2551
|
Gaballa A, Helmann JD. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 1998; 180:5815-21. [PMID: 9811636 PMCID: PMC107652 DOI: 10.1128/jb.180.22.5815-5821.1998] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential nutrient for all cells, but remarkably little is known regarding bacterial zinc transport and its regulation. We have identified three of the key components acting to maintain zinc homeostasis in Bacillus subtilis. Zur is a metalloregulatory protein related to the ferric uptake repressor (Fur) family of regulators and is required for the zinc-specific repression of two operons implicated in zinc uptake, yciC and ycdHIyceA. A zur mutant overexpresses the 45-kDa YciC membrane protein, and purified Zur binds specifically, and in a zinc-responsive manner, to an operator site overlapping the yciC control region. A similar operator precedes the ycdH-containing operon, which encodes an ABC transporter. Two lines of evidence suggest that the ycdH operon encodes a high-affinity zinc transporter whereas YciC may function as part of a lower-affinity pathway. First, a ycdH mutant is impaired in growth in low-zinc medium, and this growth defect is exacerbated by the additional presence of a yciC mutation. Second, mutation of ycdH, but not yciC, alters the regulation of both the yciC and ycdH operons such that much higher levels of exogenous zinc are required for repression. We conclude that Zur is a Fur-like repressor that controls the expression of two zinc homeostasis operons in response to zinc. Thus, Fur-like regulators control zinc homeostasis in addition to their previously characterized roles in regulating iron homeostasis, acid tolerance responses, and oxidative stress functions.
Collapse
Affiliation(s)
- A Gaballa
- Section of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
2552
|
Robinson C, Rivolta C, Karamata D, Moir A. The product of the yvoC (gerF) gene of Bacillus subtilis is required for spore germination. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3105-3109. [PMID: 9846746 DOI: 10.1099/00221287-144-11-3105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All known gerF mutations affecting Bacillus subtilis spore germination have been mapped, by a combination of recombination and complementation analysis, to yvoC (Igt), a gene belonging to the yvoB (ptsK) yvoC (Igt) yvoDEF operon. Examination of the properties of null mutants confirmed that the only gene in the operon that affects germination is yvoC, which encodes a homologue of known prelipoprotein diacylglyceryl transferases. As several germination proteins (GerAC, GerBC, GerKC, GerD) are predicted lipoproteins, it is not unreasonable to assume that a defect in prelipoprotein processing will affect spore germination. Two other null mutants in this chromosomal region showed a clear phenotype: the nagA gene is required for growth on N-acetylglucosamine, whereas a null mutation in yvoB (ptsK) affects colony formation from single cells.
Collapse
Affiliation(s)
- Carl Robinson
- Department of Molecular Biology and Biotechnology, University of Sheffield,Sheffield 510 ZTN,UK
| | - Carlo Rivolta
- lnstitut de GCnCtique et de Biologie Microbiennes, UniversitC de Lausanne, Rue CCsar-Roux 19, CH-1005 Lausanne,Switzerland
| | - Dimitri Karamata
- lnstitut de GCnCtique et de Biologie Microbiennes, UniversitC de Lausanne, Rue CCsar-Roux 19, CH-1005 Lausanne,Switzerland
| | - Anne Moir
- Department of Molecular Biology and Biotechnology, University of Sheffield,Sheffield 510 ZTN,UK
| |
Collapse
|
2553
|
Ng WV, Ciufo SA, Smith TM, Bumgarner RE, Baskin D, Faust J, Hall B, Loretz C, Seto J, Slagel J, Hood L, DasSarma S. Snapshot of a large dynamic replicon in a halophilic archaeon: megaplasmid or minichromosome? Genome Res 1998; 8:1131-41. [PMID: 9847077 DOI: 10.1101/gr.8.11.1131] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extremely halophilic archaea, which flourish in hypersaline environments, are known to contain a variety of large dynamic replicons. Previously, the analysis of one such replicon, pNRC100, in Halobacterium sp. strain NRC-1, showed that it undergoes high-frequency insertion sequence (IS) element-mediated insertions and deletions, as well as inversions via recombination between 39-kb-long inverted repeats (IRs). Now, the complete sequencing of pNRC100, a 191,346-bp circle, has shown the presence of 27 IS elements representing eight families. A total of 176 ORFs or likely genes of 850-bp average size were found, 39 of which were repeated within the large IRs. More than one-half of the ORFs are likely to represent novel genes that have no known homologs in the databases. Among ORFs with previously characterized homologs, three different copies of putative plasmid replication and four copies of partitioning genes were found, suggesting that pNRC100 evolved from IS element-mediated fusions of several smaller plasmids. Consistent with this idea, putative genes typically found on plasmids, including those encoding a restriction-modification system and arsenic resistance, as well as buoyant gas-filled vesicles and a two-component regulatory system, were found on pNRC100. However, additional putative genes not expected on an extrachromosomal element, such as those encoding an electron transport chain cytochrome d oxidase, DNA nucleotide synthesis enzymes thioredoxin and thioredoxin reductase, and eukaryotic-like TATA-binding protein transcription factors and a chromosomal replication initiator protein were also found. A multi-step IS element-mediated process is proposed to account for the acquisition of these chromosomal genes. The finding of essential genes on pNRC100 and its property of resistance to curing suggest that this replicon may be evolving into a new chromosome.
Collapse
Affiliation(s)
- W V Ng
- Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2554
|
Pujic P, Dervyn R, Sorokin A, Ehrlich SD. The kdgRKAT operon of Bacillus subtilis: detection of the transcript and regulation by the kdgR and ccpA genes. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3111-3118. [PMID: 9846747 DOI: 10.1099/00221287-144-11-3111] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcription of a new catabolic operon in Bacillus subtilis, involved in the late stages of galacturonic acid utilization, has been studied. The operon consists of four genes: kdgR, encoding the putative regulator protein; kdgK, encoding 2-keto-3-deoxygluconate kinase; kdgA, encoding 2-keto-3-deoxygluconate-6-phosphate aldolase; and kdgT, encoding a transporter. These four genes are organized in one transcriptional unit and map at 198 degrees of the B. subtilis chromosome. Primer extension experiments and Northern blot analysis show that an active sigmaA-dependent promoter precedes kdgR and transcription is terminated at the putative p-independent terminator downstream of kdgT. The operon is negatively regulated by the kdgR and ccpA gene products, which belong to the LacI family of transcription regulators. The expression of the genes in this operon can be induced by galacturonate and strongly repressed when glucose is present in the growth medium. Knockout mutations in genes kdgR and ccpA remove, respectively, the effects of galacturonate and glucose on the transcription of this operon.
Collapse
Affiliation(s)
- Petar Pujic
- Laboratoire de GenCtique Microbienne, lnstitut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas cedex, France
| | - Rozenn Dervyn
- Laboratoire de GenCtique Microbienne, lnstitut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas cedex, France
| | - Alexei Sorokin
- Laboratoire de GenCtique Microbienne, lnstitut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas cedex, France
| | - S Dusko Ehrlich
- Laboratoire de GenCtique Microbienne, lnstitut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas cedex, France
| |
Collapse
|
2555
|
Grundy FJ, Henkin TM. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol 1998; 30:737-49. [PMID: 10094622 DOI: 10.1046/j.1365-2958.1998.01105.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms for regulation of the genes involved in the biosynthesis of methionine and cysteine are poorly characterized in Bacillus subtilis. Analyses of the recently completed B. subtilis genome revealed 11 copies of a highly conserved motif. In all cases, this motif was located in the leader region of putative transcriptional units, upstream of coding sequences that included genes involved in methionine or cysteine biosynthesis. Additional copies were identified in Clostridium acetobutylicum and Staphylococcus aureus, indicating conservation in other Gram-positive genera. The motif includes an element resembling an intrinsic transcriptional terminator, suggesting that regulation might be controlled at the level of premature termination of transcription. The 5' portion of all of the leaders could fold into a conserved complex structure. Analysis of the yitJ gene, which is homologous to Escherichia coli metH and metF, revealed that expression was induced by starvation for methionine and that induction was independent of the promoter and dependent on the leader region terminator. Mutation of conserved primary sequence and structural elements supported a model in which the 5' portion of the leader forms an anti-antiterminator structure, which sequesters sequences required for the formation of an antiterminator, which, in turn, sequesters sequences required for the formation of the terminator; the anti-antiterminator is postulated to be stabilized by the binding of some unknown factor when methionine is available. This set of genes is proposed to form a new regulon controlled by a global termination control system, which we designate the S box system, as most of the genes are involved in sulphur metabolism and biosynthesis of methionine and cysteine.
