2501
|
Suárez-Cortés P, Sharma V, Bertuccini L, Costa G, Bannerman NL, Sannella AR, Williamson K, Klemba M, Levashina EA, Lasonder E, Alano P. Comparative Proteomics and Functional Analysis Reveal a Role of Plasmodium falciparum Osmiophilic Bodies in Malaria Parasite Transmission. Mol Cell Proteomics 2016; 15:3243-3255. [PMID: 27432909 DOI: 10.1074/mcp.m116.060681] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/06/2022] Open
Abstract
An essential step in the transmission of the malaria parasite to the Anopheles vector is the transformation of the mature gametocytes into gametes in the mosquito gut, where they egress from the erythrocytes and mate to produce a zygote, which matures into a motile ookinete. Osmiophilic bodies are electron dense secretory organelles of the female gametocytes which discharge their contents during gamete formation, suggestive of a role in gamete egress. Only one protein with no functional annotation, Pfg377, is described to specifically reside in osmiophilic bodies in Plasmodium falciparum Importantly, Pfg377 defective gametocytes lack osmiophilic bodies and fail to infect mosquitoes, as confirmed here with newly produced pfg377 disrupted parasites. The unique feature of Pfg377 defective gametocytes of lacking osmiophilic bodies was here exploited to perform comparative, label free, global and affinity proteomics analyses of mutant and wild type gametocytes to identify components of these organelles. Subcellular localization studies with fluorescent reporter gene fusions and specific antibodies revealed an osmiophilic body localization for four out of five candidate gene products analyzed: the proteases PfSUB2 (subtilisin 2) and PfDPAP2 (Dipeptidyl aminopeptidase 2), the ortholog of the osmiophilic body component of the rodent malaria gametocytes PbGEST and a previously nonannotated 13 kDa protein. These results establish that osmiophilic bodies and their components are dispensable or marginally contribute (PfDPAP2) to gamete egress. Instead, this work reveals a previously unsuspected role of these organelles in P. falciparum development in the mosquito vector.
Collapse
Affiliation(s)
- Pablo Suárez-Cortés
- From the ‡Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Roma, Italy
| | - Vikram Sharma
- §School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth, Devon, UK
| | - Lucia Bertuccini
- ¶Dipartimento Tecnologie e Salute, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Roma, Italy
| | - Giulia Costa
- ‖Department of Vector Biology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Naa-Lamiley Bannerman
- §School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth, Devon, UK
| | - Anna Rosa Sannella
- From the ‡Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Roma, Italy
| | - Kim Williamson
- **Department of Biology, Loyola University, 1032 West Sheridan Road, Chicago, Illinois 60660
| | - Michael Klemba
- ‡‡Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Elena A Levashina
- ‖Department of Vector Biology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Edwin Lasonder
- §School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth, Devon, UK
| | - Pietro Alano
- From the ‡Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Roma, Italy;
| |
Collapse
|
2502
|
Quantitative proteomics identifies myoferlin as a novel regulator of A Disintegrin and Metalloproteinase 12 in HeLa cells. J Proteomics 2016; 148:94-104. [PMID: 27432471 DOI: 10.1016/j.jprot.2016.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED A Disintegrin and Metalloproteinase 12 (ADAM12) is expressed significantly higher in multiple tumors than in normal tissues and has been used as a prognostic marker for the evaluation of cancer progression. Although several ADAM12 substrates have been identified biochemically and its proteolytic function has been explored, the upstream regulators and the interacting proteins have not been systematically investigated. Here, we use immunoprecipitation and mass spectrometry (MS)-based quantitative proteomic approaches to identify 28 interacting partners for the long form of ADAM12 (ADAM12-L) in HeLa cells. Proteins that regulate cell proliferation, invasion, and epithelial to mesenchymal transition are among the identified ADAM12-interacting proteins. Further biochemical experiments discover that the protein level and the stability of ADAM12 are upregulated by one of its interacting proteins, myoferlin. In addition, myoferlin also increases the proteolytic activity of ADAM12, leading to the reduction of an ADAM12 substrate, E-cadherin. This result implies that ADAM12 and its interacting proteins might converge to certain signaling pathways in the regulation of cancer cell progression. The information obtained here might be useful in the development of new strategies for modulating cell proliferation and invasion involved in the regulation between ADAM12 and its interacting partners. MS data are available via ProteomeXchange with identifier PXD003560. BIOLOGICAL SIGNIFICANCE Regulation of the proliferation and invasion of cancer cells is important in cancer treatment. ADAM12 has been found to play important roles in regulating these processes and identification of its interacting partners will improve our understanding of its biological functions and provide basis for functional modulation. Through mass spectrometry-based quantitative proteomic approaches, we identify the interacting partners for ADAM12 in a human cancer cell line and find many proteins that are involved in the proliferation and invasion of cancer cells. A novel regulator, myoferlin, of ADAM12 is discovered and this protein increases ADAM12 expression level, stability, and its enzymatic activity, leading to the reduction of its substrate, E-cadherin, which plays important roles in the regulation of cell adhesion and tumor metastasis. This result provides a connection for two highly expressed proteins in cancer cells and may shed light on the regulation of their biological functions in cancer progression.
Collapse
|
2503
|
Kachuk C, Faulkner M, Liu F, Doucette AA. Automated SDS Depletion for Mass Spectrometry of Intact Membrane Proteins though Transmembrane Electrophoresis. J Proteome Res 2016; 15:2634-42. [DOI: 10.1021/acs.jproteome.6b00199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Carolyn Kachuk
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melissa Faulkner
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Fang Liu
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alan A. Doucette
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
2504
|
Shraibman B, Kadosh DM, Barnea E, Admon A. Human Leukocyte Antigen (HLA) Peptides Derived from Tumor Antigens Induced by Inhibition of DNA Methylation for Development of Drug-facilitated Immunotherapy. Mol Cell Proteomics 2016; 15:3058-70. [PMID: 27412690 DOI: 10.1074/mcp.m116.060350] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 11/06/2022] Open
Abstract
Treatment of cancer cells with anticancer drugs often fails to achieve complete remission. Yet, such drug treatments may induce alteration in the tumor's gene expression patterns, including those of Cancer/Testis Antigens (CTA). The degradation products of such antigens can be presented as HLA peptides on the surface of the tumor cells and be developed into anticancer immunotherapeutics. For example, the DNA methyl transferase inhibitor, 5-aza-2'-deoxycytidine (Decitabine) has limited antitumor efficacy, yet it induces the expression of many genes, including CTAs that are normally silenced in the healthy adult tissues. In this study, the presentation of many new HLA peptides derived from CTAs and induced by Decitabine was demonstrated in three human Glioblastoma cell lines. Such presentation of CTA-derived HLA peptides can be exploited for development of new treatment modalities, combining drug treatment with anti-CTA targeted immunotherapy. The Decitabine-induced HLA peptidomes include many CTAs that are not normally detected in healthy tissues or in cancer cells, unless treated with the drug. In addition, the study included large-scale analyses of the simultaneous effects of Decitabine on the transcriptomes, proteomes and HLA peptidomes of the human Glioblastoma cells. It demonstrates the poor correlations between these three levels of gene expression, both in their total levels and in their response to the drug. The proteomics and HLA peptidomics data are available via ProteomeXchange with identifier PXD003790 and the transcriptomics data are available via GEO with identifier GSE80137.
Collapse
Affiliation(s)
- Bracha Shraibman
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Eilon Barnea
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2505
|
Proteome Remodeling in Response to Sulfur Limitation in " Candidatus Pelagibacter ubique". mSystems 2016; 1:mSystems00068-16. [PMID: 27822545 PMCID: PMC5069961 DOI: 10.1128/msystems.00068-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022] Open
Abstract
The alphaproteobacterium "Candidatus Pelagibacter ubique" strain HTCC1062 and most other members of the SAR11 clade lack genes for assimilatory sulfate reduction, making them dependent on organosulfur compounds that occur naturally in seawater. To investigate how these cells adapt to sulfur limitation, batch cultures were grown in defined medium containing either limiting or nonlimiting amounts of dimethylsulfoniopropionate (DMSP) as the sole sulfur source. Protein and mRNA expression were measured before, during, and after the transition from exponential growth to stationary phase. Two distinct responses were observed, one as DMSP became exhausted and another as the cells acclimated to a sulfur-limited environment. The first response was characterized by increased transcription and translation of all "Ca. Pelagibacter ubique" genes downstream from the previously confirmed S-adenosyl methionine (SAM) riboswitches bhmT, mmuM, and metY. The proteins encoded by these genes were up to 33 times more abundant as DMSP became limiting. Their predicted function is to shunt all available sulfur to methionine. The secondary response, observed during sulfur-limited stationary phase, was a 6- to 10-fold increase in the transcription of the heme c shuttle-encoding gene ccmC and two small genes of unknown function (SAR11_1163 and SAR11_1164). This bacterium's strategy for coping with sulfur stress appears to be intracellular redistribution to support methionine biosynthesis rather than increasing organosulfur import. Many of the genes and SAM riboswitches involved in this response are located in a hypervariable genome region (HVR). One of these HVR genes, ordL, is located downstream from a conserved motif that evidence suggests is a novel riboswitch. IMPORTANCE "Ca. Pelagibacter ubique" is a key driver of marine biogeochemistry cycles and a model for understanding how minimal genomes evolved in free-living anucleate organisms. This study explores the unusual sulfur acquisition strategy that has evolved in these cells, which lack assimilatory sulfate reduction and instead rely on reduced sulfur compounds found in oxic marine environments to meet their cellular quotas. Our findings demonstrate that the sulfur acquisition systems are constitutively expressed but the enzymatic steps leading to the essential sulfur-containing amino acid methionine are regulated by a unique array of riboswitches and genes, many of which are encoded in a rapidly evolving genome region. These findings support mounting evidence that streamlined cells have evolved regulatory mechanisms that minimize transcriptional switching and, unexpectedly, localize essential sulfur acquisition genes in a genome region normally associated with adaption to environmental variation.
