2901
|
Nang NT, Song BM, Kang YM, Kim HM, Kim HS, Seo SH. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both highly pathogenic H5N1 and H9N2 influenza viruses. Influenza Other Respir Viruses 2012; 7:120-31. [PMID: 22487301 PMCID: PMC5780756 DOI: 10.1111/j.1750-2659.2012.00363.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity.
Collapse
Affiliation(s)
- Nguyen Tai Nang
- Laboratory of Influenza Research Institute for Influenza Virus Laboratory of Public Health, College of Veterinary Medicine, Chungnam National University, Yuseong Gu, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
2902
|
Oct4+ stem/progenitor swine lung epithelial cells are targets for influenza virus replication. J Virol 2012; 86:6427-33. [PMID: 22491467 DOI: 10.1128/jvi.00341-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated stem/progenitor epithelial cells from the lungs of 4- to 6-week-old pigs. The epithelial progenitor colony cells were surrounded by mesenchymal stromal cells. The progenitor epithelial colony cells expressed stem cell markers such as octamer binding transcription factor 4 (Oct4) and stage-specific embryonic antigen 1 (SSEA-1), as well as the epithelial markers pancytokeratin, cytokeratin-18, and occludin, but not mesenchymal (CD44, CD29, and CD90) and hematopoietic (CD45) markers. The colony cells had extensive self-renewal potential and had the capacity to undergo differentiation to alveolar type I- and type II-like pneumocytes. Additionally, these cells expressed sialic acid receptors and supported the active replication of influenza virus, which was accompanied by cell lysis. The lysis of progenitor epithelial cells by influenza virus may cause a marked reduction in the potential of progenitor cells for self renewal and for their ability to differentiate into specialized cells of the lung. These observations suggest the possible involvement of lung stem/progenitor cells in influenza virus infection.
Collapse
|
2903
|
Berhane Y, Kehler H, Handel K, Hisanaga T, Xu W, Ojkic D, Pasick J. Molecular and antigenic characterization of reassortant H3N2 viruses from turkeys with a unique constellation of pandemic H1N1 internal genes. PLoS One 2012; 7:e32858. [PMID: 22470427 PMCID: PMC3310002 DOI: 10.1371/journal.pone.0032858] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/31/2012] [Indexed: 01/21/2023] Open
Abstract
Triple reassortant (TR) H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003) were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010) were unique reassortants with PB2, PA, nucleoprotein (NP) and matrix (M) gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro.
Collapse
Affiliation(s)
- Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Helen Kehler
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Katherine Handel
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - John Pasick
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
2904
|
Ngunjiri JM, Lee CW, Ali A, Marcus PI. Influenza virus interferon-inducing particle efficiency is reversed in avian and mammalian cells, and enhanced in cells co-infected with defective-interfering particles. J Interferon Cytokine Res 2012; 32:280-5. [PMID: 22385205 DOI: 10.1089/jir.2011.0102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Naturally selected variants of influenza virus encoding truncated NS1 proteins were tested in chickens as candidate live-attenuated influenza vaccines. Their effectiveness correlated with the amount of interferon (IFN) induced in chicken cells. Effective variants induced large amounts of IFN and contained subpopulations with high ratios of defective-interfering particles:IFN-inducing particles (DIP:IFP). Ineffective variants induced less IFN and contained lower ratios of DIP:IFP. Unexpectedly, there was a reversal of phenotypes in mammalian cells. Variants that induced low amounts of IFN and had low DIP:IFP ratios in chicken cells were excellent IFN inducers with high DIP:IFP ratios in mammalian cells, and vice versa. The high DIP:IFP ratios and computer-simulated dynamics of infection suggested that DIP, as an individual particle, did not function as an IFP. The higher efficiency of IFPs in the presence of DIPs was attributed to reduced amounts of newly synthesized viral polymerase known to result from out-competition by defective-interfering RNAs, and the subsequent failure of that polymerase to turn-off cellular mRNA transcription-including IFN-mRNA.
Collapse
Affiliation(s)
- John M Ngunjiri
- Virus and Interferon Research Laboratory, Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
2905
|
Malinoski CP, Marcus PI. Influenza Virus: A Single Noninfectious Interferon Induction-Suppressing Particle Blocks Expression of Interferon-Inducing Particles. J Interferon Cytokine Res 2012; 32:121-6. [PMID: 22136418 DOI: 10.1089/jir.2011.0078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christopher P. Malinoski
- Laboratory for Virus and Interferon Research, Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Philip I. Marcus
- Laboratory for Virus and Interferon Research, Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
2906
|
|
2907
|
Dwivedi V, Manickam C, Binjawadagi B, Linhares D, Murtaugh MP, Renukaradhya GJ. Evaluation of immune responses to porcine reproductive and respiratory syndrome virus in pigs during early stage of infection under farm conditions. Virol J 2012; 9:45. [PMID: 22340040 PMCID: PMC3298799 DOI: 10.1186/1743-422x-9-45] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 02/16/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) causes chronic, economically devastating disease in pigs of all ages. Frequent mutations in the viral genome result in viruses with immune escape mutants. Irrespective of regular vaccination, control of PRRSV remains a challenge to swine farmers. In PRRSV-infected pigs, innate cytokine IFN-α is inhibited and the adaptive arm of the immunity is delayed. To elucidate both cellular and innate cytokine responses at very early stages of PRRSV infection, seven weeks old pigs maintained on a commercial pig farm were infected and analyzed. RESULTS One pig in a pen containing 25 pigs was PRRSV infected and responses from this pig and one penmate were assessed two days later. All the infected and a few of the contact neighbor pigs were viremic. At day 2 post-infection, approximately 50% of viremic pigs had greater than 50% reduction in NK cell-mediated cytotoxicity, and nearly a 1-fold increase in IFN-α production was detected in blood of a few pigs. Enhanced secretion of IL-4 (in ~90%), IL-12 (in ~40%), and IL-10 (in ~20%) (but not IFN-γ) in PRRSV infected pigs was observed. In addition, reduced frequency of myeloid cells, CD4(-)CD8(+) T cells, and CD4(+)CD8(+) T cells and upregulated frequency of lymphocytes bearing natural T regulatory cell phenotype were detected in viremic pigs. Interestingly, all viremic contact pigs also had comparable immune cell modulations. CONCLUSION Replicating PRRSV in both infected and contact pigs was found to be responsible for rapid modulation in NK cell-meditated cytotoxicity and alteration in the production of important immune cytokines. PRRSV-induced immunological changes observed simultaneously at both cellular and cytokine levels early post-infection appear to be responsible for the delay in generation of adaptive immunity. As the study was performed in pigs maintained under commercial environmental conditions, this study has practical implications in design of protective vaccines.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, 44691, USA
| | | | | | | | | | | |
Collapse
|
2908
|
Yang XQ, Murani E, Ponsuksili S, Wimmers K. Association of TLR4 polymorphism with cytokine expression level and pulmonary lesion score in pigs. Mol Biol Rep 2012; 39:7003-9. [PMID: 22307794 DOI: 10.1007/s11033-012-1530-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/24/2012] [Indexed: 01/28/2023]
Abstract
The toll-like receptor 4 (TLR4), recognizing lipopolysaccharide of gram-negative bacteria, plays an essential role in immune responses. Variation in TLR4 alters host immune responses to pathogen and is associated with resistance/susceptibility to infectious diseases, as suggested by studies in humans and agricultural species, including cattle and chicken. In this study, we analyzed association of single nucleotide polymorphisms (SNPs) of TLR4 with cytokine expression level and pulmonary lesion score in swine. The SNP c.611 T>A showed significant association with the transcription levels of IFNG, TNFA, and IL-6 (P < 0.05); the SNP c.962 G>A showed significant association with the transcription of IFNG, IL-2, and IL-4 (P < 0.05); the SNP c.1,027 C>A showed significant association with the transcription of IFNG and IL-6 (P < 0.05); the haplotypes showed significant association with the transcription of IFNG, IL-2, IL-4, IL-6, and TNFA (P < 0.05). Both SNPs c.611 T>A and c.962 G>A showed significant association with pulmonary lesion scores (P < 0.01); and the combination genotypes of 3 polymorphic sites were also significantly associated with pulmonary lesion scores (P < 0.01). The observed relationship between TLR4 polymorphism and the transcription levels of cytokines indicate that these SNPs are related to the modulation of the cytokine mediated immune response.