Collapse
Affiliation(s)
- F J Grundy
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
2556
|
Vagner V, Dervyn E, Ehrlich SD. A vector for systematic gene inactivation in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3097-3104. [PMID: 9846745 DOI: 10.1099/00221287-144-11-3097] [Citation(s) in RCA: 555] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To study the functions of the uncharacterized open reading frames identified in the Bacillus subtilis genome, several vectors were constructed to perform insertional mutagenesis in the chromosome. All the pMUTIN plasmids carry a lacZ reporter gene and an inducible Pspac promoter, which is tightly regulated and can be induced about 1000-fold. The integration of a pMUTIN vector into the target gene has three consequences: (1) the target gene is inactivated; (2) lacZ becomes transcriptionally fused to the gene, allowing its expression pattern to be monitored; (3) the Pspac promoter controls the transcription of downstream genes in an IPTG-dependent fashion. This last feature is important because B. subtilis genes are often organized in operons. The potential polar effects generated by the integration of the vectors can be alleviated by addition of IPTG. Also, conditional mutants of essential genes can be obtained by integrating pMUTIN vectors upstream of the target gene. The vectors are currently being used for systematic inactivation of genes without known function within the B. subtilis European consortium. pMUTIN characteristics and the inactivation of eight genes in the resA-serA region of the chromosome are presented.
Collapse
Affiliation(s)
- Valerie Vagner
- Genetique Microbienne, lnstitut National de la Recherche Ag ronom ique,Domaine de Vilvefl, 78352 Jouy-en-Josas cedex,France
| | - Etienne Dervyn
- Genetique Microbienne, lnstitut National de la Recherche Ag ronom ique,Domaine de Vilvefl, 78352 Jouy-en-Josas cedex,France
| | - S Dusko Ehrlich
- Genetique Microbienne, lnstitut National de la Recherche Ag ronom ique,Domaine de Vilvefl, 78352 Jouy-en-Josas cedex,France
| |
Collapse
|
2557
|
Aínsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martín C. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol 1998; 180:5836-43. [PMID: 9811639 PMCID: PMC107655 DOI: 10.1128/jb.180.22.5836-5843.1998] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 09/04/1998] [Indexed: 11/20/2022] Open
Abstract
A recombinant plasmid isolated from a Mycobacterium fortuitum genomic library by selection for gentamicin and 2-N'-ethylnetilmicin resistance conferred low-level aminoglycoside and tetracycline resistance when introduced into M. smegmatis. Further characterization of this plasmid allowed the identification of the M. fortuitum tap gene. A homologous gene in the M. tuberculosis H37Rv genome has been identified. The M. tuberculosis tap gene (Rv1258 in the annotated sequence of the M. tuberculosis genome) was cloned and conferred low-level resistance to tetracycline when introduced into M. smegmatis. The sequences of the putative Tap proteins showed 20 to 30% amino acid identity to membrane efflux pumps of the major facilitator superfamily (MFS), mainly tetracycline and macrolide efflux pumps, and to other proteins of unknown function but with similar antibiotic resistance patterns. Approximately 12 transmembrane regions and different sequence motifs characteristic of the MFS proteins also were detected. In the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), the levels of resistance to antibiotics conferred by plasmids containing the tap genes were decreased. When tetracycline accumulation experiments were carried out with the M. fortuitum tap gene, the level of tetracycline accumulation was lower than that in control cells but was independent of the presence of CCCP. We conclude that the Tap proteins of the opportunistic organism M. fortuitum and the important pathogen M. tuberculosis are probably proton-dependent efflux pumps, although we cannot exclude the possibility that they act as regulatory proteins.
Collapse
Affiliation(s)
- J A Aínsa
- Departamento de Microbiología Medicina Preventiva y Salud Pública, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
2558
|
Levin PA, Shim JJ, Grossman AD. Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J Bacteriol 1998; 180:6048-51. [PMID: 9811667 PMCID: PMC107683 DOI: 10.1128/jb.180.22.6048-6051.1998] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the pattern of FtsZ localization in a Bacillus subtilis minCD mutant. When grown in minimal medium, the majority (approximately 89%) of the minCD mutant cells with an FtsZ ring had a single, medially positioned FtsZ ring. These results indicate that genes in addition to minCD function to restrict the number and position of FtsZ rings. When grown in rich medium, greater than 50% of the minCD mutant cells had multiple FtsZ rings, indicating significant differences in regulation of FtsZ ring formation based on growth medium.
Collapse
Affiliation(s)
- P A Levin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
2559
|
Marston AL, Thomaides HB, Edwards DH, Sharpe ME, Errington J. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 1998; 12:3419-30. [PMID: 9808628 PMCID: PMC317235 DOI: 10.1101/gad.12.21.3419] [Citation(s) in RCA: 290] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell division in rod-shaped bacteria is initiated by formation of a ring of the tubulin-like protein FtsZ at mid-cell. Division site selection is controlled by a conserved division inhibitor MinCD, which prevents aberrant division at the cell poles. The Bacillus subtilis DivIVA protein controls the topological specificity of MinCD action. Here we show that DivIVA is targeted to division sites late in their assembly, after some MinCD-sensitive step requiring FtsZ and other division proteins has been passed. DivIVA then recruits MinD to the division sites preventing another division from taking place near the newly formed cell poles. Sequestration of MinD to the poles also releases the next mid-cell sites for division. Remarkably, this mechanism of DivIVA action is completely different from that of the equivalent protein MinE of Escherichia coli, even though both systems operate via the same division inhibitor MinCD.
Collapse
Affiliation(s)
- A L Marston
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
2560
|
Abstract
A highly ordered program of temporal and spatial gene activation during sporulation in Bacillus subtilis is governed by the principal RNA polymerase, and RNA polymerases containing at least five developmental sigma factors appearing successively during sporulation. This report describes a rapid procedure for extracting RNA polymerase from sporulating B. subtilis cells, which involves the construction of hexahistidine tagged beta' subunit of RNA polymerase and the isolation of RNA polymerase holoenzyme with Ni2+-NTA resin. In in vitro transcription of various promoters with the RNA polymerase thus purified, we observed the temporal change of each RNA polymerase activity during sporulation. This procedure enables isolation of RNA polymerase within 4h, starting with cell pellets. Our results indicated that a principal sigma factor, sigmaA, could be detected in a holoenzyme form during all the stages of growth and sporulation, while the other sigma factors sigmaH, sigmaE, sigmaF, sigmaG, and sigmaK involved in sporulation could be detected sequentially during sporulation. Moreover, Spo0A, the central transcription factor of commitment to sporulation, was also co-purified with RNA polymerase at early stages of sporulation.
Collapse
Affiliation(s)
- M Fujita
- Radioisotope Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | |
Collapse
|
2561
|
Gaasterland T, Ragan MA. Constructing multigenome views of whole microbial genomes. MICROBIAL & COMPARATIVE GENOMICS 1998; 3:177-92. [PMID: 9775388 DOI: 10.1089/omi.1.1998.3.177] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have designed and implemented a system to carry out cross-genome comparisons of open reading frames (ORFs) from multiple genomes. This implementation includes a genome profiling system that allows us to explore pairwise comparisons at different levels of match similarity and ask biologically motivated queries involving number and identity of ORFs, their function, functional category, distribution in genomes or in biological domains, and statistics on their matches and match families. This analysis required precise definition of new classification terms and concepts. We define the terms genomic signature, summary signature, biologic domain signature, domain class, match level, match family, and extended match family, then use these terms to define concepts, including genomically universal proteins and proteins characteristics of sets of genomes. We initiate an analysis based on automated FASTA (Pearson, 1996) comparison of 22,419 conceptually translated protein sequences from nine microbial genomes.