Collapse
|
2506
|
Picariello G, Addeo F, Ferranti P, Nocerino R, Paparo L, Passariello A, Dallas DC, Robinson RC, Barile D, Canani RB. Antibody-independent identification of bovine milk-derived peptides in breast-milk. Food Funct 2016; 7:3402-9. [PMID: 27396729 DOI: 10.1039/c6fo00731g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exclusively breast-fed infants can exhibit clear signs of IgE or non IgE-mediated cow's milk allergy. However, the definite characterization of dietary cow's milk proteins (CMP) that survive the maternal digestive tract to be absorbed into the bloodstream and secreted into breast milk remains missing. Herein, we aimed at assessing possible CMP-derived peptides in breast milk. Using high performance liquid chromatography (HPLC)-high resolution mass spectrometry (MS), we compared the peptide fraction of breast milk from 12 donors, among which 6 drank a cup of milk daily and 6 were on a strict dairy-free diet. We identified two bovine β-lactoglobulin (β-Lg, 2 out 6 samples) and one αs1-casein (1 out 6 samples) fragments in breast milk from mothers receiving a cup of bovine milk daily. These CMP-derived fragments, namely β-Lg (f42-54), (f42-57) and αs1-casein (f180-197), were absent in milk from mothers on dairy-free diet. In contrast, neither intact nor hydrolyzed β-Lg was detected by western blot and competitive ELISA in any breast milk sample. Eight additional bovine milk-derived peptides identified by software-assisted MS were most likely false positive. The results of this study demonstrate that CMP-derived peptides rather than intact CMP may sensitize or elicit allergic responses in the neonate through mother's milk. Immunologically active peptides from the maternal diet could be involved in priming the newborn's immune system, driving a tolerogenic response.
Collapse
Affiliation(s)
- Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR), Avellino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2507
|
Ashford P, Hernandez A, Greco TM, Buch A, Sodeik B, Cristea IM, Grünewald K, Shepherd A, Topf M. HVint: A Strategy for Identifying Novel Protein-Protein Interactions in Herpes Simplex Virus Type 1. Mol Cell Proteomics 2016; 15:2939-53. [PMID: 27384951 PMCID: PMC5013309 DOI: 10.1074/mcp.m116.058552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/12/2022] Open
Abstract
Human herpesviruses are widespread human pathogens with a remarkable impact on worldwide public health. Despite intense decades of research, the molecular details in many aspects of their function remain to be fully characterized. To unravel the details of how these viruses operate, a thorough understanding of the relationships between the involved components is key. Here, we present HVint, a novel protein-protein intraviral interaction resource for herpes simplex virus type 1 (HSV-1) integrating data from five external sources. To assess each interaction, we used a scoring scheme that takes into consideration aspects such as the type of detection method and the number of lines of evidence. The coverage of the initial interactome was further increased using evolutionary information, by importing interactions reported for other human herpesviruses. These latter interactions constitute, therefore, computational predictions for potential novel interactions in HSV-1. An independent experimental analysis was performed to confirm a subset of our predicted interactions. This subset covers proteins that contribute to nuclear egress and primary envelopment events, including VP26, pUL31, pUL40, and the recently characterized pUL32 and pUL21. Our findings support a coordinated crosstalk between VP26 and proteins such as pUL31, pUS9, and the CSVC complex, contributing to the development of a model describing the nuclear egress and primary envelopment pathways of newly synthesized HSV-1 capsids. The results are also consistent with recent findings on the involvement of pUL32 in capsid maturation and early tegumentation events. Further, they open the door to new hypotheses on virus-specific regulators of pUS9-dependent transport. To make this repository of interactions readily accessible for the scientific community, we also developed a user-friendly and interactive web interface. Our approach demonstrates the power of computational predictions to assist in the design of targeted experiments for the discovery of novel protein-protein interactions.
Collapse
Affiliation(s)
- Paul Ashford
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Anna Hernandez
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK; §Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Todd Michael Greco
- ¶Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544
| | - Anna Buch
- ‖Institute of Virology, Hannover Medical School, OE 4310, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany
| | - Beate Sodeik
- ‖Institute of Virology, Hannover Medical School, OE 4310, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany
| | - Ileana Mihaela Cristea
- ¶Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544;
| | - Kay Grünewald
- §Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Adrian Shepherd
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Maya Topf
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK;
| |
Collapse
|
2508
|
Sysoev VO, Fischer B, Frese CK, Gupta I, Krijgsveld J, Hentze MW, Castello A, Ephrussi A. Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nat Commun 2016; 7:12128. [PMID: 27378189 PMCID: PMC4935972 DOI: 10.1038/ncomms12128] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
The maternal-to-zygotic transition (MZT) is a process that occurs in animal embryos at the earliest developmental stages, during which maternally deposited mRNAs and other molecules are degraded and replaced by products of the zygotic genome. The zygotic genome is not activated immediately upon fertilization, and in the pre-MZT embryo post-transcriptional control by RNA-binding proteins (RBPs) orchestrates the first steps of development. To identify relevant Drosophila RBPs organism-wide, we refined the RNA interactome capture method for comparative analysis of the pre- and post-MZT embryos. We determine 523 proteins as high-confidence RBPs, half of which were not previously reported to bind RNA. Comparison of the RNA interactomes of pre- and post-MZT embryos reveals high dynamicity of the RNA-bound proteome during early development, and suggests active regulation of RNA binding of some RBPs. This resource provides unprecedented insight into the system of RBPs that govern the earliest steps of Drosophila development.
Collapse
Affiliation(s)
- Vasiliy O. Sysoev
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bernd Fischer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Christian K. Frese
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ishaan Gupta
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias W. Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alfredo Castello
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Anne Ephrussi
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
2509
|
Diender M, Pereira R, Wessels HJCT, Stams AJM, Sousa DZ. Proteomic Analysis of the Hydrogen and Carbon Monoxide Metabolism of Methanothermobacter marburgensis. Front Microbiol 2016; 7:1049. [PMID: 27458443 PMCID: PMC4930933 DOI: 10.3389/fmicb.2016.01049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/22/2016] [Indexed: 12/27/2022] Open
Abstract
Hydrogenotrophic methanogenic archaea are efficient H2 utilizers, but only a few are known to be able to utilize CO. Methanothermobacter thermoautotrophicus is one of the hydrogenotrophic methanogens able to grow on CO, albeit about 100 times slower than on H2 + CO2. In this study, we show that the hydrogenotrophic methanogen Methanothermobacter marburgensis, is able to perform methanogenic growth on H2/CO2/CO and on CO as a sole substrate. To gain further insight in its carboxydotrophic metabolism, the proteome of M. marburgensis, grown on H2/CO2 and H2/CO2/CO, was analyzed. Cultures grown with H2/CO2/CO showed relative higher abundance of enzymes involved in the reductive acetyl-CoA pathway and proteins involved in redox metabolism. The data suggest that the strong reducing capacity of CO negatively affects hydrogenotrophic methanogenesis, making growth on CO as a sole substrate difficult for this type of methanogens. M. marburgensis appears to partly deal with this by up-regulating co-factor regenerating reactions and activating additional pathways allowing for formation of other products, like acetate.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Ricardo Pereira
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Hans J C T Wessels
- Department of Laboratory Medicine, Radboud University Medical Center Nijmegen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; Centre of Biological Engineering, University of MinhoBraga, Portugal
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
2510
|
Byrd AK, Zybailov BL, Maddukuri L, Gao J, Marecki JC, Jaiswal M, Bell MR, Griffin WC, Reed MR, Chib S, Mackintosh SG, MacNicol AM, Baldini G, Eoff RL, Raney KD. Evidence That G-quadruplex DNA Accumulates in the Cytoplasm and Participates in Stress Granule Assembly in Response to Oxidative Stress. J Biol Chem 2016; 291:18041-57. [PMID: 27369081 DOI: 10.1074/jbc.m116.718478] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Cells engage numerous signaling pathways in response to oxidative stress that together repair macromolecular damage or direct the cell toward apoptosis. As a result of DNA damage, mitochondrial DNA or nuclear DNA has been shown to enter the cytoplasm where it binds to "DNA sensors," which in turn initiate signaling cascades. Here we report data that support a novel signaling pathway in response to oxidative stress mediated by specific guanine-rich sequences that can fold into G-quadruplex DNA (G4DNA). In response to oxidative stress, we demonstrate that sequences capable of forming G4DNA appear at increasing levels in the cytoplasm and participate in assembly of stress granules. Identified proteins that bind to endogenous G4DNA in the cytoplasm are known to modulate mRNA translation and participate in stress granule formation. Consistent with these findings, stress granule formation is known to regulate mRNA translation during oxidative stress. We propose a signaling pathway whereby cells can rapidly respond to DNA damage caused by oxidative stress. Guanine-rich sequences that are excised from damaged genomic DNA are proposed to enter the cytoplasm where they can regulate translation through stress granule formation. This newly proposed role for G4DNA provides an additional molecular explanation for why such sequences are prevalent in the human genome.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Departments of Biochemistry and Molecular Biology and
| | - Boris L Zybailov
- From the Departments of Biochemistry and Molecular Biology and the University of Arkansas at Little Rock/University of Arkansas for Medical Sciences (UALR/UAMS) Joint Graduate Program in Bioinformatics, University of Arkansas at Little Rock, Little Rock, Arkansas 72204
