251
|
Banliat C, Mahé C, Lavigne R, Com E, Pineau C, Labas V, Guyonnet B, Mermillod P, Saint-Dizier M. The proteomic analysis of bovine embryos developed in vivo or in vitro reveals the contribution of the maternal environment to early embryo. BMC Genomics 2022; 23:839. [PMID: 36536309 PMCID: PMC9764490 DOI: 10.1186/s12864-022-09076-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite many improvements with in vitro culture systems, the quality and developmental ability of mammalian embryos produced in vitro are still lower than their in vivo counterparts. Though previous studies have evidenced differences in gene expression between in vivo- and in vitro-derived bovine embryos, there is no comparison at the protein expression level. RESULTS A total of 38 pools of grade-1 quality bovine embryos at the 4-6 cell, 8-12 cell, morula, compact morula, and blastocyst stages developed either in vivo or in vitro were analyzed by nano-liquid chromatography coupled with label-free quantitative mass spectrometry, allowing for the identification of 3,028 proteins. Multivariate analysis of quantified proteins showed a clear separation of embryo pools according to their in vivo or in vitro origin at all stages. Three clusters of differentially abundant proteins (DAPs) were evidenced according to embryo origin, including 463 proteins more abundant in vivo than in vitro across development and 314 and 222 proteins more abundant in vitro than in vivo before and after the morula stage, respectively. The functional analysis of proteins found more abundant in vivo showed an enrichment in carbohydrate metabolism and cytoplasmic cellular components. Proteins found more abundant in vitro before the morula stage were mostly localized in mitochondrial matrix and involved in ATP-dependent activity, while those overabundant after the morula stage were mostly localized in the ribonucleoprotein complex and involved in protein synthesis. Oviductin and other oviductal proteins, previously shown to interact with early embryos, were among the most overabundant proteins after in vivo development. CONCLUSIONS The maternal environment led to higher degradation of mitochondrial proteins at early developmental stages, lower abundance of proteins involved in protein synthesis at the time of embryonic genome activation, and a global upregulation of carbohydrate metabolic pathways compared to in vitro production. Furthermore, embryos developed in vivo internalized large amounts of oviductin and other proteins probably originated in the oviduct as soon as the 4-6 cell stage. These data provide new insight into the molecular contribution of the mother to the developmental ability of early embryos and will help design better in vitro culture systems.
Collapse
Affiliation(s)
- Charles Banliat
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Coline Mahé
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Régis Lavigne
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Emmanuelle Com
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Charles Pineau
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Valérie Labas
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Pixanim, INRAE, Tours University, CHU of Tours, Nouzilly, France
| | - Benoit Guyonnet
- Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Pascal Mermillod
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Marie Saint-Dizier
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| |
Collapse
|
252
|
Castel G, David L. Induction of human trophoblast stem cells. Nat Protoc 2022; 17:2760-2783. [PMID: 36241723 DOI: 10.1038/s41596-022-00744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/22/2022] [Indexed: 02/07/2023]
Abstract
Cell reprogramming has allowed unprecedented access to human development, from virtually any genome. However, reprogramming yields pluripotent stem cells that can differentiate into all cells that form a fetus, but not extraembryonic annexes. Therefore, a cellular model allowing study of placental development from a broad genomic repertoire is lacking. Here, we describe an optimized protocol to reprogram somatic cells into human induced trophoblast stem cells (hiTSCs) and convert pluripotent stem cells into human converted TSCs (hcTSCs). This protocol enables much-needed genome-specific placental disease modeling. We also detail extravillous trophoblast and syncytiotrophoblast differentiation protocols from hiTSCs and hcTSCs, a necessary step to validate these cells. In total, this protocol takes 4 months and requires advanced cell culture skills, comparable to those necessary for somatic cell reprogramming into human induced pluripotent stem cells.
Collapse
Affiliation(s)
- Gaël Castel
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Laurent David
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, CNRS, BioCore, Nantes, France.
| |
Collapse
|
253
|
Identification of the Inner Cell Mass and the Trophectoderm Responses after an In Vitro Exposure to Glucose and Insulin during the Preimplantation Period in the Rabbit Embryo. Cells 2022; 11:cells11233766. [PMID: 36497026 PMCID: PMC9736044 DOI: 10.3390/cells11233766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
The prevalence of metabolic diseases is increasing, leading to more women entering pregnancy with alterations in the glucose-insulin axis. The aim of this work was to investigate the effect of a hyperglycemic and/or hyperinsulinemic environment on the development of the preimplantation embryo. In rabbit embryos developed in vitro in the presence of high insulin (HI), high glucose (HG), or both (HGI), we determined the transcriptomes of the inner cell mass (ICM) and the trophectoderm (TE). HI induced 10 differentially expressed genes (DEG) in ICM and 1 in TE. HG ICM exhibited 41 DEGs involved in oxidative phosphorylation (OXPHOS) and cell number regulation. In HG ICM, proliferation was decreased (p < 0.01) and apoptosis increased (p < 0.001). HG TE displayed 132 DEG linked to mTOR signaling and regulation of cell number. In HG TE, proliferation was increased (p < 0.001) and apoptosis decreased (p < 0.001). HGI ICM presented 39 DEG involved in OXPHOS and no differences in proliferation and apoptosis. HGI TE showed 16 DEG linked to OXPHOS and cell number regulation and exhibited increased proliferation (p < 0.001). Exposure to HG and HGI during preimplantation development results in common and specific ICM and TE responses that could compromise the development of the future individual and placenta.
Collapse
|
254
|
Zhang J, Pan Y, Zhao L, Zhao T, Yu S, Cui Y. Identification of key genes and biological pathways in different parts of yak oviduct based on transcriptome analysis. Front Vet Sci 2022; 9:1016191. [PMID: 36504863 PMCID: PMC9727391 DOI: 10.3389/fvets.2022.1016191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
The oviduct consists of three parts: the infundibulum (In), ampulla (Am), and isthmus (Is). These have the same histological structure, but different physiological functions. In this study, transcriptomics was used to analyze mRNA in these three parts of yak oviduct. The results showed that there were 325 up-regulated genes and 282 down-regulated genes in the infundibulum and ampulla. Moreover, there were 234 up-regulated genes and 776 down-regulated genes in the isthmus and ampulla, as well as 873 up-regulated genes and 297 down-regulated genes in the infundibulum and isthmus. The expression of C3 in the infundibulum was significantly higher than that in the ampulla and isthmus. The expression of FAU in the isthmus was significantly lower than that in the ampulla and infundibulum, and the expression of EEF1A1 in the ampulla was significantly higher than that in the ampulla and infundibulum. When the infundibulum was compared with the ampulla and isthmus, it was found that the up-regulated genes were enriched in the lysosome, phagosome, staphylococcus aureus infection, and leishmaniasis pathway. When the isthmus was compared with the ampulla and infundibulum, the up-regulated genes were present in the apoptosis pathway, oxidative phosphorylation, and viral myocarditis pathway. When the isthmus was compared with the infundibulum and ampulla, the down-regulated pathways were protein processing in the endoplasmic reticulum and the endocytosis. The Epstein-Barr virus infection pathway was up-regulated according to a comparison of the isthmus and infundibulum and was down-regulated based on a comparison of the isthmus and ampulla. Transcriptional misregulation in the Middle East pathway was up-regulated based on a comparison of the isthmus and ampulla and was down-regulated based on a comparison of the isthmus and infundibulum. ERBB2, JUP, CTNND1, and KRT7 were defined as the hub genes of the yak oviduct. The results of this study provide sufficient omics data for yak fertilization, which is also of great significance to altitude medicine.
Collapse
Affiliation(s)
- Jian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Tian Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China,*Correspondence: Sijiu Yu
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China,Yan Cui
| |
Collapse
|
255
|
Sayed TS, Maayah ZH, Zeidan HA, Agouni A, Korashy HM. Insight into the physiological and pathological roles of the aryl hydrocarbon receptor pathway in glucose homeostasis, insulin resistance, and diabetes development. Cell Mol Biol Lett 2022; 27:103. [PMID: 36418969 PMCID: PMC9682773 DOI: 10.1186/s11658-022-00397-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor that mediates the toxicities of several environmental pollutants. Decades of research have been carried out to understand the role of AhR as a novel mechanism for disease development. Its involvement in the pathogenesis of cancer, cardiovascular diseases, rheumatoid arthritis, and systemic lupus erythematosus have long been known. One of the current hot research topics is investigating the role of AhR activation by environmental pollutants on glucose homeostasis and insulin secretion, and hence the pathogenesis of diabetes mellitus. To date, epidemiological studies have suggested that persistent exposure to environmental contaminants such as dioxins, with subsequent AhR activation increases the risk of specific comorbidities such as obesity and diabetes. The importance of AhR signaling in various molecular pathways highlights that the role of this receptor is far beyond just xenobiotic metabolism. The present review aims at providing significant insight into the physiological and pathological role of AhR and its regulated enzymes, such as cytochrome P450 1A1 (CYP1A1) and CYP1B1 in both types of diabetes. It also provides a comprehensive summary of the current findings of recent research studies investigating the role of the AhR/CYP1A1 pathway in insulin secretion and glucose hemostasis in the pancreas, liver, and adipose tissues. This review further highlights the molecular mechanisms involved, such as gluconeogenesis, hypoxia-inducible factor (HIF), oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Tahseen S. Sayed
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Zaid H. Maayah
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Heba A. Zeidan
- grid.498552.70000 0004 0409 8340American School of Doha, Doha, Qatar
| | - Abdelali Agouni
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Hesham M. Korashy
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
256
|
Shi Z, Huo Y, Hou J, Zhang R, Wu J, Wang W, Yu J, Wang H, Liu Y, Song G, Chen Z, Chen Z. Proteomic analysis of skeletal muscle in Chinese hamsters with type 2 diabetes mellitus reveals that OPLAH downregulation affects insulin resistance and impaired glucose uptake. Free Radic Biol Med 2022; 193:23-33. [PMID: 36195162 DOI: 10.1016/j.freeradbiomed.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease controlled by a combination of genetic and environmental factors. The Chinese hamster, as a novel animal model of spontaneous T2DM with high phenotypic similarity to human disease, is of great value in identifying potential therapeutic targets for T2DM. Here, we used tandem mass tag (TMT) quantitative proteomics based on liquid chromatography-tandem mass spectrometry to assess the skeletal muscles of a Chinese hamster diabetes model. We identified 38 differentially abundant proteins, of which 14 were upregulated and 24 were downregulated. Further analysis of the differentially abundant proteins revealed that five of them (OPLAH, GST, EPHX1, SIRT5, ALDH1L1) were associated with oxidative stress; these were validated at the protein and mRNA levels, and the results were consistent with the proteomic analysis results. In addition, we evaluated the role of OPLAH in the pathogenesis of T2DM in human skeletal muscle cells (HSKMCs) by silencing it. The knockdown of OPLAH caused an increase in reactive oxygen species content, decreased the GSH content, inhibited the PI3K/Akt/GLUT4 signaling pathway, and reduced glucose uptake. We propose that OPLAH downregulation plays a role in insulin resistance and glucose uptake disorders in HSKMCs possibly via oxidative stress, making it a new therapeutic target for T2DM.
