2451
|
Schmitz KJ, Otterbach F, Callies R, Levkau B, Hölscher M, Hoffmann O, Grabellus F, Kimmig R, Schmid KW, Baba HA. Prognostic relevance of activated Akt kinase in node-negative breast cancer: a clinicopathological study of 99 cases. Mod Pathol 2004; 17:15-21. [PMID: 14631376 DOI: 10.1038/modpathol.3800002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Patients with lymphnode-negative breast cancer show a 10-year tumor recurrence rate of approximately 30%. Therefore, it is important to identify high-risk patients who would benefit from further adjuvant therapy. For this purpose, we examined the activation state of two kinases important in the regulation of cell proliferation and apoptosis in a series of 99 node-negative breast cancer cases with a mean follow-up of 10 years: Akt and extracellular regulated kinase (ERK1/2). The activation of Akt and ERK1/2 was investigated by immunohistochemistry using phospho-specific antibodies. The results were correlated with HER-2/neu expression, histological grading, receptor status, overall survival (OS) as well as with cell proliferation (Ki67 immunoreactivity, mitotic count) and tumor apoptosis assessed by TUNEL staining. Activation of Akt (pAkt) but not activation of ERK1/2 (pERK1/2) correlated with HER-2/neu overexpression (P<0.05) and was related to reduced tumor apoptosis (P<0.05). No association was found between pAkt or pERK1/2 with cell proliferation assessed by Ki67 and mitotic count (MC). Survival analysis of receptor status, HER2/neu expression, histological grading, MC and pAkt immunoexpression showed a significant correlation with decreased OS, but only pAkt reached statistical significance in the multivariate Cox regression analysis (P=0.015). Activation of Akt in node-negative breast cancer may indicate aggressive tumor behavior and may constitute an independent prognostic factor of OS. The determination of pAkt status may be of value in identifying high-risk patients, who would benefit from adjuvant therapy, and gives a rationale to investigate new therapy strategies by specific inhibition of the Akt signaling pathway in breast cancer.
Collapse
|
2452
|
Williams K, Wu T, Colangelo C, Nairn AC. Recent advances in neuroproteomics and potential application to studies of drug addiction. Neuropharmacology 2004; 47 Suppl 1:148-66. [PMID: 15464134 DOI: 10.1016/j.neuropharm.2004.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 06/11/2004] [Accepted: 06/30/2004] [Indexed: 11/16/2022]
Abstract
The rapidly growing field of proteomics seeks to track changes in protein expression function that underlie the growth and differentiation of individual cell types, both during normal development and during the onset and progression of disease. Recent years have seen great strides in mRNA expression analysis, and the development of new technologies for protein profiling. However, current methods are limited to analysis of the relative expression level of only a few hundred to perhaps 2000 proteins, well below the ability of DNA microarrays to potentially interrogate the mRNA expression of more than 25,000 genes. Proteomics faces a special challenge in studies of the nervous system, where cellular and sub-cellular architecture is among the most complex in the body. This article presents an overview of current proteomic profiling technologies, reviews the recent use of some of these approaches in studies of the nervous system, and discusses the potential application of neuroproteomics to studies of drug addiction.
Collapse
Affiliation(s)
- Kenneth Williams
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | | | | | | |
Collapse
|
2453
|
Abstract
The discovery two decades ago that the Philadelphia chromosome encodes an oncogenic fusion of Bcr and Abl remains among the most important contributions to our understanding of the process of malignant transformation. We now know that Bcr-Abl is one of more than 30 aberrantly activated tyrosine kinases that are expressed in a variety of tumors. Conventional treatment of the tumors in which these proteins are expressed is usually doomed to failure because the activated tyrosine kinases render the tumor cells stubbornly resistant to apoptosis. In this context, it is notable that Zhao and coworkers have uncovered a novel weapon in the resistance armamentarium of these rogue kinases, the suppression of the inactivating deamidation of Bcl-xL (this issue of Cancer Cell).
Collapse
Affiliation(s)
- Steven J Weintraub
- Division of Urology, Department of Cell Biology and Physiology, The Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8242, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
2454
|
Leabu M, Uniyal S, Xie J, Xu YQ, Vladau C, Morris VL, Chan BMC. Integrin ?2?1 modulates EGF stimulation of Rho GTPase-dependent morphological changes in adherent human rhabdomyosarcoma RD cells. J Cell Physiol 2004; 202:754-66. [PMID: 15481063 DOI: 10.1002/jcp.20163] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of cells to undergo shape changes is essential for diverse cellular functions including cell growth, differentiation, and movement. The present study examines how an integration of the function of alpha2beta1 integrin with that of the receptor for epidermal growth factor (EGFR) modulates EGF-stimulated morphological changes in human rhabdomyosarcoma RD transfectant cells. Upon EGF stimulation, RD transfectant cells that lacked alpha2beta1 integrin expression (RDpF) underwent contraction; in contrast, expression of alpha2beta1 on RD cells (RDX2C2) resulted in transient cell spreading. Integrin alpha2 cytoplasmic domain played a critical role in the observed alpha2beta1-mediated conversion from a cell rounding to a cell spreading phenotype. Thus, the expression of an alpha2 cytoplasmic domain deletion variant (X2C0) or a chimeric alpha2beta1 containing the cytoplasmic domain of alpha4 (X2C4) or alpha5 (X2C5), instead of alpha2, failed to mediate spreading upon EGF stimulation. Using dominant negative (DN) mutants of RhoGTPases, results revealed that RhoA activation was required for both EGF-stimulated responses of cell rounding and spreading, Cdc42 functioned in the re-spreading of cells after undergoing EGF-stimulated contraction, and Rac1 was required in alpha2beta1-mediated RD cell spreading. Therefore, alpha2beta1 integrin function can switch the Rho GTPase-dependent cell shape changes in RD cells from an EGF-stimulated cell contraction to a spreading morphology. Together, results show that integrin alpha2 cytoplasmic domain plays an indispensable role in the ability of integrin alpha2beta1 to modulate EGF stimulation of Rho-GTPase-dependent morphological changes in RD cells.
Collapse
Affiliation(s)
- M Leabu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
2455
|
Misra UK, Pizzo SV. Activation of Akt/PDK signaling in macrophages upon binding of receptor-recognized forms of ?2-macroglobulin to its cellular receptor: Effect of silencing theCREB gene. J Cell Biochem 2004; 93:1020-32. [PMID: 15389876 DOI: 10.1002/jcb.20233] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Macrophage binding of receptor-recognized forms of alpha2-macrogobulin (alpha2M*) significantly increases cAMP, CREB, and activated CREB. We have now examined the participation of the PI 3-kinase/PDK/Akt/p70s6k signaling cascade in alpha2M*-induced cellular proliferation and also studied the role of CREB in these events. Exposure of cells to alpha2M* caused an approximately 2-fold increase in CREB and its phosphorylation at Ser133, phosphorylation of the regulatory subunit of PI 3-kinase, Akt phosphorylation at Ser473 or Thr308, and phosphorylated 70s6k. Silencing of the CREB gene with dsRNA homologous in sequence to the target gene, markedly reduced the levels of CREB mRNA activation of CREB, PI 3-kinase, Akt, and p70s6k in alpha2M*-stimulated macrophages. We conclude that in murine peritoneal macrophages, alpha2M*-induced increase of cAMP is involved in cellular proliferation and this process is mediated by the PI 3-kinase signaling cascade.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
2456
|
Abstract
Retroviruses have recruited the catalytic subunit of PI 3-kinase and its downstream target, Akt, as oncogenes. These viruses cause tumors in animals and induce oncogenic transformation in cell culture. The oncogenicity of these viruses is specifically inhibited by rapamycin; retroviruses carrying other oncogenes are insensitive to this macrolide antibiotic. Rapamycin is an inhibitor of the TOR (target of rapamycin) kinase whose downstream targets include p70 S6 kinase and the negative regulator of translation initiation 4E-BP. Emerging evidence suggests that the TOR signals transmitted to the translational machinery are essential for oncogenic transformation by the PI 3-kinase pathway.