| | - Leena Maddukuri
- From the Departments of Biochemistry and Molecular Biology and
| | - Jun Gao
- From the Departments of Biochemistry and Molecular Biology and
| | - John C Marecki
- From the Departments of Biochemistry and Molecular Biology and
| | - Mihir Jaiswal
- the University of Arkansas at Little Rock/University of Arkansas for Medical Sciences (UALR/UAMS) Joint Graduate Program in Bioinformatics, University of Arkansas at Little Rock, Little Rock, Arkansas 72204
| | - Matthew R Bell
- From the Departments of Biochemistry and Molecular Biology and
| | | | - Megan R Reed
- From the Departments of Biochemistry and Molecular Biology and
| | - Shubeena Chib
- From the Departments of Biochemistry and Molecular Biology and
| | - Samuel G Mackintosh
- From the Departments of Biochemistry and Molecular Biology and the Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and
| | - Angus M MacNicol
- the Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and Neurobiology and Developmental Sciences and
| | - Giulia Baldini
- From the Departments of Biochemistry and Molecular Biology and
| | - Robert L Eoff
- From the Departments of Biochemistry and Molecular Biology and the Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and
| | - Kevin D Raney
- From the Departments of Biochemistry and Molecular Biology and the Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and
| |
Collapse
|
2511
|
Gergondey R, Garcia C, Serre V, Camadro J, Auchère F. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1309-23. [DOI: 10.1016/j.bbadis.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 01/14/2023]
|
2512
|
Luo Y, Jacobs EY, Greco TM, Mohammed KD, Tong T, Keegan S, Binley JM, Cristea IM, Fenyö D, Rout MP, Chait BT, Muesing MA. HIV-host interactome revealed directly from infected cells. Nat Microbiol 2016; 1:16068. [PMID: 27375898 PMCID: PMC4928716 DOI: 10.1038/nmicrobiol.2016.68] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/16/2016] [Indexed: 01/27/2023]
Abstract
Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen-host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Erica Y. Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Todd M. Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - Kevin D. Mohammed
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Tommy Tong
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Sarah Keegan
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - James M. Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - David Fenyö
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Mark A. Muesing
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| |
Collapse
|
2513
|
Proteomic changes occurring along gonad maturation in the edible sea urchin Paracentrotus lividus. J Proteomics 2016; 144:63-72. [DOI: 10.1016/j.jprot.2016.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022]
|
2514
|
Rinschen MM, Schroeter CB, Koehler S, Ising C, Schermer B, Kann M, Benzing T, Brinkkoetter PT. Quantitative deep mapping of the cultured podocyte proteome uncovers shifts in proteostatic mechanisms during differentiation. Am J Physiol Cell Physiol 2016; 311:C404-17. [PMID: 27357545 DOI: 10.1152/ajpcell.00121.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/27/2016] [Indexed: 11/22/2022]
Abstract
The renal filtration barrier is maintained by the renal podocyte, an epithelial postmitotic cell. Immortalized mouse podocyte cell lines-both in the differentiated and undifferentiated state-are widely utilized tools to estimate podocyte injury and cytoskeletal rearrangement processes in vitro. Here, we mapped the cultured podocyte proteome at a depth of more than 8,800 proteins and quantified 7,240 proteins. Copy numbers of proteins mutated in forms of hereditary nephrotic syndrome or focal segmental glomerulosclerosis (FSGS) were assessed. We found that cultured podocytes express abundant copy numbers of endogenous receptors, such as tyrosine kinase membrane receptors, the G protein-coupled receptor (GPCR), NPR3 (ANP receptor), and several poorly characterized GPCRs. The data set was correlated with deep mapping mRNA sequencing ("mRNAseq") data from the native mouse podocyte, the native mouse podocyte proteome and staining intensities from the human protein atlas. The generated data set was similar to these previously published resources, but several native and high-abundant podocyte-specific proteins were not identified in the data set. Notably, this data set detected general perturbations in proteostatic mechanisms as a dominant alteration during podocyte differentiation, with high proteasome activity in the undifferentiated state and markedly increased expression of lysosomal proteins in the differentiated state. Phosphoproteomics analysis of mouse podocytes at a resolution of more than 3,000 sites suggested a preference of phosphorylation of actin filament-associated proteins in the differentiated state. The data set obtained here provides a resource and provides the means for deep mapping of the native podocyte proteome and phosphoproteome in a similar manner.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany; and Systems Biology of Ageing Cologne, SybaCol, Cologne, Germany
| | - Christina B Schroeter
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Christina Ising
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany; and Systems Biology of Ageing Cologne, SybaCol, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany; and Systems Biology of Ageing Cologne, SybaCol, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2515
|
Khan FA, Faisal M, Chao J, Liu K, Chen X, Zhao G, Menghwar H, Zhang H, Zhu X, Rasheed MA, He C, Hu C, Chen Y, Baranowski E, Chen H, Guo A. Immunoproteomic identification of MbovP579, a promising diagnostic biomarker for serological detection of Mycoplasma bovis infection. Oncotarget 2016; 7:39376-39395. [PMID: 27281618 PMCID: PMC5129939 DOI: 10.18632/oncotarget.9799] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
A lack of knowledge regarding the antigenic properties of Mycoplasma bovis proteins prevents the effective control of bovine infections using immunological approaches. In this study, we detected and characterized a specific and sensitive M. bovis diagnostic biomarker. After M. bovis total proteins and membrane fractions were separated with two dimensional gel electrophoresis, proteins reacting with antiserawere detected using MALDI-TOF MS. Thirty-nine proteins were identified, 32 of which were previously unreported. Among them, immunoinformatics predicted eight antigens, encoded by Mbov_0106, 0116, 0126, 0212, 0275, 0579, 0739, and 0789, to have high immunological value. These genes were expressed in E. coli after mutagenesis of UGA to UGG using overlap extension PCR. A lipoprotein, MbovP579, encoded by a functionally unknown gene, was a sensitive and specific antigen for detection of antibodies in sera from both M. bovis-infected and vaccinated cattle. The specificity of MbovP579 was confirmed by its lack of cross-reactivity with other mycoplasmas, including Mycoplasma agalactiae. An iELISA based on rMbovP579 detected seroconversion 7 days post-infection (dpi). The ELISA had sensitivity of 90.2% (95% CI: 83.7%, 94.3%) and a specificity of 97.8% (95% CI: 88.7%, 99.6%) with clinical samples. Additional comparative studies showed that both diagnostic and analytic sensitivities of the ELISA were higher than those of a commercially available kit (p<0.01). We have thus detected and characterized the novel antigen, MbovP579, and established an rMbovP579-based ELISA as a highly sensitive and specific method for the early diagnosis of M. bovis infection.
Collapse
Affiliation(s)
- Farhan Anwar Khan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Animal Health, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Faisal
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jin Chao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kai Liu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Harish Menghwar
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Asif Rasheed
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chenfei He
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, International Joint Research and Training Centre for Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Eric Baranowski
- INRA, UMR 1225, IHAP, Toulouse, France
- INP-ENVT, UMR 1225, IHAP, Université de Toulouse, Toulouse, France
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, International Joint Research and Training Centre for Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, International Joint Research and Training Centre for Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2516
|
Zhang X, Ning Z, Mayne J, Moore JI, Li J, Butcher J, Deeke SA, Chen R, Chiang CK, Wen M, Mack D, Stintzi A, Figeys D. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. MICROBIOME 2016; 4:31. [PMID: 27343061 PMCID: PMC4919841 DOI: 10.1186/s40168-016-0176-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/02/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND The gut microbiota has been shown to be closely associated with human health and disease. While next-generation sequencing can be readily used to profile the microbiota taxonomy and metabolic potential, metaproteomics is better suited for deciphering microbial biological activities. However, the application of gut metaproteomics has largely been limited due to the low efficiency of protein identification. Thus, a high-performance and easy-to-implement gut metaproteomic approach is required. RESULTS In this study, we developed a high-performance and universal workflow for gut metaproteome identification and quantification (named MetaPro-IQ) by using the close-to-complete human or mouse gut microbial gene catalog as database and an iterative database search strategy. An average of 38 and 33 % of the acquired tandem mass spectrometry (MS) spectra was confidently identified for the studied mouse stool and human mucosal-luminal interface samples, respectively. In total, we accurately quantified 30,749 protein groups for the mouse metaproteome and 19,011 protein groups for the human metaproteome. Moreover, the MetaPro-IQ approach enabled comparable identifications with the matched metagenome database search strategy that is widely used but needs prior metagenomic sequencing. The response of gut microbiota to high-fat diet in mice was then assessed, which showed distinct metaproteome patterns for high-fat-fed mice and identified 849 proteins as significant responders to high-fat feeding in comparison to low-fat feeding. CONCLUSIONS We present MetaPro-IQ, a metaproteomic approach for highly efficient intestinal microbial protein identification and quantification, which functions as a universal workflow for metaproteomic studies, and will thus facilitate the application of metaproteomics for better understanding the functions of gut microbiota in health and disease.