Collapse
Affiliation(s)
- T Gaasterland
- Mathematics and Computer Science Division, Argonne National Labortory, Illinois, USA
| | | |
Collapse
|
2562
|
Thompson J, Pikis A, Ruvinov SB, Henrissat B, Yamamoto H, Sekiguchi J. The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD(H)-dependent 6-phospho-alpha-glucosidase. Assignment to family 4 of the glycosylhydrolase superfamily. J Biol Chem 1998; 273:27347-56. [PMID: 9765262 DOI: 10.1074/jbc.273.42.27347] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene glvA (formerly glv-1) from Bacillus subtilis has been cloned and expressed in Escherichia coli. The purified protein GlvA (449 residues, Mr = 50,513) is a unique 6-phosphoryl-O-alpha-D-glucopyranosyl:phosphoglucohydrolase (6-phospho-alpha-glucosidase) that requires both NAD(H) and divalent metal (Mn2+, Fe2+, Co2+, or Ni2+) for activity. 6-Phospho-alpha-glucosidase (EC 3.2.1.122) from B. subtilis cross-reacts with polyclonal antibody to maltose 6-phosphate hydrolase from Fusobacterium mortiferum, and the two proteins exhibit amino acid sequence identity of 73%. Estimates for the Mr of GlvA determined by SDS-polyacrylamide gel electrophoresis (51,000) and electrospray-mass spectroscopy (50,510) were in excellent agreement with the molecular weight of 50,513 deduced from the amino acid sequence. The sequence of the first 37 residues from the N terminus determined by automated analysis agreed precisely with that predicted by translation of glvA. The chromogenic and fluorogenic substrates, p-nitrophenyl-alpha-D-glucopyranoside 6-phosphate and 4-methylumbelliferyl-alpha-D-glucopyranoside 6-phosphate were used for the discontinuous assay and in situ detection of enzyme activity, respectively. Site-directed mutagenesis shows that three acidic residues, Asp41, Glu111, and Glu359, are required for GlvA activity. Asp41 is located at the C terminus of a betaalphabeta fold that may constitute the dinucleotide binding domain of the protein. Glu111 and Glu359 may function as the catalytic acid (proton donor) and nucleophile (base), respectively, during hydrolysis of 6-phospho-alpha-glucoside substrates including maltose 6-phosphate and trehalose 6-phosphate. In metal-free buffer, GlvA exists as an inactive dimer, but in the presence of Mn2+ ion, these species associate to form the NAD(H)-dependent catalytically active tetramer. By comparative sequence alignment with its homologs, the novel 6-phospho-alpha-glucosidase from B. subtilis can be assigned to the nine-member family 4 of the glycosylhydrolase superfamily.
Collapse
Affiliation(s)
- J Thompson
- Microbial Biochemistry and Genetics Unit, Oral Infection and Immunity Branch, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
2563
|
Colovos C, Cascio D, Yeates TO. The 1.8 A crystal structure of the ycaC gene product from Escherichia coli reveals an octameric hydrolase of unknown specificity. Structure 1998; 6:1329-37. [PMID: 9782055 DOI: 10.1016/s0969-2126(98)00132-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ycaC gene comprises a 621 base pair open reading frame in Escherichia coli. The ycaC gene product (ycaCgp) is uncharacterized and has no assigned function. The closest sequence homologs with an assigned function belong to a family of bacterial hydrolases that catalyze isochorismatase-like reactions, but these have only low sequence similarity to ycaCgp (approximately 20% amino acid identity). The ycaCgp was obtained and identified during crystallization trials of an unrelated E. coli protein with which it co-purified. RESULTS The 1.8 A crystal structure of ycaCgp reveals an octameric complex comprised of two tetrameric rings. A large three-layer (alphabetaalpha) sandwich domain and a small helical domain form the folded structure of the monomeric unit. Comparisons with sequence and structure databases suggest that ycaCgp belongs to a diverse family of bacterial hydrolases. The most closely related three-dimensional structure is that of the D2 tetrameric N-carbamoylsarcosine amidohydrolase (CSHase) from an Arthrobacter species. A conspicuous cleft between two ycaCgp subunits contains several conserved residues including Cys118, which we propose to be catalytic. In the active site, a nonprolyl cis peptide bond precedes Val114 and coincides with a cis peptide bond in CSHase in a region of dissimilar sequence. The crystal structure reveals a probable error or mutation relative to the reported genomic sequence. CONCLUSIONS Although the specific function of ycaCgp is not yet known, structural studies solidify the relationship of this protein to other hydrolases and illuminate its active site and key elements of the catalytic mechanism.
Collapse
Affiliation(s)
- C Colovos
- Department of Chemistry & Biochemistry Molecular Biology Institute UCLA-DOE Laboratory of Structural Biology and Molecular Medicine University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
2564
|
Fetrow JS, Godzik A, Skolnick J. Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity. J Mol Biol 1998; 282:703-11. [PMID: 9743619 DOI: 10.1006/jmbi.1998.2061] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The application of an automated method for the screening of protein activity based on the sequence-to-structure-to-function paradigm is presented for the complete Escherichia coli genome. First, the structure of the protein is identified from its sequence using a threading algorithm, which aligns the sequences to the best matching structure in a structural database and extends sequence analysis well beyond the limits of local sequence identity. Then, the active site is identified in the resulting sequence-to-structure alignment using a "fuzzy functional form" (FFF), a three-dimensional descriptor of the active site of a protein. Here, this sequence-to-structure-to-function concept is applied to analysis of the complete E. coli genome, i.e. all E. coli open reading frames (ORFs) are screened for the thiol-disulfide oxidoreductase activity of the glutaredoxin/thioredoxin protein family. We show that the method can identify the active sites in ten sequences that are known to or proposed to exhibit this activity. Furthermore, oxidoreductase activity is predicted in two other sequences that have not been identified previously. This method distinguishes protein pairs with similar active sites from proteins pairs that are just topological cousins, i.e. those having similar global folds, but not necessarily similar active sites. Thus, this method provides a novel approach for extraction of active site and functional information based on three-dimensional structures, rather than simple sequence analysis. Prediction of protein activity is fully automated and easily extendible to new functions. Finally, it is demonstrated here that the method can be applied to complete genome database analysis.
Collapse
Affiliation(s)
- J S Fetrow
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
2565
|
Lolkema JS, Slotboom DJ. Hydropathy profile alignment: a tool to search for structural homologues of membrane proteins. FEMS Microbiol Rev 1998; 22:305-22. [PMID: 9862124 DOI: 10.1111/j.1574-6976.1998.tb00372.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Hydropathy profile alignment is introduced as a tool in functional genomics. The architecture of membrane proteins is reflected in the hydropathy profile of the amino acid sequence. Both secondary and tertiary structural elements determine the profile which provides enough sensitivity to detect evolutionary links between membrane proteins that are based on structural rather than sequence similarities. Since structure is better conserved than amino acid sequence, the hydropathy profile can detect more distant evolutionary relationships than can be detected by the primary structure. The technique is demonstrated by two approaches in the analysis of a subset of membrane proteins coded on the Escherichia coli and Bacillus subtilis genomes. The subset includes secondary transporters of the 12 helix type. In the first approach, the hydropathy profiles of proteins for which no function is known are aligned with the profiles of all other proteins in the subset to search for structural paralogues with known function. In the second approach, family hydropathy profiles of 8 defined families of secondary transporters that fall into 4 different structural classes (SC-ST1-4) are used to screen the membrane protein set for members of the structural classes. The analysis reveals that over 100 membrane proteins on each genome fall in only two structural classes. The largest structural class, SC-ST1, correlates largely with the Major Facilitator Superfamily defined before, but the number of families within the class has increased up to 57. The second large structural class, SC-ST2 contains secondary transporters for amino acids and amines and consists of 12 families.
Collapse
Affiliation(s)
- J S Lolkema
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands.
| | | |
Collapse
|
2566
|
Tomii K, Kanehisa M. A comparative analysis of ABC transporters in complete microbial genomes. Genome Res 1998; 8:1048-59. [PMID: 9799792 DOI: 10.1101/gr.8.10.1048] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ABC transporter is a major class of cellular translocation machinery in all bacterial species encoded in the largest set of paralogous genes. The operon structure is frequently found for the genes of three molecular components: the ATP-binding protein, the membrane protein, and the substrate-binding protein. Here, we developed an "ortholog group table" by comparison and classification of known and putative ABC transporters in the complete genomes of seven microorganisms. Our procedure was to first search and classify the most conserved ATP-binding protein components by the sequence similarity and then to classify the entire transporter units by examining the similarity of the other components and the conservation of the operon structure. The resulting 25 ortholog groups of ABC transporters were well correlated with known functions. Through the analysis, we could assign substrate specificity to hypothetical transporters, predict additional transporter operons, and identify novel types of putative transporters. The ortholog group table was also used as a reference data set for functional assignment in four additional genomes. In general, the ABC transporter operons were strongly conserved despite the extensive shuffling of gene locations in bacterial evolution. In Synechocystis, however, the tendency of forming operons was clearly diminished. Our result suggests that the ancestral ABC transporter operons may have arisen early in evolution before the speciation of bacteria and archaea.