Collapse
Affiliation(s)
- M Aoki
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC-239, La Jolla, CA 92037, USA
| | | |
Collapse
|
2457
|
Leahy DJ. Structure and Function of the Epidermal Growth Factor (EGF⧸ErbB) Family of Receptors. CELL SURFACE RECEPTORS 2004; 68:1-27. [PMID: 15500857 DOI: 10.1016/s0065-3233(04)68001-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel J Leahy
- Department of Biophysics & Biophysical Chemistry and HHMI, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
2458
|
Ravandi F, Cortes J. Investigational agents in myeloid disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2004; 51:59-97. [PMID: 15464905 DOI: 10.1016/s1054-3589(04)51003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
2459
|
Abstract
Thyrotropin (TSH) is considered the main regulator of thyrocyte differentiation and proliferation. Thus, the characterization of the different signaling pathways triggered by TSH on these cells is of major interest in order to understand the mechanisms implicated in thyroid pathology. In this review we focus on the different signaling pathways involved in TSH-mediated proliferation and their role in thyroid transformation and tumorigenesis. TSH mitogenic activities are mediated largely by cAMP, which in turn may activate protein kinase (PKA)-dependent and independent processes. We analyze the effects of increased cAMP levels and PKA activity during cell cycle progression and the role of this signaling pathway in thyroid tumor initiation. Alternative pathways to PKA in the cAMP-mediated proliferation appear to involve the small GTPases Rap1 and Ras. We analyze the Ras effectors (PI3K, RalGDS and Raf) that are thought to mediate its oncogenic activity, as well as the ability of Ras to induce apoptosis in thyrocytes. Finally, we discuss the activation of the PLC/PKC cascade by TSH in thyroid cells and the role of this signaling pathway in the TSH-mediated proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Marcos Rivas
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier # 4, E-28029 Madrid, Spain
| | | |
Collapse
|
2460
|
Ilaria RL. Tyrosine kinases in AML: where do they fit in? Leuk Res 2003; 28:217-8. [PMID: 14687612 DOI: 10.1016/j.leukres.2003.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2461
|
Lloyd KP, Krystal GW. Role of small-molecule kit receptor tyrosine kinase inhibitors in the treatment of small-cell lung cancer. Clin Lung Cancer 2003; 3:213-8. [PMID: 14662046 DOI: 10.3816/clc.2002.n.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prognosis of extensive-stage small-cell lung cancer (SCLC) has changed little in the past 3 decades, despite the documentation of high response rates to multiple chemotherapeutic regimens. Increasing the dose or the dose intensity of standard chemotherapy has increased toxicity without a significant improvement in outcome. However, our understanding of the biology of this disease has dramatically changed over the past 30 years, and this understanding has resulted in the identification of novel therapeutic targets. Evidence supporting the Kit growth factor receptor tyrosine kinase as a therapeutic target in SCLC is detailed. The properties of small-molecule Kit inhibitors currently in clinical development, as well as their efficacy in preclinical SCLC studies, are presented. The rationale for combining small-molecule Kit inhibitors with standard chemotherapy in clinical trials for extensive-stage SCLC is discussed.
Collapse
Affiliation(s)
- Katherine P Lloyd
- Medical College of Virginia/Virginia Commonwealth University and McGuire VA Medical Center, Richmond 23249, USA
| | | |
Collapse
|
2462
|
Stove C, Stove V, Derycke L, Van Marck V, Mareel M, Bracke M. The heregulin/human epidermal growth factor receptor as a new growth factor system in melanoma with multiple ways of deregulation. J Invest Dermatol 2003; 121:802-12. [PMID: 14632199 DOI: 10.1046/j.1523-1747.2003.12522.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In a screening for new growth factors released by melanoma cells, we found that the p185-phosphorylating capacity of a medium conditioned by a melanoma cell line was due to the secretion of heregulin, a ligand for the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. Expression of heregulin, including a new isoform, and secretion of functionally active protein was found in several cell lines. Receptor activation by heregulin, either autocrine or paracrine, resulted in a potent growth stimulation of both melanocytes and melanoma cells. Heregulin receptor HER3 and coreceptor HER2 were the main receptors expressed by these cells. Nevertheless, none of the cell lines in our panel overexpressed HER2 or HER3. In contrast, loss of HER3 was found in two cell lines, whereas one cell line showed loss of functional HER2, both types of deregulations resulting in unresponsiveness to heregulin. This implies the heregulin/HER system as a possible important physiologic growth regulatory system in melanocytes in which multiple deregulations may occur during progression toward melanoma, all resulting in, or indicating, growth factor independence.
Collapse
Affiliation(s)
- Christophe Stove
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
2463
|
Lee S, Lin X, Nam NH, Parang K, Sun G. Determination of the substrate-docking site of protein tyrosine kinase C-terminal Src kinase. Proc Natl Acad Sci U S A 2003; 100:14707-14712. [PMID: 14657361 PMCID: PMC299771 DOI: 10.1073/pnas.2534493100] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Indexed: 11/18/2022] Open
Abstract
Protein tyrosine kinases (PTK) are key enzymes of mammalian signal transduction. For the fidelity of signal transduction, each PTK phosphorylates only one or a few proteins on specific Tyr residues. Substrate specificity is thought to be mediated by PTK-substrate docking interactions and recognition of the phosphorylation site sequence by the kinase active site. However, a substrate-docking site has not been determined on any PTK. C-terminal Src kinase (Csk) is a PTK that specifically phosphorylates Src family kinases on a C-terminal Tyr. In this study, by sequence alignment and site-specific mutagenesis, we located a substrate-docking site on Csk. Mutations in the docking site disabled Csk to phosphorylate, regulate, and complex with Src but only moderately affected its general kinase activity. A peptide mimicking the docking site potently inhibited (IC50 = 21 microM) Csk phosphorylation of Src but only moderately inhibited (IC50 = 422 microM) its general kinase activity. Determination of the substrate-docking site provides the structural basis of substrate specificity in Csk and a model for understanding substrate specificity in other PTKs.
Collapse
Affiliation(s)
- Sungsoo Lee
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
2464
|
Blackledge G. Growth factor receptor tyrosine kinase inhibitors; clinical development and potential for prostate cancer therapy. J Urol 2003; 170:S77-83; discussion S83. [PMID: 14610415 DOI: 10.1097/01.ju.0000095022.80033.d3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The development of effective, novel, targeted cancer therapies with minimal side effects has long been a goal in cancer research. A key group of targets identified for drug development consists of the receptor tyrosine kinases, which have pivotal roles in the growth factor signaling that is subverted in carcinogenesis and in the host processes, such as angiogenesis, involved in tumor progression. MATERIALS AND METHODS A literature review of the role of receptor tyrosine kinases in human malignancies is followed by a discussion of the potential use of inhibitors of receptor tyrosine kinases as anticancer therapy, focusing on the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (Iressa, ZD1839, AstraZeneca, Macclesfield, United Kingdom). RESULTS Several small molecule inhibitors that are specific to individual receptor tyrosine kinases have been developed and a number of these potential anticancer agents are progressing through clinical trials. Various surrogate end points are being assessed to demonstrate the activity of these inhibitors against their targets. Results from studies of gefitinib alone and with the antiandrogen bicalutamide in both hormone dependent and independent prostate tumor xenografts suggested that gefitinib may have potential as monotherapy and combination therapy in the treatment of both forms of the disease. Gefitinib is currently undergoing further preclinical and clinical evaluation for the treatment of prostate cancer. CONCLUSIONS A number of tyrosine kinase inhibitors, including gefitinib, are progressing through clinical development and are beginning to provide new treatment options for a range of malignancies.