Collapse
Affiliation(s)
- Xu Zhang
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Zhibin Ning
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Janice Mayne
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Jasmine I. Moore
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Jennifer Li
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - James Butcher
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Shelley Ann Deeke
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Rui Chen
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Cheng-Kang Chiang
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Ming Wen
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - David Mack
- />Department of Paediatrics, CHEO Inflammatory Bowel Disease Centre and Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Alain Stintzi
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Daniel Figeys
- />Department of Biochemistry, Ottawa Institute of Systems Biology, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
2517
|
Dong Y, Deng M, Zhao Z, Fan G. Quantitative Proteomic and Transcriptomic Study on Autotetraploid Paulownia and Its Diploid Parent Reveal Key Metabolic Processes Associated with Paulownia Autotetraploidization. FRONTIERS IN PLANT SCIENCE 2016; 7:892. [PMID: 27446122 PMCID: PMC4919355 DOI: 10.3389/fpls.2016.00892] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/06/2016] [Indexed: 05/29/2023]
Abstract
Polyploidy plays a very important role in speciation and plant evolution by way of genomic merging and doubling. In the process of polyploidy, rapid genomic, and transcriptomic changes have been observed and researched. However, proteomic divergence caused by the effects of polyploidization is still poorly understood. In the present study, we used iTRAQ coupled with mass spectrometry to quantitatively analyze proteomic changes in the leaves of autotetraploid Paulownia and its diploid parent. A total of 2963 proteins were identified and quantified. Among them, 463 differentially abundant proteins were detected between autotetraploid Paulownia and its diploid parent, and 198 proteins were found to be non-additively abundant in autotetraploid Paulownia, suggesting the presence of non-additive protein regulation during genomic merger and doubling. We also detected 1808 protein-encoding genes in previously published RNA sequencing data. We found that 59 of the genes that showed remarkable changes at mRNA level encoded proteins with consistant changes in their abundance levels, while a further 48 genes that showed noteworthy changes in their expression levels encoded proteins with opposite changes in their abundance levels. Proteins involved in posttranslational modification, protein turnover, and response to stimulus, were significantly enriched among the non-additive proteins, which may provide some of the driving power for variation and adaptation in autopolyploids. Quantitative real-time PCR analysis verified the expression patterns of related protein-coding genes. In addition, we found that the percentage of differentially abundant proteins that matched previously reported differentially expressed genes was relatively low.
Collapse
Affiliation(s)
- Yanpeng Dong
- Department of Forestry, College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Minjie Deng
- Department of Forestry, College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Zhenli Zhao
- Department of Forestry, College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Guoqiang Fan
- Department of Forestry, College of Forestry, Henan Agricultural UniversityZhengzhou, China
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
2518
|
Mahadevan C, Krishnan A, Saraswathy GG, Surendran A, Jaleel A, Sakuntala M. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem. FRONTIERS IN PLANT SCIENCE 2016; 7:785. [PMID: 27379110 PMCID: PMC4913111 DOI: 10.3389/fpls.2016.00785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/22/2016] [Indexed: 05/22/2023]
Abstract
Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887.
Collapse
Affiliation(s)
| | - Anu Krishnan
- Division of Plant Molecular Biology, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Gayathri G. Saraswathy
- Division of Plant Molecular Biology, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Arun Surendran
- Proteomics Core Facility, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Abdul Jaleel
- Proteomics Core Facility, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Manjula Sakuntala
- Division of Plant Molecular Biology, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| |
Collapse
|
2519
|
Petras D, Heiss P, Harrison RA, Süssmuth RD, Calvete JJ. Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals. J Proteomics 2016; 146:148-64. [PMID: 27318176 DOI: 10.1016/j.jprot.2016.06.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 01/24/2023]
Abstract
We report the characterization, by combination of high-resolution on-line molecular mass and disulfide bond profiling and top-down MS/MS analysis, of the venom proteomes of two congeneric African snake species of medical importance, Dendroaspis angusticeps (green mamba) and D. polylepis (black mamba). Each of these mamba venoms comprised more than two-hundred polypeptides belonging to just a few toxin families. Both venom proteomes are overwhelmingly composed of post-synaptically-acting short- and long-chain neurotoxins that potently inhibit muscle- and neuronal-type nicotinic acetylcholine receptors; muscarinic cardiotoxins; and dendrotoxins, that block some of the Kv1, n-class of K+ channels. However, the identity of the major proteins and their relative abundances exhibit marked interspecific variation. In addition, the greater resolution of the top-down venomic analytical approach revealed previously undetected protein species, isoforms and proteoforms, including the identification and precise location of modified lysine residues in a number of proteins in both venoms, but particularly in green mamba toxins. This comparative top-down venomic analysis unveiled the untapped complexity of Dendroaspis venoms and lays the foundations for rationalizing the notably different potency of green and black mamba lethal arsenals at locus resolution. SIGNIFICANCE PARAGRAPH We report the characterization, by combination of high-resolution on-line molecular mass and disulfide bond profiling and top-down MS/MS analysis, of the venom proteomes of two congeneric African snake species of medical importance, Dendroaspis angusticeps (green mamba) and D. polylepis (black mamba). Each of these mamba venoms comprised more than two-hundred polypeptides belonging to just a few toxin families. Both venom proteomes are overwhelmingly composed of post-synaptically-acting short- and long-chain neurotoxins that potently inhibit muscle- and neuronal-type nicotinic acetylcholine receptors; muscarinic cardiotoxins; and dendrotoxins, that block some of the Kv1, n-class of K+ channels. However, the identity of the major proteins and their relative abundances exhibit marked interspecific variation. In addition, the greater resolution of the top-down venomic analytical approach revealed previously undetected protein species, isoforms and proteoforms, including the identification and precise location of modified lysine residues in a number of proteins in both venoms, but particularly in green mamba toxins. This comparative top-down venomic analysis unveiled the untapped complexity of Dendroaspis venoms and lays the foundations for rationalizing the notably different potency of green and black mamba lethal arsenals at locus resolution.
Collapse
Affiliation(s)
- Daniel Petras
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany; University of California-San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, La Jolla, CA, USA
| | - Paul Heiss
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool, School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| |
Collapse
|
2520
|
Campbell SJ, Stern DB. Activation of an Endoribonuclease by Non-intein Protein Splicing. J Biol Chem 2016; 291:15911-15922. [PMID: 27311716 DOI: 10.1074/jbc.m116.727768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/06/2022] Open
Abstract
The Chlamydomonas reinhardtii chloroplast-localized poly(A)-binding protein RB47 is predicted to contain a non-conserved linker (NCL) sequence flanked by highly conserved N- and C-terminal sequences, based on the corresponding cDNA. RB47 was purified from chloroplasts in association with an endoribonuclease activity; however, protein sequencing failed to detect the NCL. Furthermore, while recombinant RB47 including the NCL did not display endoribonuclease activity in vitro, versions lacking the NCL displayed strong activity. Both full-length and shorter forms of RB47 could be detected in chloroplasts, with conversion to the shorter form occurring in chloroplasts isolated from cells grown in the light. This conversion could be replicated in vitro in chloroplast extracts in a light-dependent manner, where epitope tags and protein sequencing showed that the NCL was excised from a full-length recombinant substrate, together with splicing of the flanking sequences. The requirement for endogenous factors and light differentiates this protein splicing from autocatalytic inteins, and may allow the chloroplast to regulate the activation of RB47 endoribonuclease activity. We speculate that this protein splicing activity arose to post-translationally repair proteins that had been inactivated by deleterious insertions or extensions.
Collapse
Affiliation(s)
- Stephen J Campbell
- From the Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| | - David B Stern
- From the Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| |
Collapse
|
2521
|
The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat Commun 2016; 7:11951. [PMID: 27301800 PMCID: PMC4912628 DOI: 10.1038/ncomms11951] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
Microorganisms form biofilms containing differentiated cell populations. To determine factors driving differentiation, we herein visualize protein and metal distributions within Pseudomonas aeruginosa biofilms using imaging mass spectrometry. These in vitro experiments reveal correlations between differential protein distribution and metal abundance. Notably, zinc- and manganese-depleted portions of the biofilm repress the production of anti-staphylococcal molecules. Exposure to calprotectin (a host protein known to sequester metal ions at infectious foci) recapitulates responses occurring within metal-deplete portions of the biofilm and promotes interaction between P. aeruginosa and Staphylococcus aureus. Consistent with these results, the presence of calprotectin promotes co-colonization of the murine lung, and polymicrobial communities are found to co-exist in calprotectin-enriched airspaces of a cystic fibrosis lung explant. These findings, which demonstrate that metal fluctuations are a driving force of microbial community structure, have clinical implications because of the frequent occurrence of P. aeruginosa and S. aureus co-infections. Co-infections with Pseudomonas aeruginosa and Staphylococcus aureus are common in cystic fibrosis patients. Here, the authors show that metal depletion induced by a host protein, calprotectin, promotes co-existence of both pathogens by inhibiting production of anti-staphylococcal molecules by P. aeruginosa.