Collapse
Affiliation(s)
- X Q Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | | | | | | |
Collapse
|
2909
|
Variability among the neuraminidase, non-structural 1 and PB1-F2 proteins in the influenza A virus genome. Virus Genes 2012; 44:363-73. [PMID: 22261818 DOI: 10.1007/s11262-012-0714-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/04/2012] [Indexed: 11/26/2022]
|
2910
|
Gao W, Sun W, Qu B, Cardona CJ, Powell K, Wegner M, Shi Y, Xing Z. Distinct regulation of host responses by ERK and JNK MAP kinases in swine macrophages infected with pandemic (H1N1) 2009 influenza virus. PLoS One 2012; 7:e30328. [PMID: 22279582 PMCID: PMC3261190 DOI: 10.1371/journal.pone.0030328] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/13/2011] [Indexed: 02/08/2023] Open
Abstract
Swine influenza is an acute respiratory disease in pigs caused by swine influenza virus (SIV). Highly virulent SIV strains cause mortality of up to 10%. Importantly, pigs have long been considered "mixing vessels" that generate novel influenza viruses with pandemic potential, a constant threat to public health. Since its emergence in 2009 and subsequent pandemic spread, the pandemic (H1N1) 2009 (H1N1pdm) has been detected in pig farms, creating the risk of generating new reassortants and their possible infection of humans. Pathogenesis in SIV or H1N1pdm-infected pigs remains poorly characterized. Proinflammatory and antiviral cytokine responses are considered correlated with the intensity of clinical signs, and swine macrophages are found to be indispensible in effective clearance of SIV from pig lungs. In this study, we report a unique pattern of cytokine responses in swine macrophages infected with H1N1pdm. The roles of mitogen-activated protein (MAP) kinases in the regulation of the host responses were examined. We found that proinflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were significantly induced and their induction was ERK1/2-dependent. IFN-β and IFN-inducible antiviral Mx and 2'5'-OAS were sharply induced, but the inductions were effectively abolished when ERK1/2 was inhibited. Induction of CCL5 (RANTES) was completely inhibited by inhibitors of ERK1/2 and JNK1/2, which appeared also to regulate FasL and TNF-α, critical for apoptosis in pig macrophages. We found that NFκB was activated in H1N1pdm-infected cells, but the activation was suppressed when ERK1/2 was inhibited, indicating there is cross-talk between MAP kinase and NFκB responses in pig macrophages. Our data suggest that MAP kinase may activate NFκB through the induction of RIG-1, which leads to the induction of IFN-β in swine macrophages. Understanding host responses and their underlying mechanisms may help identify venues for effective control of SIV and assist in prevention of future influenza pandemics.
Collapse
Affiliation(s)
- Wei Gao
- Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Department of Respiratory Medicine, Clinical School of Medicine of Nanjing University, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Wenkui Sun
- Department of Respiratory Medicine, the Second Military Medical University, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Bingqian Qu
- Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Carol J. Cardona
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Kira Powell
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Marta Wegner
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Yi Shi
- Department of Respiratory Medicine, Clinical School of Medicine of Nanjing University, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Zheng Xing
- Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| |
Collapse
|
2911
|
Swine influenza virus vaccines: to change or not to change-that's the question. Curr Top Microbiol Immunol 2012; 370:173-200. [PMID: 22976350 DOI: 10.1007/82_2012_266] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Commercial vaccines currently available against swine influenza virus (SIV) are inactivated, adjuvanted, whole virus vaccines, based on H1N1 and/or H3N2 and/or H1N2 SIVs. In keeping with the antigenic and genetic differences between SIVs circulating in Europe and the US, the vaccines for each region are produced locally and contain different strains. Even within a continent, there is no standardization of vaccine strains, and the antigen mass and adjuvants can also differ between different commercial products. Recombinant protein vaccines against SIV, vector, and DNA vaccines, and vaccines attenuated by reverse genetics have been tested in experimental studies, but they have not yet reached the market. In this review, we aim to present a critical analysis of the performance of commercial inactivated and novel generation SIV vaccines in experimental vaccination challenge studies in pigs. We pay special attention to the differences between commercial SIV vaccines and vaccination attitudes in Europe and in North America, to the issue of vaccine strain selection and changes, and to the potential advantages of novel generation vaccines over the traditional killed SIV vaccines.
