcription family, the peroxisome proliferator-activated receptor gamma, the CCAAT-enhancer-binding proteins (C/EBP) family, and the interferon regulatory factors. Recent studies have also suggested that microRNAs and long noncoding RNA influence macrophage polarization. The pathogenic alteration of macrophage polarization in meta-inflammation is regulated by both extracellular and intracellular cues, resulting in distinct secretome profiles. Meta-inflammation-altered macrophage polarization has been linked to insulin insensitivity, atherosclerosis, inflammatory bowel disease, cancer, and autoimmunity. Thus, further mechanistic exploration into the skewing of macrophage polarization promises to have profound impacts on improving global health.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Maria M Xu
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Kepeng Wang
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Adam J Adler
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Anthony T Vella
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn.
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn.
| |
Collapse
|
234
|
Chew CL, Conos SA, Unal B, Tergaonkar V. Noncoding RNAs: Master Regulators of Inflammatory Signaling. Trends Mol Med 2017; 24:66-84. [PMID: 29246760 DOI: 10.1016/j.molmed.2017.11.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Inflammatory signaling underlies many diseases, from arthritis to cancer. Our understanding of inflammation has thus far been limited to the world of proteins, because we are only just beginning to understand the role that noncoding RNAs (ncRNA) might play. It is now clear that ncRNA do not constitute transcriptional 'noise' but instead harbor physiological functions in controlling signaling pathways. In this review, we cover the newly discovered mechanisms and functions of ncRNAs in the regulation of inflammatory signaling. We also describe advances in experimental techniques allowing this field of research to take root. These findings have opened new avenues for putative therapeutic intervention in inflammatory diseases, which may be seen translated into clinical outcomes in the future.
Collapse
Affiliation(s)
- Chen Li Chew
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; These authors contributed equally
| | - Stephanie Ana Conos
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; These authors contributed equally
| | - Bilal Unal
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore; Cancer Science Institute of Singapore, Singapore 117599, Singapore; Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
235
|
Meng XY, Luo Y, Anwar MN, Sun Y, Gao Y, Zhang H, Munir M, Qiu HJ. Long Non-Coding RNAs: Emerging and Versatile Regulators in Host-Virus Interactions. Front Immunol 2017; 8:1663. [PMID: 29234324 PMCID: PMC5712331 DOI: 10.3389/fimmu.2017.01663] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-protein-coding RNA molecules, which are involved in various biological processes, including chromatin modification, cell differentiation, pre-mRNA transcription and splicing, protein translation, etc. During the last decade, increasing evidence has suggested the involvement of lncRNAs in both immune and antiviral responses as positive or negative regulators. The immunity-associated lncRNAs modulate diverse and multilayered immune checkpoints, including activation or repression of innate immune signaling components, such as interleukin (IL)-8, IL-10, retinoic acid inducible gene I, toll-like receptors 1, 3, and 8, and interferon (IFN) regulatory factor 7, transcriptional regulation of various IFN-stimulated genes, and initiation of the cell apoptosis pathways. Additionally, some virus-encoded lncRNAs facilitate viral replication through individually or synergistically inhibiting the host antiviral responses or regulating multiple steps of the virus life cycle. Moreover, some viruses are reported to hijack host-encoded lncRNAs to establish persistent infections. Based on these amazing discoveries, lncRNAs are an emerging hotspot in host–virus interactions. In this review, we summarized the current findings of the host- or virus-encoded lncRNAs and the underlying mechanisms, discussed their impacts on immune responses and viral replication, and highlighted their critical roles in host–virus interactions.
Collapse
Affiliation(s)
- Xing-Yu Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Naveed Anwar
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huawei Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | | | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
236
|
Abstract
A major shift in our understanding of genome regulation has emerged recently. It is now apparent that the majority of cellular transcripts do not code for proteins, and many of them are long noncoding RNAs (lncRNAs). Increasingly, studies suggest that lncRNAs regulate gene expression through diverse mechanisms. We review emerging mechanistic views of lncRNAs in gene regulation in the cell nucleus. We discuss the functional interactions that lncRNAs establish with other molecules as well as the relationship between lncRNA transcription and function. While some of these mechanisms are specific to lncRNAs, others might be shared with other types of genes.