Collapse
|
2465
|
Costa RH, Kalinichenko VV, Holterman AXL, Wang X. Transcription factors in liver development, differentiation, and regeneration. Hepatology 2003; 38:1331-47. [PMID: 14647040 DOI: 10.1016/j.hep.2003.09.034] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert H Costa
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, College of Medicine, Chicago, IL 60607-7170, USA.
| | | | | | | |
Collapse
|
2466
|
Li L, Ren CH, Tahir SA, Ren C, Thompson TC. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 2003; 23:9389-404. [PMID: 14645548 PMCID: PMC309640 DOI: 10.1128/mcb.23.24.9389-9404.2003] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 06/04/2003] [Accepted: 09/09/2003] [Indexed: 12/28/2022] Open
Abstract
Previously it has been reported that caveolin-1 (cav-1) has antiapoptotic activities in prostate cancer cells and functions downstream of androgenic stimulation. In this study, we demonstrate that cav-1 overexpression significantly reduced thapsigargin (Tg)-stimulated apoptosis. Examination of the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling cascade revealed higher activities of PDK1 and Akt but not PI3-K in cav-1-stimulated cells compared to control cells. We subsequently found that cav-1 interacts with and inhibits serine/threonine protein phosphatases PP1 and PP2A through scaffolding domain binding site interactions. Deletion of the cav-1 scaffolding domain significantly reduces phosphorylated Akt and cell viability compared with wild-type cav-1. Analysis of potential substrates for PP1 and PP2A revealed that cav-1-mediated inhibition of PP1 and PP2A leads to increased PDK1, Akt, and ERK1/2 activities. We demonstrate that increased Akt activities are largely responsible for cav-1-mediated cell survival using dominant-negative Akt mutants and specific inhibitors to MEK1/MEK and show that cav-1 increases the half-life of phosphorylated PDK1 and Akt after inhibition of PI3-K by LY294002. We further demonstrate that cav-1-stimulated Akt activities lead to increased phosphorylation of multiple Akt substrates, including GSK3, FKHR, and MDM2. In addition, overexpression of cav-1 significantly increases translocation of phosphorylated androgen receptor to nucleus. Our studies therefore reveal a novel mechanism of Akt activation in prostate cancer and potentially other malignancies.
Collapse
Affiliation(s)
- Likun Li
- Scott Department of Urology, Baylor College of Medicine, 6560 Fannin, Suite 2100, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
2467
|
Haralambieva E, Jones M, Roncador GM, Cerroni L, Lamant L, Ott G, Rosenwald A, Sherman C, Thorner P, Kusec R, Wood KM, Campo E, Falini B, Ramsay A, Marafioti T, Stein H, Kluin PM, Pulford K, Mason DY. Tyrosine phosphorylation in human lymphomas. ACTA ACUST UNITED AC 2003; 34:545-52. [PMID: 14626344 DOI: 10.1023/a:1026032902888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated whether oncogenic tyrosine kinase activation also occurs in other categories of lymphoma by staining 145 cases of lymphoma covering those tumours with a range of different subtypes including those with morphological similarity to ALK-positive anaplastic large cell lymphoma (ALCL). Twelve cases of the borderline malignant disorder lymphomatoid papulosis were also studied. Twenty seven of the 28 cases of ALK-positive ALCL showed the extensive cytoplasmic labelling for phosphotyrosine in the neoplastic cells. The remaining case containing moesin-ALK exhibited membrane-associated phosphotyrosine expression. There was no nuclear phosphotyrosine labelling in any of the ALK-positive ALCL, even though ALK was present within the cell nuclei in 23 of the tumours. Variable degrees of phosphotyrosine labelling, usually membrane-restricted, were observed in 7/40 cases of ALK-negative ALCL, 9/29 cases of diffuse large B-cell lymphoma, 3/6 cases of mediastinal B-cell lymphoma, 2/7 cases of Hodgkin's lymphoma, 3/6 cases of peripheral T-cell lymphomas unspecified, 4/6 cases of B-cell chronic lymphocytic leukaemia, 2/6 cases of follicular lymphomas and 2/12 cases of lymphomatoid papulosis studied. However none of these phosphotyrosine-positive cases showed the strong cytoplasmic labelling comparable to that seen in ALK-positive lymphoma. We conclude that activation of a tyrosine kinase is probably not a major oncogenic event in lymphomas other than ALK-positive ALCL.
Collapse
Affiliation(s)
- E Haralambieva
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2468
|
Inhibition of SRC family kinases and non-classical protein kinases C induce a reeler-like malformation of cortical plate development. J Neurosci 2003. [PMID: 14586026 DOI: 10.1523/jneurosci.23-30-09953.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development, most cortical neurons migrate to the cortical plate (CP) radially. CP development is abnormal in reeler and other mutant mice with defective Reelin signaling. Reelin is secreted by Cajal-Retzius cells and binds to the very low density lipoprotein receptor and apolipoprotein E receptor type 2 receptors on the surface of CP cells, inducing tyrosine phosphorylation of the intracellular Dab1 adapter. As with Reelin receptors, the identification of Reelin signaling partners is hampered by genetic redundancy. Using a new in vitro embryonic slice culture system, we demonstrate that chemical inhibitors of Src family kinases and Abl, but not inhibitors of Abl alone, generate a reeler-like malformation and that inhibitors of protein kinases C induce a malformation of cortical development that is also reminiscent of reeler. Our observations demonstrate a key role for these enzymes in radial migration to the cortical plate, possibly via interference with Reelin signaling.
Collapse
|
2469
|
Boguslawski G, McGlynn PW, Harvey KA, Kovala AT. SU1498, an inhibitor of vascular endothelial growth factor receptor 2, causes accumulation of phosphorylated ERK kinases and inhibits their activity in vivo and in vitro. J Biol Chem 2003; 279:5716-24. [PMID: 14625306 DOI: 10.1074/jbc.m308625200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SU1498, an inhibitor of vascular endothelial growth factor receptor 2, has been used successfully to study the physiological manifestations of receptor functions. Here we report that in addition to its anti-receptor activity, SU1498 stimulates accumulation of phosphorylated ERKs in human umbilical vein endothelial cells and in human aortic endothelial cells in a manner that is dependent on the functioning of the upstream components of the MAPK pathway, B-Raf, and MEK kinases. The enhanced accumulation of phospho-ERKs is observed only in cells that have been stimulated with sphingosine 1-phosphate or protein growth factors; SU1498 by itself is ineffective. We show that the inhibitor acts by blocking the kinase activity of phospho-ERK both in a direct assay and in immunoprecipitates from cells treated with the compound. The data reveal a novel and unique way in which MAPK signaling pathway may be blocked in human endothelial cells.
Collapse
Affiliation(s)
- George Boguslawski
- Methodist Research Institute, Clarian Health Partners, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
2470
|
Feranchak AP, Kilic G, Wojtaszek PA, Qadri I, Fitz JG. Volume-sensitive tyrosine kinases regulate liver cell volume through effects on vesicular trafficking and membrane Na+ permeability. J Biol Chem 2003; 278:44632-44638. [PMID: 12939281 DOI: 10.1074/jbc.m301958200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In liver cells, the influx of Na+ mediated by nonselective cation (NSC) channels in the plasma membrane contributes importantly to regulation of cell volume. Under basal conditions, channels are closed; but both physiologic (e.g. insulin) and pathologic (e.g. oxidative stress) stimuli that are known to stimulate tyrosine kinases are associated with large increases in membrane Na+ permeability to approximately 80 pA/pF or more. Consequently, the purpose of these studies was to evaluate whether volume-sensitive tyrosine kinases mediate cell volume increases through effects on the activity or distribution of NSC channel proteins. In HTC hepatoma cells, decreases in cell volume evoked by hypertonic exposure increased total cellular tyrosine kinase activity approximately 20-fold. Moreover, hypertonic exposure (320-400 mosM) was followed after a delay by NSC channel activation and partial recovery of cell volume toward basal values (regulatory volume increase (RVI)). The tyrosine kinase inhibitors genistein and erbstatin prevented both NSC channel activation and RVI. Similarly, hypertonic exposure resulted in an increase in p60(c-src) activity, and intracellular dialysis with recombinant p60(c-src) led to activation of NSC currents in the absence of an osmolar gradient. Utilizing FM1-43 fluorescence, exposure to hypertonic media caused a rapid increase in the rate of exocytosis of approximately 40% (p < 0.01), and genistein inhibited both exocytosis and channel activation. These findings indicate that volume-sensitive increases in p60(c-src) and/or related tyrosine kinases play a key role in the regulation of membrane Na+ permeability, suggesting that increases in the NSC conductance may be mediated in part through rapid recruitment of a distinct pool of channel-containing vesicles.