Collapse
|
2912
|
Khatri M, Saif YM. Epithelial cells derived from swine bone marrow express stem cell markers and support influenza virus replication in vitro. PLoS One 2011; 6:e29567. [PMID: 22216319 PMCID: PMC3245290 DOI: 10.1371/journal.pone.0029567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/30/2011] [Indexed: 01/25/2023] Open
Abstract
The bone marrow contains heterogeneous population of cells that are involved in the regeneration and repair of diseased organs, including the lungs. In this study, we isolated and characterized progenitor epithelial cells from the bone marrow of 4- to 5-week old germ-free pigs. Microscopically, the cultured cells showed epithelial-like morphology. Phenotypically, these cells expressed the stem cell markers octamer-binding transcription factor (Oct4) and stage-specific embryonic antigen-1 (SSEA-1), the alveolar stem cell marker Clara cell secretory protein (Ccsp), and the epithelial cell markers pan-cytokeratin (Pan-K), cytokeratin-18 (K-18), and occludin. When cultured in epithelial cell growth medium, the progenitor epithelial cells expressed type I and type II pneumocyte markers. Next, we examined the susceptibility of these cells to influenza virus. Progenitor epithelial cells expressed sialic acid receptors utilized by avian and mammalian influenza viruses and were targets for influenza virus replication. Additionally, differentiated type II but not type I pneumocytes supported the replication of influenza virus. Our data indicate that we have identified a unique population of progenitor epithelial cells in the bone marrow that might have airway reconstitution potential and may be a useful model for cell-based therapies for infectious and non-infectious lung diseases.
Collapse
Affiliation(s)
- Mahesh Khatri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA.
| | | |
Collapse
|
2913
|
Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol 2011; 20:50-7. [PMID: 22153753 PMCID: PMC7173122 DOI: 10.1016/j.tim.2011.11.002] [Citation(s) in RCA: 718] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022]
Abstract
An animal model to study human infectious diseases should accurately reproduce the various aspects of disease. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of anatomy, genetics and physiology, and represent an excellent animal model to study various microbial infectious diseases. Indeed, experiments in pigs are much more likely to be predictive of therapeutic treatments in humans than experiments in rodents. In this review, we highlight the numerous advantages of the pig model for infectious disease research and vaccine development and document a few examples of human microbial infectious diseases for which the use of pigs as animal models has contributed to the acquisition of new knowledge to improve both animal and human health.
Collapse
Affiliation(s)
- François Meurens
- Institut National de la Recherche Agronomique, Unité de Recherche 1282, Infectiologie Animale et Santé Publique, 37380, Nouzilly (Tours), France.
| | | | | | | | | |
Collapse
|
2914
|
Zhao X, Su H, Yin G, Liu X, Liu Z, Suo X. High transfection efficiency of porcine peripheral blood T cells via nucleofection. Vet Immunol Immunopathol 2011; 144:179-86. [PMID: 22055481 DOI: 10.1016/j.vetimm.2011.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/04/2011] [Accepted: 10/10/2011] [Indexed: 12/27/2022]
|
2915
|
Wang L, Qin Z, Pantin-Jackwood M, Faulkner O, Suarez DL, Garcia M, Lupiani B, Reddy SM, Saif YM, Lee CW. Development of DIVA (differentiation of infected from vaccinated animals) vaccines utilizing heterologous NA and NS1 protein strategies for the control of triple reassortant H3N2 influenza in turkeys. Vaccine 2011; 29:7966-7974. [PMID: 21907751 DOI: 10.1016/j.vaccine.2011.08.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/01/2011] [Accepted: 08/14/2011] [Indexed: 02/07/2023]
Abstract
Since 2003, triple reassortant (TR) swine H3N2 influenza viruses containing gene segments from human, avian, and swine origins have been detected in the U.S. turkey populations. The initial outbreak that occurred involved birds that were vaccinated with the currently available H3 swine- and avian-origin influenza vaccines. Antigenically, all turkey swine-lineage TR H3N2 isolates are closely related to each other but show little or no antigenic cross-reactivity with the avian origin or swine origin influenza vaccine strains that are currently being used in turkey operations. These results call for re-evaluation of currently available influenza vaccines being used in turkey flocks and development of more effective DIVA (differentiation of infected from vaccinated animals) vaccines. In this study, we selected one TR H3N2 strain, A/turkey/OH/313053/04 (H3N2) that showed broad cross reactivity with other recent TR turkey H3N2 isolates, and created NA- and NS-based DIVA vaccines using traditional reassortment as well as reverse genetics methods. Protective efficacy of those vaccines was determined in 2-week-old and 80-week-old breeder turkeys. The reassortant DIVA vaccines significantly reduced the presence of challenge virus in the oviduct of breeder turkeys as well as trachea and cloaca shedding of both young and old breeder turkeys, suggesting that proper vaccination could effectively prevent egg production drop and potential viral contamination of eggs in infected turkeys. Our results demonstrate that the heterologous NA and NS1 DIVA vaccines together with their corresponding serological tests could be useful for the control of TR H3N2 influenza in turkeys.
Collapse
Affiliation(s)
- Leyi Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2916
|
Gambaryan AS, Lomakina NF, Boravleva EY, Kropotkina EA, Mashin VV, Krasilnikov IV, Klimov AI, Rudenko LG. Comparative safety, immunogenicity, and efficacy of several anti-H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine). Influenza Other Respir Viruses 2011; 6:188-95. [PMID: 21951678 PMCID: PMC4941668 DOI: 10.1111/j.1750-2659.2011.00291.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Please cite this paper as: Gambaryan et al. (2011) Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models. Parallel testing of killed and live H5 vaccine. Influenza and Other Respiratory Viruses 6(3), 188–195. Objective Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Method Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non‐glycoprotein genes of the experimental live vaccines were from H2N2 cold‐adapted master strain A/Leningrad/134/17/57 (VN‐Len and Ku‐Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN‐Gull and Ku‐Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. Results All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold‐adapted H1N1 vaccine reduced the mortality near to zero level. Conclusions The high yield, safety, and protectivity of VN‐Len and Ku‐Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses.
Collapse
Affiliation(s)
- Alexandra S Gambaryan
- M P Chumakov Institute of Poliomyelitis and Viral Encephalitides, RAMS, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
2917
|
MDCK cell line with inducible allele B NS1 expression propagates delNS1 influenza virus to high titres. Vaccine 2011; 29:6976-85. [PMID: 21787829 DOI: 10.1016/j.vaccine.2011.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 12/17/2022]
|
2918
|
Li Y, Zhou H, Wen Z, Wu S, Huang C, Jia G, Chen H, Jin M. Transcription analysis on response of swine lung to H1N1 swine influenza virus. BMC Genomics 2011; 12:398. [PMID: 21819625 PMCID: PMC3169531 DOI: 10.1186/1471-2164-12-398] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 08/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore it, a time-course gene expression profiling was performed for comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs. RESULTS At the early stage of H1N1 swine virus infection, pigs were suffering mild respiratory symptoms and pathological changes. A total of 268 porcine genes showing differential expression (DE) after inoculation were identified to compare with the controls on day 3 post infection (PID) (Fold change ≥ 2, p < 0.05). The DE genes were involved in many vital functional classes, mainly including signal transduction, immune response, inflammatory response, cell adhesion and cell-cell signalling. Noticeably, the genes associated with immune and inflammatory response showed highly overexpressed. Through the pathway analysis, the significant pathways mainly concerned with Cell adhesion molecules, Cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway and MAPK signaling pathway, suggesting that the host took different strategies to activate these pathways so as to prevent virus infections at the early stage. However, on PID 7, the predominant function classes of DE genes included signal transduction, metabolism, transcription, development and transport. Furthermore, the most significant pathways switched to PPAR signaling pathway and complement and coagulation cascades, showing that the host might start to repair excessive tissue damage by anti-inflammatory functions. These results on PID 7 demonstrated beneficial turnover for host to prevent excessive inflammatory damage and recover the normal state by activating these clusters of genes. CONCLUSIONS This study shows how the target organ responds to H1N1 swine influenza virus infection in pigs. The observed gene expression profile could help to screen the potential host agents for reducing the prevalence of swine influenza virus and further understand the molecular pathogenesis associated with H1N1 infection in pigs.