Collapse
Affiliation(s)
- Francesco P Marchese
- University of Navarra, Center for Applied Medical Research (CIMA), Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Ivan Raimondi
- University of Navarra, Center for Applied Medical Research (CIMA), Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Maite Huarte
- University of Navarra, Center for Applied Medical Research (CIMA), Pamplona, 31008, Spain. .,Institute of Health Research of Navarra (IdiSNA), Pamplona, 31008, Spain.
| |
Collapse
|
237
|
Lu Y, Liu X, Xie M, Liu M, Ye M, Li M, Chen XM, Li X, Zhou R. The NF-κB-Responsive Long Noncoding RNA FIRRE Regulates Posttranscriptional Regulation of Inflammatory Gene Expression through Interacting with hnRNPU. THE JOURNAL OF IMMUNOLOGY 2017; 199:3571-3582. [PMID: 28993514 DOI: 10.4049/jimmunol.1700091] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022]
Abstract
Long noncoding RNAs, a newly identified class of noncoding RNAs, are important regulators of gene expression in innate immunity. We report in this study that the transcription of FIRRE, a conserved long noncoding RNA between humans and mice, is controlled by NF-κB signaling in macrophages and intestinal epithelial cells. Functionally, FIRRE appears to positively regulate the expression of several inflammatory genes in macrophages or intestinal epithelial cells in response to LPS stimulation via posttranscriptional mechanisms. Specifically, FIRRE physically interacts with heterogeneous nuclear ribonucleoproteins U, regulating the stability of mRNAs of selected inflammatory genes through targeting the AU-rich elements of their mRNAs in cells following LPS stimulation. Therefore, our data indicate a new regulatory role for NF-κB-responsive FIRRE in the posttranscriptional regulation of inflammatory genes in the innate immune system.
Collapse
Affiliation(s)
- Yajing Lu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China.,Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Xu Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Minghong Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Mingjia Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Mengling Ye
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Mingxuan Li
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178; and
| | - Xiaoqing Li
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China;
| |
Collapse
|
238
|
Meng J, Yao Z, He Y, Zhang R, Yang H, Yao X, Chen L, Zhang H, Cheng J. Long non-coding RNA expression profiles in different severity EV71-infected hand foot and mouth disease patients. Biochem Biophys Res Commun 2017; 493:1594-1600. [PMID: 28993196 PMCID: PMC7092854 DOI: 10.1016/j.bbrc.2017.09.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Enterovirus 71 (EV71) is associated with the severe hand foot and mouth disease (HFMD) outcomes, however the host-virus interaction mechanism and the pathogenesis remain poorly understood. Long non-coding RNAs (lncRNAs) are involved in variety physiological and pathological processes, but the functions of lncRNAs in EV71 infection remain elusive. Here we profiled the expression of lncRNAs in peripheral blood mononuclear cells (PBMCs) from EV71-infected mild patients, severe patients as well as the healthy controls, and identified 8541 lncRNAs were differentially expressed. Focused on the dynamic changed lncRNAs, we performed systematic bioinformatics analysis with Series Test of Cluster (STC) algorithm, Gene Ontology (GO) analysis, pathway analysis and lncRNA-mRNA co-expression network analysis, and revealed the potential functions and related pathways of these lncRNAs were associated with immunity and inflammation during the clinical process of EV71-infected HFMD. Among the significant dynamic changed lncRNAs, ten lncRNAs were screened whose expression were further validated in EV71-infected mild patients, severe patients and healthy control. These results shed light on the potential roles of lncRNAs in EV71-infected HFMD, especially in distinguishing the mild and severe cases for early diagnose and treatment, moreover, provide deeper insight into the mechanism of EV71-induced immune and inflammatory responses, as well as the pathogenesis of the imbalanced inflammation in severe EV71 infection. LncRNAs expression profile were analyzed with EV71-infected HFMD patients' PBMCs. Dynamic changed lncRNAs were analyzed in different severity EV71-infected patients. Most of the lncRNAs were related to innate immune and inflammatory responses. The candidate lncRNAs may serve as potential markers for EV71-induced severe HFMD.