Collapse
Affiliation(s)
- Andrew P Feranchak
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
2471
|
Bagrintseva K, Schwab R, Kohl TM, Schnittger S, Eichenlaub S, Ellwart JW, Hiddemann W, Spiekermann K. Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells. Blood 2003; 103:2266-75. [PMID: 14604974 DOI: 10.1182/blood-2003-05-1653] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activating mutations in the juxtamembrane domain (FLT3-length mutations, FLT3-LM) and in the protein tyrosine kinase domain (TKD) of FLT3 (FLT3-TKD) represent the most frequent genetic alterations in acute myeloid leukemia (AML) and define a molecular target for therapeutic interventions by protein tyrosine kinase (PTK) inhibitors. We could show that distinct activating FLT3-TKD mutations at position D835 mediate primary resistance to FLT3 PTK inhibitors in FLT3-transformed cell lines. In the presence of increasing concentrations of the FLT3 PTK inhibitor SU5614, we generated inhibitor resistant Ba/F3 FLT3-internal tandem duplication (ITD) cell lines (Ba/F3 FLT3-ITD-R1-R4) that were characterized by a 7- to 26-fold higher IC50 (concentration that inhibits 50%) to SU5614 compared with the parental ITD cells. The molecular characterization of ITD-R1-4 cells demonstrated that specific TKD mutations (D835N and Y842H) on the ITD background were acquired during selection with SU5614. Introduction of these dual ITD-TKD, but not single D835N or Y842H FLT3 mutants, in Ba/F3 cells restored the FLT3 inhibitor resistant phenotype. Our data show that preexisting or acquired mutations in the PTK domain of FLT3 can induce drug resistance to FLT3 PTK inhibitors in vitro. These findings provide a molecular basis for the evaluation of clinical resistance to FLT3 PTK inhibitors in patients with AML.
Collapse
Affiliation(s)
- Ksenia Bagrintseva
- Department of Medicine III, University Hospital Grosshadern, Luwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2472
|
Abstract
We introduce a versatile fluorescent peptide reporter of protein kinase activity. The probe can be modified to target a desired kinase by changing the kinase recognition motif in the peptide sequence. The reporter motif contains the Sox amino acid, which generates a fluorescence signal when bound to Mg2+ present in the reaction mixture. The phosphorylated peptide exhibits a much greater affinity for Mg2+ than its unphosphorylated analogue and, thus, a greater fluorescence intensity. Product formation during phosphorylation by the kinase is easily followed by the increase in fluorescence intensity over time. These probes exhibit a 3-5-fold increase in fluorescence intensity upon phosphorylation, the magnitude of which depends on the substrate. Peptides containing the reporter functionality are phosphorylated on serine by Protein Kinase C and cAMP-dependent protein kinase and are shown to be good substrates for these enzymes. The principle of this design extends to peptides phosphorylated on threonine and tyrosine.
Collapse
Affiliation(s)
- Melissa D Shults
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
2473
|
Boschelli DH, Ye F, Wu B, Wang YD, Barrios Sosa AC, Yaczko D, Powell D, Golas JM, Lucas J, Boschelli F. Investigation of the effect of varying the 4-anilino and 7-alkoxy groups of 3-quinolinecarbonitriles on the inhibition of Src kinase activity. Bioorg Med Chem Lett 2003; 13:3797-800. [PMID: 14552782 DOI: 10.1016/j.bmcl.2003.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several 7-alkoxy-4-anilino-3-quinolinecarbonitriles were synthesized and evaluated for Src kinase inhibitory activity. Optimal inhibition of both Src enzymatic and cellular activity was seen with analogues having a 2,4-dichloro-5-methoxyaniline group at C-4. Compound 18, which has a 1-methylpiperidinemethoxy group at C-7, showed in vivo activity in a xenograft model.
Collapse
Affiliation(s)
- Diane H Boschelli
- Chemical and Screening Sciences, Wyeth Research, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2474
|
Chatterjee PK, Patel NSA, Kvale EO, Brown PAJ, Stewart KN, Britti D, Cuzzocrea S, Mota-Filipe H, Thiemermann C. The tyrosine kinase inhibitor tyrphostin AG126 reduces renal ischemia/reperfusion injury in the rat. Kidney Int 2003; 64:1605-19. [PMID: 14531792 DOI: 10.1046/j.1523-1755.2003.00254.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We investigate the effects of tyrphostin AG126, an inhibitor of tyrosine kinase activity, on the renal dysfunction and injury caused by ischemia/reperfusion (I/R) of the kidney. METHODS Tyrphostin AG126 (5 mg/kg intraperitoneally) was administered to male Wistar rats 30 minutes prior to bilateral renal ischemia for 45 minutes followed by reperfusion for up to 48 hours. Biochemical markers of renal dysfunction and injury were measured and renal sections assessed for renal injury. Expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and formation of nitrotyrosine and poly (ADP) ribose (PAR) were assessed using immunohistochemistry. Rat proximal tubular cells (PTCs) were incubated with interferon-gamma (100 IU/mL), bacterial lipopolysaccharide (10 microg/mL), and with increasing concentrations of tyrphostin AG126 (0.0001-1 mmol/L) for 24 hours. Nitric oxide production was measured in both plasma from rats subjected to I/R and in incubation medium from PTCs. RESULTS After 6 hours of reperfusion, tyrphostin AG126 significantly reduced the increase in serum and urinary indicators of renal dysfunction and injury caused by I/R and reduced histologic evidence of renal injury. Tyrphostin AG126 also improved renal function (after 24 and 48 hours of reperfusion) and reduced the histologic signs of renal injury (after 48 hours of reperfusion). Tyrphostin AG126 reduced the expression of iNOS and nitric oxide levels in both rat plasma and in PTC cultures, as well as expression of COX-2. Tyrphostin AG126 also reduced nitrotyrosine and PAR formation, suggesting reduction of nitrosative stress and poly (ADP-ribose) polymerase (PARP) activation, respectively. CONCLUSION Taken together, these results show that tyrphostin AG126 significantly reduces the renal dysfunction and injury caused by I/R of the kidney. We propose that inhibition of tyrosine kinase activity may be useful against renal I/R injury.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Department of Experimental Medicine, Nephrology & Critical Care, William Harvey Research Institute, Queen Mary - University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
2475
|
Grey A, Chen Q, Xu X, Callon K, Cornish J. Parallel phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways subserve the mitogenic and antiapoptotic actions of insulin-like growth factor I in osteoblastic cells. Endocrinology 2003; 144:4886-93. [PMID: 12960100 DOI: 10.1210/en.2003-0350] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I is an endocrine and paracrine regulator of skeletal homeostasis, principally by virtue of its anabolic effects on osteoblastic cells. In the current study, we examined the intracellular signaling pathways by which IGF-I promotes proliferation and survival in SaOS-2 human osteoblastic cells. Inhibition of each of the phosphatidylinositol-3 kinase (PI-3 kinase), p42/44 MAPK, and p70s6 kinase pathways partially inhibited the ability of IGF-I to stimulate osteoblast proliferation and survival. Because activation of p70s6 kinase is downstream of both PI-3 kinase and p42/44 MAPK activation in osteoblasts treated with IGF-I, this ribosomal kinase represents a convergence point for IGF-I-induced PI-3 kinase and p42/44 MAPK signaling in osteoblastic cells. In addition, abrogation of PI-3 kinase-dependent Akt signaling, which does not inhibit IGF-I-induced p70s6 kinase phosphorylation, also inhibited the antiapoptotic effects of IGF-I in osteoblasts. Finally, interruption of G beta gamma signaling partially abrogated the ability of IGF-I to promote osteoblast survival, without inhibiting signaling through PI-3 kinase/Akt, p42/44 MAPKs, or p70s6 kinase. These data suggest that IGF-I signals osteoblast mitogenesis and survival through parallel, partly overlapping intracellular pathways involving PI-3 kinase, p42/44 MAPKs, and G beta gamma subunits.