Collapse
Affiliation(s)
- K Tomii
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | |
Collapse
|
2567
|
Preston GM, Haubold B, Rainey PB. Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr Opin Microbiol 1998; 1:589-97. [PMID: 10066526 DOI: 10.1016/s1369-5274(98)80094-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many bacteria form intimate associations with plants. Despite the agricultural and biotechnological significance of these bacteria, no whole genome sequences have yet been described. Plant-associated bacteria form a phylogenetically diverse group, with representative species from many major taxons. Sequence information from genomes of closely related bacteria, in combination with technological developments in the field of functional genomics, provides new opportunities for determining the origin and evolution of traits that contribute to bacterial fitness and interactions with plant hosts.
Collapse
Affiliation(s)
- G M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | | | |
Collapse
|
2568
|
Wittchen KD, Strey J, Bültmann A. Molecular characterization of the operon comprising the spoIV gene of Bacillus megaterium DSM319 and generation of a deletion mutant. J GEN APPL MICROBIOL 1998; 44:317-326. [PMID: 12501411 DOI: 10.2323/jgam.44.317] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
According to sequence analysis, the spoIV-locus of Bacillus megaterium DSM 319 is 1,185 bp long; it is the second gene of a sporulation operon, which altogether contains three open reading frames. The ORF preceding spoIV encodes a putative polypeptide with 94 amino acids; the 3rd ORF of the operon has 972 bp corresponding to 324 amino acids. The operon is flanked on both sides by palindromic sequences, probably representing Rho-independent terminators. A primer extension analysis revealed that mRNA synthesis starts immediately downstream of a promoter, which is similar to the consensus sequence of Bacillus subtilis sigma(E) dependent promoters. Both the -35 and the -10 region are within the terminator region of the preceding operon. Gene knockout experiments and reporter gene assays with a newly developed system based on the heterologous Paenibacillus macerans glucanase gene (bgl) confirmed sigma(E)-dependent transcription. Two open reading frames of a further upstream operon were also identified. Northern analysis revealed that transcription of these ORFs comes about in late sporulation phases. The genetic organization of the spoIV comprising operon and adjacent loci clearly resembles that of the B. subtilis yqfa-phoH gene cluster. Thus our findings are of general significance for endospore-forming bacteria.
Collapse
Affiliation(s)
- Klaus-Detlev Wittchen
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität, Corrensstrasse 3, 48149 Münster, Germany
| | | | | |
Collapse
|
2569
|
Shi L, Potts M, Kennelly PJ. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 1998; 22:229-53. [PMID: 9862122 DOI: 10.1111/j.1574-6976.1998.tb00369.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Inspection of the genomes for the bacteria Bacillus subtilis 168, Borrelia burgdorferi B31, Escherichia coli K-12, Haemophilus influenzae KW20, Helicobacter pylori 26695, Mycoplasma genitalium G-37, and Synechocystis sp PCC 6803 and for the archaeons Archaeoglobus fulgidus VC-16 DSM4304, Methanobacterium thermoautotrophicum delta H, and Methanococcus jannaschii DSM2661 revealed that each contains at least one ORF whose predicted product displays sequence features characteristic of eukaryote-like protein-serine/threonine/tyrosine kinases and protein-serine/threonine/tyrosine phosphatases. Orthologs for all four major protein phosphatase families (PPP, PPM, conventional PTP, and low molecular weight PTP) were present in the bacteria surveyed, but not all strains contained all types. The three archaeons surveyed lacked recognizable homologs of the PPM family of eukaryotic protein-serine/threonine phosphatases; and only two prokaryotes were found to contain ORFs for potential phosphatases from all four major families. Intriguingly, our searches revealed a potential ancestral link between the catalytic subunits of microbial arsenate reductases and the protein-tyrosine phosphatases; they share similar ligands (arsenate versus phosphate) and features of their catalytic mechanism (formation of arseno-versus phospho-cysteinyl intermediates). It appears that all prokaryotic organisms, at one time, contained the genetic information necessary to construct protein phosphorylation-dephosphorylation networks that target serine, threonine, and/or tyrosine residues on proteins. However, the potential for functional redundancy among the four protein phosphatase families has led many prokaryotic organisms to discard one, two, or three of the four.
Collapse
Affiliation(s)
- L Shi
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
2570
|
Ballesteros M, Kusano S, Ishihama A, Vicente M. The ftsQ1p gearbox promoter of Escherichia coli is a major sigma S-dependent promoter in the ddlB-ftsA region. Mol Microbiol 1998; 30:419-30. [PMID: 9791185 DOI: 10.1046/j.1365-2958.1998.01077.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The most potent promoters in the ddlB-ftsA region of the dcw cluster have been analysed for sigmaS-dependent transcription. Only the gearbox promoter ftsQ1p was found to be transcribed in vitro by RNA polymerase holoenzyme coupled to sigmaS (EsigmaS). This dependency on sigmaS was also found in vivo when single-copy fusions to a reporter gene were analysed in rpoS and rpoS+ backgrounds. Although ftsQ1p can be transcribed by RNA polymerase containing either sigmaD or sigmaS, there is a preference for EsigmaS when the assay conditions include potassium glutamate and supercoiled templates, a property shared with the bolA1p gearbox promoter. The rest of the promoters assayed, ftsQ2p and ftsZ2p3p4p, similarly to the control bolA2p promoter, were preferentially transcribed by EsigmaD, the housekeeper polymerase. The ftsQ1p and the bolA1p promoters also share the presence of AT-rich sequences upstream of the - 35 region and the requirement for an intact wild-type alpha-subunit for a proficient transcription, allowing their joint classification as gearboxes.
Collapse
Affiliation(s)
- M Ballesteros
- Departamento de Biología Celular y del Desarrollo, Consejo Superior de Investigaciones Científicas, Velázquez 144, E28006 Madrid, Spain
| | | | | | | |
Collapse
|
2571
|
Abstract
Genomics is providing us with a mass of information about the biochemistry, physiology and pathogenesis of Mycobacterium tuberculosis and Mycobacterium leprae. Comparison of the two genome sequences is mutually enriching and indicates that the M. leprae genome appears to have undergone shrinkage and large-scale gene inactivation, which may account for the exceptionally slow growth of this organism.
Collapse
Affiliation(s)
- S T Cole
- Unité de Génétique Moléculaire Bactérienne Institut Pasteur 28 rue du Docteur Roux 75724 Paris Cedex 15 France.
| |
Collapse
|
2572
|
Groeger W, KOstert W. Transmembrane topology of the two FhuB domains representing the hydrophobic components of bacterial ABC transporters involved in the uptake of siderophores, haem and vitamin B12. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2759-2769. [PMID: 9802017 DOI: 10.1099/00221287-144-10-2759] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transport of siderophores of the hydroxamate type across the Escherichia coli cytoplasmic membrane depends on a periplasmic binding-protein-dependent (PBT) system. This uptake system consists of the binding protein FhuD, the membrane-associated putative ATP-hydrolase FhuC and the integral membrane protein FhuB. The two halves of FhuB [FhuB(N) and FhuB(C)], both essential for transport, are similar with respect to structure and function. Regions were identified in FhuB(N) and FhuB(C) which are presumably involved in the interaction of the two FhuB halves with each other or with other components of the uptake system, or with the different substrates. To determine the topology of the membrane-embedded polypeptide chain, FhuB'-'beta-lactamase protein fusions were analysed. The experimental data suggest that each half of the FhuB is able to fold autonomously into the lipid bilayer, which is a prerequisite for the assembly of both halves into a transport-competent formation. The hydrophobic components from PBT systems involved in the uptake of siderophores, haem and vitamin B12 define a subclass of polytopic integral membrane proteins. The topology of these 'siderophore family' proteins differs from that of the equivalent components of other PBT systems in that each polypeptide (and each half of FhuB) consists of 10 membrane-spanning regions, with the N- and C-termini located in the cytoplasm. The conserved region at a distance of about 90 amino acids from the C-terminus, typical of all hydrophobic PBT proteins, is also oriented to the cytoplasm. However, in the 'siderophore family' proteins this putative ATPase interaction loop is followed by four instead of two transmembrane spans.