Collapse
Affiliation(s)
- Yongtao Li
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
2919
|
Penski N, Härtle S, Rubbenstroth D, Krohmann C, Ruggli N, Schusser B, Pfann M, Reuter A, Gohrbandt S, Hundt J, Veits J, Breithaupt A, Kochs G, Stech J, Summerfield A, Vahlenkamp T, Kaspers B, Staeheli P. Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state. J Virol 2011; 85:7730-41. [PMID: 21613402 PMCID: PMC3147912 DOI: 10.1128/jvi.00063-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/17/2011] [Indexed: 01/13/2023] Open
Abstract
From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Nicola Penski
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | | | - Carsten Krohmann
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Nicolas Ruggli
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | - Benjamin Schusser
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Michael Pfann
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Antje Reuter
- Department of Virology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | | | - Jana Hundt
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Jutta Veits
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | | | - Georg Kochs
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Jürgen Stech
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | | - Bernd Kaspers
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2920
|
Eichelberger MC, Green MD. Animal models to assess the toxicity, immunogenicity and effectiveness of candidate influenza vaccines. Expert Opin Drug Metab Toxicol 2011; 7:1117-27. [PMID: 21749266 DOI: 10.1517/17425255.2011.602065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Every year, > 100 million doses of licensed influenza vaccine are administered worldwide, with relatively few serious adverse events reported. Initiatives to manufacture influenza vaccines on different platforms have come about to ensure timely production of strain-specific as well as universal vaccines. To prevent adverse events that may be associated with these new vaccines, it is important to evaluate the toxicity of new formulations in animal models. AREAS COVERED This review outlines preclinical studies that evaluate safety, immunogenicity and effectiveness of novel products to support further development and clinical trials. This has been done through a review of the latest literature describing vaccines under development. EXPERT OPINION The objective of preclinical safety tests is to demonstrate the absence of toxic contaminants and adventitious agents. Additional tests that characterize vaccine content more completely, or demonstrate the absence of exacerbated disease following virus challenge in vaccinated animals, may provide additional data to ensure the safety of new vaccine strategies.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
2921
|
Dwivedi V, Manickam C, Patterson R, Dodson K, Weeman M, Renukaradhya GJ. Intranasal delivery of whole cell lysate of Mycobacterium tuberculosis induces protective immune responses to a modified live porcine reproductive and respiratory syndrome virus vaccine in pigs. Vaccine 2011; 29:4067-76. [PMID: 21419164 PMCID: PMC7126640 DOI: 10.1016/j.vaccine.2011.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/15/2011] [Accepted: 03/02/2011] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease to pork producers worldwide. Commercially, both live and killed PRRSV vaccines are available to control PRRS, but they are not always successful. Based on the results of mucosal immunization studies in other viral models, a good mucosal vaccine may be an effective way to elicit protective immunity to control PRRS outbreaks. In the present study, mucosal adjuvanticity of Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was evaluated in pigs administered a modified live PRRS virus vaccine (PRRS-MLV) intranasally. A Mtb WCL mediated increase in the frequency of NK cells, CD8(+)and CD4(+) T cells, and γδ T cells in pig lungs were detected. Importantly, an increased and early generation of PRRSV specific neutralizing antibodies were detected in PRRS-MLV+ Mtb WCL compared to pigs inoculated with vaccine alone. In addition, there was an increased secretion of Th1 cytokines (IFNγ and IL-12) that correlated with a reciprocal reduction in the production of immunosuppressive cytokines (IL-10 and TGFβ) as well as T-regulatory cells in pigs vaccinated with PRRS-MLV+ Mtb WCL. Further, a complete rescue in arginase levels in the lungs mediated through Mtb WCL was observed in pigs inoculated with PRRS-MLV. In conclusion, Mtb WCL may be a potent mucosal adjuvant for PRRS-MLV in order to potentiate the anti-PRRSV specific immune responses to control PRRS effectively.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|
2922
|
Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 2011; 29:4058-66. [PMID: 21419162 PMCID: PMC7127856 DOI: 10.1016/j.vaccine.2011.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive chronic respiratory viral disease of pigs that is responsible for major economic losses to the swine industry worldwide. The efficacy of parenteral administration of widely used modified live virus PRRS vaccine (PRRS-MLV) against genetically divergent PRRSV strains remains questionable. Therefore, we evaluated an alternate and proven mucosal immunization approach by intranasal delivery of PRRS-MLV (strain VR2332) with a potent adjuvant to elicit cross-protective immunity against a heterologous PRRSV (strain MN184). Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was chosen as a potent mucosal adjuvant due to its Th1 biased immune response to PRRS-MLV. Unvaccinated pigs challenged with MN184 had clinical PRRS with severe lung pathology; however, vaccinated (PRRS-MLV+ Mtb WCL) pigs challenged with MN184 were apparently healthy. There was a significant increase in the body weight gain in vaccinated compared to unvaccinated PRRSV challenged pigs. Vaccinated compared to unvaccinated, virus-challenged pigs had reduced lung pathology associated with enhanced PRRSV neutralizing antibody titers and reduced viremia. Immunologically, an increased frequency of Th cells, Th/memory cells, γδ T cells, dendritic cells, and activated Th cells and a reduced frequency of T-regulatory cells were detected at both mucosal and systemic sites. Further, reduced secretion of immunosuppressive cytokines (IL-10 and TGF-β) and upregulation of the Th1 cytokine IFN-γ in blood and lungs were detected in mucosally vaccinated, PRRSV-challenged pigs. In conclusion, intranasal immunization of pigs with PRRS-MLV administered with Mtb WCL generated effective cross-protective immunity against PRRSV.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | | | | | |
Collapse
|
2923
|
Characterization and comparison of the full 3' and 5' untranslated genomic regions of diverse isolates of infectious salmon anaemia virus by using a rapid and universal method. J Virol Methods 2011; 174:136-43. [PMID: 21458495 DOI: 10.1016/j.jviromet.2011.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 01/22/2023]
Abstract
The 3' and 5' untranslated regions (UTRs) of the gene segments of orthomyxoviruses interact closely with the polymerase complex and are important for viral replication and transcription regulation. Despite this, the 3' and 5' RNA UTRs of the infectious salmon anaemia virus (ISAV) genome have only been partially characterized and little is known about the level of conservation between different virus subtypes. This report details for the first time, the adaptation of a rapid method for the simultaneous characterization of the 3' and 5' UTRs of each viral segment of ISAV. This was achieved through self circularization of segments using T4 RNA ligase, followed by PCR and sequencing. Dephosphorylation of 5' ends using tobacco acid pyrophosphatase (TAP) proved to be a specific requirement for ligation of ISAV ends which was not essential for characterization of influenza virus in a similar manner. The development of universal primers facilitated the characterization of 4 genetically distinct ISAV isolates from Canada, Norway and Scotland. Comparison of the UTR regions revealed a similarity in organization and presence of conserved terminal sequences as reported for other orthomyxoviruses. Interestingly, the 3' ends of ISAV segments including segments 1, 5 and 6, were shorter and 5' UTRs generally longer than in their influenza counterparts.