Collapse
Affiliation(s)
- Jun Meng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Zhenyu Yao
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Hong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xiangjie Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Long Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Hailong Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China.
| |
Collapse
|
239
|
Li Y, Zhang H, Zhu B, Ashraf U, Chen Z, Xu Q, Zhou D, Zheng B, Song Y, Chen H, Ye J, Cao S. Microarray Analysis Identifies the Potential Role of Long Non-Coding RNA in Regulating Neuroinflammation during Japanese Encephalitis Virus Infection. Front Immunol 2017; 8:1237. [PMID: 29033949 PMCID: PMC5626832 DOI: 10.3389/fimmu.2017.01237] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 09/19/2017] [Indexed: 01/31/2023] Open
Abstract
Japanese encephalitis virus (JEV) is the leading cause of epidemic encephalitis worldwide. JEV-induced neuroinflammation is characterized by profound neuronal cells damage accompanied by activation of glial cells. Albeit long non-coding RNAs (lncRNAs) have been emerged as important regulatory RNAs with profound effects on various biological processes, it is unknown how lncRNAs regulate JEV-induced inflammation. Here, using microarray approach, we identified 618 lncRNAs and 1,007 mRNAs differentially expressed in JEV-infected mice brain. The functional annotation analysis revealed that differentially regulated transcripts were predominantly involved in various signaling pathways related to host immune and inflammatory responses. The lncRNAs with their potential to regulate JEV-induced inflammatory response were identified by constructing the lncRNA-mRNA coexpression network. Furthermore, silencing of the two selected lncRNAs (E52329 and N54010) resulted in reducing the phosphorylation of JNK and MKK4, which are known to be involved during inflammatory response. Collectively, we first demonstrated the transcriptomic landscape of lncRNAs in mice brain infected with JEV and analyzed the coexpression network of differentially regulated lncRNAs and mRNAs during JEV infection. Our results provide a better understanding of the host response to JEV infection and suggest that the identified lncRNAs may be used as potential therapeutic targets for the management of Japanese encephalitis.
Collapse
Affiliation(s)
- Yunchuan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Bibo Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiuping Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Dengyuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Bohan Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
240
|
Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 2017; 130:1965-1975. [PMID: 28928124 DOI: 10.1182/blood-2017-06-788695] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly recognized as vital components of gene programs controlling cell differentiation and function. Central to their functions is an ability to act as scaffolds or as decoys that recruit or sequester effector proteins from their DNA, RNA, or protein targets. lncRNA-modulated effectors include regulators of transcription, chromatin organization, RNA processing, and translation, such that lncRNAs can influence gene expression at multiple levels. Here we review the current understanding of how lncRNAs help coordinate gene expression to modulate cell fate in the hematopoietic system. We focus on a growing number of mechanistic studies to synthesize emerging principles of lncRNA function, emphasizing how they facilitate diversification of gene programming during development. We also survey how disrupted lncRNA function can contribute to malignant transformation, highlighting opportunities for therapeutic intervention in specific myeloid and lymphoid cancers. Finally, we discuss challenges and prospects for further elucidation of lncRNA mechanisms.
Collapse
|
241
|
Mowel WK, Kotzin JJ, McCright SJ, Neal VD, Henao-Mejia J. Control of Immune Cell Homeostasis and Function by lncRNAs. Trends Immunol 2017; 39:55-69. [PMID: 28919048 DOI: 10.1016/j.it.2017.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022]
Abstract
The immune system is composed of diverse cell types that coordinate responses to infection and maintain tissue homeostasis. In each of these cells, extracellular cues determine highly specific epigenetic landscapes and transcriptional profiles to promote immunity while maintaining homeostasis. New evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in epigenetic and transcriptional regulation in mammals. Thus, lncRNAs have emerged as key regulatory molecules of immune cell gene expression programs in response to microbial and tissue-derived cues. We review here how lncRNAs control the function and homeostasis of cell populations during immune responses, emphasizing the diverse molecular mechanisms by which lncRNAs tune highly contextualized transcriptional programs. In addition, we discuss the new challenges faced in interrogating lncRNA mechanisms and function in the immune system.