Collapse
|
2522
|
Lodrini M, Poschmann G, Schmidt V, Wünschel J, Dreidax D, Witt O, Höfer T, Meyer HE, Stühler K, Eggert A, Deubzer HE. Minichromosome Maintenance Complex Is a Critical Node in the miR-183 Signaling Network of MYCN-Amplified Neuroblastoma Cells. J Proteome Res 2016; 15:2178-86. [DOI: 10.1021/acs.jproteome.6b00134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marco Lodrini
- Department
of Pediatric Hematology/Oncology/Stem Cell Transplantation Charité − Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger
Platz 1, 13353 Berlin, Germany
| | - Gereon Poschmann
- Molecular
Proteomics Laboratory, Biological Medical Research Centre, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Victoria Schmidt
- Clinical
Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), INF 280, 69120 Heidelberg, Germany
| | - Jasmin Wünschel
- Department
of Pediatric Hematology/Oncology/Stem Cell Transplantation Charité − Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger
Platz 1, 13353 Berlin, Germany
| | - Daniel Dreidax
- Division
Neuroblastoma Genetics, DKFZ, INF 280, 69120 Heidelberg, Germany
| | - Olaf Witt
- Clinical
Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), INF 280, 69120 Heidelberg, Germany
- Center
for Individualized Pediatric Oncology (ZIPO) and Brain Tumors, Department
of Pediatric Hematology/Oncology, University of Heidelberg and National Center for Tumor Diseases (NCT), INF 430, 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division
of Theoretical Systems Biology, DKFZ, INF 280, 69120 Heidelberg, Germany
| | - Helmut E. Meyer
- Leibniz-Institut
für Analytische Wissenschaften − ISAS − e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Kai Stühler
- Molecular
Proteomics Laboratory, Biological Medical Research Centre, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Institute
for Molecular Medicine, University Hospital Düsseldorf, Universitätsstraße
1, 40225 Düsseldorf, Germany
| | - Angelika Eggert
- Department
of Pediatric Hematology/Oncology/Stem Cell Transplantation Charité − Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger
Platz 1, 13353 Berlin, Germany
| | - Hedwig E. Deubzer
- Department
of Pediatric Hematology/Oncology/Stem Cell Transplantation Charité − Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger
Platz 1, 13353 Berlin, Germany
- Clinical
Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), INF 280, 69120 Heidelberg, Germany
- Center
for Individualized Pediatric Oncology (ZIPO) and Brain Tumors, Department
of Pediatric Hematology/Oncology, University of Heidelberg and National Center for Tumor Diseases (NCT), INF 430, 69120 Heidelberg, Germany
- Junior
Neuroblastoma Research Group, Experimental and Clinical Research Center
of the Max-Delbrück Center for Molecular Medicine and the Charité − Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
2523
|
Prendergast L, Müller S, Liu Y, Huang H, Dingli F, Loew D, Vassias I, Patel DJ, Sullivan KF, Almouzni G. The CENP-T/-W complex is a binding partner of the histone chaperone FACT. Genes Dev 2016; 30:1313-26. [PMID: 27284163 PMCID: PMC4911930 DOI: 10.1101/gad.275073.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/02/2016] [Indexed: 01/28/2023]
Abstract
Prendergast et al. identified Spt16 and SSRP1, subunits of the H2A–H2B histone chaperone FACT, as CENP-W-binding partners through a proteomic screen. They developed a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres. The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres, and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we found that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identified Spt16 and SSRP1, subunits of the H2A–H2B histone chaperone facilitates chromatin transcription (FACT), as CENP-W binding partners through a proteomic screen. We found that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres, and site-directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres.
Collapse
Affiliation(s)
- Lisa Prendergast
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| | - Sebastian Müller
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| | - Yiwei Liu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Florent Dingli
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL (Paris Sciences et Lettres) Research University Centre de Recherche, Paris 75005, France
| | - Damarys Loew
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL (Paris Sciences et Lettres) Research University Centre de Recherche, Paris 75005, France
| | - Isabelle Vassias
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Kevin F Sullivan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Geneviève Almouzni
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| |
Collapse
|
2524
|
Yang W, Jackson B, Zhang H. Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics. Proteomics 2016; 16:1872-80. [PMID: 27195445 DOI: 10.1002/pmic.201500215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 04/11/2016] [Accepted: 05/11/2016] [Indexed: 11/12/2022]
Abstract
HIV infection is not curable due to viral latency. Compelling reports suggest that there is a distinct profile of surface proteins that can be used for targeting latently infected cells. We have recently reported that glycoproteins were differentially secreted from HIV latently infected ACH-2 cells compared to the parental A3.01 cells. This finding suggests that glyco-phenotype might be different in these two cell lines. To determine the difference, the ACH-2 and A3.01 cell lines were subjected to a glycoproteomic analysis. A total number of 940 unique N-linked glycosite-containing peptides from 515 glycoproteins were identified. Among the glycoproteins, 365 and 104 were annotated as cell surface and membrane-associated proteins, respectively. Quantitative LC-MS/MS analysis revealed a change of 236 glycosite-containing peptides from 172 glycoproteins between the two cell lines without reactivation. Bioinformatic analysis suggests that cell adhesion, immune response, glycoprotein metabolic process, cell motion, and cell activation were associated with the changed proteins. After reactivation of latency, changes in glycosite-containing peptides were observed in both cell lines. The changed proteins suggest that cell migration, response to wounding and immune response might be impaired in reactivated latently infected cells. Glycoproteomics merits future application using primary cells to discover reveal mechanisms in HIV pathogenesis.
Collapse
Affiliation(s)
- Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brooks Jackson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2525
|
Dudekula K, Le Bihan T. Data from quantitative label free proteomics analysis of rat spleen. Data Brief 2016; 8:494-500. [PMID: 27358910 PMCID: PMC4915949 DOI: 10.1016/j.dib.2016.05.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 11/25/2022] Open
Abstract
The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.
Collapse
Affiliation(s)
- Khadar Dudekula
- SynthSys, University of Edinburgh, Waddington Building, The King׳s Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Thierry Le Bihan
- SynthSys, University of Edinburgh, Waddington Building, The King׳s Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
2526
|
Lohscheider JN, Friso G, van Wijk KJ. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3975-84. [PMID: 26962209 PMCID: PMC4915526 DOI: 10.1093/jxb/erw091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles.
Collapse
Affiliation(s)
- Jens N Lohscheider
- Section of Plant Biology, School of Integrated Plant Science (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Giulia Friso
- Section of Plant Biology, School of Integrated Plant Science (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrated Plant Science (SIPS), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2527
|
Jin Y, Chen J, Wang A, Zhang J, Chen S, Manabe T, Tan W. Analysis of low-density lipoprotein-associated proteins using the method of digitized native protein mapping. Electrophoresis 2016; 37:2063-74. [DOI: 10.1002/elps.201600100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ya Jin
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
- Pre-Incubator for Innovative Drugs & Medicine; School of Bioscience and Bioengineering, South China University of Technology; Guangzhou P. R. China
| | - Jin Chen
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
- Pre-Incubator for Innovative Drugs & Medicine; School of Bioscience and Bioengineering, South China University of Technology; Guangzhou P. R. China
| | - Ahui Wang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
- Pre-Incubator for Innovative Drugs & Medicine; School of Bioscience and Bioengineering, South China University of Technology; Guangzhou P. R. China
| | - Jun Zhang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
| | - Shumin Chen
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
- Pre-Incubator for Innovative Drugs & Medicine; School of Bioscience and Bioengineering, South China University of Technology; Guangzhou P. R. China
| | | | - Wen Tan
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
- Pre-Incubator for Innovative Drugs & Medicine; School of Bioscience and Bioengineering, South China University of Technology; Guangzhou P. R. China
- Key Laboratory of Industrial Biotechnology of Guangdong Higher Education Institutes; South China University of Technology; Guangzhou P. R. China
| |
Collapse
|
2528
|
Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease. J Proteomics 2016; 143:73-82. [DOI: 10.1016/j.jprot.2016.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/22/2022]
|
2529
|
Catalán Ú, Rubió L, López de las Hazas MC, Herrero P, Nadal P, Canela N, Pedret A, Motilva MJ, Solà R. Hydroxytyrosol and its complex forms (secoiridoids) modulate aorta and heart proteome in healthy rats: Potential cardio-protective effects. Mol Nutr Food Res 2016; 60:2114-2129. [DOI: 10.1002/mnfr.201600052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Úrsula Catalán
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| | - Laura Rubió
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
- Food Technology Department; Universitat de Lleida-AGROTECNIO Center; Lleida Spain
| | | | - Pol Herrero
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Pedro Nadal
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Núria Canela
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| | - Maria-José Motilva
- Food Technology Department; Universitat de Lleida-AGROTECNIO Center; Lleida Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| |
Collapse
|
2530
|
Zhang L, de Waard M, Verheijen H, Boeren S, Hageman JA, van Hooijdonk T, Vervoort J, van Goudoever JB, Hettinga K. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant. Data Brief 2016; 7:362-5. [PMID: 26977438 PMCID: PMC4781965 DOI: 10.1016/j.dib.2016.02.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/04/2023] Open
Abstract
Here we provide data from shot-gun proteomics, using filtered-aided sample preparation (FASP), dimethyl labeling and LC-MS/MS, to quantify the changes in the repertoire of human milk proteins over lactation. Milk serum proteins were analyzed at week 1, 2, 3 4, 8, 16, and 24 in milk from four individual mothers. A total of 247 proteins were identified, of which 200 proteins were quantified. The data supplied in this article supports the accompanying publication (Zhang et al., 2006) [1]. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2016) [2] via the PRIDE partner repository with the dataset identifier PXD003465.