Collapse
Affiliation(s)
- Zeya Shi
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, 030001, China
| | - Yitong Huo
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, 030001, China
| | - Jianan Hou
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruihu Zhang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, 030001, China
| | - Jianqin Wu
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, 030001, China
| | - Wentao Wang
- Department of Cardiology, The Affiliated Cardiovascular Disease Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jingjing Yu
- Experimental Animal Platform in Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Hailong Wang
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, 030600, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhenwen Chen
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, 100629, China.
| | - Zhaoyang Chen
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
257
|
Ruan D, Ye ZW, Yuan S, Li Z, Zhang W, Ong CP, Tang K, Ka Ki Tam TT, Guo J, Xuan Y, Huang Y, Zhang Q, Lee CL, Lu L, Chiu PCN, Yeung WSB, Liu F, Jin DY, Liu P. Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection. Cell Rep Med 2022; 3:100849. [PMID: 36495872 PMCID: PMC9671691 DOI: 10.1016/j.xcrm.2022.100849] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Direct in vivo investigation of human placenta trophoblast's susceptibility to SARS-CoV-2 is challenging. Here we report that human trophoblast stem cells (hTSCs) and their derivatives are susceptible to SARS-CoV-2 infection, which reveals heterogeneity in hTSC cultures. Early syncytiotrophoblasts (eSTBs) generated from hTSCs have enriched transcriptomic features of peri-implantation trophoblasts, express high levels of angiotensin-converting enzyme 2 (ACE2), and are productively infected by SARS-CoV-2 and its Delta and Omicron variants to produce virions. Antiviral drugs suppress SARS-CoV-2 replication in eSTBs and antagonize the virus-induced blockage of STB maturation. Although less susceptible to SARS-CoV-2 infection, trophoblast organoids originating from hTSCs show detectable viral replication reminiscent of the uncommon placental infection. These findings implicate possible risk of COVID-19 infection in peri-implantation embryos, which may go unnoticed. Stem cell-derived human trophoblasts such as eSTBs can potentially provide unlimited amounts of normal and genome-edited cells and facilitate coronavirus research and antiviral discovery.
Collapse
Affiliation(s)
- Degong Ruan
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zi-Wei Ye
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhuoxuan Li
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Weiyu Zhang
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Chon Phin Ong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Timothy Theodore Ka Ki Tam
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jilong Guo
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yunying Huang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qingqing Zhang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - William S B Yeung
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fang Liu
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Foshan Stomatology Hospital, School of Medicine, Foshan University, No. 5 Hebing Road, Foshan, Guangdong Province, China.
| | - Dong-Yan Jin
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Pentao Liu
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
258
|
Simultaneous Inhibition of Histone Deacetylases and RNA Synthesis Enables Totipotency Reprogramming in Pig SCNT Embryos. Int J Mol Sci 2022; 23:ijms232214142. [PMID: 36430635 PMCID: PMC9697165 DOI: 10.3390/ijms232214142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Combining somatic cell nuclear transfer (SCNT) with genome editing technologies has emerged as a powerful platform for the creation of unique swine lineages for agricultural and biomedical applications. However, successful application of this research platform is still hampered by the low efficiency of these technologies, particularly in attaining complete cell reprogramming for the production of cloned pigs. Treating SCNT embryos with histone deacetylase inhibitors (HDACis), such as Scriptaid, has been routinely used to facilitate chromatin reprogramming after nuclear transfer. While increasing histone acetylation leads to a more relaxed chromatin configuration that facilitates the access of reprogramming factors and DNA repair machinery, it may also promote the expression of genes that are unnecessary or detrimental for normal embryo development. In this study, we evaluated the impact of inhibiting both histone deacetylases and RNA synthesis on pre- and post-implantation development of pig SCNT embryos. Our findings revealed that transcription can be inhibited for up to 40 h of development in porcine embryos, produced either by activation, fertilization or SCNT, without detrimentally affecting their capacity to form a blastocyst and their average number of cells at this developmental stage. Importantly, inhibiting RNA synthesis during HDACi treatment resulted in SCNT blastocysts with a greater number of cells and more abundant transcripts for genes related to embryo genome activation on days 2, 3 and 4 of development, compared to SCNT embryos that were treated with HDACi only. In addition, concomitant inhibition of histone deacetylases and RNA synthesis promoted the full reprograming of somatic cells, as evidenced by the normal fetal and full-term development of SCNT embryos. This combined treatment may improve the efficiency of the genome-editing + SCNT platform in swine, which should be further tested by transferring more SCNT embryos and evaluating the health and growth performance of the cloned pigs.
Collapse
|
259
|
Stemness of Normal and Cancer Cells: The Influence of Methionine Needs and SIRT1/PGC-1α/PPAR-α Players. Cells 2022; 11:cells11223607. [PMID: 36429035 PMCID: PMC9688847 DOI: 10.3390/cells11223607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells are a population of undifferentiated cells with self-renewal and differentiation capacities. Normal and cancer stem cells share similar characteristics in relation to their stemness properties. One-carbon metabolism (OCM), a network of interconnected reactions, plays an important role in this dependence through its role in the endogenous synthesis of methionine and S-adenosylmethionine (SAM), the universal donor of methyl groups in eukaryotic cells. OCM genes are differentially expressed in stem cells, compared to their differentiated counterparts. Furthermore, cultivating stem cells in methionine-restricted conditions hinders their stemness capacities through decreased SAM levels with a subsequent decrease in histone methylation, notably H3K4me3, with a decrease in stem cell markers. Stem cells' reliance on methionine is linked to several mechanisms, including high methionine flux or low endogenous methionine biosynthesis. In this review, we provide an overview of the recent discoveries concerning this metabolic dependence and we discuss the mechanisms behind them. We highlight the influence of SIRT1 on SAM synthesis and suggest a role of PGC-1α/PPAR-α in impaired stemness produced by methionine deprivation. In addition, we discuss the potential interest of methionine restriction in regenerative medicine and cancer treatment.
Collapse
|
260
|
Ding E, Wang Y, Liu J, Tang S, Shi X. A review on the application of the exposome paradigm to unveil the environmental determinants of age-related diseases. Hum Genomics 2022; 16:54. [DOI: 10.1186/s40246-022-00428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractAge-related diseases account for almost half of all diseases among adults worldwide, and their incidence is substantially affected by the exposome, which is the sum of all exogenous and endogenous environmental exposures and the human body’s response to these exposures throughout the entire lifespan. Herein, we perform a comprehensive review of the epidemiological literature to determine the key elements of the exposome that affect the development of age-related diseases and the roles of aging hallmarks in this process. We find that most exposure assessments in previous aging studies have used a reductionist approach, whereby the effect of only a single environmental factor or a specific class of environmental factors on the development of age-related diseases has been examined. As such, there is a lack of a holistic and unbiased understanding of the effect of multiple environmental factors on the development of age-related diseases. To address this, we propose several research strategies based on an exposomic framework that could advance our understanding—in particular, from a mechanistic perspective—of how environmental factors affect the development of age-related diseases. We discuss the statistical methods and other methods that have been used in exposome-wide association studies, with a particular focus on multiomics technologies. We also address future challenges and opportunities in the realm of multidisciplinary approaches and genome–exposome epidemiology. Furthermore, we provide perspectives on precise public health services for vulnerable populations, public communications, the integration of risk exposure information, and the bench-to-bedside translation of research on age-related diseases.
Collapse
|
261
|
Malik V, Zang R, Fuentes-Iglesias A, Huang X, Li D, Fidalgo M, Zhou H, Wang J. Comparative functional genomics identifies unique molecular features of EPSCs. Life Sci Alliance 2022; 5:5/11/e202201608. [PMID: 35961778 PMCID: PMC9378845 DOI: 10.26508/lsa.202201608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
The authors provide a comprehensive resource on proteomics, transcriptomic, and epigenetic level details of EPSCs to shed light on possible molecular pathways regulating their expanded pluripotency potential. Extended pluripotent or expanded potential stem cells (EPSCs) possess superior developmental potential to embryonic stem cells (ESCs). However, the molecular underpinning of EPSC maintenance in vitro is not well defined. We comparatively studied transcriptome, chromatin accessibility, active histone modification marks, and relative proteomes of ESCs and the two well-established EPSC lines to probe the molecular foundation underlying EPSC developmental potential. Despite some overlapping transcriptomic and chromatin accessibility features, we defined sets of molecular signatures that distinguish EPSCs from ESCs in transcriptional and translational regulation as well as metabolic control. Interestingly, EPSCs show similar reliance on pluripotency factors Oct4, Sox2, and Nanog for self-renewal as ESCs. Our study provides a rich resource for dissecting the regulatory network that governs the developmental potency of EPSCs and exploring alternative strategies to capture totipotent stem cells in culture.