Collapse
Affiliation(s)
- Walter K Mowel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; These authors contributed equally to this work
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; These authors contributed equally to this work
| | - Sam J McCright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vanessa D Neal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
242
|
Dai Y, Liang Z, Li Y, Li C, Chen L. Circulating Long Noncoding RNAs as Potential Biomarkers of Sepsis: A Preliminary Study. Genet Test Mol Biomarkers 2017; 21:649-657. [PMID: 28872921 DOI: 10.1089/gtmb.2017.0061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are becoming promising biomarker candidates in various diseases as assessed via sequencing technologies. Sepsis is a life-threatening disease without ideal biomarkers. The aim of this study was to investigate the expression profile of lncRNAs in the peripheral blood of sepsis patients and to find potential biomarkers of sepsis. METHODS A lncRNA expression profile was performed using peripheral blood from three sepsis patients and three healthy volunteers using microarray screening. The differentially expressed lncRNAs were validated by real-time quantitative polymerase chain reaction (qRT-PCR) in a further set of 22 sepsis patients and 22 healthy volunteers. RESULTS Among 1316 differentially expressed lncRNAs, 771 were downregulated and 545 were upregulated. Results of the qRT-PCR were consistent with the microarray data. lncRNA ENST00000452391.1, uc001vji.1, and uc021zxw.1 were significantly differentially expressed between sepsis patients and healthy volunteers. Moreover, lncRNA ENST00000504301.1 and ENST00000452391.1 were significantly differentially expressed between sepsis survivors and nonsurvivors. CONCLUSION The lncRNA expression profile in the peripheral blood of sepsis patients significantly differed from that of healthy volunteers. Circulating lncRNAs may be good candidates for sepsis biomarkers.
Collapse
Affiliation(s)
- Yu Dai
- 1 Department of Respiratory Diseases, Chinese PLA General Hospital , Beijing, P.R. China
| | - Zhixin Liang
- 1 Department of Respiratory Diseases, Chinese PLA General Hospital , Beijing, P.R. China
| | - Yulin Li
- 1 Department of Respiratory Diseases, Chinese PLA General Hospital , Beijing, P.R. China .,2 Department of Respiratory Diseases, Aerospace Center Hospital , Beijing, P.R. China
| | - Chunsun Li
- 1 Department of Respiratory Diseases, Chinese PLA General Hospital , Beijing, P.R. China
| | - Liangan Chen
- 1 Department of Respiratory Diseases, Chinese PLA General Hospital , Beijing, P.R. China
| |
Collapse
|
243
|
Hezroni H, Ben-Tov Perry R, Meir Z, Housman G, Lubelsky Y, Ulitsky I. A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes. Genome Biol 2017; 18:162. [PMID: 28854954 PMCID: PMC5577775 DOI: 10.1186/s13059-017-1293-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/31/2017] [Indexed: 12/04/2022] Open
Abstract
Background Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs. Results We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality. Conclusions We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1293-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hadas Hezroni
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl St., Rehovot, 76100, Israel
| | - Rotem Ben-Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl St., Rehovot, 76100, Israel
| | - Zohar Meir
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl St., Rehovot, 76100, Israel
| | - Gali Housman
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl St., Rehovot, 76100, Israel
| | - Yoav Lubelsky
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl St., Rehovot, 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl St., Rehovot, 76100, Israel.
| |
Collapse
|
244
|
Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 2017; 18:962-972. [PMID: 28829444 PMCID: PMC9830650 DOI: 10.1038/ni.3771] [Citation(s) in RCA: 520] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.