Collapse
|
2573
|
Nakano MM, Hoffmann T, Zhu Y, Jahn D. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. J Bacteriol 1998; 180:5344-50. [PMID: 9765565 PMCID: PMC107582 DOI: 10.1128/jb.180.20.5344-5350.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrate and nitrite reductases of Bacillus subtilis have two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded by narGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC (encoding assimilatory nitrate reductase) and nasF (required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC and nasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation, nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEF required the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130-3932, USA mnakano @bmb.ogi.edu
| | | | | | | |
Collapse
|
2574
|
Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ, Rossbachl S. A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2915-2924. [PMID: 9802033 DOI: 10.1099/00221287-144-10-2915] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizopine (L-3-O-methyl-scyllo-inosamine) is a symbiosis-specific compound found in alfalfa nodules induced by specific Sinorhizobium meliloti strains. It has been postulated that rhizobial strains able to synthesize and catabolize rhizopine gain a competitive advantage in the rhizosphere. The pathway of rhizopine degradation is analysed here. Since rhizopine is an inositol derivative, it was tested whether inositol catabolism is involved in rhizopine utilization. A genetic locus required for the catabolism of inositol as sole carbon source was cloned from S. meliloti. This locus was delimited by transposon Tn5 mutagenesis and its DNA sequence was determined. Based on DNA similarity studies and enzyme assays, this genetic region was shown to encode an S. meliloti myo-inositol dehydrogenase. Strains that harboured a mutation in the myo-inositol dehydrogenase gene (idhA) did not display myo-inositol dehydrogenase activity, were unable to utilize myo-inositol as sole carbon/energy source, and were unable to catabolize rhizopine. Thus, myo-inositol dehydrogenase activity is essential for rhizopine utilization in S. meliloti.
Collapse
Affiliation(s)
- Mark P Galbraith
- Department of Biological Sciences, Western, Michigan UniversityKalamazoo, MI 49008USA
| | - Szi Fei Feng
- Department of Biological Sciences, Western, Michigan UniversityKalamazoo, MI 49008USA
| | - James Borneman
- Department of Agronomy and Center for the Study of Nitrogen Fixation, University of Wisconsin- MadisonMadison, WI 53706USA
| | - Eric W Triplett
- Department of Agronomy and Center for the Study of Nitrogen Fixation, University of Wisconsin- MadisonMadison, WI 53706USA
| | - Frans J de Bruijn
- MSU-DOE Plant Research Laboratory, Department of Microbiology, NSF Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI 48824USA
| | - Silvia Rossbachl
- Department of Biological Sciences, Western, Michigan UniversityKalamazoo, MI 49008USA
| |
Collapse
|
2575
|
Gerstein M, Hegyi H. Comparing genomes in terms of protein structure: surveys of a finite parts list. FEMS Microbiol Rev 1998; 22:277-304. [PMID: 10357579 DOI: 10.1111/j.1574-6976.1998.tb00371.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We give an overview of the emerging field of structural genomics, describing how genomes can be compared in terms of protein structure. As the number of genes in a genome and the total number of protein folds are both quite limited, these comparisons take the form of surveys of a finite parts list, similar in respects to demographic censuses. Fold surveys have many similarities with other whole-genome characterizations, e.g., analyses of motifs or pathways. However, structure has a number of aspects that make it particularly suitable for comparing genomes, namely the way it allows for the precise definition of a basic protein module and the fact that it has a better defined relationship to sequence similarity than does protein function. An essential requirement for a structure survey is a library of folds, which groups the known structures into 'fold families.' This library can be built up automatically using a structure comparison program, and we described how important objective statistical measures are for assessing similarities within the library and between the library and genome sequences. After building the library, one can use it to count the number of folds in genomes, expressing the results in the form of Venn diagrams and 'top-10' statistics for shared and common folds. Depending on the counting methodology employed, these statistics can reflect different aspects of the genome, such as the amount of internal duplication or gene expression. Previous analyses have shown that the common folds shared between very different microorganisms, i.e., in different kingdoms, have a remarkably similar structure, being comprised of repeated strand-helix-strand super-secondary structure units. A major difficulty with this sort of 'fold-counting' is that only a small subset of the structures in a complete genome are currently known and this subset is prone to sampling bias. One way of overcoming biases is through structure prediction, which can be applied uniformly and comprehensively to a whole genome. Various investigators have, in fact, already applied many of the existing techniques for predicting secondary structure and transmembrane (TM) helices to the recently sequenced genomes. The results have been consistent: microbial genomes have similar fractions of strands and helices even though they have significantly different amino acid composition. The fraction of membrane proteins with a given number of TM helices falls off rapidly with more TM elements, approximately according to a Zipf law. This latter finding indicates that there is no preference for the highly studied 7-TM proteins in microbial genomes. Continuously updated tables and further information pertinent to this review are available over the web at http://bioinfo.mbb.yale.edu/genome.
Collapse
Affiliation(s)
- M Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
2576
|
Herrmann R, Reiner B. Mycoplasma pneumoniae and Mycoplasma genitalium: a comparison of two closely related bacterial species. Curr Opin Microbiol 1998; 1:572-9. [PMID: 10066529 DOI: 10.1016/s1369-5274(98)80091-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rapid progress in sequencing large quantities of DNA will provide an increasing number of complete genome sequences of closely related bacterial species as well as of pairs of isolates from the same species with different features, such as a pathogenic and an apathogenic representative. This opens the way to apply subtractive comparative analysis as a tool to select from the large pool of all bacterial genes a relatively small set of genes that can be correlated with the expression of a certain phenotype. These selected genes can then be the target for further functional analyses.
Collapse
Affiliation(s)
- R Herrmann
- Zentrum für Molekulare Biologie Heidelberg, Mikrobiologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | |
Collapse
|
2577
|
Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A. The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci U S A 1998; 95:11637-42. [PMID: 9751718 PMCID: PMC21693 DOI: 10.1073/pnas.95.20.11637] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli RNase E, an essential single-stranded specific endoribonuclease, is required for both ribosomal RNA processing and the rapid degradation of mRNA. The availability of the complete sequences of a number of bacterial genomes prompted us to assess the evolutionarily conservation of bacterial RNase E. We show here that the sequence of the N-terminal endoribonucleolytic domain of RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria. Furthermore, we demonstrate that the Synechocystis sp. homologue binds RNase E substrates and cleaves them at the same position as the E. coli enzyme. Taken together these results suggest that RNase E-mediated mechanisms of RNA decay are not confined to E. coli and its close relatives. We also show that the C-terminal half of E. coli RNase E is both sufficient and necessary for its physical interaction with the 3'-5' exoribonuclease polynucleotide phosphorylase, the RhlB helicase, and the glycolytic enzyme enolase, which are components of a "degradosome" complex. Interestingly, however, the sequence of the C-terminal half of E. coli RNase E is not highly conserved evolutionarily, suggesting diversity of RNase E interactions with other RNA decay components in different organisms. This notion is supported by our finding that the Synechocystis sp. RNase E homologue does not function as a platform for assembly of E. coli degradosome components.
Collapse
Affiliation(s)
- V R Kaberdin
- Institute of Microbiology and Genetics, Vienna Biocenter, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
2578
|
Joyce SA, Dreyfus M. In the absence of translation, RNase E can bypass 5' mRNA stabilizers in Escherichia coli. J Mol Biol 1998; 282:241-54. [PMID: 9735284 DOI: 10.1006/jmbi.1998.2027] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Bacilli, ribosomes or 30 S ribosomal subunits that are stalled or bound on mRNAs can stabilize downstream regions, hence the view that the degradation machinery scans mRNAs from their 5' end. In E. coli, several mRNAs can also be stabilized by secondary structures involving their 5' end. To test whether a bound 30 S subunit can act as a 5' stabilizer in E. coli, we compare here the stabilities of two untranslated variants of the lacZ mRNA, the decay of which is controlled by RNase E. In the first variant, a 35 nt region including the Ribosome Binding Site (RBS) is deleted, whereas in the second it is replaced by an 11 nt-long Shine-Dalgarno (SD) sequence lacking an associated start codon. In the latter variant, an 80 nt fragment encompassing the SD and extending up to the mRNA 5' end was stable in vivo (t1/2>one hour), reflecting 30 S binding. Yet, the full-length message was not more stable than when the SD was absent, although two small decay intermediates retaining the 5' end appear somewhat stabilized. A third variant was constructed in which the RBS is replaced by an insert which can fold back onto the lac leader, creating a putative hairpin involving the mRNA 5' end. The fragment corresponding to this hairpin was stable but, again, the full-length message was not stabilized. Thus, the untranslated lacZ mRNA cannot be protected against RNase E by 5' stabilizers, suggesting that mRNA scanning is not an obligate feature of RNase E-controlled degradation. Altogether, these results suggest important differences in mRNA degradation between E. coli and B. subtilis. In addition, we show that mRNA regions involved in stable hairpins or Shine-Dalgarno pairings can be metabolically stable in E. coli.