Collapse
Affiliation(s)
- Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ruge Zang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandro Fuentes-Iglesias
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Miguel Fidalgo
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
262
|
Navarro M, Halstead MM, Rincon G, Mutto AA, Ross PJ. bESC from cloned embryos do not retain transcriptomic or epigenetic memory from somatic donor cells. Reproduction 2022; 164:243-257. [PMID: 35951478 DOI: 10.1530/rep-22-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
In brief Epigenetic reprogramming after mammalian somatic cell nuclear transfer is often incomplete, resulting in low efficiency of cloning. However, gene expression and histone modification analysis indicated high similarities in transcriptome and epigenomes of bovine embryonic stem cells from in vitro fertilized and somatic cell nuclear transfer embryos. Abstract Embryonic stem cells (ESC) indefinitely maintain the pluripotent state of the blastocyst epiblast. Stem cells are invaluable for studying development and lineage commitment, and in livestock, they constitute a useful tool for genomic improvement and in vitro breeding programs. Although these cells have been recently derived from bovine blastocysts, a detailed characterization of their molecular state is lacking. Here, we apply cutting-edge technologies to analyze the transcriptomic and epigenomic landscape of bovine ESC (bESC) obtained from in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. bESC were efficiently derived from SCNT and IVF embryos and expressed pluripotency markers while retaining genome stability. Transcriptome analysis revealed that only 46 genes were differentially expressed between IVF- and SCNT-derived bESC, which did not reflect significant deviation in cellular function. Interrogating histone 3 lysine 4 trimethylation, histone 3 lysine 9 trimethylation, and histone 3 lysine 27 trimethylation with cleavage under targets and tagmentation, we found that the epigenomes of both bESC groups were virtually indistinguishable. Minor epigenetic differences were randomly distributed throughout the genome and were not associated with differentially expressed or developmentally important genes. Finally, the categorization of genomic regions according to their combined histone mark signal demonstrated that all bESC shared the same epigenomic signatures, especially at gene promoters. Overall, we conclude that bESC derived from SCNT and IVF embryos are transcriptomically and epigenetically analogous, allowing for the production of an unlimited source of pluripotent cells from high genetic merit organisms without resorting to transgene-based techniques.
Collapse
Affiliation(s)
- M Navarro
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
- Department of Animal Science, University of California, Davis, California, USA
| | - M M Halstead
- Department of Animal Science, University of California, Davis, California, USA
| | | | - A A Mutto
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
| | - P J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
263
|
Zhang Y, An C, Yu Y, Lin J, Jin L, Li C, Tan T, Yu Y, Fan Y. Epidermal growth factor induces a trophectoderm lineage transcriptome resembling that of human embryos during reconstruction of blastoids from extended pluripotent stem cells. Cell Prolif 2022; 55:e13317. [PMID: 35880490 PMCID: PMC9628219 DOI: 10.1111/cpr.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES This study aims to optimize the human extended pluripotent stem cell (EPSC) to trophectoderm (TE)-like cell induction with addition of EGF and improve the quality of the reconstructing blastoids. MATERIALS AND METHODS TE-like cells were differentiated from human EPSCs. RNA-seq data analysis was performed to compare with TE-like cells from multiple human pluripotent stem cells (hPSCs) and embryos. A small-scale compound selection was performed for optimizing the TE-like cell induction and the efficiency was characterized using TE-lineage markers expression by immunofluorescence stanning. Blastoids were generated by using the optimized TE-like cells and the undifferentiated human EPSCs through three-dimensional culture system. Single-cell RNA sequencing was performed to investigate the lineage segregation of the optimized blastoids to human blastocysts. RESULTS TE-like cells derived from human EPSCs exhibited similar transcriptome with TE cells from embryos. Additionally, TE-like cells from multiple naive hPSCs exhibited heterogeneous gene expression patterns and signalling pathways because of the incomplete silencing of naive-specific genes and loss of imprinting. Furthermore, with the addition of EGF, TE-like cells derived from human EPSCs enhanced the TE lineage-related signalling pathways and exhibited more similar transcriptome to human embryos. Through resembling with undifferentiated human EPSCs, we elevated the quality and efficiency of reconstructing blastoids and separated more lineage cells with precise temporal and spatial expression, especially the PE lineage. CONCLUSION Addition of EGF enhanced TE lineage differentiation and human blastoids reconstruction. The optimized blastoids could be used as a blastocyst model for simulating early embryonic development.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chenrui An
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Long Jin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chaohui Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
264
|
Liu WX, Tan SJ, Wang YF, Zhang FL, Feng YQ, Ge W, Dyce PW, Reiter RJ, Shen W, Cheng SF. Melatonin promotes the proliferation of primordial germ cell-like cells derived from porcine skin-derived stem cells: A mechanistic analysis. J Pineal Res 2022; 73:e12833. [PMID: 36106819 DOI: 10.1111/jpi.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
In vitro differentiation of stem cells into functional gametes remains of great interest in the biomedical field. Skin-derived stem cells (SDSCs) are an adult stem cells that provides a wide range of clinical applications without inherent ethical restrictions. In this paper, porcine SDSCs were successfully differentiated into primordial germ cell-like cells (PGCLCs) in conditioned media. The PGCLCs were characterized in terms of cell morphology, marker gene expression, and epigenetic properties. Furthermore, we also found that 25 μM melatonin (MLT) significantly increased the proliferation of the SDSC-derived PGCLCs while acting through the MLT receptor type 1 (MT1). RNA-seq results found the mitogen-activated protein kinase (MAPK) signaling pathway was more active when PGCLCs were cultured with MLT. Moreover, the effect of MLT was attenuated by the use of S26131 (MT1 antagonist), crenolanib (platelet-derived growth factor receptor inhibitor), U0126 (mitogen-activated protein kinase kinase inhibitor), or CCG-1423 (serum response factor transcription inhibitor), suggesting that MLT promotes the proliferation processes through the MAPK pathway. Taken together, this study highlights the role of MLT in promoting PGCLCs proliferation. Importantly, this study provides a suitable in vitro model for use in translational studies and could help to answer numerous remaining questions related to germ cell physiology.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shao-Jing Tan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Feng Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fa-Li Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Qing Feng
- School Hospital, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, Texas, USA
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
265
|
Oliveira MC, Verswyvel H, Smits E, Cordeiro RM, Bogaerts A, Lin A. The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies. Redox Biol 2022; 57:102503. [PMID: 36228438 PMCID: PMC9557036 DOI: 10.1016/j.redox.2022.102503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Gap junctions (GJs), essential structures for cell-cell communication, are made of two hemichannels (commonly called connexons), one on each adjacent cell. Found in almost all cells, GJs play a pivotal role in many physiological and cellular processes, and have even been linked to the progression of diseases, such as cancer. Modulation of GJs is under investigation as a therapeutic strategy to kill tumor cells. Furthermore, GJs have also been studied for their key role in activating anti-cancer immunity and propagating radiation- and oxidative stress-induced cell death to neighboring cells, a process known as the bystander effect. While, gap junction (GJ)-based therapeutic strategies are being developed, one major challenge has been the paradoxical role of GJs in both tumor progression and suppression, based on GJ composition, cancer factors, and tumoral context. Therefore, understanding the mechanisms of action, regulation, and the dual characteristics of GJs in cancer is critical for developing effective therapeutics. In this review, we provide an overview of the current understanding of GJs structure, function, and paradoxical pro- and anti-tumoral role in cancer. We also discuss the treatment strategies to target these GJs properties for anti-cancer responses, via modulation of GJ function.
Collapse
Affiliation(s)
- Maria C Oliveira
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil.
| | - Hanne Verswyvel
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| |
Collapse
|
266
|
Jin Q, Yang X, Gou S, Liu X, Zhuang Z, Liang Y, Shi H, Huang J, Wu H, Zhao Y, Ouyang Z, Zhang Q, Liu Z, Chen F, Ge W, Xie J, Li N, Lai C, Zhao X, Wang J, Lian M, Li L, Quan L, Ye Y, Lai L, Wang K. Double knock-in pig models with elements of binary Tet-On and phiC31 integrase systems for controllable and switchable gene expression. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2269-2286. [PMID: 35596888 DOI: 10.1007/s11427-021-2088-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/20/2022] [Indexed: 06/15/2023]
Abstract
Inducible expression systems are indispensable for precise regulation and in-depth analysis of biological process. Binary Tet-On system has been widely employed to regulate transgenic expression by doxycycline. Previous pig models with tetracycline regulatory elements were generated through random integration. This process often resulted in uncertain expression and unpredictable phenotypes, thus hindering their applications. Here, by precise knock-in of binary Tet-On 3G elements into Rosa26 and Hipp11 locus, respectively, a double knock-in reporter pig model was generated. We characterized excellent properties of this system for controllable transgenic expression both in vitro and in vivo. Two attP sites were arranged to flank the tdTomato to switch reporter gene. Single or multiple gene replacement was efficiently and faithfully achieved in fetal fibroblasts and nuclear transfer embryos. To display the flexible application of this system, we generated a pig strain with Dox-inducing hKRASG12D expression through phiC31 integrase-mediated cassette exchange. After eight months of Dox administration, squamous cell carcinoma developed in the nose, mouth, and scrotum, which indicated this pig strain could serve as an ideal large animal model to study tumorigenesis. Overall, the established pig models with controllable and switchable transgene expression system will provide a facilitating platform for transgenic and biomedical research.