Collapse
Affiliation(s)
- Lina Zhang
- Dairy Science and Technology, Food Quality and Design group, Wageningen University, The Netherlands
| | - Marita de Waard
- Department of Paediatrics, VU University Medical Center, Amsterdam, The Netherlands
| | - Hester Verheijen
- Department of Paediatrics, VU University Medical Center, Amsterdam, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Jos A. Hageman
- Biometris-Applied Statistics, Wageningen University, The Netherlands
- Centre for BioSystems Genomics, Wageningen University, The Netherlands
| | - Toon van Hooijdonk
- Dairy Science and Technology, Food Quality and Design group, Wageningen University, The Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Johannes B. van Goudoever
- Department of Paediatrics, VU University Medical Center, Amsterdam, The Netherlands
- Academic Medical Center, Emma Children׳s Hospital, Amsterdam, The Netherlands
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design group, Wageningen University, The Netherlands
| |
Collapse
|
2531
|
Bullen JW, Tchernyshyov I, Holewinski RJ, DeVine L, Wu F, Venkatraman V, Kass DL, Cole RN, Van Eyk J, Semenza GL. Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci Signal 2016; 9:ra56. [PMID: 27245613 PMCID: PMC5541497 DOI: 10.1126/scisignal.aaf0583] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes encoding proteins that enable cells to adapt to reduced O2 availability. Proteins encoded by HIF-1 target genes play a central role in mediating physiological processes that are dysregulated in cancer and heart disease. These diseases are also characterized by increased production of cyclic adenosine monophosphate (cAMP), the allosteric activator of cAMP-dependent protein kinase A (PKA). Using glutathione S-transferase pull-down, coimmunoprecipitation, and mass spectrometry analyses, we demonstrated that PKA interacts with HIF-1α in HeLa cervical carcinoma cells and rat cardiomyocytes. PKA phosphorylated Thr(63) and Ser(692) on HIF-1α in vitro and enhanced HIF transcriptional activity and target gene expression in HeLa cells and rat cardiomyocytes. PKA inhibited the proteasomal degradation of HIF-1α in an O2-independent manner that required the phosphorylation of Thr(63) and Ser(692) and was not affected by prolyl hydroxylation. PKA also stimulated the binding of the coactivator p300 to HIF-1α to enhance its transcriptional activity and counteracted the inhibitory effect of asparaginyl hydroxylation on the association of p300 with HIF-1α. Furthermore, increased cAMP concentrations enhanced the expression of HIF target genes encoding CD39 and CD73, which are enzymes that convert extracellular adenosine 5'-triphosphate to adenosine, a molecule that enhances tumor immunosuppression and reduces heart rate and contractility. These data link stimuli that promote cAMP signaling, HIF-1α-dependent changes in gene expression, and increased adenosine, all of which contribute to the pathophysiology of cancer and heart disease.
Collapse
Affiliation(s)
- John W Bullen
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Irina Tchernyshyov
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ronald J Holewinski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fan Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vidya Venkatraman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David L Kass
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer Van Eyk
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2532
|
Peters JS, Calder B, Gonnelli G, Degroeve S, Rajaonarifara E, Mulder N, Soares NC, Martens L, Blackburn JM. Identification of Quantitative Proteomic Differences between Mycobacterium tuberculosis Lineages with Altered Virulence. Front Microbiol 2016; 7:813. [PMID: 27303394 PMCID: PMC4885829 DOI: 10.3389/fmicb.2016.00813] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/12/2016] [Indexed: 11/22/2022] Open
Abstract
Evidence currently suggests that as a species Mycobacterium tuberculosis exhibits very little genomic sequence diversity. Despite limited genetic variability, members of the M. tuberculosis complex (MTBC) have been shown to exhibit vast discrepancies in phenotypic presentation in terms of virulence, elicited immune response and transmissibility. Here, we used qualitative and quantitative mass spectrometry tools to investigate the proteomes of seven clinically-relevant mycobacterial strains—four M. tuberculosis strains, M. bovis, M. bovis BCG, and M. avium—that show varying degrees of pathogenicity and virulence, in an effort to rationalize the observed phenotypic differences. Following protein preparation, liquid chromatography mass spectrometry (LC MS/MS) and data capture were carried out using an LTQ Orbitrap Velos. Data analysis was carried out using a novel bioinformatics strategy, which yielded high protein coverage and was based on high confidence peptides. Through this approach, we directly identified a total of 3788 unique M. tuberculosis proteins out of a theoretical proteome of 4023 proteins and identified an average of 3290 unique proteins for each of the MTBC organisms (representing 82% of the theoretical proteomes), as well as 4250 unique M. avium proteins (80% of the theoretical proteome). Data analysis showed that all major classes of proteins are represented in every strain, but that there are significant quantitative differences between strains. Targeted selected reaction monitoring (SRM) assays were used to quantify the observed differential expression of a subset of 23 proteins identified by comparison to gene expression data as being of particular relevance to virulence. This analysis revealed differences in relative protein abundance between strains for proteins which may promote bacterial fitness in the more virulent W. Beijing strain. These differences may contribute to this strain's capacity for surviving within the host and resisting treatment, which has contributed to its rapid spread. Through this approach, we have begun to describe the proteomic portrait of a successful mycobacterial pathogen. Data are available via ProteomeXchange with identifier PXD004165.
Collapse
Affiliation(s)
- Julian S Peters
- Centre of Excellence for Biomedical TB Research, Witwatersrand University Johannesburg, South Africa
| | - Bridget Calder
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | | | | | - Elinambinina Rajaonarifara
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Nicola Mulder
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Nelson C Soares
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | | | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| |
Collapse
|
2533
|
Santa C, Anjo SI, Manadas B. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach. Proteomics 2016; 16:1847-51. [DOI: 10.1002/pmic.201600024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Cátia Santa
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Institute for Interdisciplinary Research; University of Coimbra; Coimbra Portugal
| | - Sandra I. Anjo
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Faculty of Sciences and Technology; University of Coimbra; Coimbra Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| |
Collapse
|
2534
|
Liang W, Ward LJ, Karlsson H, Ljunggren SA, Li W, Lindahl M, Yuan XM. Distinctive proteomic profiles among different regions of human carotid plaques in men and women. Sci Rep 2016; 6:26231. [PMID: 27198765 PMCID: PMC4873748 DOI: 10.1038/srep26231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/28/2016] [Indexed: 11/20/2022] Open
Abstract
The heterogeneity of atherosclerotic tissue has limited comprehension in proteomic and metabolomic analyses. To elucidate the functional implications, and differences between genders, of atherosclerotic lesion formation we investigated protein profiles from different regions of human carotid atherosclerotic arteries; internal control, fatty streak, plaque shoulder, plaque centre, and fibrous cap. Proteomic analysis was performed using 2-DE with MALDI-TOF, with validation using nLC-MS/MS. Protein mapping of 2-DE identified 52 unique proteins, including 15 previously unmapped proteins, of which 41 proteins were confirmed by nLC-MS/MS analysis. Expression levels of 18 proteins were significantly altered in plaque regions compared to the internal control region. Nine proteins showed site-specific alterations, irrespective of gender, with clear associations to extracellular matrix remodelling. Five proteins display gender-specific alterations with 2-DE, with two alterations validated by nLC-MS/MS. Gender differences in ferritin light chain and transthyretin were validated using both techniques. Validation of immunohistochemistry confirmed significantly higher levels of ferritin in plaques from male patients. Proteomic analysis of different plaque regions has reduced the effects of plaque heterogeneity, and significant differences in protein expression are determined in specific regions and between genders. These proteomes have functional implications in plaque progression and are of importance in understanding gender differences in atherosclerosis.
Collapse
Affiliation(s)
- Wenzhao Liang
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Liam J Ward
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Division of Obstetrics and Gynaecology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Stefan A Ljunggren
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Wei Li
- Division of Obstetrics and Gynaecology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mats Lindahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
2535
|
Lin S, Yuan ZF, Han Y, Marchione DM, Garcia BA. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells. J Biol Chem 2016; 291:15342-57. [PMID: 27226594 DOI: 10.1074/jbc.m116.726067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 12/25/2022] Open
Abstract
How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2.
Collapse
Affiliation(s)
- Shu Lin
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Zuo-Fei Yuan
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Yumiao Han
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Dylan M Marchione
- the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Benjamin A Garcia
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| |
Collapse
|
2536
|
Tsolis KC, Bagli E, Kanaki K, Zografou S, Carpentier S, Bei ES, Christoforidis S, Zervakis M, Murphy C, Fotsis T, Economou A. Proteome Changes during Transition from Human Embryonic to Vascular Progenitor Cells. J Proteome Res 2016; 15:1995-2007. [DOI: 10.1021/acs.jproteome.6b00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Konstantinos C. Tsolis
- Department
of Protein structure and Proteomics Facility, Institute of Molecular Biology and Biotechnology - FORTH, 70013 Iraklio, Crete, Greece
- Department
of Biology, University of Crete, 70013 Iraklio, Crete, Greece
| | - Eleni Bagli
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
| | - Katerina Kanaki
- Department
of Protein structure and Proteomics Facility, Institute of Molecular Biology and Biotechnology - FORTH, 70013 Iraklio, Crete, Greece
| | - Sofia Zografou
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
| | - Sebastien Carpentier
- SYBIOMA, KU Leuven facility for Systems Biology Based Mass Spectrometry, B-3000 Leuven Belgium
| | - Ekaterini S. Bei
- School
of Electronic and Computer Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Savvas Christoforidis
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
- Laboratory
of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Michalis Zervakis
- School
of Electronic and Computer Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Carol Murphy
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
- School
of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Theodore Fotsis
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
- Laboratory
of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
- School
of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Anastassios Economou
- Department
of Protein structure and Proteomics Facility, Institute of Molecular Biology and Biotechnology - FORTH, 70013 Iraklio, Crete, Greece
- Department
of Biology, University of Crete, 70013 Iraklio, Crete, Greece
- SYBIOMA, KU Leuven facility for Systems Biology Based Mass Spectrometry, B-3000 Leuven Belgium
| |
Collapse
|
2537
|
Daulat AM, Bertucci F, Audebert S, Sergé A, Finetti P, Josselin E, Castellano R, Birnbaum D, Angers S, Borg JP. PRICKLE1 Contributes to Cancer Cell Dissemination through Its Interaction with mTORC2. Dev Cell 2016; 37:311-325. [PMID: 27184734 DOI: 10.1016/j.devcel.2016.04.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 03/15/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
Components of the evolutionarily conserved developmental planar cell polarity (PCP) pathway were recently described to play a prominent role in cancer cell dissemination. However, the molecular mechanisms by which PCP molecules drive the spread of cancer cells remain largely unknown. PRICKLE1 encodes a PCP protein bound to the promigratory serine/threonine kinase MINK1. We identify RICTOR, a member of the mTORC2 complex, as a PRICKLE1-binding partner and show that the integrity of the PRICKLE1-MINK1-RICTOR complex is required for activation of AKT, regulation of focal adhesions, and cancer cell migration. Disruption of the PRICKLE1-RICTOR interaction results in a strong impairment of breast cancer cell dissemination in xenograft assays. Finally, we show that upregulation of PRICKLE1 in basal breast cancers, a subtype characterized by high metastatic potential, is associated with poor metastasis-free survival.