Collapse
Affiliation(s)
- S A Joyce
- Laboratoire de Génétique Moléculaire, CNRS URA 1302, Ecole Normale Supérieure, 46 rue d'Ulm, Paris, 75230, France
| | | |
Collapse
|
2579
|
Le Dantec L, Castroviejo M, Bové JM, Saillard C. Purification, cloning, and preliminary characterization of a Spiroplasma citri ribosomal protein with DNA binding capacity. J Biol Chem 1998; 273:24379-86. [PMID: 9733727 DOI: 10.1074/jbc.273.38.24379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rpsB-tsf-x operon of Spiroplasma citri encodes ribosomal protein S2 and elongation factor Ts, two components of the translational apparatus, and an unidentified X protein. A potential DNA-binding site (a 20-base pair (bp) inverted repeat sequence) is located at the 3' end of rpsB. Southwestern analysis of S. citri proteins, with a 30-bp double-stranded oligonucleotide probe (IRS), containing the 20-bp inverted repeat sequence and the genomic flanking sequences, detected an IRS-binding protein of 46 kDa (P46). P46 protein, which displays preferential affinity for the IRS, was purified from S. citri by a combination of affinity and gel filtration chromatographies. The native form of P46 seems to be homomultimeric as estimated by SDS-polyacrylamide gel electrophoresis analysis and gel filtration. A 3.5-kilobase pair S. citri DNA fragment comprising the P46 gene and flanking sequences was cloned and sequenced. Sequence analysis of this DNA fragment indicated that the P46 gene is located within the S10-spc operon of S. citri at the position of the gene coding for ribosomal protein L29 in the known S10-spc operons. The similarity between the N-terminal domain of P46 and the L29 ribosomal protein family and the presence of a 46-kDa IRS-binding protein in S. citri ribosomes indicated that P46 is the L29 ribosomal protein of S. citri. We suggest that P46 is a bifunctional protein with an L29 N-terminal domain and a C-terminal domain involved in IRS binding.
Collapse
Affiliation(s)
- L Le Dantec
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique and Université Victor Segalen Bordeaux 2, 33883 Villenave d'Ornon Cedex, France
| | | | | | | |
Collapse
|
2580
|
Bron S, Bolhuis A, Tjalsma H, Holsappel S, Venema G, van Dijl JM. Protein secretion and possible roles for multiple signal peptidases for precursor processing in bacilli. J Biotechnol 1998; 64:3-13. [PMID: 9823656 DOI: 10.1016/s0168-1656(98)00099-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacillus subtilis is one of the best known Gram-positive bacteria at both the genetic and physiological level. The entire sequence of its chromosome is known and efficient tools for the genetic modification of this bacterium are available. Moreover, B. subtilis and related Bacillus species are widely used in biotechnology, in particular for the production of secreted enzymes. Although bacilli can secrete large amounts of several native enzymes, the use of these bacteria for the production of heterologous enzymes has frequently resulted in low yields. Here we describe the identification of several components of the Bacillus protein secretion machinery. These components can now be engineered for optimal protein secretion. Special emphasis is given on type I signal peptidases, which remove signal peptides from secretory precursor proteins. Five genes specifying such enzymes (sip, for signal peptidase) are present on the B. subtilis chromosome. Although none of the sip genes is essential by itself, a specific combination of mutations in these genes is lethal. The expression pattern of some of the sip genes coincides with that of many secretory proteins, which seems to reflect an adaptation to high demands on the secretion machinery. Although the various B. subtilis type I signal peptidases have at least partially overlapping substrate specificities, clear differences in substrate preferences are also evident. These observations have implications for the engineering of the processing apparatus for improved secretion of native and heterologous proteins by Bacillus.
Collapse
Affiliation(s)
- S Bron
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
2581
|
Abstract
The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.
Collapse
Affiliation(s)
- J A Eisen
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
2582
|
Takamatsu H, Hiraoka T, Kodama T, Koide H, Kozuka S, Tochikubo K, Watabe K. Cloning of a novel gene yrbB, encoding a protein located in the spore integument of Bacillus subtilis. FEMS Microbiol Lett 1998; 166:361-7. [PMID: 9770294 DOI: 10.1111/j.1574-6968.1998.tb13913.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A DNA fragment (2.7 kbp) containing three deduced open reading frames, orf1, orf2 and orf3 (partial sequence), was isolated from the genomic library of Bacillus subtilis using an antiserum raised against spore integument, and was sequenced. orf2 was 519 nucleotides long and encoded a protein of 172 amino acids with a predicted molecular size of 19,552, corresponding to the protein which reacted with the antiserum. Immunoelectron microscopic observation indicated that YrbB, the product of orf2, was located within the spore integument, mainly in the cortex layer with a part in the inner region of the coat layer.
Collapse
Affiliation(s)
- H Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
2583
|
Abstract
The putative origin of replication in prokaryotic genomes can be located by a new method that finds short oligomers whose orientation is preferentially skewed around the origin. The skewed oligomer method is shown to work for all bacterial genomes and one of three archaeal genomes sequences to date, confirming known or predicted origins in most cases and in three cases (H. pylori, M. thermoautotrophicum, and Synechocystis sp.), suggesting origins that were previously unknown. In many cases, the presence of conserved genes and nucleotide motifs confirms the predictions. An algorithm for finding these skewed seven-base and eight-base sequences is described, along with a method for combining evidence from multiple skewed oligomers to accurately locate the replication origin. Possible explanations for the phenomenon of skewed oligomers are discussed. Explanations are presented for why some bacterial genomes contain hundreds of highly skewed oligomers, whereas others contain only a handful.
Collapse
Affiliation(s)
- S L Salzberg
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
2584
|
Gal-Mor O, Borovok I, Av-Gay Y, Cohen G, Aharonowitz Y. Gene organization in the trxA/B-oriC region of the Streptomyces coelicolor chromosome and comparison with other eubacteria. Gene 1998; 217:83-90. [PMID: 9795152 DOI: 10.1016/s0378-1119(98)00357-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The gene organization was determined in the trxA/B-rnpA region of the Streptomyces coelocolor chromosome, near to the origin of replication, oriC. Previously, we showed that the trxA and trxB genes, coding for thioredoxin and thioredoxin reductase, respectively, occur in S. coelicolor as a gene cluster and are contained on a cosmid H24 that carries oriC and several genes involved in DNA replication. Here we show that the trxA/B locus is positioned approx. 9.4kb from oriC, present the nucleotide sequence of the trxA/B-rnpA region and use sequence analysis to identify the nature of the intervening genes. Seven open reading frames were found, all oriented in the same direction, five of which were identified as the S. coelicolor homologs of SpoIIIJ, Jag, GidB, Soj and SpoOJ in Bacillus subtilis and which have been ascribed different functions in this and other bacteria for either DNA replication, chromosomal partitioning or morphological development. The arrangement of the genes coding for the above five proteins in the trxA/B-rnpA region in S. coelicolor resembles that in Mycobacterium leprae, Mycobacterium tuberculosis, B. subtilis and Pseudomonas putida, and supports the view that many of the genes necessary for development and cell division in bacteria are organized in a similar fashion. In B. subtilis and P. putida, however, the trxA/B genes are not present in the above gene arrangement.
Collapse
Affiliation(s)
- O Gal-Mor
- Department of Molecular Microbiology, Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
2585
|
Paik SH, Chakicherla A, Hansen JN. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 1998; 273:23134-42. [PMID: 9722542 DOI: 10.1074/jbc.273.36.23134] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An antimicrobial peptide produced by Bacillus subtilis 168 was isolated and characterized. It was named sublancin 168, and its behavior during Edman sequence analysis and its NMR spectrum suggested that sublancin is a dehydroalanine-containing lantibiotic. A hybridization probe based on the peptide sequence was used to clone the presublancin gene, which encoded a 56-residue polypeptide consisting of a 19-residue leader segment and a 37-residue mature segment. The mature segment contained one serine, one threonine, and five cysteine residues. Alkylation of mature sublancin showed no free sulfhydryl groups, suggesting that one sulfydryl had formed a beta-methyllanthionine bridge with a dehydrobutyrine derived by posttranslational modification of threonine; with the other four cysteines forming two disulfide bridges. It is unprecedented for a lantibiotic to contain a disulfide bridge. The sublancin leader was similar to known type AII lantibiotics, containing a double-glycine motif that is typically recognized by dual-function transporters. A protein encoded immediately downstream from the sublancin gene possessed features of a dual-function ABC transporter with a proteolytic domain and an ATP-binding domain. The antimicrobial activity spectrum of sublancin was like other lantibiotics, inhibiting Gram-positive bacteria but not Gram-negative bacteria; and like the lantibiotics nisin and subtilin in its ability to inhibit both bacterial spore outgrowth and vegetative growth. Sublancin is an extraordinarily stable lantibiotic, showing no degradation or inactivation after being stored in aqueous solution at room temperature for 2 years. The fact that sublancin is a natural product of B. subtilis 168, for which a great deal of genetic information is available, including the entire sequence of its genome, suggests that sublancin will be an especially good model for studying the potential of lantibiotics as sources of novel biomaterials.