Collapse
Affiliation(s)
- Qin Jin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Xiaoyu Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Xiaoyi Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yanhui Liang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Hui Shi
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jiayuan Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510633, China
| | - Han Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Zhen Ouyang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Fangbing Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Weikai Ge
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jingke Xie
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Nan Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Chengdan Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xiaozhu Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Meng Lian
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Lei Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Longquan Quan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yinghua Ye
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Kepin Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
267
|
Kourmaeva E, Sabry R, Favetta LA. Bisphenols A and F, but not S, induce apoptosis in bovine granulosa cells via the intrinsic mitochondrial pathway. Front Endocrinol (Lausanne) 2022; 13:1028438. [PMID: 36387888 PMCID: PMC9650025 DOI: 10.3389/fendo.2022.1028438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
With the gradual decline in global fertility rates, there is a need to identify potential contributing factors, their mechanisms of actions and investigate possible solutions to reverse the trend. Endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), are environmental toxicants that are known to negatively impact reproductive functions. As such, the use of BPA in the manufacturing industry has slowly been replaced by analogs, including bisphenol S (BPS) and bisphenol F (BPF), despite limited knowledge available regarding their impact on health and their safety. The following study investigates the effects of BPA, BPS and BPF at a concentration of 0.5 μg/mL and 50 μg/mL on bovine granulosa cell apoptosis, with the ultimate goal of determining how they may impact oocyte competence and, thus, overall fertility. The underlying hypothesis is that bisphenols disrupt the granulosa cell environment surrounding the oocyte inducing excessive apoptosis via the intrinsic mitochondrial pathway. To test this hypothesis, apoptosis was measured following a time- and dose-dependent exposure to all three bisphenols by flowcytometry paired with annexin V/PI staining as well as by quantification of key genes belonging to the intrinsic apoptotic pathway both at the mRNA and protein levels. The results of this study report that BPA and BPF reduce cell viability through reduced cell counts and increased apoptosis. This increase is due, in part, to the induction of apoptotic genes of the intrinsic pathway of apoptosis. Additionally, this study also suggests that BPS may not act on the intrinsic mitochondrial apoptotic pathway in bovine granulosa cells. Overall, this study allows us to establish potential apoptotic pathways activated by bisphenols as well as compare the relative apoptotic activities of BPA to its most widespread analogs.
Collapse
Affiliation(s)
| | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
268
|
Hicks JA, Pike BE, Liu HC. Alterations in hepatic mitotic and cell cycle transcriptional networks during the metabolic switch in broiler chicks. Front Physiol 2022; 13:1020870. [PMID: 36353371 PMCID: PMC9639855 DOI: 10.3389/fphys.2022.1020870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2024] Open
Abstract
During embryonic life, chicks mainly derive energy from hepatic oxidation of yolk lipids. After hatch, chicks must rely on carbohydrate-rich feed to obtain energy. This requires an abrupt and intensive switch of metabolic processes, particularly in the liver. We recently identified a number of transcriptional and post-transcriptional regulatory networks that work concordantly to tune metabolic processes during the metabolic switch. Here, we used delayed feeding post-hatch (48 h) to impede the metabolic switch in broilers. We used RNA-seq to identify hepatic transcriptome differences between late stage embryos (E18) and two-day-old chicks (D2), which were either fed-from-hatch (FED) or not fed (DLY). Between FED and E18, 2,430 genes were differentially expressed (fold-change≥ 2; FDR p-value 0.05), of these 1,237 were downregulated in FED birds and 1,193 were upregulated. Between DLY and E18, 1979 genes were differentially expressed, of these 1,043 were downregulated and 936 were upregulated in DLY birds. Between DLY and FED, 880 genes were differentially expressed, of these 543 were downregulated and 337 were upregulated in DLY birds. We found that in addition to disturbances in a number of metabolic pathways, unfed chicks had a widespread suppression of gene networks associated with cell proliferation, cell cycle progression and mitosis. Expression patterns suggest that hepatocytes of delayed-fed birds have abnormal mitosis and increased polyploidization. This suggests that post-hatch feed consumption maintains the rate and integrity of liver growth immediately, which in turn, likely helps facilitate the appropriate programming of hepatic metabolic networks.
Collapse
Affiliation(s)
| | | | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
269
|
Cheng H, Dai Y, Ruan X, Duan X, Zhang C, Li L, Huang F, Shan J, Liang K, Jia X, Wang Q, Zhao H. Effects of nanoplastic exposure on the immunity and metabolism of red crayfish (Cherax quadricarinatus) based on high-throughput sequencing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114114. [PMID: 36179446 DOI: 10.1016/j.ecoenv.2022.114114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Previous studies have shown that nanoplastics (NPs) are harmful pollutants that threaten aquatic organisms and ecosystems, however, less research has been conducted on the hazards of NPs for aquaculture animals. In this study, Cherax quadricarinatus was used as an experimental model to evaluate the possible effects of three concentrations (25, 250 and 2500 μg/L) of NPs on red crayfish. The toxicological effects of NPs on this species were investigated based on transcriptomics and microbiome. A total of 67,668 genes were obtained from the transcriptome. The annotation rate of the four major libraries (Nr, KEGG, KOG, Swissprot) was 40.17 %, and the functions of differential genes were mainly related to antioxidant activity, metabolism and immune processes. During the experiment, the activities of superoxide dismutase (SOD) and catalase (CAT) in the high concentration group were significantly decreased, while the concentration of malondialdehyde (MDA) increased after nanoplastics (NPs) exposure, and SOD1, Jafrac1 were significantly reduced at high concentrations. expression is inhibited. The immune genes LYZ and PPO2 were highly expressed at low concentrations and suppressed at high concentrations. After 14 days of exposure to NPs, significant changes in gut microbiota were observed, such as decreased abundances of Actinobacteria, Bacteroidetes, and Firmicutes. NPs compromise host health by inducing changes in microbial communities and the production of beneficial bacterial metabolites. Overall, these results suggest that NPs affect immune-related gene expression and antioxidant enzyme activity in red crayfish and cause redox imbalance in the body, altering the composition and diversity of the gut microbiota.
Collapse
Affiliation(s)
- Huitao Cheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Yuantang Dai
- Modern Agriculture Comprehensive Service Center of Dongyuan County, Heyuan 517500, China.
| | - Xinhe Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xuzhuo Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunli Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fengqi Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jinhong Shan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kaishan Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xianze Jia
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
270
|
Abstract
The complex process by which a single-celled zygote develops into a viable embryo is nothing short of a miraculous wonder of the natural world. Elucidating how this process is orchestrated in humans has long eluded the grasp of scientists due to ethical and practical limitations. Thankfully, pluripotent stem cells that resemble early developmental cell types possess the ability to mimic specific embryonic events. As such, murine and human stem cells have been leveraged by scientists to create in vitro models that aim to recapitulate different stages of early mammalian development. Here, we examine the wide variety of stem cell-based embryo models that have been developed to recapitulate and study embryonic events, from pre-implantation development through to early organogenesis. We discuss the applications of these models, key considerations regarding their importance within the field, and how such models are expected to grow and evolve to achieve exciting new milestones in the future.
Collapse
Affiliation(s)
- Aidan H. Terhune
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeyoon Bok
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
271
|
Monosomy X in isogenic human iPSC-derived trophoblast model impacts expression modules preserved in human placenta. Proc Natl Acad Sci U S A 2022; 119:e2211073119. [PMID: 36161909 DOI: 10.1073/pnas.2211073119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian sex chromosomes encode homologous X/Y gene pairs that were retained on the Y chromosome in males and escape X chromosome inactivation (XCI) in females. Inferred to reflect X/Y pair dosage sensitivity, monosomy X is a leading cause of miscarriage in humans with near full penetrance. This phenotype is shared with many other mammals but not the mouse, which offers sophisticated genetic tools to generate sex chromosomal aneuploidy but also tolerates its developmental impact. To address this critical gap, we generated X-monosomic human induced pluripotent stem cells (hiPSCs) alongside otherwise isogenic euploid controls from male and female mosaic samples. Phased genomic variants in these hiPSC panels enable systematic investigation of X/Y dosage-sensitive features using in vitro models of human development. Here, we demonstrate the utility of these validated hiPSC lines to test how X/Y-linked gene dosage impacts a widely used model for human syncytiotrophoblast development. While these isogenic panels trigger a GATA2/3- and TFAP2A/C-driven trophoblast gene circuit irrespective of karyotype, differential expression implicates monosomy X in altered levels of placental genes and in secretion of placental growth factor (PlGF) and human chorionic gonadotropin (hCG). Remarkably, weighted gene coexpression network modules that significantly reflect these changes are also preserved in first-trimester chorionic villi and term placenta. Our results suggest monosomy X may skew trophoblast cell type composition and function, and that the combined haploinsufficiency of the pseudoautosomal region likely plays a key role in these changes.
Collapse
|
272
|
Super-enhancers conserved within placental mammals maintain stem cell pluripotency. Proc Natl Acad Sci U S A 2022; 119:e2204716119. [PMID: 36161929 DOI: 10.1073/pnas.2204716119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.