Collapse
Affiliation(s)
- Avais M Daulat
- Inserm, U1068, CRCM, Cell Polarity, Cell Signalling and Cancer "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France; Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France
| | - François Bertucci
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France
| | - Stéphane Audebert
- Inserm, U1068, CRCM, Cell Polarity, Cell Signalling and Cancer "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France; Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France
| | - Arnauld Sergé
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, Leuko/Stromal Interactions, Marseille 13009, France
| | - Pascal Finetti
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France
| | - Emmanuelle Josselin
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, TrGET Platform, Marseille 13009, France
| | - Rémy Castellano
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, TrGET Platform, Marseille 13009, France
| | - Daniel Birnbaum
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France
| | - Stéphane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, ON M5S1A8, Canada
| | - Jean-Paul Borg
- Inserm, U1068, CRCM, Cell Polarity, Cell Signalling and Cancer "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France; Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France.
| |
Collapse
|
2538
|
Chee CS, Chang KM, Loke MF, Angela Loo VP, Subrayan V. Association of potential salivary biomarkers with diabetic retinopathy and its severity in type-2 diabetes mellitus: a proteomic analysis by mass spectrometry. PeerJ 2016; 4:e2022. [PMID: 27280065 PMCID: PMC4893325 DOI: 10.7717/peerj.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM/HYPOTHESIS The aim of our study was to characterize the human salivary proteome and determine the changes in protein expression in two different stages of diabetic retinopathy with type-2 diabetes mellitus: (1) with non-proliferative diabetic retinopathy (NPDR) and (2) with proliferative diabetic retinopathy (PDR). Type-2 diabetes mellitus without diabetic retinopathy (XDR) was designated as control. METHOD In this study, 45 saliva samples were collected (15 samples from XDR control group, 15 samples from NPDR disease group and 15 samples from PDR disease group). Salivary proteins were extracted, reduced, alkylated, trypsin digested and labeled with an isobaric tag for relative and absolute quantitation (iTRAQ) before being analyzed by an Orbitrap fusion tribrid mass spectrometer. Protein annotation, fold change calculation and statistical analysis were interrogated by Proteome Discoverer. Biological pathway analysis was performed by Ingenuity Pathway Analysis. Data are available via ProteomeXchange with identifiers PXD003723-PX003725. RESULTS A total of 315 proteins were identified from the salivary proteome and 119 proteins were found to be differentially expressed. The differentially expressed proteins from the NPDR disease group and the PDR disease group were assigned to respective canonical pathways indicating increased Liver X receptor/Retinoid X receptor (LXR/RXR) activation, Farnesoid X receptor/Retinoid X receptor (FXR/RXR) activation, acute phase response signaling, sucrose degradation V and regulation of actin-based motility by Rho in the PDR disease group compared to the NPDR disease group. CONCLUSIONS/INTERPRETATION Progression from non-proliferative to proliferative retinopathy in type-2 diabetic patients is a complex multi-mechanism and systemic process. Furthermore, saliva was shown to be a feasible alternative sample source for diabetic retinopathy biomarkers.
Collapse
Affiliation(s)
- Chin Soon Chee
- Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Khai Meng Chang
- Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology/Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Visvaraja Subrayan
- Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2539
|
Chen R, Zou H, Figeys D. Detergent-Assisted Glycoprotein Capture: A Versatile Tool for In-Depth N-Glycoproteome Analysis. J Proteome Res 2016; 15:2080-6. [PMID: 27147131 DOI: 10.1021/acs.jproteome.6b00056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Large-scale N-glycoproteome studies have been hindered by poor solubility of hydrophobic membrane proteins and the complexity of proteome samples. Herein, we developed a detergent-assisted glycoprotein capture method to reduce these issues by conducting hydrazide chemistry-based glycoprotein capture in the presence of strong detergents such as sodium dodecyl sulfate and Triton X-100. The strong detergents helped to solubilize hydrophobic membrane proteins and then increased the access of hydrazide groups to oxidized glycoproteins, thus increasing the coverage of the N-glycoproteome. Compared with the conventional glycopeptide capture method, the detergent-assisted glycoprotein capture approach nearly doubled the number of N-glycosylation sites identified from HEK 293T cells with improved specificity. Application of this approach in the larger scale N-glycoproteomics analysis of the HEK 293T cell membrane led to the identification of 2253 unique N-glycosites from 953 proteins. Furthermore, the application of this approach to human serum resulted in the identification of 850 N-glycosylation sites without any immunodepletion or fractionation. Overall, the detergent-assisted glycoprotein capture method simplified the capture process, and it increased the number of sites observed on both hydrophobic membrane proteins and hydrophilic secreted proteins.
Collapse
Affiliation(s)
- Rui Chen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa , 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Hanfa Zou
- Key Lab of Separation Science for Analytical Chemistry, National Chromatography R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science , Dalian 116023, China
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa , 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2540
|
Mühlhausen S, Findeisen P, Plessmann U, Urlaub H, Kollmar M. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes. Genome Res 2016; 26:945-55. [PMID: 27197221 PMCID: PMC4937558 DOI: 10.1101/gr.200931.115] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/28/2016] [Indexed: 01/12/2023]
Abstract
The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including “codon capture,” “genome streamlining,” and “ambiguous intermediate” theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNAAla containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects.
Collapse
Affiliation(s)
- Stefanie Mühlhausen
- Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Peggy Findeisen
- Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
2541
|
Salvetti A, Couté Y, Epstein A, Arata L, Kraut A, Navratil V, Bouvet P, Greco A. Nuclear Functions of Nucleolin through Global Proteomics and Interactomic Approaches. J Proteome Res 2016; 15:1659-69. [PMID: 27049334 DOI: 10.1021/acs.jproteome.6b00126] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nucleolin (NCL) is a major component of the cell nucleolus, which has the ability to rapidly shuttle to several other cells' compartments. NCL plays important roles in a variety of essential functions, among which are ribosome biogenesis, gene expression, and cell growth. However, the precise mechanisms underlying NCL functions are still unclear. Our study aimed to provide new information on NCL functions via the identification of its nuclear interacting partners. Using an interactomics approach, we identified 140 proteins co-purified with NCL, among which 100 of them were specifically found to be associated with NCL after RNase digestion. The functional classification of these proteins confirmed the prominent role of NCL in ribosome biogenesis and additionally revealed the possible involvement of nuclear NCL in several pre-mRNA processing pathways through its interaction with RNA helicases and proteins participating in pre-mRNA splicing, transport, or stability. NCL knockdown experiments revealed that NCL regulates the localization of EXOSC10 and the amount of ZC3HAV1, two components of the RNA exosome, further suggesting its involvement in the control of mRNA stability. Altogether, this study describes the first nuclear interactome of human NCL and provides the basis for further understanding the mechanisms underlying the essential functions of this nucleolar protein.
Collapse
Affiliation(s)
- Anna Salvetti
- International Center for Infectiology Research (CIRI), Inserm U1111, CNRS UMR5308 , 69007 Lyon, France
- Ecole Normale Supérieure de Lyon , 69007 Lyon, France
- Labex Ecofect Université de Lyon , 69007 Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes , 38000 Grenoble, France
- CEA, BIG-BGE , 38000 Grenoble, France
- INSERM, BGE , 38000 Grenoble, France
| | - Alberto Epstein
- International Center for Infectiology Research (CIRI), Inserm U1111, CNRS UMR5308 , 69007 Lyon, France
- Ecole Normale Supérieure de Lyon , 69007 Lyon, France
- Labex Ecofect Université de Lyon , 69007 Lyon, France
| | - Loredana Arata
- Subdepartment of Molecular Genetics, Public Health Institute of Chile , Santiago, Chile
| | - Alexandra Kraut
- Université Grenoble Alpes , 38000 Grenoble, France
- CEA, BIG-BGE , 38000 Grenoble, France
- INSERM, BGE , 38000 Grenoble, France
| | - Vincent Navratil
- Pôle Rhône Alpes de Bioinformatique (PRABI), Université Lyon 1 , 69100 Villeurbanne, France
| | - Philippe Bouvet
- Ecole Normale Supérieure de Lyon , 69007 Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR5286 , 69003 Lyon, France
| | - Anna Greco
- International Center for Infectiology Research (CIRI), Inserm U1111, CNRS UMR5308 , 69007 Lyon, France
- Ecole Normale Supérieure de Lyon , 69007 Lyon, France
| |
Collapse
|
2542
|
Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer AL, Krol E, Al-Rasheid KA, Mithöfer A, Weber AP, Schultz J, Hedrich R. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res 2016; 26:812-25. [PMID: 27197216 PMCID: PMC4889972 DOI: 10.1101/gr.202200.115] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
Abstract
Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.