Collapse
|
2924
|
Rasmuson J, Pourazar J, Linderholm M, Sandström T, Blomberg A, Ahlm C. Presence of activated airway T lymphocytes in human puumala hantavirus disease. Chest 2011; 140:715-722. [PMID: 21436245 DOI: 10.1378/chest.10-2791] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hantaviruses cause two clinical syndromes: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). The clinical spectrum in HFRS also often involves respiratory symptoms. As information about the pulmonary pathogenesis in HFRS is limited, we aimed to further study the local airway immune response in the lower airways. METHODS Bronchoscopy was performed in 15 hospitalized patients with HFRS, with sampling of endobronchial mucosal biopsies and BAL fluid. Biopsies were stained for leukocytes, lymphocyte subsets, and vascular endothelial adhesion molecules. BAL fluid and blood lymphocyte subsets were determined using flow cytometry. Fourteen healthy volunteers acted as a control group. RESULTS Compared with control subjects, endobronchial mucosal biopsies from patients with HFRS revealed increased numbers of CD8(+) T cells in both epithelium and submucosa (P ≤ .001), along with an increase in submucosal CD4(+) T cells (P = .001). In contrast, patients' submucosal neutrophil and eosinophil numbers were reduced (P < .001). The expression of vascular cell adhesion molecule-1 (VCAM-1) was enhanced in patients with HFRS (P < .001). In patients with HFRS, analyses of T-cell subsets in BAL fluid showed higher proportions of CD3(+) and CD8(+) T cells (P = .011 and P = .025) and natural killer cells (P < .001), together with an increased expression of activation markers human leukocyte antigen-DR (HLA-DR) and CD25 on T cells (P < .001 and P < .001). CONCLUSIONS The present findings indicate a local immune response in terms of activated T lymphocytes in the lungs of patients with HFRS. The elevated expression of activation markers and VCAM-1 further implies the importance of cytotoxic lymphocytes in the pathogenesis of pulmonary involvement in HFRS.
Collapse
Affiliation(s)
- Johan Rasmuson
- Infectious Diseases, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| | - Jamshid Pourazar
- Respiratory Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Mats Linderholm
- Infectious Diseases, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Thomas Sandström
- Respiratory Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Respiratory Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Infectious Diseases, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
2925
|
Berhane Y, Ojkic D, Neufeld J, Leith M, Hisanaga T, Kehler H, Ferencz A, Wojcinski H, Cottam-Birt C, Suderman M, Handel K, Alexandersen S, Pasick J. Molecular characterization of pandemic H1N1 influenza viruses isolated from turkeys and pathogenicity of a human pH1N1 isolate in turkeys. Avian Dis 2011; 54:1275-85. [PMID: 21313850 DOI: 10.1637/9422-061410-reg.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Suspected human-to-animal transmission of the 2009 pandemic H1N1 (pH1N1) virus has been reported in several animal species, including pigs, dogs, cats, ferrets, and turkeys. In this study we describe the genetic characterization of pH1N1 viruses isolated from breeder turkeys that was associated with a progressive drop in egg production. Sequence analysis of all eight gene segments from three viruses isolated from this outbreak demonstrated homology with other human and swine pH1N1 isolates. The susceptibility of turkeys to a human pH1N1 isolate was further evaluated experimentally. The 50% turkey infectious dose (TID50) for the human isolate A/Mexico/LnDRE/4487/2009 was determined by inoculating groups of 8-10-week-old turkeys with serial 10-fold dilutions of virus by oronasal and cloacal routes. We estimated the TID50 to be between 1 x 10(5) and 1 x 10(6) TCID50. The pathogenesis of pH1N1 in oronasally or cloacally inoculated juvenile turkeys was also examined. None of the turkeys exhibited clinical signs, and no significant difference in virus shedding or seroconversion was observed between the two inoculation groups. More than 50% of the turkeys in both oronasal and cloacal groups shed virus beginning at 2 days postinoculation (dpi). All birds that actively shed virus seroconverted by 14 dpi. Virus antigen was demonstrated by immunohistochemistry in the cecal tonsils and bursa of Fabricius in two of the birds that were infected by the cloacal route. Virus transmission to naive contact turkeys was at best doubtful. This report provides additional evidence that pH1N1 can cross the species barrier and cause disease outbreaks in domestic turkeys. However, it appears that the reproductive status of the host as well as environmental factors such as concurrent infections, stress, the presence or absence of litter, and stocking density may also contribute to efficient infection and transmission of this agent.