Collapse
Affiliation(s)
- S H Paik
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
2586
|
van der Ploeg JR, Cummings NJ, Leisinger T, Connerton IF. Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2555-2561. [PMID: 9782504 DOI: 10.1099/00221287-144-9-2555] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 5 kb region upstream of katA at 82 degrees on the Bacillus subtilis chromosome contains five ORFs organized in an operon-like structure. Based on sequence similarity, three of the ORFs are likely to encode an ABC transport system (ssuBAC) and another to encode a monooxygenase (ssuD). The deduced amino acid sequence of the last ORF (ygaN) shows no similarity to any known protein. B. subtilis can utilize a range of aliphatic sulfonates such as alkanesulfonates, taurine, isethionate and sulfoacetate as a source of sulfur, but not when ssuA and ssuC are disrupted by insertion of a neomycin-resistance gene. Utilization of aliphatic sulfonates was not affected in a strain lacking 3'-phosphoadenosine 5'-phosphosulfate (PAPS) sulfotransferase, indicating that sulfate is not an intermediate in the assimilation of sulfonate-sulfur. Sulfate or cysteine prevented expression of beta-galactosidase from a transcriptional ssuD::lacZ fusion. It is proposed that ssuBACD encode a system for ATP-dependent transport of alkanesulfonates and an oxygenase required for their desulfonation.
Collapse
Affiliation(s)
- Jan R van der Ploeg
- Mikrobiologisches Institut, Swiss Federal Institute of TechnologyETH-Zentrum, CH-8092 ZürichSwitzerland
| | - Nicola J Cummings
- Institute of Food Research, Department of Food Macromolecular Science, Reading LaboratoryEarley Gate, Whiteknights Road, Reading RG6 6BZUK
| | - Thomas Leisinger
- Mikrobiologisches Institut, Swiss Federal Institute of TechnologyETH-Zentrum, CH-8092 ZürichSwitzerland
| | - Ian F Connerton
- Institute of Food Research, Department of Food Macromolecular Science, Reading LaboratoryEarley Gate, Whiteknights Road, Reading RG6 6BZUK
| |
Collapse
|
2587
|
Pedersen LB, Murray T, Popham DL, Setlow P. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis. J Bacteriol 1998; 180:4967-73. [PMID: 9733705 PMCID: PMC107527 DOI: 10.1128/jb.180.18.4967-4973.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated at the end of stationary phase; (ii) depends strongly on transcription factor sigmaH; and (iii) appears to be initiated from a promoter located immediately upstream of yoxA, a gene of unknown function located upstream of dacC on the B. subtilis chromosome. A B. subtilis dacC insertional mutant grew and sporulated identically to wild-type cells, and dacC and wild-type spores had the same heat resistance, cortex structure, and germination and outgrowth kinetics. Expression of dacC in Escherichia coli showed that this gene encodes an approximately 59-kDa membrane-associated penicillin-binding protein which is highly toxic when overexpressed.
Collapse
Affiliation(s)
- L B Pedersen
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | |
Collapse
|
2588
|
Abstract
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
2589
|
Young TW, Kuhn NJ, Wadeson A, Ward S, Burges D, Cooke GD. Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: the first of a new class of soluble pyrophosphatase? MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2563-2571. [PMID: 9782505 DOI: 10.1099/00221287-144-9-2563] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The N-terminal 15 amino acids of the major protein associated with inorganic pyrophosphatase activity in Bacillus subtilis WB600 are identical to those of B. subtilis ORF yybQ. This ORF was amplified from B. subtilis WB600 DNA by PCR and cloned into an overexpression vector in Escherichia coli. Induction of overexpression produced a soluble protein of 34,000 Da by SDS-PAGE and by matrix-assisted laser desorption and ionization mass spectrometry. The overexpressed protein had a high specific activity for the hydrolysis of magnesium pyrophosphate, and was specifically and reversibly activated by Mn2+ ions. These properties are identical to those of inorganic pyrophosphatase purified from B. subtilis WB600. No significant similarity was found between the derived sequence of the B. subtilis yybQ-encoded protein and published sequences of identified inorganic pyrophosphatases of Eukarya, Bacteria or Archaea domains. However, there is significant similarity to three putative proteins of unknown function from the archaea Methanococcus jannaschii and Archaeoglobus fulgidus, and from Streptococcus gordonii. The genomes of B. subtilis, M. jannaschii and A. fulgidus do not contain sequences similar to those of hitherto known soluble inorganic pyrophosphatases. The present findings, together with a survey of the properties of inorganic pyrophosphatases from 38 different sources, suggest that the B. subtilis yybQ-encoded protein is the first fully characterized member of a new class of inorganic pyrophosphatase.
Collapse
Affiliation(s)
- Tom W Young
- School of Biochemistry, The University of BirminghamEdgbaston, Birmingham B15 2TTUK
| | - Nicholas J Kuhn
- School of Biochemistry, The University of BirminghamEdgbaston, Birmingham B15 2TTUK
| | - Albert Wadeson
- School of Biochemistry, The University of BirminghamEdgbaston, Birmingham B15 2TTUK
| | - Simon Ward
- School of Biochemistry, The University of BirminghamEdgbaston, Birmingham B15 2TTUK
| | - Dan Burges
- School of Biochemistry, The University of BirminghamEdgbaston, Birmingham B15 2TTUK
| | - G Dunstan Cooke
- School of Biochemistry, The University of BirminghamEdgbaston, Birmingham B15 2TTUK
| |
Collapse
|
2590
|
Murray T, Popham DL, Setlow P. Bacillus subtilis cells lacking penicillin-binding protein 1 require increased levels of divalent cations for growth. J Bacteriol 1998; 180:4555-63. [PMID: 9721295 PMCID: PMC107467 DOI: 10.1128/jb.180.17.4555-4563.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis strains lacking penicillin-binding protein 1 (PBP1), encoded by ponA, required greater amounts of Mg2+ or Ca2+ for vegetative growth or spore outgrowth than the wild-type strain and strains lacking other high-molecular-weight (HMW) PBPs. Growth of ponA cells in a medium low in Mg2+ also resulted in greatly increased cell bending compared to wild-type cells or cells lacking other HMW PBPs. The addition of high levels of Mg2+ to growth media eliminated these phenotypes of a ponA mutant. In contrast to the effects of divalent cations, NaCl did not restore ponA cell growth in a divalent-cation-deficient medium. Surprisingly, wild-type cells swelled and then lysed during both vegetative growth and spore outgrowth when 500 mM NaCl was included in a divalent-cation-deficient medium. Again, Mg2+ addition was sufficient to allow normal vegetative growth and spore outgrowth of both wild-type and ponA cells in a medium with 500 mM NaCl. These studies demonstrate that (i) while HMW PBPs possess largely redundant functions in rich medium, when divalent cations are limiting, PBP1 is required for cell growth and spore outgrowth; and (ii) high levels of NaCl induce cell lysis in media deficient in divalent cations during both vegetative growth and spore outgrowth.
Collapse
Affiliation(s)
- T Murray
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
2591
|
Chédin F, Noirot P, Biaudet V, Ehrlich SD. A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus subtilis. Mol Microbiol 1998; 29:1369-77. [PMID: 9781875 DOI: 10.1046/j.1365-2958.1998.01018.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologous recombination in Bacillus subtilis requires the product of the addA and addB genes, the AddAB enzyme. This enzyme, which is both a helicase and a powerful nuclease, is thought to be the counterpart of the Escherichia coli RecBCD enzyme. From this analogy, it is expected that the nuclease activity of AddAB can be downregulated by a specific DNA sequence, which would correspond to the chi site in E. coli. Using protection of linear double-stranded DNA as a criterion, we identified the five-nucleotide sequence 5'-AGCGG-3', or its complement 5'-CCGCT-3', as being sufficient for AddAB nuclease attenuation. We have shown further that this attenuation occurs only if the sequence is properly oriented with respect to the translocating AddAB enzyme. Finally, inspection of the complete B. subtilis genome revealed that this five-nucleotide sequence is over-represented and is, in a majority of cases, co-oriented with DNA replication. Based on these observations, we propose that 5'-AGCGG-3', or its complement, is the B. subtilis analogue of the E. coli chi sequence.