Collapse
Affiliation(s)
- Felix Bemm
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Christina Larisch
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Maria Escalante-Perez
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Markus Ankenbrand
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany; Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Anna-Lena Van de Weyer
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Khaled A Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Axel Mithöfer
- Bioorganic Chemistry Department, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Andreas P Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
2543
|
Wang J, Yu Q, Xiong H, Wang J, Chen S, Yang Z, Dai S. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness. PLoS One 2016; 11:e0154235. [PMID: 27137770 PMCID: PMC4854468 DOI: 10.1371/journal.pone.0154235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions. However, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 81 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological changes revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness.
Collapse
Affiliation(s)
- Jing Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
| | - Qingbo Yu
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Haibo Xiong
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Jun Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States of America
| | - Zhongnan Yang
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Shaojun Dai
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| |
Collapse
|
2544
|
Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 2016; 6:25279. [PMID: 27125755 PMCID: PMC4850484 DOI: 10.1038/srep25279] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022] Open
Abstract
Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, β-glucosidases, endoxylanases, β-xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.
Collapse
|
2545
|
Ono M, Yamada K, Bensaddek D, Afzal V, Biddlestone J, Ortmann B, Mudie S, Boivin V, Scott MS, Rocha S, Lamond AI. Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines. PLoS One 2016; 11:e0154759. [PMID: 27128805 PMCID: PMC4851398 DOI: 10.1371/journal.pone.0154759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
The snoMEN (snoRNA Modulator of gene ExpressioN) vector technology was developed from a human box C/D snoRNA, HBII-180C, which contains an internal sequence that can be manipulated to make it complementary to RNA targets, allowing knock-down of targeted genes. Here we have screened additional human nucleolar snoRNAs and assessed their application for gene specific knock-downs to improve the efficiency of snoMEN vectors. We identify and characterise a new snoMEN vector, termed 47snoMEN, that is derived from box C/D snoRNA U47, demonstrating its use for knock-down of both endogenous cellular proteins and G/YFP-fusion proteins. Using multiplex 47snoMEM vectors that co-express multiple 47snoMEN in a single transcript, each of which can target different sites in the same mRNA, we document >3-fold increase in knock-down efficiency when compared with the original HBII-180C based snoMEN. The multiplex 47snoMEM vector allowed the construction of human protein replacement cell lines with improved efficiency, including the establishment of novel GFP–HIF-1α replacement cells. Quantitative mass spectrometry analysis confirmed the enhanced efficiency and specificity of protein replacement using the 47snoMEN-PR vectors. The 47snoMEN vectors expand the potential applications for snoMEN technology in gene expression studies, target validation and gene therapy.
Collapse
Affiliation(s)
- Motoharu Ono
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kayo Yamada
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vackar Afzal
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John Biddlestone
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Brian Ortmann
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sharon Mudie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vincent Boivin
- Department of Biochemistry and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Michelle S. Scott
- Department of Biochemistry and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Angus I. Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
2546
|
Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development. Int J Mol Sci 2016; 17:ijms17050618. [PMID: 27136540 PMCID: PMC4881444 DOI: 10.3390/ijms17050618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 11/17/2022] Open
Abstract
Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment.
Collapse
|
2547
|
Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold R, Schoonjans K, Menzies KJ, Auwerx J. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 2016; 352:1436-43. [PMID: 27127236 DOI: 10.1126/science.aaf2693] [Citation(s) in RCA: 888] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
Abstract
Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals.
Collapse
Affiliation(s)
- Hongbo Zhang
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yibo Wu
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich (ETHZ), 8093 Zurich, Switzerland
| | - Karim Gariani
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xu Wang
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Peiling Luan
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Davide D'Amico
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Eduardo R Ropelle
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. Laboratory of Molecular Biology of Exercise, School of Applied Science, University of Campinas, CEP 13484-350 Limeira, São Paulo, Brazil
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich (ETHZ), 8093 Zurich, Switzerland. Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | | | - Keir J Menzies
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, K1H 8M5 Ottawa, Ontario, Canada.
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
2548
|
Singh S, Dubey VK. Quantitative Proteome Analysis of Leishmania donovani under Spermidine Starvation. PLoS One 2016; 11:e0154262. [PMID: 27123864 PMCID: PMC4849798 DOI: 10.1371/journal.pone.0154262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
We have earlier reported antileishmanial activity of hypericin by spermidine starvation. In the current report, we have used label free proteome quantitation approach to identify differentially modulated proteins after hypericin treatment. A total of 141 proteins were found to be differentially regulated with ANOVA P value less than 0.05 in hypericin treated Leishmania promastigotes. Differentially modulated proteins have been broadly classified under nine major categories. Increase in ribosomal protein S7 protein suggests the repression of translation. Inhibition of proteins related to ubiquitin proteasome system, RNA binding protein and translation initiation factor also suggests altered translation. We have also observed increased expression of Hsp 90, Hsp 83-1 and stress inducible protein 1. Significant decreased level of cyclophilin was observed. These stress related protein could be cellular response of the parasite towards hypericin induced cellular stress. Also, defective metabolism, biosynthesis and replication of nucleic acids, flagellar movement and signalling of the parasite were observed as indicated by altered expression of proteins involved in these pathways. The data was analyzed rigorously to get further insight into hypericin induced parasitic death.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India- 781039
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India- 781039
| |
Collapse
|
2549
|
Léger T, Garcia C, Camadro JM. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans. Mol Cell Proteomics 2016; 15:2308-23. [PMID: 27125826 DOI: 10.1074/mcp.m116.059378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/06/2022] Open
Abstract
Protein glycolysation is an essential posttranslational modification in eukaryotic cells. In pathogenic yeasts, it is involved in a large number of biological processes, such as protein folding quality control, cell viability and host/pathogen relationships. A link between protein glycosylation and apoptosis was established by the analysis of the phenotypes of oligosaccharyltransferase mutants in budding yeast. However, little is known about the contribution of glycosylation modifications to the adaptive response to apoptosis inducers. The cysteine protease metacaspase Mca1p plays a key role in the apoptotic response in Candida albicans triggered by the quorum sensing molecule farnesol. We subjected wild-type and mca1-deletion strains to farnesol stress and then studied the early phase of apoptosis release in quantitative glycoproteomics and glycomics experiments on cell-free extracts essentially devoid of cell walls. We identified and characterized 62 new glycosylated peptides with their glycan composition: 17 N-glycosylated, 45 O-glycosylated, and 81 additional sites of N-glycosylation. They were found to be involved in the control of protein folding, cell wall integrity and cell cycle regulation. We showed a general increase in the O-glycosylation of proteins in the mca1 deletion strain after farnesol challenge. We identified 44 new putative protein substrates of the metacaspase in the glycoprotein fraction enriched on concanavalin A. Most of these substrates are involved in protein folding or protein resolubilization and in mitochondrial functions. We show here that key Mca1p substrates, such as Cdc48p or Ssb1p, involved in degrading misfolded glycoproteins and in the protein quality control system, are themselves differentially glycosylated. We found putative substrates, such as Bgl2p (validated by immunoblot), Srb1p or Ugp1p, that are involved in the biogenesis of glycans. Our findings highlight a new role of the metacaspase in amplifying cell death processes by affecting several critical protein quality control systems through the alteration of the protein glycosylation machinery.Data are available via ProteomeXchange with identifier PXD003677.
Collapse
Affiliation(s)
- Thibaut Léger
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France; §Mitochondria, Metals and Oxidative Stress Group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
2550
|
Mercado-Blanco J, Alós E, Rey MD, Prieto P. Pseudomonas fluorescens PICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiol Ecol 2016; 92:fiw092. [PMID: 27130938 DOI: 10.1093/femsec/fiw092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas fluorescens PICF7, an indigenous inhabitant of olive roots, displays an endophytic lifestyle in this woody crop and exerts biocontrol against the fungal phytopathogen Verticillium dahliae Here we report microscopy evidence that the strain PICF7 is also able to colonize and persist on or in wheat and barley root tissues. Root colonization of both cereal species followed a similar pattern to that previously reported in olive, including inner colonization of the root hairs. This demonstrates that strain PICF7 can colonize root systems of distant botanical species. Barley plants germinated from PICF7-treated seeds showed enhanced vegetative growth. Moreover, significant increases in the number of grains (up to 19.5%) and grain weight (up to 20.5%) per plant were scored in this species. In contrast, growth and yield were not significantly affected in wheat plants by the presence of PICF7. Proteomics analysis of the root systems revealed that different proteins were exclusively found depending on the presence or absence of PICF7 and only one protein with hydrogen ion transmembrane transporter activity was exclusively found in both PICF7-inoculated barley and wheat plants but not in the controls.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Departments of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| | - Enriqueta Alós
- Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| | - María Dolores Rey
- Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| |
Collapse
|