Collapse
Affiliation(s)
- Yohannes Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3M4
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2926
|
Pica N, Palese P, Steel J. Live Attenuated Influenza Virus Vaccines: NS1 Truncation as an Approach to Virus Attenuation. REPLICATING VACCINES 2011:195-221. [DOI: 10.1007/978-3-0346-0277-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2927
|
Kulshreshtha V, Kibenge M, Salonius K, Simard N, Riveroll A, Kibenge F. Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of European and North American genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts. Virol J 2010; 7:338. [PMID: 21092282 PMCID: PMC3003268 DOI: 10.1186/1743-422x-7-338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/23/2010] [Indexed: 01/18/2023] Open
Abstract
Background Infectious salmon anemia (ISA) virus (ISAV) is a pathogen of marine-farmed Atlantic salmon (Salmo salar); a disease first diagnosed in Norway in 1984. This virus, which was first characterized following its isolation in cell culture in 1995, belongs to the family Orthomyxoviridae, genus, Isavirus. The Isavirus genome consists of eight single-stranded RNA segments of negative sense, each with one to three open reading frames flanked by 3' and 5' non-coding regions (NCRs). Although the terminal sequences of other members of the family Orthomyxoviridae such as Influenzavirus A have been extensively analyzed, those of Isavirus remain largely unknown, and the few reported are from different ISAV strains and on different ends of the different RNA segments. This paper describes a comprehensive analysis of the 3' and 5' end sequences of the eight RNA segments of ISAV of both European and North American genotypes, and evidence of quasispecies of ISAV based on sequence variation in the untranslated regions (UTRs) of transcripts. Results Two different ISAV strains and two different RNA preparations were used in this study. ISAV strain ADL-PM 3205 ISAV-07 (ADL-ISAV-07) of European genotype was the source of total RNA extracted from ISAV-infected TO cells, which contained both viral mRNA and cRNA. ISAV strain NBISA01 of North American genotype was the source of vRNA extracted from purified virus. The NCRs of each segment were identified by sequencing cDNA prepared by three different methods, 5' RACE (Rapid amplification of cDNA ends), 3' RACE, and RNA ligation mediated PCR. Sequence analysis of five clones each derived from one RT-PCR product from each NCR of ISAV transcripts of segments 1 to 8 revealed significant heterogeneity among the clones of the same segment end, providing unequivocal evidence for presence of intra-segment ISAV quasispecies. Both RNA preparations (mRNA/cRNA and vRNA) yielded complementary sequence information, allowing the simultaneous identification and confirmation of the 3' and 5' NCR sequences of the 8 RNA genome segments of both genotypes of ISAV. The 3' sequences of the mRNA transcripts of ADL-ISAV-07 terminated 13-18 nucleotides from the full 3' terminus of cRNA, continuing as a poly(A) tail, which corresponded with the location of the polyadenylation signal. The lengths of the 3' and 5' NCRs of the vRNA were variable in the different genome segments, but the terminal 7 and 11 nucleotides of the 3' and 5' ends, respectively, were highly conserved among the eight genomic segments of ISAV. The first three nucleotides at the 3' end are GCU-3' (except in segment 5 with ACU-3'), whereas at the 5' end are 5'-AGU with the polyadenylation signal of 3-5 uridines 13-15 nucleotides downstream of the 5' end terminus of the vRNA. Exactly the same features were found in the respective complementary 5' and 3' end NCR sequences of the cRNA transcripts of ADL-ISAV-07, indicating that the terminal sequences of the 8 RNA genome segments are highly conserved among the two ISAV genotypes. The 5' NCR sequences of segments 1, 2, 3, 5, and 7, and the 3' NCR sequences of segments 3 and 4 cRNA were 100% identical in the two genotypes, and the 3' NCR sequences of segment 5 cRNA was the most divergent, with a sequence identity of 77.2%. Conclusions We report for the first time, the presence of intra-segment ISAV quasispecies, based on sequence variation in the NCR sequences of transcripts. In addition, this is the first report of a comprehensive unambiguous analysis of the 3' and 5' NCR sequences of all 8 RNA genome segments from two strains of ISAV representing the two genotypes of ISAV. Because most ISAV sequences are of cDNA to mRNA, they do not contain the 3' end sequences, which are removed during polyadenylation of the mRNA transcripts. We report for the first time the ISAV consensus sequence CAT/ATTTTTACT-3' (in the message sense 5'-3') in all segments of both ISAV genotypes.
Collapse
Affiliation(s)
- Vikas Kulshreshtha
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada
| | | | | | | | | | | |
Collapse
|
2928
|
Marcus PI, Ngunjiri JM, Sekellick MJ, Wang L, Lee CW. In vitro analysis of virus particle subpopulations in candidate live-attenuated influenza vaccines distinguishes effective from ineffective vaccines. J Virol 2010; 84:10974-10981. [PMID: 20739541 PMCID: PMC2953188 DOI: 10.1128/jvi.00502-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 08/13/2010] [Indexed: 02/07/2023] Open
Abstract
Two effective (vac+) and two ineffective (vac-) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac- variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers. These in vitro analyses provide a benchmark for the screening of candidate LAIVs and their potential as effective vaccines. Vaccine design may be improved by enhancement of attributes that are dominant in the effective (vac+) vaccines.
Collapse
Affiliation(s)
- Philip I Marcus
- Department of Molecular and Cell Biology, Center of Excellence for Vaccine Research, University of Connecticut, U-3125, 91 North Eagleville Rd., Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
2929
|
Krammer F, Pontiller J, Tauer C, Palmberger D, Maccani A, Baumann M, Grabherr R. Evaluation of the influenza A replicon for transient expression of recombinant proteins in mammalian cells. PLoS One 2010; 5:e13265. [PMID: 20949004 PMCID: PMC2952591 DOI: 10.1371/journal.pone.0013265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/14/2010] [Indexed: 12/30/2022] Open
Abstract
Recombinant protein expression in mammalian cells has become a very important technique over the last twenty years. It is mainly used for production of complex proteins for biopharmaceutical applications. Transient recombinant protein expression is a possible strategy to produce high quality material for preclinical trials within days. Viral replicon based expression systems have been established over the years and are ideal for transient protein expression. In this study we describe the evaluation of an influenza A replicon for the expression of recombinant proteins. We investigated transfection and expression levels in HEK-293 cells with EGFP and firefly luciferase as reporter proteins. Furthermore, we studied the influence of different influenza non-coding regions and temperature optima for protein expression as well. Additionally, we exploited the viral replication machinery for the expression of an antiviral protein, the human monoclonal anti-HIV-gp41 antibody 3D6. Finally we could demonstrate that the expression of a single secreted protein, an antibody light chain, by the influenza replicon, resulted in fivefold higher expression levels compared to the usually used CMV promoter based expression. We emphasize that the influenza A replicon system is feasible for high level expression of complex proteins in mammalian cells.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Jens Pontiller
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Christopher Tauer
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Dieter Palmberger
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Andreas Maccani
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Martina Baumann
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| |
Collapse
|
2930
|
Scientific Opinion on the pandemic (H1N1) 2009 influenza and its potential implications for animal health. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
2931
|
Pillai SPS, Pantin-Jackwood M, Yassine HM, Saif YM, Lee CW. The high susceptibility of turkeys to influenza viruses of different origins implies their importance as potential intermediate hosts. Avian Dis 2010; 54:522-6. [PMID: 20521688 DOI: 10.1637/8770-033109-review.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several previous reports and our studies show that waterfowl-origin influenza viruses can be more easily transmitted to domestic turkeys than chickens. Similarly, studies indicate turkeys to be better hosts for low pathogenic avian influenza viruses isolated from commercial poultry operations and live bird markets in comparison to chickens. Low 50% infectious-dose titers of wild bird as well as poultry-adapted viruses for turkeys further suggest that turkeys can be easily infected following a low-dose exposure. Also, interspecies transmission of swine influenza viruses to turkeys occurs frequently. These findings suggest the role of turkeys as suitable intermediate hosts that can be easily infected with influenza viruses of different origins and that turkeys can act as source of infection for other land-based poultry or even mammals.