Collapse
Affiliation(s)
- Andrew Grey
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
2476
|
Minami Y, Yamamoto K, Kiyoi H, Ueda R, Saito H, Naoe T. Different antiapoptotic pathways between wild-type and mutated FLT3: insights into therapeutic targets in leukemia. Blood 2003; 102:2969-75. [PMID: 12842996 DOI: 10.1182/blood-2002-12-3813] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An internal tandem duplication (ITD) of the juxtamembrane (JM) domain of FLT3 (FLT3/ITD) has been found in 20% of patients with acute myeloid leukemia (AML) and is correlated with leukocytosis and a poor prognosis. Here, we compared the antiapoptotic effects of wild-type FLT3 (WtFLT3) and FLT3/ITD in terms of the regulation of Bcl-2 family members. In a murine myeloid cell line, 32D, interleukin-3 (IL-3) deprivation induced apoptosis following the down-regulation of Bcl-XL and the dephosphorylation of Bad. However, the expression levels of Bcl-2, Bax, Bak, and Mcl-1 were unchanged. In WtFLT3-transfected 32D (WtFLT3-32D) cells, FLT3 ligand (FL) stimulation did not restore the down-regulation of Bcl-XL but maintained the phosphorylation of Bad. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, and mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, dephosphorylated Bad and induced apoptosis in WtFLT3-32D cells stimulated with FL. Induction of nonphosphorylated Bad induced remarkable apoptosis. These findings suggest that the FL stimulation is associated with antiapoptosis through Bad phosphorylation. On the other hand, FLT3/ITD-transfected 32D (FLT3/ITD-32D) cells survived in an IL-3-or FL-deprived state. Furthermore, the dephosphorylation of Bad using LY294002 and PD98059 was insufficient for apoptosis, and the down-regulation of Bcl-XL using antisense treatment was needed to induce apoptosis. FLT3 kinase inhibitor, AG1296, alone not only dephosphorylated Bad but also down-regulated Bcl-XL, leading FLT3/ITD-32D cells into apoptosis. These findings suggest that the antiapoptotic pathways from FLT3/ITD are more divergent than those from WtFLT3 and may represent targets for drug discovery with the potential of inducing selective cell death of human leukemia cells.
Collapse
Affiliation(s)
- Yosuke Minami
- Department of Hematology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
2477
|
Gherardi E, Youles ME, Miguel RN, Blundell TL, Iamele L, Gough J, Bandyopadhyay A, Hartmann G, Butler PJG. Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A 2003; 100:12039-44. [PMID: 14528000 PMCID: PMC218709 DOI: 10.1073/pnas.2034936100] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2003] [Indexed: 11/18/2022] Open
Abstract
Little is known about the large ectodomain of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor (HGF/SF). Here, we establish by deletion mutagenesis that the HGF/SF and heparin-binding sites of MET are contained within a large N-terminal domain spanning the alpha-chain (amino acids 25-307) and the first 212 amino acids of the beta-chain (amino acids 308-519). Neither the cystine-rich domain (amino acids 520-561) nor the C-terminal half of MET (amino acids 562-932) bind HGF/SF or heparin directly. The MET ectodomain, which behaves as a rod-shaped monomer with a large Stokes radius in solution, binds HGF/SF in the absence or presence of heparin, and forms a stable HGF/SF-heparin-MET complex with 1:1:1 stoichiometry. We also show that the ligand-binding domain adopts a beta-propeller fold, which is similar to the N-terminal domain of alphaV integrin, and that the C-terminal half contains four Ig domains (amino acids 563-654, 657-738, 742-836, and 839-924) of the unusual structural E set, which could be modeled on bacterial enzymes. Our studies provide 3D models and a functional map of the MET ectodomain. They have broad implications for structure-function of the MET receptor and the related semaphorin and plexin proteins.
Collapse
Affiliation(s)
- Ermanno Gherardi
- Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
2478
|
Li G, Kalabis J, Xu X, Meier F, Oka M, Bogenrieder T, Herlyn M. Reciprocal regulation of MelCAM and AKT in human melanoma. Oncogene 2003; 22:6891-9. [PMID: 14534536 DOI: 10.1038/sj.onc.1206819] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alteration in the expression of invasion/metastasis-related melanoma cell adhesion molecule (MelCAM) is strongly associated with the acquisition of malignancy by human melanoma. However, little is known about the molecular and biochemical mechanisms that regulate the expression and function of MelCAM, or its downstream signaling transduction. In this study, we show that there is a reciprocal regulation loop between AKT and MelCAM. Pharmacological inhibition of AKT in human melanoma cell lines substantially reduced the expression of MelCAM. Overexpression of constitutively active AKT upregulated the levels of MelCAM in melanoma cell lines, whereas expression of a dominant-negative PI-3 kinase downregulated MelCAM. On the other hand, overexpression of MelCAM activated endogenous AKT and inhibited proapoptotic protein BAD in melanoma cells, leading to increased survival under stress conditions. Constitutive activation of AKT was observed in most melanoma cell lines and tumor samples of different progression stages. These data link AKT activation with MelCAM expression, and implicate that intervention of MelCAM-AKT signaling axis in melanoma is a potential therapeutical approach.
Collapse
Affiliation(s)
- Gang Li
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
2479
|
Song K, Cornelius SC, Reiss M, Danielpour D. Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2. J Biol Chem 2003; 278:38342-51. [PMID: 12876289 DOI: 10.1074/jbc.m304583200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) and transforming growth factor-beta (TGF-beta) have been shown to be oncogenic and tumor suppressive, respectively, on prostate epithelial cells. Here we show that IGF-I inhibits the ability of TGF-beta to regulate expression of several genes in the non-tumorigenic rat prostatic epithelial line, NRP-152. In these cells, IGF-I also inhibits TGF-beta-induced transcriptional responses, as shown by several promoter reporter constructs, suggesting that IGF-I intercepts an early step in TGF-beta signaling. We show that IGF-I does not down-regulate TGF-beta receptor levels, as determined by both receptor cross-linking and Western blot analyses. However, Western blot analysis reveals that IGF-I selectively inhibits the TGF-beta-triggered activation Smad3 but not Smad2, while not altering expression of total Smads 2, 3, or 4. The phosphatidylinositol 3-kinase (PI3K) inhibitor, LY29004 reverses the ability of IGF-I to inhibit TGF-beta-induced transcriptional responses and the activation of Smad3, suggesting that the suppression of TGF-beta signaling by IGF-I is mediated through activation of PI3K. Moreover, we show that enforced expression of dominant-negative PI3K (DN-p85alpha) or phosphatidylinositol 3-phosphate-phosphatase, PTEN, also reverse the suppressive effect of IGF-I on TGF-beta-induced 3TP-luciferase reporter activity, whereas constitutively active PI3K (p110alphaCAAX) completely blocks TGF-beta-induced 3TP-luciferase reporter activity. Further transfection experiments including expression of constitutively active and dominant-negative Akt and rapamycin treatment suggest that suppression of TGF-beta signaling/Smad3 activation by IGF-I occurs downstream of Akt and through mammalian target of rapamycin activation. In summary, our data suggest that IGF-I inhibits TGF-beta transcriptional responses through selective suppression of Smad3 activation via a PI3K/Akt-dependent pathway.
Collapse
Affiliation(s)
- Kyung Song
- Ireland Cancer Center Research Laboratories and the Department of Pharmacology, Case Western Reserve University/University Hospital of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
2480
|
Herbst R. Targeting the epidermal growth factor receptor: prognostic and clinical implications. EJC Suppl 2003. [DOI: 10.1016/s1359-6349(03)80015-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
2481
|
Abstract
STI-571 (imatinib, Gleevec, Glivec, CGP 57148) is an inhibitor of the Abl group of protein-tyrosine kinases. One of these enzymes, the Bcr-Abl oncoprotein, results from the fusion of the BCR and ABL genes that result from the reciprocal chromosomal translocation that forms the Philadelphia chromosome. The Philadelphia chromosome occurs in 95% of people with chronic myeloid leukemia. ABL is the cellular homologue of the oncogene found in murine Abelson leukemia virus, and BCR refers to breakpoint cluster region. The Bcr-Abl oncoprotein exhibits elevated protein-tyrosine kinase activity, which is strongly implicated in the mechanism of development of chronic myeloid leukemia. STI-571 is effective in the treatment of the stable phase of chronic myeloid leukemia. The c-Abl protein kinase domain exists in an active and inactive conformation. STI-571 binds only to the inactive state of the enzyme as shown by X-ray crystallography. The drug binds to a portion of the ATP-binding site and extends from there into adjacent hydrophobic regions. STI-571 is a competitive inhibitor of Abl kinase with respect to ATP. Resistance to STI-571 is often the result of mutations in residues of the Bcr-Abl kinase that ordinarily bind to the drug. Inhibition of target protein kinases represents an emerging therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Robert Roskoski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA 70119, USA.
| |
Collapse
|
2482
|
Abstract
Primordial germ cells (PGCs), the embryonic precursors of the gametes of the adult animal, can give rise to two types of pluripotent stem cells. In vivo, PGCs can give rise to embryonal carcinoma cells, the pluripotent stem cells of testicular tumors. Cultured PGCs exposed to a specific cocktail of growth factors give rise to embryonic germ cells, pluripotent stem cells that can contribute to all the lineages of chimeric embryos including the germline. The conversion of PGCs into pluripotent stem cells is a remarkably similar process to nuclear reprogramming in which a somatic nucleus is reprogrammed in the egg cytoplasm. Understanding the genetics of embryonal carcinoma cell formation and the growth factor signaling pathways controlling embryonic germ cell derivation could tell us much about the molecular controls on developmental potency in mammals.