Collapse
|
273
|
Wang N, Jiang Y, Nie K, Li D, Liu H, Wang J, Huang C, Li C. Toehold-mediated strand displacement reaction-propelled cascade DNAzyme amplifier for microRNA let-7a detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
274
|
Appleby SJ, Misica‐Turner P, Oback FC, Dhali A, McLean ZL, Oback B. Double cytoplast embryonic cloning improves in vitro but not in vivo development from mitotic pluripotent cells in cattle. Front Genet 2022; 13:933534. [PMID: 36246653 PMCID: PMC9563626 DOI: 10.3389/fgene.2022.933534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Cloning multiple animals from genomically selected donor embryos is inefficient but would accelerate genetic gain in dairy cattle breeding. To improve embryo cloning efficiency, we explored the idea that epigenetic reprogramming improves when donor cells are in mitosis. We derived primary cultures from bovine inner cell mass (ICM) cells of in vitro fertilized (IVF) embryos. Cells were grown feeder-free in a chemically defined medium with increased double kinase inhibition (2i+). Adding recombinant bovine interleukin 6 to 2i+ medium improved plating efficiency, outgrowth expansion, and expression of pluripotency-associated epiblast marker genes (NANOG, FGF4, SOX2, and DPPA3). For genotype multiplication by embryonic cell transfer (ECT) cloning, primary colonies were treated with nocodazole, and single mitotic donors were harvested by mechanical shake-off. Immunofluorescence against phosphorylated histone 3 (P-H3) showed 37% of nocodazole-treated cells in metaphase compared to 6% in DMSO controls (P < 1 × 10−5), with an average of 53% of P-H3-positive cells expressing the pluripotency marker SOX2. We optimized several parameters (fusion buffer, pronase treatment, and activation timing) for ECT with mitotic embryonic donors. Sequential double cytoplast ECT, whereby another cytoplast was fused to the first cloned reconstruct, doubled cloned blastocyst development and improved morphological embryo quality. However, in situ karyotyping revealed that over 90% of mitotic ECT-derived blastocysts were tetraploid or aneuploid with extra chromosomes, compared to less than 2% in the original ICM donor cells. Following the transfer of single vs. double cytoplast embryos, there was no difference between the two methods in pregnancy establishment at D35 (1/22 = 5% vs. 4/53 = 8% for single vs. double ECT, respectively). Overall, post-implantation development was drastically reduced from embryonic mitotic clones when compared to somatic interphase clones and IVF controls. We conclude that mitotic donors cause ploidy errors during in vitro development that cannot be rescued by enhanced epigenetic reprogramming through double cytoplast cloning.
Collapse
Affiliation(s)
- Sarah Jane Appleby
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | | | | | - Zachariah Louis McLean
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Björn Oback
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Björn Oback,
| |
Collapse
|
275
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
276
|
Xiao L, Zhu J, Liu Z, Wu B, Zhou X, Wei Y, Sun F, Wang Z, Quan S, Li Q, Wang J, Huang L, Ma Y. Different transcriptional profiles of human embryonic stem cells grown in a feeder-free culture system and on human foreskin fibroblast feeder layers. Aging (Albany NY) 2022; 14:7443-7454. [PMID: 36103219 PMCID: PMC9550256 DOI: 10.18632/aging.204282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Feeder cells provide an optimal microenvironment for the propagation of human embryonic stem cells (hESCs) by supplying currently known or unknown factors. However, the hESCs grown on feeder cells are not suitable for the purpose of clinical application because of the risk of contamination. In recent years, the feeder-free culture method has been developed to eliminate contamination, but some studies show that hESCs exhibit poor growth patterns in a feeder-free culture system. Regarding this phenomenon, we speculate that some genes related to hESC propagation were differently expressed in hESCs grown on feeder cells. To test this hypothesis, 3 hESC lines (NF4, NF5 and P096) were efficiently expanded in a feeder-free culture system or on human foreskin fibroblast (HFF) cells. The different gene expression patterns of hESCs in these 2 conditions were analyzed through microarrays. The results revealed that the hESCs cultured in both conditions maintained the expression of stemness markers and the ability to spontaneously differentiate into the 3 germ layers. The analysis of gene expression profiles revealed that 23 lncRNA and 15 genes were significantly differentially expressed in these two culture conditions. Furthermore, GO analyses showed that these genes were involved in such biological processes as growth factor stimuli, cell growth, and stem cell maintenance. To summarize, our study demonstrated that the hESCs grown on the HFF showed different gene expression patterns compared to those grown in a feeder-free culture system, suggesting that these differently expressed lncRNAs and genes played important roles in maintaining hESC propagation.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Juan Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Bangyong Wu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Xiaohua Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Song Quan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Jun Wang
- Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanlin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| |
Collapse
|
277
|
Leonova EI, Reshetnikov VV, Sopova JV. CRISPR/Cas-edited pigs for personalized medicine: more than preclinical test-system. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.83872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Novel CRISPR-Cas-based genome editing tools made it feasible to introduce a variety of precise genomic modifications in the pig genome, including introducing multiple edits simultaneously, inserting long DNA sequences into specifically targeted loci, and performing nucleotide transitions and transversions. Pigs serve as a vital agricultural resource and animal model in biomedical studies, given their advantages over the other models. Pigs share high similarities to humans regarding body/organ size, anatomy, physiology, and a metabolic profile. The pig genome can be modified to carry the same genetic mutations found in humans to replicate inherited diseases to provide preclinical trials of drugs. Moreover, CRISPR-based modification of pigs antigen profile makes it possible to offer porcine organs for xenotransplantation with minimal transplant rejection responses. This review summarizes recent advances in endonuclease-mediated genome editing tools and research progress of genome-edited pigs as personalized test-systems for preclinical trials and as donors of organs with human-fit antigen profile.
Graphical abstract:
Collapse
|
278
|
Busnelli A, Beltratti C, Cirillo F, Bulfoni A, Lania A, Levi-Setti PE. Impact of Thyroid Autoimmunity on Assisted Reproductive Technology Outcomes and Ovarian Reserve Markers: An Updated Systematic Review and Meta-Analysis. Thyroid 2022; 32:1010-1028. [PMID: 35819278 DOI: 10.1089/thy.2021.0656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Thyroid autoimmunity (TAI) has a high prevalence among women of reproductive age. Investigating its possible impact on ovarian function and fertility is, thus, of utmost relevance. The aim of this systematic review and meta-analysis was to elucidate the effect of TAI on both assisted reproductive technology (ART) outcomes and ovarian reserve. Methods: This systematic review and meta-analysis was restricted to two groups of research articles investigating the association between TAI and: (1) autologous ART outcomes (i.e., fertilization rate [FR], implantation rate, clinical pregnancy rate [CPR], miscarriage rate, and live birth rate), (2) markers of ovarian reserve (i.e., anti-Müllerian hormone, basal follicle stimulating hormone, antral follicle count, and number of oocytes retrieved). Studies including women affected by overt hypo/hyperthyroidism were excluded. Relevant studies were identified by a systematic search in PubMed, MEDLINE, ClinicalTrials.gov, Embase, and Scopus, from database inception to May 1, 2022. Results: From a total of 432 identified publications, 22 studies were included in Group 1 and 26 studies in Group 2. The presence of TAI was associated with a higher risk of miscarriage (7606 participants, odds ratio [OR] 1.52, confidence interval [CI 1.14-2.01], p = 0.004, I2 = 53%), lower chance of embryo implantation (7118 participants, OR 0.72, [CI 0.59-0.88], p = 0.001, I2 = 36%), and live birth (11417 participants, OR 0.73, [CI 0.56-0.94], p = 0.02, I2 = 71%). These associations were no longer observed in a subgroup analysis of patients who exclusively underwent intracytoplasmic sperm injection (ICSI). The FR and CPR as well as the mean values of surrogate markers of oocyte quantity appeared not to be affected by TAI. Conclusions: This data synthesis suggest a higher risk of adverse ART outcomes in women with positive TAI. However, the reliability of these findings is hampered by the relatively low quality of the evidence and significant heterogeneity in many of the meta-analyses. The possible protective effect of ICSI is promising but should be confirmed in controlled prospective clinical trials. PROSPERO Registration ID: CRD42021236529.
