251
|
Yu X, Zhang Q, Wang L, Zhang Y, Zhu L. Engineered nanoparticles for imaging and targeted drug delivery in hepatocellular carcinoma. Exp Hematol Oncol 2025; 14:62. [PMID: 40307921 PMCID: PMC12044934 DOI: 10.1186/s40164-025-00658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Liver cancer, notably hepatocellular carcinoma (HCC), poses a significant global health burden due to its high fatality rates. Conventional antitumor medications face challenges, including poor targeting, high toxicity, and drug resistance, leading to suboptimal clinical outcomes. This review focused on nanoparticle use in diagnosing and delivering medication for HCC, aiming to advance the development of nanomedicines for improved treatment outcomes. As an emerging frontier science and technology, nanotechnology has shown great potential, especially in precision medicine and personalized treatment. The success of nanosystems is attributable to their smaller size, biocompatibility, selective tumor accumulation, and lower toxicity. Nanoparticles, as a central part of nanotechnology innovation, have emerged in the field of medical diagnostics and therapeutics to overcome the various limitations of conventional chemotherapy, thus offering promising applications for improved selectivity, earlier and more precise diagnosis of cancers, personalized treatment, and overcoming drug resistance. Nanoparticles play a crucial role in drug delivery and imaging of HCC, with the body acting as a delivery system to target and deliver drugs or diagnostic reagents to specific organs or tissues, helping to accurately diagnose and target therapies while minimizing damage to healthy tissues. They protect drugs from early degradation and increase their biological half-life.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qin Zhang
- Department of Postgraduate Students, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou Hospital Guiyang, Guiyang, 550000, Guizhou, The People's Republic of China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
252
|
Shen L, Li C, Li Y, Guan X, Zou W, Liu J. Imaging technology in tracking the intravital fate of transplanted stem cells. Pharmacol Res 2025; 216:107752. [PMID: 40306602 DOI: 10.1016/j.phrs.2025.107752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Stem cell therapy emerges as a promising alternative strategy for diseases that currently lack effective treatment options. Investigating the pharmacokinetic properties of stem cells, such as their survival, migration, differentiation, and engraftment dynamics, offers valuable insights for elucidating therapeutic mechanisms, refining treatment protocols, and ultimately enhancing therapeutic efficacy. Moreover, the pharmaceutical research of stem cell products is an essential prerequisite for regulatory approval. This contribution focus on the development of advanced imaging technologies for noninvasive monitoring the intravital fate of implanted stem cells, as well as the advantages and challenges of each imaging approach. Through comprehensive analysis of stem cell metabolic pathway, we identify critical barriers to clinical translation of stem cell therapy. In the end, we discuss future perspectives and opportunities in stem cell tracking and functional assessment.
Collapse
Affiliation(s)
- Liming Shen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Chengze Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yulian Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116023, China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116023, China.
| |
Collapse
|
253
|
Wu L, Wei S, He N, Shen J, Cheng X, Zhou H, Kang X, Cai Y, Ye Y, Li P, Liang C. Photo-enhanced synergistic sterilization and self-regulated ion release in rGO-Ag nanocomposites under NIR irradiation. Colloids Surf B Biointerfaces 2025; 253:114744. [PMID: 40319732 DOI: 10.1016/j.colsurfb.2025.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Silver ions (Ag+) released from silver nanoparticles (Ag NPs) can help to improve the inhibition and killing ability of particles to bacteria. The leakage of Ag+ ions released from Ag NPs will lead to possible risks in cytotoxicity and environmental damage. It is still a challenge to balance particles' ions release and leakage to environment. Here, a nanocomposite of Ag NPs combined with reduced graphene oxide (rGO), labeled as rGO-Ag, was prepared by laser-induced photoreduction of Ag+ ions in solution. This composite exhibits not only a synergistic effect of Ag NPs and rGO in sterilization under normal circumstances, but also another synergistic effect from photothermal function under the 808 nm near-infrared (NIR) laser irradiation and the subsequent enhanced Ag+ ions release at high temperature. In experiments, rGO works as photothermal converter, which can directly cause the death of bacteria and force Ag+ ions to leave particle surface to assist in killing bacteria, and also as a catcher to intercepts the leakage of the released ions. After treating a 50 mg/L rGO-Ag solution with an NIR laser for 30 min, the concentration of released Ag+ ions increased, but these ions were subsequently adsorbed back onto the rGO. Compared with the no-light treatment group, the mortality rates of E. coli and S. aureus exposed to rGO-Ag under NIR irradiation increased by 39.06 % and 17.48 %, respectively. The clever combination between Ag NPs and rGO makes their composite exhibit a photo-enhanced synergistic sterilizing function, as well as a self-controlled ion release capability under NIR stimulation.