Collapse
Affiliation(s)
- Peter J Donovan
- Kimmel Cancer Center, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
2483
|
Gao N, Zhang Z, Jiang BH, Shi X. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 2003; 310:1124-32. [PMID: 14559232 DOI: 10.1016/j.bbrc.2003.09.132] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.
Collapse
Affiliation(s)
- Ning Gao
- Institute for Nutritional Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | | | | | | |
Collapse
|
2484
|
Krueger NX, Reddy RS, Johnson K, Bateman J, Kaufmann N, Scalice D, Van Vactor D, Saito H. Functions of the ectodomain and cytoplasmic tyrosine phosphatase domains of receptor protein tyrosine phosphatase Dlar in vivo. Mol Cell Biol 2003; 23:6909-21. [PMID: 12972609 PMCID: PMC193937 DOI: 10.1128/mcb.23.19.6909-6921.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor protein tyrosine phosphatase (PTPase) Dlar has an ectodomain consisting of three immunoglobulin (Ig)-like domains and nine fibronectin type III (FnIII) repeats and a cytoplasmic domain consisting of two PTPase domains, membrane-proximal PTP-D1 and C-terminal PTP-D2. A series of mutant Dlar transgenes were introduced into the Drosophila genome via P-element transformation and were then assayed for their capacity to rescue phenotypes caused by homozygous loss-of-function genotypes. The Ig-like domains, but not the FnIII domains, are essential for survival. Conversely, the FnIII domains, but not the Ig-like domains, are required during oogenesis, suggesting that different domains of the Dlar ectodomain are involved in distinct functions during Drosophila development. All detectable PTPase activity maps to PTP-D1 in vitro. The catalytically inactive mutants of Dlar were able to rescue Dlar(-/-) lethality nearly as efficiently as wild-type Dlar transgenes, while this ability was impaired in the PTP-D2 deletion mutants DlarDeltaPTP-D2 and Dlar(bypass). Dlar-C1929S, in which PTP-D2 has been inactivated, increases the frequency of bypass phenotype observed in Dlar(-/-) genotypes, but only if PTP-D1 is catalytically active in the transgene. These results indicate multiple roles for PTP-D2, perhaps by acting as a docking domain for downstream elements and as a regulator of PTP-D1.
Collapse
Affiliation(s)
- Neil X Krueger
- Dana-Farber Cancer Institute/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
2485
|
Comoglio PM, Boccaccio C, Trusolino L. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr Opin Cell Biol 2003; 15:565-71. [PMID: 14519391 DOI: 10.1016/s0955-0674(03)00096-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adhesion molecules, although catalytically inactive, are able to translate environmental cues into complex intracellular signals. They can do this by associating with tyrosine kinase receptors for growth factors, which can prime, integrate or feedback adhesion-based signals. Recent results show that reciprocal crosstalk between the two systems is only one facet of such a collaboration, and that unconventional and alternative hierarchies can be established in which, on the one hand, cell adhesion can trigger ligand-independent activation of growth factor receptors, and, on the other, growth factors can induce adhesion molecules to propagate adhesion-independent signals.
Collapse
Affiliation(s)
- Paolo M Comoglio
- Institute for Cancer Research and Treatment, University of Torino School of Medicine, Strada Provinciale 142, 10060 Candiolo (Torino), Italy.
| | | | | |
Collapse
|
2486
|
Howard PL, Chia MC, Del Rizzo S, Liu FF, Pawson T. Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins. Proc Natl Acad Sci U S A 2003; 100:11267-72. [PMID: 13679576 PMCID: PMC208746 DOI: 10.1073/pnas.1934711100] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Indexed: 11/18/2022] Open
Abstract
Signal transduction pathways are typically controlled by protein-protein interactions, which are mediated by specific modular domains. One hypothetical use of such interaction domains is to generate new signaling pathways and networks during eukaryotic evolution, through the joining of distinct binding modules in novel combinations. In this manner, new polypeptides may be formed that make innovative connections among preexisting proteins. Adaptor proteins are specialized signaling molecules composed exclusively of interaction domains, that frequently link activated cell surface receptors to their intracellular targets. Receptor tyrosine kinases (RTKs) recruit adaptors, such as Grb2 and ShcA, that activate signaling pathways involved in growth and survival, whereas death receptors bind adaptors, such as Fadd, that promote apoptosis. To test the ability of interaction domains to create new signaling pathways, we have fused the phosphotyrosine recognition domains of Grb2 (Scr homology 2 domain) or ShcA (phosphotyrosine-binding domain) to the death effector domain of Fadd. We find that these chimeric adaptors can reroute mitogenic or transforming RTK signals to induce caspase activation and cell death. These hybrid adaptors can be used to selectively kill oncogenic cells in which RTK activity is deregulated.
Collapse
Affiliation(s)
- Perry L Howard
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | | | | | | | | |
Collapse
|
2487
|
Sharma A, Antoku S, Fujiwara K, Mayer BJ. Functional interaction trap: a strategy for validating the functional consequences of tyrosine phosphorylation of specific substrates in vivo. Mol Cell Proteomics 2003; 2:1217-24. [PMID: 14519720 DOI: 10.1074/mcp.m300078-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphorylation controls diverse signaling pathways, and disregulated tyrosine kinase activity plays a direct role in human diseases such as cancer. Because activated kinases exert their effects by phosphorylating multiple substrate proteins, it is difficult or impossible to assess experimentally the contribution of a particular substrate to a cellular response or activity. To overcome this problem, we have developed a novel approach termed the "functional interaction trap," in which two proteins are induced to interact in a pairwise fashion through an engineered, highly specific binding interface. We show that the functional interaction trap can be used to direct a modified tyrosine kinase to specifically phosphorylate a single substrate of choice in vivo, permitting analysis of the resulting biological output. This strategy provides a powerful tool for validating the functional significance of tyrosine phosphorylation and other post-translational modifications identified by proteomic discovery efforts.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA
| | | | | | | |
Collapse
|
2488
|
Nicolaï M, Lasbleiz C, Dura JM. Gain-of-function screen identifies a role of theSrc64oncogene inDrosophilamushroom body development. ACTA ACUST UNITED AC 2003; 57:291-302. [PMID: 14608664 DOI: 10.1002/neu.10277] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mushroom bodies (MB) are substructures in the Drosophila brain that are essential for memory. At present, MB anatomy is rather well described when compared to other brain areas, and elucidation of the genetic control of the development and projection patterns of MB neurons will be important to the understanding of their functions. We have performed a gain-of-function screen in order to identify genes that are involved in MB development. We drove expression of genes in MB neurons by crossing 2407 GAL4-driven UY element lines to lines containing an MB GAL4 source and UAS-GFP elements, and looked for defects in the MB structure. We have molecularly identified the genomic regions adjacent to the 26 positive UY insertions and found 18 potential genes that exhibit adult MB gain-of-function phenotypes. The proteins encoded by these candidate genes include, as well as genes with yet unknown function, transcription factors (e.g., tramtrack), nanos RNA-binding protein, microtubule-severing protein, vesicle trafficking proteins, axon guidance receptor, and the Src64 cytoplasmic protein tyrosine kinase. These genes are involved in key features of neuron cell biology. In three cases, tramtrack, nanos, and Src64, we show that the open reading frame located directly downstream of the UY P element is indeed the expressed target gene. Loss-of-function mutations of both ttk and Src64 lead to MB phenotypes proving that these genes are involved in the genetic control of MB development. Moreover, Src64 is shown here to act in a cell-autonomous fashion and is likely to interact with the previously-identified linotte/derailed receptor tyrosine kinase in MB development.