Collapse
Affiliation(s)
- Andrea Busnelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, IRCCS Humanitas Research Hospital, Fertility Center, Rozzano, Italy
| | - Carola Beltratti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Federico Cirillo
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, IRCCS Humanitas Research Hospital, Fertility Center, Rozzano, Italy
| | - Alessandro Bulfoni
- Division of Obstetrics and Gynecology, Humanitas S. Pio X Hospital, Rozzano, Italy
| | - Andrea Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Paolo Emanuele Levi-Setti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, IRCCS Humanitas Research Hospital, Fertility Center, Rozzano, Italy
| |
Collapse
|
279
|
Wei Y, Xiao L, Ma L, Wang Z, Huang L, Li H, Pan G, Lye SJ, Shan Y. Protocol to derive human trophoblast stem cells directly from primed pluripotent stem cells. STAR Protoc 2022; 3:101638. [PMID: 36042882 PMCID: PMC9420535 DOI: 10.1016/j.xpro.2022.101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human trophoblast stem cells (hTSCs) are useful for studying human placenta development and diseases, but primed human pluripotent stem cells (hPSCs) routinely cultured in most laboratories do not support hTSC derivation. Here, we present a protocol to derive hTSCs directly from primed hPSCs. This approach, containing two strategies either with or without bone morphogenetic protein 4 (BMP4), provides a simple and accessible tool for deriving hTSCs to study placenta development and disease modeling without ethical limitations or reprogramming process. For complete details on the use and execution of this protocol, please refer to Wei et al. (2021). Protocol includes two strategies for hTSC derivation from primed hPSCs Standard strategy without BMP4 to derive hTSC from hPSCs Strategy using BMP4 to promote induction efficiency of hTSCs from hPSCs Derived hTSCs exhibit typical morphology, gene markers, and ability to differentiate
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
280
|
Zheng Y, Yan RZ, Sun S, Kobayashi M, Xiang L, Yang R, Goedel A, Kang Y, Xue X, Esfahani SN, Liu Y, Resto Irizarry AM, Wu W, Li Y, Ji W, Niu Y, Chien KR, Li T, Shioda T, Fu J. Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development. Cell Stem Cell 2022; 29:1402-1419.e8. [PMID: 36055194 PMCID: PMC9499422 DOI: 10.1016/j.stem.2022.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 01/03/2023]
Abstract
Despite its clinical and fundamental importance, our understanding of early human development remains limited. Stem cell-derived, embryo-like structures (or embryoids) allowing studies of early development without using natural embryos can potentially help fill the knowledge gap of human development. Herein, transcriptome at the single-cell level of a human embryoid model was profiled at different time points. Molecular maps of lineage diversifications from the pluripotent human epiblast toward the amniotic ectoderm, primitive streak/mesoderm, and primordial germ cells were constructed and compared with in vivo primate data. The comparative transcriptome analyses reveal a critical role of NODAL signaling in human mesoderm and primordial germ cell specification, which is further functionally validated. Through comparative transcriptome analyses and validations with human blastocysts and in vitro cultured cynomolgus embryos, we further proposed stringent criteria for distinguishing between human blastocyst trophectoderm and early amniotic ectoderm cells.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Robin Zhexuan Yan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mutsumi Kobayashi
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA
| | - Lifeng Xiang
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Ran Yang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunxiu Li
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Toshihiro Shioda
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
281
|
Bu G, Zhu W, Liu X, Zhang J, Yu L, Zhou K, Wang S, Li Z, Fan Z, Wang T, Hu T, Hu R, Liu Z, Wang T, Wu L, Zhang X, Zhao S, Miao YL. Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos. Genome Res 2022; 32:1487-1501. [PMID: 35868641 PMCID: PMC9435746 DOI: 10.1101/gr.276207.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 07/19/2022] [Indexed: 02/03/2023]
Abstract
Histone modifications are critical epigenetic indicators of chromatin state associated with gene expression. Although the reprogramming patterns of H3K4me3 and H3K27me3 have been elucidated in mouse and human preimplantation embryos, the relationship between these marks and zygotic genome activation (ZGA) remains poorly understood. By ultra-low-input native chromatin immunoprecipitation and sequencing, we profiled global H3K4me3 and H3K27me3 in porcine oocytes and in vitro fertilized (IVF) embryos. We observed sharp H3K4me3 peaks in promoters of ZGA genes in oocytes, and these peaks became broader after fertilization and reshaped into sharp peaks again during ZGA. By simultaneous depletion of H3K4me3 demethylase KDM5B and KDM5C, we determined that broad H3K4me3 domain maintenance impaired ZGA gene expression, suggesting its function to prevent premature ZGA entry. In contrast, broad H3K27me3 domains underwent global removal upon fertilization, followed by a re-establishment for H3K4me3/H3K27me3 bivalency in morulae. We also found that bivalent marks were deposited at promoters of ZGA genes, and inhibiting this deposition was correlated with the activation of ZGA genes. It suggests that promoter bivalency contributes to ZGA exit in porcine embryos. Moreover, we demonstrated that aberrant reprogramming of H3K4me3 and H3K27me3 triggered ZGA dysregulation in somatic cell nuclear transfer (SCNT) embryos, whereas H3K27me3-mediated imprinting did not exist in porcine IVF and SCNT embryos. Our findings highlight two previously unknown epigenetic reprogramming modes coordinated with ZGA in porcine preimplantation embryos. Finally, the similarities observed between porcine and human histone modification dynamics suggest that the porcine embryo may also be a useful model for human embryo research.
Collapse
Affiliation(s)
- Guowei Bu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Wei Zhu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Jingjing Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Longtao Yu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Kai Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Shangke Wang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Zhekun Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Zhengang Fan
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Tingting Wang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Taotao Hu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Ruifeng Hu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Zhiting Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Tao Wang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
282
|
Wang M, Zhu T, Liu C, Jin L, Fei P, Zhang B. Oviduct-mimicking microfluidic chips decreased the ROS concentration in the in vitro fertilized embryos of CD-1 mice. Biomed Pharmacother 2022; 154:113567. [PMID: 36007278 DOI: 10.1016/j.biopha.2022.113567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The process of the assisted reproductive technology (ART) cycle is extremely complicated, and various factors in each step may influence the final clinical outcomes; thus, optimizing culture conditions for embryos is crucial in the ART cycle, particularly when the traditional petri-dish method remains unchanged for decades. In the current study, we intend to culture embryos in a dynamic environment on chips to optimize the embryo culture conditions. METHODS Multilayer soft lithography technology was utilized to establish a microfluidics-based oviduct. Mouse primary oviduct epithelial cells were identified by immunofluorescence staining and then loaded into the chip to coculture with the embryos. The development potential parameters of embryos on chips with cells, on chips without cells, and in drops were compared, as well as reactive oxygen species (ROS) in embryos. RESULTS There were no obvious differences regarding the fertilization rate, 4-Cell embryo rate, cleavage rate, high-quality embryo rate, or blastocyst formation rate. However, the intracellular ROS levels in 4-Cell stage embryos on chips with cells were statistically significantly lower than those in drops (P < 0.001). This organ-on-chip device allowed the probability of mammalian embryo culture in a microfluidic-based manner. CONCLUSIONS Our findings demonstrated that this novel oviduct-on-chip model may optimize embryo culture conditions by reducing intracellular ROS levels, which may be a competent alternative to the existing stable embryo culture system.
Collapse
Affiliation(s)
- Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fei
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
283
|
Lavogina D, Visser N, Samuel K, Davey E, Björvang RD, Hassan J, Koponen J, Rantakokko P, Kiviranta H, Rinken A, Olovsson M, Salumets A, Damdimopoulou P. Endocrine disrupting chemicals interfere with decidualization of human primary endometrial stromal cells in vitro. Front Endocrinol (Lausanne) 2022; 13:903505. [PMID: 36060944 PMCID: PMC9437351 DOI: 10.3389/fendo.2022.903505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Multiple studies have shown associations between exposure to endocrine disrupting chemicals (EDCs) and reduced fertility in women. However, little is known about the target organs of chemical disruption of female fertility. Here, we focus on the hormone-sensitive uterine lining, the endometrium, as a potential target. Decidualization is the morphological and functional change that endometrial stromal cells undergo to support endometrial receptivity, which is crucial for successful implantation, placentation, and pregnancy. We investigated the effect of nine selected EDCs on primary human endometrial stromal cell decidualization in vitro. The cells were exposed to a decidualization-inducing mixture in the presence or absence of 1 μM of nine different EDCs for nine days. Extent of decidualization was assessed by measuring the activity of cAMP dependent protein kinase, Rho-associated coiled-coil containing protein kinase, and protein kinase B in lysates using photoluminescent probes, and secretion of prolactin into the media by using ELISA. Decidualization-inducing mixture upregulated activity of protein kinases and prolactin secretion in cells derived from all women. Of the tested chemicals, dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB) and perfluorooctanesulfonic acid (PFOS) significantly reduced decidualization as judged by the kinase markers and prolactin secretion. In addition, bisphenol A (BPA) reduced prolactin secretion but did not significantly affect activity of the kinases. None of the EDCs was cytotoxic, based on the assessment of total protein content or activity of the viability marker casein kinase 2 in lysates. These results indicate that EDCs commonly present in the blood circulation of reproductive-aged women can reduce decidualization of human endometrial stromal cells in vitro. Future studies should focus on detailed hazard assessment to define possible risks of EDC exposure to endometrial dysfunction and implantation failure in women.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Nadja Visser
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Eva Davey
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Richelle D. Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jasmin Hassan
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jani Koponen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Matts Olovsson
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
284
|
Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells. Genes (Basel) 2022; 13:genes13081459. [PMID: 36011370 PMCID: PMC9408542 DOI: 10.3390/genes13081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
| | - Qiang Wu
- Correspondence: ; Tel.: +853-8897-2708
| |
Collapse
|
285
|
Zhao L, Long C, Zhao G, Su J, Ren J, Sun W, Wang Z, Zhang J, Liu M, Hao C, Li H, Cao G, Bao S, Zuo Y, Li X. Reprogramming barriers in bovine cells nuclear transfer revealed by single-cell RNA-seq analysis. J Cell Mol Med 2022; 26:4792-4804. [PMID: 35971640 PMCID: PMC9465183 DOI: 10.1111/jcmm.17505] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Many progresses have recently been achieved in animal somatic cell nuclear transfer (SCNT). However, embryos derived from SCNT rarely result in live births. Single‐cell RNA sequencing (scRNA‐seq) can be used to investigate the development details of SCNT embryos. Here, bovine fibroblasts and three factors bovine iPSCs (3F biPSCs) were used as donors for bovine nuclear transfer, and the single blastomere transcriptome was analysed by scRNA‐seq. Compared to in vitro fertilization (IVF) embryos, SCNT embryos exhibited many defects. Abnormally expressed genes were found at each stage of embryos, which enriched in metabolism, and epigenetic modification. The DEGs of the adjacent stage in SCNT embryos did not follow the temporal expression pattern similar to that of IVF embryos. Particularly, SCNT 8‐cell stage embryos showed failures in some gene activation, including ZSCAN4, and defects in protein association networks which cored as POLR2K, GRO1, and ANKRD1. Some important signalling pathways also showed incomplete activation at SCNT zygote to morula stage. Interestingly, 3F biPSCNT embryos exhibited more dysregulated genes than SCNT embryos at zygote and 2‐cell stage, including genes in KDM family. Pseudotime analysis of 3F biPSCNT embryos showed the different developmental fate from SCNT and IVF embryos. These findings suggested partial reprogrammed 3F biPS cells as donors for bovine nuclear transfer hindered the reprogramming of nuclear transfer embryos. Our studies revealed the abnormal gene expression and pathway activation of SCNT embryos, which could increase our understanding of the development of SCNT embryos and give hints to improve the efficiency of nuclear transfer.