Collapse
Affiliation(s)
- S P S Pillai
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster 44691, USA
| | | | | | | | | |
Collapse
|
2932
|
Soubies SM, Volmer C, Guérin JL, Volmer R. Truncation of the NS1 protein converts a low pathogenic avian influenza virus into a strong interferon inducer in duck cells. Avian Dis 2010; 54:527-31. [PMID: 20521689 DOI: 10.1637/8707-031709-reg.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The NS1 protein of influenza A viruses is known as a nonessential virulence factor inhibiting type I interferon (IFN) production in mammals and in chicken cells. Whether NS1 inhibits the induction of type I IFNs in duck cells is currently unknown. In order to investigate this issue, we used reverse genetics to generate a virus expressing a truncated NS1 protein. Using the low pathogenic avian influenza virus A/turkey/Italy/977/1999 (H7N1) as a backbone, we were able to rescue a virus expressing a truncated NS1 protein of 99 amino acids in length. The truncated virus replicated poorly in duck embryonic fibroblasts, but reached high titers in the mammalian IFN-deficient Vero cell line. Using a gene reporter system to measure duck type I IFN production, we showed that the truncated virus is a potent inducer of type I IFN in cell culture. These results show that the NS1 protein functions to prevent the induction of IFN in duck cells and underline the need for a functional NS1 protein in order for the virus to express its full virulence.
Collapse
Affiliation(s)
- Sébastien Mathieu Soubies
- INRA, UMR 1225, Interactions Hôtes Agents Pathogenes, Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, 31076 Toulouse Cedex, France
| | | | | | | |
Collapse
|
2933
|
Liu Y, Mundt E, Mundt A, Sylte M, Suarez DL, Swayne DE, García M. Development and evaluation of an avian influenza, neuraminidase subtype 1, indirect enzyme-linked immunosorbent assay for poultry using the differentiation of infected from vaccinated animals control strategy. Avian Dis 2010; 54:613-21. [PMID: 20521703 DOI: 10.1637/8844-040409-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An indirect enzyme-linked immunosorbent assay (ELISA) was developed using baculovirus, purified, recombinant N1 protein from A/chicken/Indonesia/PA7/2003 (H5N1) virus. The N1-ELISA showed high selectivity for detection of N1 antibodies, with no cross-reactivity with other neuraminidase subtypes, and broad reactivity with sera to N1 subtype isolates from North American and Eurasian lineages. Sensitivity of the N1-ELISA to detect N1 antibodies in turkey sera, collected 3 wk after H1N1 vaccination, was comparable to detection of avian influenza antibodies by the commercial, indirect ELISAs ProFLOK AIV Plus ELISA Kit (Synbiotics, Kansas City, MO) and Avian Influenza Virus Antibody Test Kit (IDEXX, Westbrook, ME). However, 6 wk after vaccination, the Synbiotics ELISA kit performed better than the N1-ELISA and the IDEXX ELISA kit. An evaluation was made of the ability of the N1-ELISA to discriminate vaccinated chickens from subsequently challenged chickens. Two experiments were conducted, chickens were vaccinated with inactivated H5N2 and H5N9 viruses and challenged with highly pathogenic H5N1 virus, and chickens were vaccinated with recombinant poxvirus vaccine encoding H7 and challenged with highly pathogenic H7N1 virus. Serum samples were collected at 14 days postchallenge and tested by hemagglutination inhibition (HI), quantitative neuraminidase inhibition (NI), and N1-ELISA. At 2 days postchallenge, oropharyngeal swabs were collected for virus isolation (VI) to confirm infection. The N1-ELISA was in fair agreement with VI and HI results. Although the N1-ELISA showed a lower sensitivity than the NI assay, it was demonstrated that detection of N1 antibodies by ELISA was an effective and rapid assay to identify exposure to the challenge virus in vaccinated chickens. Therefore, N1-ELISA can facilitate a vaccination strategy with differentiation of infected from vaccinated animals using a neuraminidase heterologous approach.
Collapse
Affiliation(s)
- Y Liu
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
2934
|
Mathieu C, Moreno V, Retamal P, Gonzalez A, Rivera A, Fuller J, Jara C, Lecocq C, Rojas M, Garcia A, Vasquez M, Agredo M, Gutiérrez C, Escobar H, Fasce R, Mora J, Garcia J, Fernández J, Ternicier C, Avalos P. Pandemic (H1N1) 2009 in breeding turkeys, Valparaiso, Chile. Emerg Infect Dis 2010; 16:709-11. [PMID: 20350395 PMCID: PMC3321954 DOI: 10.3201/eid1604.091402] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pandemic (H1N1) 2009 virus was detected in breeding turkeys on 2 farms in Valparaiso, Chile. Infection was associated with measurable declines in egg production and shell quality. Although the source of infection is not yet known, the outbreak was controlled, and the virus was eliminated from the birds.
Collapse
|
2935
|
Jadhao SJ, Suarez DL. New Approach to Delist Highly Pathogenic Avian Influenza Viruses from BSL3+ Select Agents to BSL2 Non-Select Status for Diagnostics and Vaccines. Avian Dis 2010; 54:302-6. [PMID: 20521650 DOI: 10.1637/8926-051509-resnote.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2936
|
Brahmakshatriya VR, Lupiani B, Reddy SM. Characterization and evaluation of avian influenza NS1 mutant virus as a potential live and killed DIVA (differentiating between infected and vaccinated animals) vaccine for chickens. Vaccine 2010; 28:2388-96. [PMID: 20064474 DOI: 10.1016/j.vaccine.2009.12.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/06/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
|
2937
|
Wang L, Yassine H, Saif YM, Lee CW. Developing live attenuated avian influenza virus in ovo vaccines for poultry. Avian Dis 2010; 54:297-301. [PMID: 20521649 DOI: 10.1637/8623-012309-resnote.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Live attenuated vaccines can mimic natural infection and induce humoral and cellular immune response. However, the possibility of reassortment between vaccine viruses and field isolates and of mutations from low-pathogenic to highly pathogenic viruses has prevented the use of live attenuated strains as poultry vaccines. In ovo vaccination using live attenuated strains that can undergo limited replication cycles would be a better option, because these strains can be used for mass vaccination without spreading or reassorting with other viruses. Our previous study demonstrated that two influenza nonstructural (NS) variant viruses are highly attenuated and immunogenic in chickens, making them potential live vaccine candidates. In this study, we tested whether NS variants could be used as in ovo vaccines alone or in combination with temperature-sensitive (ts) mutations. In addition, we also tested the effect of different hemagglutinin (HA) subtypes on in ovo vaccination of NS variants. Our results demonstrated that NS variants alone or in combination with ts mutations were not attenuated enough to be used for in ovo vaccination. We also observed variable effects of different HA subtypes in the same NS deletion variant backbone on hatchability. However, even with substitution of HA subtypes, NS variant-inoculated eggs still had lower hatchability compared to the mock control group, indicating that the high virulence of NS variant backbone strain in eggs might have affected the results.