Collapse
Affiliation(s)
- F Chédin
- Laboratoire de Génétique Microbienne, Institut National de Recherche Agronomique, Domaine de Vilvert, Jouy en Josas, France
| | | | | | | |
Collapse
|
2592
|
Abstract
The major regulator of sporulation initiation in Bacillus subtilis is the phosphorelay, a multicomponent signal transduction system. A myriad of signals, both positive and negative, from the environment, cell cycle and metabolism is received and interpreted by the phosphorelay and integrated through the opposing activity of protein kinases and protein aspartate phosphatases to create an extremely sophisticated regulatory network.
Collapse
Affiliation(s)
- M Perego
- Dept of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2593
|
Gomez JE, Chen JM, Bishai WR. Sigma factors of Mycobacterium tuberculosis. TUBERCLE AND LUNG DISEASE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL UNION AGAINST TUBERCULOSIS AND LUNG DISEASE 1998; 78:175-83. [PMID: 9713650 DOI: 10.1016/s0962-8479(97)90024-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J E Gomez
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
2594
|
Audic S, Claverie JM. Self-identification of protein-coding regions in microbial genomes. Proc Natl Acad Sci U S A 1998; 95:10026-31. [PMID: 9707594 PMCID: PMC21455 DOI: 10.1073/pnas.95.17.10026] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new method for predicting protein-coding regions in microbial genomic DNA sequences is presented. It uses an ab initio iterative Markov modeling procedure to automatically perform the partition of genomic sequences into three subsets shown to correspond to coding, coding on the opposite strand, and noncoding segments. In contrast to current methods, such as GENEMARK [Borodovsky, M. & McIninch, J. D. (1993) Comput. Chem. 17, 123-133], no training set or prior knowledge of the statistical properties of the studied genome are required. This new method tolerates error rates of 1-2% and can process unassembled sequences. It is thus ideal for the analysis of genome survey and/or fragmented sequence data from uncharacterized microorganisms. The method was validated on 10 complete bacterial genomes (from four major phylogenetic lineages). The results show that protein-coding regions can be identified with an accuracy of up to 90% with a totally automated and objective procedure.
Collapse
Affiliation(s)
- S Audic
- Structural and Genetic Information Laboratory, Centre National de la Recherche Scientifique-EP.91, 31 rue Joseph Aiguier, Marseille F-13402, France.
| | | |
Collapse
|
2595
|
Bolhuis A, Broekhuizen CP, Sorokin A, van Roosmalen ML, Venema G, Bron S, Quax WJ, van Dijl JM. SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J Biol Chem 1998; 273:21217-24. [PMID: 9694879 DOI: 10.1074/jbc.273.33.21217] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present studies, we show that the SecD and SecF equivalents of the Gram-positive bacterium Bacillus subtilis are jointly present in one polypeptide, denoted SecDF, that is required to maintain a high capacity for protein secretion. Unlike the SecD subunit of the pre-protein translocase of Escherichia coli, SecDF of B. subtilis was not required for the release of a mature secretory protein from the membrane, indicating that SecDF is involved in earlier translocation steps. Strains lacking intact SecDF showed a cold-sensitive phenotype, which was exacerbated by high level production of secretory proteins, indicating that protein translocation in B. subtilis is intrinsically cold-sensitive. Comparison with SecD and SecF proteins from other organisms revealed the presence of 10 conserved regions in SecDF, some of which appear to be important for SecDF function. Interestingly, the SecDF protein of B. subtilis has 12 putative transmembrane domains. Thus, SecDF does not only show sequence similarity but also structural similarity to secondary solute transporters. Our data suggest that SecDF of B. subtilis represents a novel type of the SecD and SecF proteins, which seems to be present in at least two other organisms.
Collapse
Affiliation(s)
- A Bolhuis
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
2596
|
Saier MH. Genome sequencing and informatics: new tools for biochemical discoveries. PLANT PHYSIOLOGY 1998; 117:1129-33. [PMID: 9701568 PMCID: PMC1539184 DOI: 10.1104/pp.117.4.1129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, California, 92093-0116, USA.
| |
Collapse
|
2597
|
Huang X, Fredrick KL, Helmann JD. Promoter recognition by Bacillus subtilis sigmaW: autoregulation and partial overlap with the sigmaX regulon. J Bacteriol 1998; 180:3765-70. [PMID: 9683469 PMCID: PMC107356 DOI: 10.1128/jb.180.15.3765-3770.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Bacillus subtilis genome encodes at least 17 distinct sigma factors, including seven members of the extracytoplasmic function (ECF) subfamily. We have investigated the expression and regulation of the ECF sigma factor encoded by the sigW gene. A sigmaW-dependent promoter (PW) precedes sigW, demonstrating that this transcription factor is positively autoregulated. Expression of sigW is regulated by both growth phase and medium composition. Maximal expression is attained in early-stationary-phase cells grown in rich medium. We previously reported that sigW mutants have elevated transcription of some sigmaX-controlled genes, and we now report that the converse is also true: in a sigX mutant, PW is derepressed during logarithmic growth. Thus, these two regulons are mutually antagonistic. Reconstituted sigmaW holoenzyme faithfully recognizes the PW preceding sigW but does not recognize the PX promoter preceding the sigX gene. Autoregulation of sigX is also highly specific: sigmaX holoenzyme initiates transcription from PX but recognizes PW poorly if at all. In contrast, several promoters that are at least partially under sigmaX control are active with both the sigmaX and sigmaW holoenzymes in vitro. This finding supports the suggestion that the sigmaW and sigmaX regulons overlap. Sequence comparisons suggest that promoters recognized by these two sigma factors have similar -35 elements but are distinguished by different base preferences at two key positions within the -10 element.
Collapse
Affiliation(s)
- X Huang
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | |
Collapse
|
2598
|
Völker U, Andersen KK, Antelmann H, Devine KM, Hecker M. One of two osmC homologs in Bacillus subtilis is part of the sigmaB-dependent general stress regulon. J Bacteriol 1998; 180:4212-8. [PMID: 9696771 PMCID: PMC107419 DOI: 10.1128/jb.180.16.4212-4218.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we present the identification and analysis of two Bacillus subtilis genes, yklA and ykzA, which are homologous to the partially RpoS-controlled osmC gene from Escherichia coli. The yklA gene is expressed at higher levels in minimal medium than in rich medium and is driven by a putative vegetative promoter. Expression of ykzA is not medium dependent but increases dramatically when cells are exposed to stress and starvation. This stress-induced increase in ykzA expression is absolutely dependent on the alternative sigma factor sigmaB, which controls a large stationary-phase and stress regulon. ykzA is therefore another example of a gene common to the RpoS and sigmaB stress regulons of E. coli and B. subtilis, respectively. The composite complex expression pattern of the two B. subtilis genes is very similar to the expression profile of osmC in E. coli.
Collapse
Affiliation(s)
- U Völker
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, 17487 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
2599
|
Abstract
Members of a family of cold-shock proteins (CSPs) are found throughout the eubacterial domain and appear to function as RNA-chaperones. They have been implicated in various cellular processes, including adaptation to low temperatures, cellular growth, nutrient stress and stationary phase. The discovery of a domain--the cold-shock domain--that shows strikingly high homology and similar RNA-binding properties to CSPs in a growing number of eukaryotic nucleic-acid-binding proteins suggests that these proteins have an ancient origin.
Collapse
Affiliation(s)
- P L Graumann
- Biological Laboratories, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
2600
|
Sekowska A, Bertin P, Danchin A. Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Mol Microbiol 1998; 29:851-8. [PMID: 9723923 DOI: 10.1046/j.1365-2958.1998.00979.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitous polyamines fulfil a variety of functions in all three kingdoms of life. However, little is known about the biosynthesis of these compounds in Gram-positive bacteria. We show that, in Bacillus subtilis, there is a single pathway to polyamines, starting from arginine, with agmatine as an intermediate. We first identified the structural gene of arginine decarboxylase, speA (formerly cad), and then described the speE speB operon, directing synthesis of spermidine synthase and agmatinase. This operon is transcribed into two messenger RNAs, a major one for the speE gene and a minor one for both speEand speB. The promoter of the operon was identified upstream from the speE gene by primer extension analysis. Transcription of this operon indicated that the level of agmatinase synthesis is very low, thus allowing a stringent control on the synthesis of putrescine and, therefore, of all polyamines. This is consistent with the level of polyamines measured in the cell.
Collapse
Affiliation(s)
- A Sekowska
- Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | | | |
Collapse
|