Collapse
Affiliation(s)
- Lixia Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Chunshen Long
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Gaoping Zhao
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Jie Su
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China.,College of Veterinary Medicine, Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
| | - Wei Sun
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Zixin Wang
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Jia Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Moning Liu
- College of Veterinary Medicine, Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunxia Hao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hanshuang Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guifang Cao
- College of Veterinary Medicine, Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| |
Collapse
|
286
|
Li X, Kodithuwakku SP, Chan RWS, Yeung WSB, Yao Y, Ng EHY, Chiu PCN, Lee CL. Three-dimensional culture models of human endometrium for studying trophoblast-endometrium interaction during implantation. Reprod Biol Endocrinol 2022; 20:120. [PMID: 35964080 PMCID: PMC9375428 DOI: 10.1186/s12958-022-00973-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
During implantation, a symphony of interaction between the trophoblast originated from the trophectoderm of the implanting blastocyst and the endometrium leads to a successful pregnancy. Defective interaction between the trophoblast and endometrium often results in implantation failure, pregnancy loss, and a number of pregnancy complications. Owing to ethical concerns of using in vivo approaches to study human embryo implantation, various in vitro culture models of endometrium were established in the past decade ranging from two-dimensional cell-based to three-dimensional extracellular matrix (ECM)/tissue-based culture systems. Advanced organoid systems have also been established for recapitulation of different cellular components of the maternal-fetal interface, including the endometrial glandular organoids, trophoblast organoids and blastoids. However, there is no single ideal model to study the whole implantation process leaving more research to be done pursuing the establishment of a comprehensive in vitro model that can recapitulate the biology of trophoblast-endometrium interaction during early pregnancy. This would allow us to have better understanding of the physiological and pathological process of trophoblast-endometrium interaction during implantation.
Collapse
Affiliation(s)
- Xintong Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Suranga P Kodithuwakku
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
287
|
Jin W, Jiang W. Stepwise differentiation of functional pancreatic β cells from human pluripotent stem cells. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:24. [PMID: 35909206 PMCID: PMC9339430 DOI: 10.1186/s13619-022-00125-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic β cells differentiated from stem cells provide promise for cell replacement therapy of diabetes. Human pluripotent stem cells could be differentiated into definitive endoderm, followed by pancreatic progenitors, and then subjected to endocrinal differentiation and maturation in a stepwise fashion. Many achievements have been made in making pancreatic β cells from human pluripotent stem cells in last two decades, and a couple of phase I/II clinical trials have just been initiated. Here, we overview the major progresses in differentiating pancreatic β cells from human pluripotent stem cells with the focus on recent technical advances in each differentiation stage, and briefly discuss the current limitations as well.
Collapse
Affiliation(s)
- Wenwen Jin
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
288
|
Ferreira R, Amaral C, Correia-da-Silva G, Almada M, Borges M, Cunha SC, Fernandes JO, Teixeira N. Bisphenols A, F, S and AF trigger apoptosis and/or endoplasmic reticulum stress in human endometrial stromal cells. Toxicology 2022; 478:153282. [DOI: 10.1016/j.tox.2022.153282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
|
289
|
Roberts RM, Ezashi T, Temple J, Owen JR, Soncin F, Parast MM. The role of BMP4 signaling in trophoblast emergence from pluripotency. Cell Mol Life Sci 2022; 79:447. [PMID: 35877048 PMCID: PMC10243463 DOI: 10.1007/s00018-022-04478-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO, 80124, USA
| | - Jasmine Temple
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joseph R Owen
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
290
|
Lopera-Vásquez R, Uribe-García F, Rondón-Barragán I. Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells. Vet World 2022; 15:1665-1675. [PMID: 36185535 PMCID: PMC9394134 DOI: 10.14202/vetworld.2022.1665-1675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The oviduct environment is of particular importance because it is the site of fertilization and early embryo development. The oviduct, as a component of the reproductive system, responds to ovarian hormone (estradiol [E2] and progesterone [P4]) stimuli depending on the estrous cycle phase. This study aimed to elucidate the effect of estrous cycle phases (follicular and early and late luteal phases) on gene expression patterns in bovine oviduct epithelial cells (BOECs).
Materials and Methods: Oviducts were obtained from healthy slaughterhouse animals, corresponding to ipsilateral ovaries with dominant follicles or corpus luteum during early and late luteal phases. BOECs were recovered from the isthmus (IST) and ampulla (AMP), and the expression patterns of genes related to cytokinesis and mitosis mechanisms (rho-associated coiled-coil containing protein kinase and cellular communication network factor 2 [CCN2]), growth factors (insulin-like growth factor-binding protein 3, epidermal growth factor receptor [EGFR], vascular endothelial growth factor A, and EGFR), antioxidant mechanisms (glutathione peroxidase 4 [GPX4]), apoptosis (B-cell lymphoma 2), complement component (C3), energy metabolism (aldose reductase gene family 1-member b1 [AKRIB1] and solute carrier family 2), hormone receptors (estrogen receptor 1 and luteinizing hormone/choriogonadotropin receptor), and specific glycoproteins (oviductal glycoprotein 1) were analyzed.
Results: High P4 levels (late luteal phase) affected the expression of important genes related to antioxidant mechanisms (GPX4), energy metabolism (AKRIB1), growth factors (IGBP3 and EGFR), and cell growth regulation (CCN2) in the AMP. Low P4 levels (early luteal phase) affected the expression of AKR1B1, IGBP3, and CCN2. In addition, estrogen likely had an effect on OVPGP expression in the cattle oviduct.
Conclusion: Differential gene expression patterns of BOECs in the AMP during the luteal phase (antioxidant mechanisms, energy metabolism, growth factors, and immunological regulators) and in the IST during the follicular phase (glycoproteins) may influence their renewal and population proportions, modulating the oviduct environment as well as gamete and embryo physiology.
Collapse
Affiliation(s)
- Ricaurte Lopera-Vásquez
- Impronta Research Group, Faculty of Veterinary Medicine and Zootechnics. Universidad Cooperativa de Colombia, Ibagué-Tolima, Colombia
| | - Fabián Uribe-García
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| | - Iang Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| |
Collapse
|
291
|
Ávila-González D, Portillo W, Barragán-Álvarez CP, Hernandez-Montes G, Flores-Garza E, Molina-Hernández A, Diaz-Martinez NE, Diaz NF. The human amniotic epithelium confers a bias to differentiate toward the neuroectoderm lineage in human embryonic stem cells. eLife 2022; 11:68035. [PMID: 35815953 PMCID: PMC9313526 DOI: 10.7554/elife.68035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Human embryonic stem cells (hESCs) derive from the epiblast and have pluripotent potential. To maintain the conventional conditions of the pluripotent potential in an undifferentiated state, inactivated mouse embryonic fibroblast (iMEF) is used as a feeder layer. However, it has been suggested that hESC under this conventional condition (hESC-iMEF) is an artifact that does not correspond to the in vitro counterpart of the human epiblast. Our previous studies demonstrated the use of an alternative feeder layer of human amniotic epithelial cells (hAECs) to derive and maintain hESC. We wondered if the hESC-hAEC culture could represent a different pluripotent stage than that of naïve or primed conventional conditions, simulating the stage in which the amniotic epithelium derives from the epiblast during peri-implantation. Like the conventional primed hESC-iMEF, hESC-hAEC has the same levels of expression as the ‘pluripotency core’ and does not express markers of naïve pluripotency. However, it presents a downregulation of HOX genes and genes associated with the endoderm and mesoderm, and it exhibits an increase in the expression of ectoderm lineage genes, specifically in the anterior neuroectoderm. Transcriptome analysis showed in hESC-hAEC an upregulated signature of genes coding for transcription factors involved in neural induction and forebrain development, and the ability to differentiate into a neural lineage was superior in comparison with conventional hESC-iMEF. We propose that the interaction of hESC with hAEC confers hESC a biased potential that resembles the anteriorized epiblast, which is predisposed to form the neural ectoderm.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Wendy Portillo
- Behavioral and Cognitive Neurobiology, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carla P Barragán-Álvarez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | | | - Eliezer Flores-Garza
- Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | | | - Nestor F Diaz
- Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
292
|
Zhang X, Shao S, Zhao X, Zhang M, Wang J. Micro-RNA-124-5p promotes insulin producing cell differentiation through regulating transcriptional factor NKX6.1. Biochem Biophys Rep 2022; 30:101273. [PMID: 35592615 PMCID: PMC9111988 DOI: 10.1016/j.bbrep.2022.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/15/2022] Open
Abstract
Aims Differentiating human embryonic stem cells into pancreatic β cells has been proposed as a practical approach to managing diabetes. There have been several protocols attempting to generate β-like cells or insulin-producing cells (IPCs), but their low efficiency is a common issue. The expression level of Nkx6.1 is crucial for maintaining pancreatic β cell identity, while the proportion of PDX1 and Nkx6.1 double positive cells were not satisfied in the present protocols, leading to relative low efficiency in the differentiation into IPCs. This study aims to identify the mechanism underlying the regulation of Nkx6.1 during IPC differentiation and provide new insights for diabetes therapy. Methods In the current study, human embryonic stem cell (hESC) line H1 was used to perform IPC specifications. Immunofluorescence, flow cytometry, and qPCR were conducted to analyze gene expression. In addition, insulin and C-peptide were measured through glucose-stimulated insulin secretion (GSIS) assays and ELISA. Results We found that the transcription factor NKX6.1, a crucial inducer of early pancreatic development and IPC generation, was downregulated by micro-RNA-124-5p (miR-124-5p) in hESCs during IPC differentiation. Also, we observed that miR-124-5p was upregulated and bound to the 3’ untranslated region (3’ UTR) of NKX6.1 in pancreatic progenitor (PP), which subsequently suppressed PP differentiation. Moreover, inhibiting miR-124-5p induced the generation of IPCs. Conclusion The current study results demonstrated an important role for miR-124-5p in regulating NKX6.1 expression, which appears to be a practical strategy for producing IPCs. miR-124-5p is upregulated during the IPCs differentiation. Inhibition of miR-124-5p enhances Nkx6.1 expresssion. miR-124-5p promotes the specification of IPCs from hESCs.