Collapse
Affiliation(s)
- Y Grace Chen
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.,These authors contributed equally to this work
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,These authors contributed equally to this work
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
245
|
Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes. Mol Metab 2017; 6:1407-1418. [PMID: 29107288 PMCID: PMC5681241 DOI: 10.1016/j.molmet.2017.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Objective Non-coding RNAs constitute a major fraction of the β-cell transcriptome. While the involvement of microRNAs is well established, the contribution of long non-coding RNAs (lncRNAs) in the regulation of β-cell functions and in diabetes development remains poorly understood. The aim of this study was to identify novel islet lncRNAs differently expressed in type 2 diabetes models and to investigate their role in β-cell failure and in the development of the disease. Methods Novel transcripts dysregulated in the islets of diet-induced obese mice were identified by high throughput RNA-sequencing coupled with de novo annotation. Changes in the level of the lncRNAs were assessed by real-time PCR. The functional role of the selected lncRNAs was determined by modifying their expression in MIN6 cells and primary islet cells. Results We identified about 1500 novel lncRNAs, a number of which were differentially expressed in obese mice. The expression of two lncRNAs highly enriched in β-cells, βlinc2, and βlinc3, correlated to body weight gain and glycemia levels in obese mice and was also modified in diabetic db/db mice. The expression of both lncRNAs was also modulated in vitro in isolated islet cells by glucolipotoxic conditions. Moreover, the expression of the human orthologue of βlinc3 was altered in the islets of type 2 diabetic patients and was associated to the BMI of the donors. Modulation of the level of βlinc2 and βlinc3 by overexpression or downregulation in MIN6 and mouse islet cells did not affect insulin secretion but increased β-cell apoptosis. Conclusions Taken together, the data show that lncRNAs are modulated in a model of obesity-associated type 2 diabetes and that variations in the expression of some of them may contribute to β-cell failure during the development of the disease. Mouse pancreatic islets express a large number of novel long non-coding RNAs. Many long non-coding RNAs are differentially expressed in the islets of obese mice. The level of two islet long non-coding RNAs correlates to body weight and glycemia. The expression of these islet long non-coding RNAs is altered in Type 2 diabetes. Altered expression of these long non-coding RNAs sensitise β-cells to apoptosis.
Collapse
|
246
|
Tarifeño-Saldivia E, Valenzuela-Miranda D, Gallardo-Escárate C. In the shadow: The emerging role of long non-coding RNAs in the immune response of Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:193-205. [PMID: 28373064 DOI: 10.1016/j.dci.2017.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
The genomic era has increased the research effort to uncover how the genome of an organism, and specifically the transcriptome, is modulated after interplaying with pathogenic microorganisms and ectoparasites. However, the ever-increasing accessibility of sequencing technology has also evidenced regulatory roles of long non-coding RNAs (lncRNAs) related to several biological processes including immune response. This study reports a high-confidence annotation and a comparative transcriptome analysis of lncRNAs from several tissues of Salmo salar infected with the most prevalent pathogens in the Chilean salmon aquaculture such as the infectious salmon anemia (ISA) virus, the intracellular bacterium Piscirickettsia salmonis and the ectoparasite copepod Caligus rogercresseyi. Our analyses showed that lncRNAs are widely modulated during infection. However, this modulation is pathogen-specific and highly correlated with immuno-related genes associated with innate immune response. These findings represent the first discovery for the widespread differential expression of lncRNAs in response to infections with different types of pathogens in Atlantic salmon, suggesting that lncRNAs are pivotal player during the fish immune response.
Collapse
Affiliation(s)
- E Tarifeño-Saldivia
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - D Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - C Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile.
| |
Collapse
|
247
|
Gomes CPC, Spencer H, Ford KL, Michel LYM, Baker AH, Emanueli C, Balligand JL, Devaux Y. The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:494-507. [PMID: 28918050 PMCID: PMC5565632 DOI: 10.1016/j.omtn.2017.07.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 02/09/2023]
Abstract
The popularization of genome-wide analyses and RNA sequencing led to the discovery that a large part of the human genome, while effectively transcribed, does not encode proteins. Long non-coding RNAs have emerged as critical regulators of gene expression in both normal and disease states. Studies of long non-coding RNAs expressed in the heart, in combination with gene association studies, revealed that these molecules are regulated during cardiovascular development and disease. Some long non-coding RNAs have been functionally implicated in cardiac pathophysiology and constitute potential therapeutic targets. Here, we review the current knowledge of the function of long non-coding RNAs in the cardiovascular system, with an emphasis on cardiovascular development and biology, focusing on hypertension, coronary artery disease, myocardial infarction, ischemia, and heart failure. We discuss potential therapeutic implications and the challenges of long non-coding RNA research, with directions for future research and translational focus.