Collapse
Affiliation(s)
- Maryse Nicolaï
- Institut de Génétique Humaine, CNRS UPR1142, 141, rue de la cardonille, 34396 Montpellier Cedex, France
| | | | | |
Collapse
|
2489
|
Appel S, Boehmler AM, Grünebach F, Müller MR, Rupf A, Weck MM, Hartmann U, Reichardt VL, Kanz L, Brümmendorf TH, Brossart P. Imatinib mesylate affects the development and function of dendritic cells generated from CD34+ peripheral blood progenitor cells. Blood 2003; 103:538-44. [PMID: 14504105 DOI: 10.1182/blood-2003-03-0975] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Imatinib mesylate (STI571) is a competitive Bcr-Abl tyrosine kinase inhibitor and has yielded encouraging results in treatment of chronic myelogenous leukemia (CML) and gastrointestinal stroma tumors (GISTs). Apart from inhibition of the Abl protein tyrosine kinases, it also shows activity against platelet-derived growth factor receptor (PDGF-R), c-Kit, Abl-related gene (ARG), and their fusion proteins while sparing other kinases. In vitro studies have revealed that imatinib mesylate can inhibit growth of cell lines and primitive malignant progenitor cells in CML expressing Bcr-Abl. However, little is known about the effects of imatinib mesylate on nonmalignant hematopoietic cells. In the current study we demonstrate that in vitro exposure of mobilized human CD34+ progenitors to therapeutic concentrations of imatinib mesylate (1-5 microM) inhibits their differentiation into dendritic cells (DCs). DCs obtained after 10 to 16 days of culture in the presence of imatinib mesylate showed concentration-dependent reduced expression levels of CD1a and costimulatory molecules such as CD80 and CD40. Furthermore, exposure to imatinib mesylate inhibited the induction of primary cytotoxic T-lymphocyte (CTL) responses. The inhibitory effects of imatinib mesylate were accompanied by down-regulation of nuclear localized RelB protein. Our results demonstrate that imatinib mesylate can act on normal hematopoietic cells and inhibits the differentiation and function of DCs, which is in part mediated via the nuclear factor kappaB signal transduction pathway.
Collapse
Affiliation(s)
- Silke Appel
- University of Tübingen, Department of Hematology, Oncology and Immunology, Otfried-Müller Str 10, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2490
|
Bièche I, Onody P, Tozlu S, Driouch K, Vidaud M, Lidereau R. Prognostic value of ERBB family mRNA expression in breast carcinomas. Int J Cancer 2003; 106:758-65. [PMID: 12866037 DOI: 10.1002/ijc.11273] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ErbB-driven autocrine growth pathway has been implicated in the development and progression of most common human epithelial malignancies; its blockade is therefore a promising therapeutic strategy, and several candidate drugs are currently undergoing clinical trials. Paradoxically, little is known of the expression pattern of these 4 genes in human tumors, and the clinical significance of the 2 most recently discovered ERBB genes, ERBB3 and ERBB4, is unclear. We used a real-time quantitative RT-PCR assay to quantify ERBB family mRNA copy numbers in a large series of breast tumors from patients with known long-term outcome. ERBB gene expression varied widely, by more than 2 orders of magnitude for ERBB1 and ERBB3, more than 3 orders for ERBB2 and more than 4 orders for ERBB4. We found a positive correlation between ERBB3 and ERBB4 mRNA levels, and a negative correlation between the expression of these 2 latter genes and that of ERBB1. Compared to normal breast tissue, ERBB1 was underexpressed (82.3% of tumors), ERBB2 (16.9%) and ERBB3 (46.2%) were overexpressed and ERBB4 was both underexpressed (24.6%) and overexpressed (29.2%). Links were also found between ERBB status on the one hand and Scarff-Bloom-Richardson (SBR) histopathological grade and estrogen receptor alpha (ERa) status on the other hand. Relapse-free survival (RFS) was shorter among patients with ERBB3-overexpressing tumors (p=0.0092) and longer among those with ERBB4-underexpressing tumors (p=0.0085) relative to patients with normal expression of the respective genes; in contrast, RFS was not significantly influenced by ERBB1 or ERBB2 mRNA status. Only ERBB4 status retained prognostic significance in Cox multivariate regression analysis (p=0.015). Our results point to the involvement of several ErbB-specific ligands (amphiregulin and neuregulin 1) and enzymes or adaptor molecules (PI3K, Src, Shc and Grb7) in the ErbB pathway dysregulation associated with breast cancer. These findings reveal a complex expression pattern of ERBB gene family members in breast tumors and suggest that it is this pattern of expression, rather than the expression of individual family members, that should be taken into account when evaluating antitumoral drugs designed to target these receptors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- DNA Primers/chemistry
- ErbB Receptors/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Neoplasm Staging
- Neuregulin-1/genetics
- Neuregulin-1/metabolism
- Prognosis
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-3/genetics
- Receptor, ErbB-4
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Survival Rate
Collapse
Affiliation(s)
- Ivan Bièche
- Laboratoire d'Oncogénétique - INSERM E0017, Centre René Huguenin, St-Cloud, France.
| | | | | | | | | | | |
Collapse
|
2491
|
Abstract
With the many protein sequences coming from the genome sequencing projects, it is unlikely that we will ever have an atomic resolution structure of every relevant protein. With high throughput crystallography, however, we will soon have representative structures for the vast majority of protein families. Thus the drug discovery and design process will rely heavily on protein modeling to address issues such as designing combinatorial libraries for an entire class of targets and engineering genome-wide selectivity over a target class. In this study we assess the value of high throughput docking into homology models. To do this we dock a database of random compounds seeded with known inhibitors into homology models of six different kinases. In five of the six cases the known inhibitors were found to be enriched by factors of 4-5 in the top 5% of the overall scored and ranked compounds. Furthermore, in the same five cases the known inhibitors were found to be enriched by factors of 2-3 in the top 5% of the scored and ranked known kinase inhibitors, thus showing that the homology models can pick up some of the crucial selectivity information.
Collapse
Affiliation(s)
- David J Diller
- Pharmacopeia, Inc., CN5350, Princeton, New Jersey 08543-5350, USA.
| | | |
Collapse
|
2492
|
Tang J, Shewchuk LM, Sato H, Hasegawa M, Washio Y, Nishigaki N. Anilinopyrazole as selective CDK2 inhibitors: design, synthesis, biological evaluation, and X-ray crystallographic analysis. Bioorg Med Chem Lett 2003; 13:2985-8. [PMID: 12941317 DOI: 10.1016/s0960-894x(03)00630-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel series of anilinopyrazoles has been designed based on the X-ray crystal structure analysis. Most compounds from this series not only show sub-nanomolar IC(50) values for CDK2, but also demonstrate almost 1000-fold selectivity to other kinases including CDK1.
Collapse
Affiliation(s)
- Jun Tang
- GlaxoSmithKline K. K. Tsukuba Research Laboratories, 43 Wadai Tsukuba, Ibaraki 300-4247, Japan.
| | | | | | | | | | | |
Collapse
|
2493
|
Boschelli DH, Powell D, Golas JM, Boschelli F. Inhibition of Src kinase activity by 4-anilino-5,10-dihydro-pyrimido[4,5-b]quinolines. Bioorg Med Chem Lett 2003; 13:2977-80. [PMID: 12941315 DOI: 10.1016/s0960-894x(03)00628-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
4-(2,4-Dichloro-5-methoxy)anilino-5,10-dihydropyrimido[4,5-b]quinolines are potent inhibitors of Src kinase and Src cellular activity while having no effect on Fyn cellular activity. The corresponding 4-(2,4-dichloro-5-methoxy)anilino-pyrimido[4,5-b]quinolines are much less effective Src inhibitors.