Collapse
Affiliation(s)
- Leyi Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
2938
|
Swayne DE, Pantin-Jackwood M, Kapczynski D, Spackman E, Suarez DL. Susceptibility of poultry to pandemic (H1N1) 2009 Virus. Emerg Infect Dis 2010; 15:2061-3. [PMID: 19961704 PMCID: PMC3044551 DOI: 10.3201/eid1512.091060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
2939
|
Pantin-Jackwood M, Wasilenko JL, Spackman E, Suarez DL, Swayne DE. Susceptibility of turkeys to pandemic-H1N1 virus by reproductive tract insemination. Virol J 2010; 7:27. [PMID: 20128914 PMCID: PMC2830961 DOI: 10.1186/1743-422x-7-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/03/2010] [Indexed: 11/10/2022] Open
Abstract
The current pandemic influenza A H1N1 2009 (pH1N1) was first recognized in humans with acute respiratory diseases in April 2009 in Mexico, in swine in Canada in June, 2009 with respiratory disease, and in turkeys in Chile in June 2009 with a severe drop in egg production. Several experimental studies attempted to reproduce the disease in turkeys, but failed to produce respiratory infection in turkeys using standard inoculation routes. We demonstrated that pH1N1 virus can infect the reproductive tract of turkey hens after experimental intrauterine inoculation, causing decreased egg production. This route of exposure is realistic in modern turkey production because turkey hens are handled once a week for intrauterine insemination in order to produce fertile eggs. This understanding of virus exposure provides an improved understanding of the pathogenesis of the disease and can improve poultry husbandry to prevent disease outbreaks.
Collapse
Affiliation(s)
- Mary Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Agricultural Research Service, US Department of Agriculture, Athens, Georgia 30605 USA
| | | | | | | | | |
Collapse
|
2940
|
Pillai SPS, Lee CW. Species and age related differences in the type and distribution of influenza virus receptors in different tissues of chickens, ducks and turkeys. Virol J 2010; 7:5. [PMID: 20067630 PMCID: PMC2821308 DOI: 10.1186/1743-422x-7-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/12/2010] [Indexed: 11/14/2022] Open
Abstract
We undertook one of the most detailed studies on the distribution of α2,3 sialic acid (SA)-galactose (gal) (avian type) and α2,6SA-gal (human type) receptors on different tissues of chickens, ducks and turkeys of varying age groups. On the tracheal epithelium, all 3 bird species expressed strong positive staining (80-90%) for α2,3SA-gal receptors in the 3 different age groups. In addition, a lesser amount of α2,6SA-gal receptors (30-90%) were observed with slight differences in distribution with age and species. The epithelium of the small and large intestine of turkeys and ducks showed negligible staining for α2,6SA-gal receptors whereas the large intestine consistently showed 40-70% positive staining for α2,3SA-gal receptors. In contrast, a greater amount of staining for α2,3SA-gal (50-80%) and α2,6SA-gal (20-50%) receptors were observed along the epithelium of small and large intestine of chickens. Kidney and esophagus sections from the 3 bird species also expressed both avian and human type receptors. In other tissues examined, brain, breast muscles, bursa, spleen, cecal tonsils and oviduct, human type receptors were absent. Though different viral and receptor components may play roles in successful viral replication and transmission, understanding the receptor types and distribution in different tissues of domestic birds might be good initial tool to understand host factors that promote successful influenza viral infection.
Collapse
Affiliation(s)
- Smitha P S Pillai
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | | |
Collapse
|
2941
|
Dundon WG, Capua I. A Closer Look at the NS1 of Influenza Virus. Viruses 2009; 1:1057-72. [PMID: 21994582 PMCID: PMC3185538 DOI: 10.3390/v1031057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 11/16/2022] Open
Abstract
The Non-Structural 1 (NS1) protein is a multifactorial protein of type A influenza viruses that plays an important role in the virulence of the virus. A large amount of what we know about this protein has been obtained from studies using human influenza isolates and, consequently, the human NS1 protein. The current global interest in avian influenza, however, has highlighted a number of sequence and functional differences between the human and avian NS1. This review discusses these differences in addition to describing potential uses of NS1 in the management and control of avian influenza outbreaks.
Collapse
Affiliation(s)
- William G Dundon
- OIE/FAO and National Reference Laboratory for Avian influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell' Università, 10, Legnaro (PD), 35020, Italy; E-Mail:
| | | |
Collapse
|
2942
|
Dynamics of biologically active subpopulations of influenza virus: plaque-forming, noninfectious cell-killing, and defective interfering particles. J Virol 2009; 83:8122-30. [PMID: 19494019 DOI: 10.1128/jvi.02680-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamic changes in the temporal appearance and quantity of a new class of influenza virus, noninfectious cell-killing particles (niCKP), were compared to defective interfering particles (DIP). After a single high-multiplicity passage in MDCK cells of an egg-derived stock that lacked detectable niCKP or DIP, both classes of particles appeared in large numbers (>5 x 10(8)/ml), and the plaque-forming particle (PFP) titer dropped approximately 60-fold. After two additional serial high-multiplicity passages the DIP remained relatively constant, the DIP/niCKP ratio reached 10:1, and the PFP had declined by about 10,000-fold. Together, the niCKP and DIP subpopulations constituted ca. 20% of the total hemagglutinating particle population in which these noninfectious biologically active particles (niBAP) were subsumed. DIP neither killed cells nor interfered with the cell-killing (apoptosis-inducing) activity of niCKP or PFP (infectious CKP), even though they blocked the replication of PFP. Relative to the UV-target of approximately 13,600 nucleotides (nt) for inactivation of PFP, the UV target for niCKP was approximately 2,400 nt, consistent with one of the polymerase subunit genes, and that for DIP was approximately 350 nt, consistent with the small DI-RNA responsible for DIP-mediated interference. Thus, niCKP and DIP are viewed as distinct particles with a propensity to form during infection at high multiplicities. These conditions are postulated to cause aberrations in the temporally regulated replication of virus and its packaging, leading to the production of niBAP. DIP have been implicated in the virulence of influenza virus, but the role of niCKP is yet unknown.
Collapse
|