Collapse
Affiliation(s)
- Clarissa P C Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Helen Spencer
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Kerrie L Ford
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK
| | - Lauriane Y M Michel
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Costanza Emanueli
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK; National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jean-Luc Balligand
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg.
| | | |
Collapse
|
248
|
Zhang K, Han X, Zhang Z, Zheng L, Hu Z, Yao Q, Cui H, Shu G, Si M, Li C, Shi Z, Chen T, Han Y, Chang Y, Yao Z, Han T, Hong W. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun 2017; 8:144. [PMID: 28747678 PMCID: PMC5529527 DOI: 10.1038/s41467-017-00204-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in various biological processes such as proliferation, cell death and differentiation. Here, we show that a liver-enriched lncRNA, named liver fibrosis-associated lncRNA1 (lnc-LFAR1), promotes liver fibrosis. We demonstrate that lnc-LFAR1 silencing impairs hepatic stellate cells (HSCs) activation, reduces TGFβ-induced hepatocytes apoptosis in vitro and attenuates both CCl4- and bile duct ligation-induced liver fibrosis in mice. Lnc-LFAR1 promotes the binding of Smad2/3 to TGFβR1 and its phosphorylation in the cytoplasm. Lnc-LFAR1 binds directly to Smad2/3 and promotes transcription of TGFβ, Smad2, Smad3, Notch2 and Notch3 which, in turn, results in TGFβ and Notch pathway activation. We show that the TGFβ1/Smad2/3/lnc-LFAR1 pathway provides a positive feedback loop to increase Smad2/3 response and a novel link connecting TGFβ with Notch pathway. Our work identifies a liver-enriched lncRNA that regulates liver fibrogenesis and suggests it as a potential target for fibrosis treatment.Activated hepatic stellate cells are the principal contributors to liver fibrosis by secreting a variety of pro-fibrogenic cytokines . Here Zhang et al. demonstrate that a liver-enriched lncRNA, lnc-LFAR1, promotes liver fibrosis and HSC activation by activating TGFβ and Notch signaling.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhimei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qingbin Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hongmei Cui
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Guiming Shu
- The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Maojie Si
- The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Chan Li
- The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yawei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yanan Chang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Han
- The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Tianjin, 300170, China. .,Department of Hepatology, Tianjin Third Central Hospital, Tianjin, 300170, China. .,Tianjin Key Laboratory of Artificial Cells, Tianjin Third Central Hospital, Tianjin, 300170, China.
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
249
|
Mirza AH, Kaur S, Pociot F. Long non-coding RNAs as novel players in β cell function and type 1 diabetes. Hum Genomics 2017; 11:17. [PMID: 28738846 PMCID: PMC5525349 DOI: 10.1186/s40246-017-0113-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are a sub-class within non-coding RNA repertoire that have emerged as crucial regulators of the gene expression in various pathophysiological conditions. lncRNAs display remarkable versatility and wield their functions through interactions with RNA, DNA, or proteins. Accumulating body of evidence based on multitude studies has highlighted the role of lncRNAs in many autoimmune and inflammatory diseases, including type 1 diabetes (T1D). Main body of abstract This review highlights emerging roles of lncRNAs in immune and islet β cell function as well as some of the challenges and opportunities in understanding the pathogenesis of T1D and its complications. Conclusion We accentuate that the lncRNAs within T1D-loci regions in consort with regulatory variants and enhancer clusters orchestrate the chromatin remodeling in β cells and thereby act as cis/trans-regulatory determinants of islet cell transcriptional programs.
Collapse
Affiliation(s)
- Aashiq H Mirza
- CPH-DIRECT, Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- CPH-DIRECT, Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Flemming Pociot
- CPH-DIRECT, Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark. .,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
250
|
Peng R. Promoting active learning of graduate student by deep reading in biochemistry and microbiology pharmacy curriculum. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:305-312. [PMID: 28059472 DOI: 10.1002/bmb.21038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
To promote graduate students' active learning, deep reading of high quality papers was done by graduate students enrolled in biochemistry and microbiology pharmacy curriculum offered by college of life science, Jiangxi Normal University from 2013 to 2015. The number of graduate students, who participated in the course in 2013, 2014, and 2015 were eleven, thirteen and fifteen, respectively. Through deep reading of papers, presentation, and group discussion in the lecture, these graduate students have improved their academic performances effectively, such as literature search, PPT document production, presentation management, specialty document reading, academic inquiry, and analytical and comprehensive ability. The graduate students also have increased their understanding level of frontier research, scientific research methods, and experimental methods. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):305-312, 2017.
Collapse
Affiliation(s)
- Ren Peng
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|