Collapse
Affiliation(s)
- Xianjun Zhang
- Department of Orthopedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shunzi Shao
- Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Xijiang Zhao
- Department of Orthopedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Meng Zhang
- Department of Orthopedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
- Corresponding author. The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518000, China
- Corresponding author.
| |
Collapse
|
293
|
Cristiano L. The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases. Genes Dis 2022; 9:941-958. [PMID: 35685457 PMCID: PMC9170609 DOI: 10.1016/j.gendis.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Luigi Cristiano
- R&D Division, Prestige, 18 via Vecchia, Terranuova Bracciolini, AR 52028, Italy
| |
Collapse
|
294
|
Yoshimatsu S, Kisu I, Qian E, Noce T. A New Horizon in Reproductive Research with Pluripotent Stem Cells: Successful In Vitro Gametogenesis in Rodents, Its Application to Large Animals, and Future In Vitro Reconstitution of Reproductive Organs Such as “Uteroid” and “Oviductoid”. BIOLOGY 2022; 11:biology11070987. [PMID: 36101367 PMCID: PMC9312112 DOI: 10.3390/biology11070987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Functional gametes, such as oocytes and spermatozoa, have been derived from rodent pluripotent stem cells, which can be applied to large animals and ultimately, to humans. In addition to summarizing these topics, we also review additional approaches for in vitro reconstitution of reproductive organs. This review illustrates intensive past efforts and future challenges on stem cell research for in vitro biogenesis in various mammalian models. Abstract Recent success in derivation of functional gametes (oocytes and spermatozoa) from pluripotent stem cells (PSCs) of rodents has made it feasible for future application to large animals including endangered species and to ultimately humans. Here, we summarize backgrounds and recent studies on in vitro gametogenesis from rodent PSCs, and similar approaches using PSCs from large animals, including livestock, nonhuman primates (NHPs), and humans. We also describe additional developing approaches for in vitro reconstitution of reproductive organs, such as the ovary (ovarioid), testis (testisoid), and future challenges in the uterus (uteroid) and oviduct (oviductoid), all of which may be derived from PSCs. Once established, these in vitro systems may serve as a robust platform for elucidating the pathology of infertility-related disorders and ectopic pregnancy, principle of reproduction, and artificial biogenesis. Therefore, these possibilities, especially when using human cells, require consideration of ethical issues, and international agreements and guidelines need to be raised before opening “Pandora’s Box”.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-City 351-0198, Japan;
- Correspondence:
| | - Iori Kisu
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Emi Qian
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-City 351-0198, Japan;
| |
Collapse
|
295
|
Cheng L, Cring MR, Wadkins DA, Kuehn MH. Absence of Connexin 43 Results in Smaller Retinas and Arrested, Depolarized Retinal Progenitor Cells in Human Retinal Organoids. Stem Cells 2022; 40:592-604. [PMID: 35263762 DOI: 10.1093/stmcls/sxac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 11/14/2022]
Abstract
The development of the vertebrate retina relies on complex regulatory mechanisms to achieve its characteristic layered morphology containing multiple neuronal cell types. While connexin 43 (CX43) is not expressed by mature retinal neurons, mutations in its gene GJA1 are associated with microphthalmia and low vision in patients. To delineate how lack of CX43 affects retinal development, GJA1 was disrupted in human induced pluripotent stem cells (hiPSCs) (GJA1-/-) using CRISPR/Cas9 editing, and these were subsequently differentiated into retinal organoids. GJA1-/- hiPSCs do not display defects in self-renewal and pluripotency, but the resulting organoids are smaller with a thinner neural retina and decreased abundance of many retinal cell types. CX43-deficient organoids express lower levels of the neural marker PAX6 and the retinal progenitor cell (RPC) markers PAX6, SIX3, and SIX6. Conversely, expression of the early neuroectoderm markers SOX1 and SOX2 remains high in GJA1-/- organoids throughout their development. The lack of CX43 results in an increased population of CHX10-positive RPCs that are smaller, disorganized, do not become polarized, and possess a limited ability to commit to retinal fate specification. Our data indicate that lack of CX43 causes a developmental arrest in RPCs that subsequently leads to pan-retinal defects and stunted ocular growth.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Matthew R Cring
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - David A Wadkins
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
296
|
Wang Y, Jiang X, Jia L, Wu X, Wu H, Wang Y, Li Q, Yu R, Wang H, Xiao Z, Liang X. A Single-Cell Characterization of Human Post-implantation Embryos Cultured In Vitro Delineates Morphogenesis in Primary Syncytialization. Front Cell Dev Biol 2022; 10:835445. [PMID: 35784461 PMCID: PMC9240912 DOI: 10.3389/fcell.2022.835445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Implantation of the human blastocyst is a milestone event in embryonic development. The trophoblast is the first cell lineage to differentiate during implantation. Failures in trophoblast differentiation during implantation are correlated to the defects of pregnancy and embryonic growth. However, many gaps remain in the knowledge of human embryonic development, especially regarding trophoblast morphogenesis and function. Herein, we performed single-cell RNA sequencing (scRNA-seq) analysis on human post-implantation embryos cultured in vitro. A hierarchical model was established, which was characterized by the sequential development of two primitive cytotrophoblast cell (pCTB) subtypes, two primitive syncytiotrophoblast subtypes, and migrative trophoblast cells (MTB) after the trophectoderm . Further analysis characterized cytoskeleton transition of trophoblast cells and morphogenesis, such as irregular nuclei, cell cycle arrest, and cellular aging during implantation. Moreover, we found syncytialization of hTSCs could mimic the morphogenesis, serving as a powerful tool for further understanding of the mechanism during the implantation stage of pregnancy. Our work allows for the reconstruction of trophoblast cell transcriptional transition and morphogenesis during implantation and provides a valuable resource to study pathologies in early pregnancy, such as recurrent implantation failure.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiangxiang Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Lei Jia
- Reproductive Medical Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xulun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- *Correspondence: Hongmei Wang, ; Xiaoyan Liang, ; Zhenyu Xiao,
| | - Zhenyu Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Hongmei Wang, ; Xiaoyan Liang, ; Zhenyu Xiao,
| | - Xiaoyan Liang
- Reproductive Medical Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Hongmei Wang, ; Xiaoyan Liang, ; Zhenyu Xiao,
| |
Collapse
|
297
|
Nikitina TV, Lebedev IN. Stem Cell-Based Trophoblast Models to Unravel the Genetic Causes of Human Miscarriages. Cells 2022; 11:1923. [PMID: 35741051 PMCID: PMC9221414 DOI: 10.3390/cells11121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Miscarriage affects approximately 15% of clinically recognized pregnancies, and 1-3% of couples experience pregnancy loss recurrently. Approximately 50-60% of miscarriages result from chromosomal abnormalities, whereas up to 60% of euploid recurrent abortions harbor variants in candidate genes. The growing number of detected genetic variants requires an investigation into their role in adverse pregnancy outcomes. Since placental defects are the main cause of first-trimester miscarriages, the purpose of this review is to provide a survey of state-of-the-art human in vitro trophoblast models that can be used for the functional assessment of specific abnormalities/variants implicated in pregnancy loss. Since 2018, when primary human trophoblast stem cells were first derived, there has been rapid growth in models of trophoblast lineage. It has been found that a proper balance between self-renewal and differentiation in trophoblast progenitors is crucial for the maintenance of pregnancy. Different responses to aneuploidy have been shown in human embryonic and extra-embryonic lineages. Stem cell-based models provide a powerful tool to explore the effect of a specific aneuploidy/variant on the fetus through placental development, which is important, from a clinical point of view, for deciding on the suitability of embryos for transfer after preimplantation genetic testing for aneuploidy.
Collapse
Affiliation(s)
- Tatiana V. Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia;
| | | |
Collapse
|
298
|
Zhang J, Zhi M, Gao D, Zhu Q, Gao J, Zhu G, Cao S, Han J. Research progress and application prospects of stable porcine pluripotent stem cells. Biol Reprod 2022; 107:226-236. [PMID: 35678320 DOI: 10.1093/biolre/ioac119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multi-lineage differentiation potential which are crucial for basic research and biomedical science. Establishment of PSCs with defined features were previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogrammed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs.
Collapse
Affiliation(s)
- Jinying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaoxiang Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
299
|
Methanol fixed feeder layers altered the pluripotency and metabolism of bovine pluripotent stem cells. Sci Rep 2022; 12:9177. [PMID: 35654935 PMCID: PMC9163156 DOI: 10.1038/s41598-022-13249-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The pluripotency maintenance of pluripotent stem cells (PSCs) requires the suitable microenvironment, which commonly provided by feeder layers. However, the preparation of feeder layers is time consuming and labor exhaustive, and the feeder cells treated with mitomycin C or γ-ray irradiation bring heterologous contamination. In this study, mouse embryonic fibroblasts (MEFs) were treated by methanol to generate chemical fixed feeder cells, and bovine embryonic stem cells F7 (bESC-F7) cultured on this feeder layer. Then the pluripotency and metabolism of bESC-F7 cultured on methanol-fixed MEFs (MT-MEFs) named MT-F7 was compared with mitomycin C treated MEFs (MC-MEFs). The results showed that bESC-F7 formed alkaline phosphatase positive colonies on MT-MEFs, the relative expression of pluripotent markers of these cells was different from the bESCs cultured on the MC-MEFs (MC-F7). The long-term cultured MT-F7 formed embryoid bodies, showed the ability to differentiate into three germ layers similar to MC-F7. The analyses of RNA-seq data showed that MT-MEFs lead bESCs to novel steady expression patterns of genes regulating pluripotency and metabolism. Furthermore, the bovine expanded pluripotent stem cells (bEPSCs) cultured on MT-MEFs formed classical colonies, maintained pluripotency, and elevated metabolism. In conclusion, MT-MEFs were efficient feeder layer that maintain the distinctive pluripotency and metabolism of PSCs.
Collapse
|
300
|
|