Collapse
Affiliation(s)
- Diane H Boschelli
- Chemical and Screening Sciences, Wyeth Research, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | |
Collapse
|
2494
|
Khadikar PV, Shrivastava A, Agrawal VK, Srivastava S. Topological designing of 4-piperazinylquinazolines as antagonists of PDGFR tyrosine kinase family. Bioorg Med Chem Lett 2003; 13:3009-14. [PMID: 12941323 DOI: 10.1016/s0960-894x(03)00636-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Topological designing of a series of 4-piperazinylquinazolines as antagonists of platelet-derived growth factor receptor (PDGFR) tyrosine kinase family has been reported using a series of distance-based topological indices. Regression analysis of the data, using maximum R(2) method indicated that inhibitory activity, pIC(50) (microm), in cellular PGDFR phosphorylation assay can be modelled excellently in multi-parametric model. The results are discussed critically using cross-validated parameters.
Collapse
Affiliation(s)
- Padmakar V Khadikar
- Research Division, Laxmi Fumigation and Pest Control Pvt. Ltd., 3 Khatipura, Indore-452 007, India.
| | | | | | | |
Collapse
|
2495
|
Gianní M, Tarrade A, Nigro EA, Garattini E, Rochette-Egly C. The AF-1 and AF-2 domains of RAR gamma 2 and RXR alpha cooperate for triggering the transactivation and the degradation of RAR gamma 2/RXR alpha heterodimers. J Biol Chem 2003; 278:34458-66. [PMID: 12824162 DOI: 10.1074/jbc.m304952200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, liganded RAR gamma 2/RXR alpha heterodimers activate the transcription of retinoic acid (RA) target genes and then are degraded through the ubiquitin-proteasome pathway. In this study, we dissected the role of the RAR gamma 2 and RXR alpha partners as well as of their respective AF-1 and AF-2 domains in the processes of transactivation and degradation. RAR gamma 2 is the "engine" initiating transcription and its own degradation subsequent to ligand binding. Integrity of its AF-2 domain and phosphorylation of its AF-1 domain are required for both the degradation and the transactivation of the receptor. Deletion of the whole AF-1 domain does not impair these processes but shifts the receptor toward other proteolytic pathways through RXR alpha. In contrast, RXR alpha plays only a modulatory role, cooperating with RAR gamma 2 through its AF-2 domain and its phosphorylated AF-1 domain in both the transcription activity and the degradation of the RAR gamma 2/RXR alpha heterodimers. Our results underline that the AF-1 and AF-2 domains of each heterodimer partner cooperate with one other and that this cooperation is relevant for both the transcription and degradation processes.
Collapse
Affiliation(s)
- Maurizio Gianní
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) CNRS INSERM ULP, UMR 7104, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
2496
|
Kogata N, Masuda M, Kamioka Y, Yamagishi A, Endo A, Okada M, Mochizuki N. Identification of Fer tyrosine kinase localized on microtubules as a platelet endothelial cell adhesion molecule-1 phosphorylating kinase in vascular endothelial cells. Mol Biol Cell 2003; 14:3553-64. [PMID: 12972546 PMCID: PMC196549 DOI: 10.1091/mbc.e03-02-0080] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Platelet endothelial adhesion molecule-1 (PECAM-1) is a part of intercellular junctions and triggers intracellular signaling cascades upon homophilic binding. The intracellular domain of PECAM-1 is tyrosine phosphorylated upon homophilic engagement. However, it remains unclear which tyrosine kinase phosphorylates PECAM-1. We sought to isolate tyrosine kinases responsible for PECAM-1 phosphorylation and identified Fer as a candidate, based on expression cloning. Fer kinase specifically phosphorylated PECAM-1 at the immunoreceptor tyrosine-based inhibitory motif. Notably, Fer induced tyrosine phosphorylation of SHP-2, which is known to bind to the immunoreceptor tyrosine-based inhibitory motif of PECAM-1, and Fer also induced tyrosine phosphorylation of Gab1 (Grb2-associated binder-1). Engagement-dependent PECAM-1 phosphorylation was inhibited by the overexpression of a kinase-inactive mutant of Fer, suggesting that Fer is responsible for the tyrosine phosphorylation upon PECAM-1 engagement. Furthermore, by using green fluorescent protein-tagged Fer and a time-lapse fluorescent microscope, we found that Fer localized at microtubules in polarized and motile vascular endothelial cells. Fer was dynamically associated with growing microtubules in the direction of cell-cell contacts, where p120catenin, which is known to associate with Fer, colocalized with PECAM-1. These results suggest that Fer localized on microtubules may play an important role in phosphorylation of PECAM-1, possibly through its association with p120catenin at nascent cell-cell contacts.
Collapse
Affiliation(s)
- Naoko Kogata
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | |
Collapse
|
2497
|
Abstract
Cdc42 is a Ras-related protein that has been implicated in the control of normal cell growth, and when improperly regulated, in cellular transformation and invasiveness. A variety of extracellular stimuli, including epidermal growth factor (EGF), activate Cdc42. Here, we show that activation of Cdc42 protects the EGF receptor from the negative regulatory activity of the c-Cbl ubiquitin ligase. Activated Cdc42 binds to p85Cool-1 (for cloned-out-of-library)/beta-Pix (for Pak-interactive exchange factor), a protein that directly associates with c-Cbl. This inhibits the binding of Cbl by the EGF receptor and thus prevents Cbl from catalyzing receptor ubiquitination. The role played by Cdc42 in regulating the timing of EGF receptor-Cbl interactions is underscored by the fact that constitutively active Cdc42(F28L), by persistently blocking the binding of Cbl to these receptors, leads to their aberrant accumulation and sustained EGF-stimulated ERK activation, thus resulting in cellular transformation.
Collapse
Affiliation(s)
- Wen Jin Wu
- Department of Molecular Medicine, Veterinary Medical Center, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
2498
|
Abstract
FMS-like tyrosine kinase-3 (FLT3), a receptor tyrosine kinase, is important for the development of the hematopoietic and immune systems. Activating mutations of FLT3 are now recognized as the most common molecular abnormality in acute myeloid leukemia, and FLT3 mutations may play a role in other hematologic malignancies as well. The poor prognosis of patients harboring these mutations renders FLT3 an obvious target of therapy. This review summarizes the data on the molecular biology and clinical impact of FLT3 mutations, as well as the therapeutic potential of several small-molecule FLT3 inhibitors currently in development.
Collapse
Affiliation(s)
- M Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
2499
|
Affiliation(s)
- Kun Ping Lu
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2500
|
Yang ZZ, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, Hemmings BA. Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem 2003; 278:32124-31. [PMID: 12783884 DOI: 10.1074/jbc.m302847200] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase B alpha (PKB alpha/Akt1) is implicated in the regulation of metabolism, transcription, cell survival, angiogenesis, cell migration, growth, and tumorigenesis. Previously, it was reported that PKB alpha-deficient mice are small with increased neonatal mortality (Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F., and Birnbaum, M. J. (2001) J. Biol. Chem. 276, 38349-38352 and Chen, W. S., Xu, P. Z., Gottlob, K., Chen, M. L., Sokol, K., Shiyanova, T., Roninson, I., Wenig, W., Suzuki, R., Tobe, K., Kadowaki, T., and Hay, N. (2001) Genes Dev. 15, 2203-2208). Here we show that PKB alpha is widely expressed in placenta including all types of trophoblast and vascular endothelial cells. Pkb alpha-/- placentae display significant hypotrophy, with marked reduction of the decidual basalis and nearly complete loss of glycogen-containing cells in the spongiotrophoblast, and exhibit decreased vascularization. Pkb alpha-/- placentae also show significant reduction of phosphorylation of PKB and endothelial nitric-oxide synthase. These defects may cause placental insufficiency, fetal growth impairment, and neonatal mortality. These data represent the first evidence for the role of PKB alpha and endothelial nitricoxide synthase in regulating placental development and provide an animal model for intrauterine growth retardation.
Collapse
Affiliation(s)
- Zhong-Zhou Yang
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|