Collapse
Affiliation(s)
- Lingli Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Jiayue Shen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaohu Cheng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Hongyu Zhou
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xingyu Kang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
254
|
Ou X, Chen P, Liu BF. Liquid Biopsy on Microfluidics: From Existing Endogenous to Emerging Exogenous Biomarkers Analysis. Anal Chem 2025; 97:8625-8640. [PMID: 40247704 DOI: 10.1021/acs.analchem.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Liquid biopsy is an appealing approach for early diagnosis and assessment of treatment efficacy in cancer. Typically, liquid biopsy involves the detection of endogenous biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and proteins. The levels of these endogenous biomarkers are higher in cancer patients compared to those in healthy individuals. However, the clinical application of liquid biopsy using endogenous biomarker analysis faces challenges due to its low abundance and poor stability in circulation. Recently, a promising strategy involving the engineering of exogenous probes has been developed to overcome these limitations. These exogenous probes are activated within the tumor microenvironment, generating distinct exogenous markers that can be easily distinguished from background biological signals. Alternatively, these exogenous probes can be labeled with intrinsic endogenous biomarkers in vivo and detected in vitro after metabolic processes. In this review, we primarily focus on microfluidic-based liquid biopsy techniques that allow for the transition from analyzing existing endogenous biomarkers to emerging exogenous ones. First, we introduce common endogenous biomarkers, as well as synthetic exogenous ones. Next, we discuss recent advancements in microfluidic-based liquid biopsy techniques for analyzing both existing endogenous and emerging exogenous biomarkers. Lastly, we provide insights into future directions for liquid biopsy on microfluidic systems.
Collapse
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
255
|
Fu G, Zhao Y, Mao C, Liu Y. Enhancing nano-immunotherapy of cancer through cGAS-STING pathway modulation. Biomater Sci 2025; 13:2235-2260. [PMID: 40111213 DOI: 10.1039/d4bm01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cancer immunotherapy due to the secretion of multiple pro-inflammatory cytokines and chemokines. Numerous cGAS-STING agonists have been developed for preclinical and clinical trials in tumor immunity. However, several obstacles, such as agonist molecules requiring multiple doses, rapid degradation and poor targeting, weaken STING activation at the tumor site. The advancement of nanotechnology provides an optimized platform for the clinical application of STING agonists. In this review, we summarize events of cGAS-STING pathway activation, the dilemma of delivering STING agonists, and recent advances in the nano-delivery of cGAS-STING agonist formulations for enhancing tumor immunity. Furthermore, we address the future challenges associated with STING-based therapies and offer insights to guide subsequent clinical applications.
Collapse
Affiliation(s)
- Gaohong Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Yanan Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Chengqiong Mao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, P. R. China
| | - Yang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
256
|
Zhao T, You J, Wang C, Li B, Liu Y, Shao M, Zhao W, Zhou C. Cell-based immunotherapies for solid tumors: advances, challenges, and future directions. Front Oncol 2025; 15:1551583. [PMID: 40356763 PMCID: PMC12066282 DOI: 10.3389/fonc.2025.1551583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Cell-based immunotherapies, including CAR-T, CAR-NK, and TCR-T therapies, represent a transformative approach to cancer treatment by offering precise targeting of tumor cells. Despite their success in hematologic malignancies, these therapies encounter significant challenges in treating solid tumors, such as antigen heterogeneity, immunosuppressive tumor microenvironments, limited cellular infiltration, off-target toxicity, and difficulties in manufacturing scalability. CAR-T cells have demonstrated exceptional efficacy in blood cancers but face obstacles in solid tumors, whereas CAR-NK cells offer reduced graft-versus-host disease but encounter similar barriers. TCR-T cells expand the range of treatable cancers by targeting intracellular antigens but require meticulous antigen selection to prevent off-target effects. Alternative therapies like TIL, NK, and CIK cells show promise but require further optimization to enhance persistence and overcome immunosuppressive barriers. Manufacturing complexity, high costs, and ensuring safety and efficacy remain critical challenges. Future advancements in gene editing, multi-antigen targeting, synthetic biology, off-the-shelf products, and personalized medicine hold the potential to address these issues and expand the use of cell-based therapies. Continued research and innovation are essential to improving safety, efficacy, and scalability, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Jinping You
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Congyue Wang
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Bo Li
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Yuhan Liu
- Department of Medical Oncology, Anshan Cancer Hospital, Anshan, China
| | - Mingjia Shao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Wuyang Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Chuang Zhou
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| |
Collapse
|
257
|
Chen M, Ji S, Liu X, Zheng X, Zhou M, Wang W. Porphyrins and Their Derivatives in Cancer Therapy: Current Advances, Mechanistic Insights, and Prospective Directions. Mol Pharm 2025. [PMID: 40294305 DOI: 10.1021/acs.molpharmaceut.4c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Porphyrin and its derivatives are widely used in cancer therapy due to their strong photon absorption capabilities and moderate light stability. Due to their hydrophobic nature, porphyrins with tetrapyrrolic macrocycles ease self-aggregation in physiological conditions. Instead, exploiting the C4 symmetry structure for self-assembly is beneficial to improve the bioavailability of porphyrin and its derivatives. Herein, this Review outlines porphyrin-based nanoformulations for therapeutic applications in cancer treatment. The typical pharmaceutical application of the integrated porphyrinic structure is systematically summarized, focusing on the typical synthetic methodologies and structure-functionality relationship. Additionally, therapeutic modalities (e.g., photothermal, photodynamic, and sonodynamic) and their synergy mechanism in regulated cell death are overviewed. Special attention is given to emerging technologies in nanocatalytic therapy, therapeutic vaccines, and proteolysis-targeting chimeras, which align with the trend toward personalization and minimal invasiveness in healthcare. Finally, we discuss the challenges and limitations of porphyrinic nanoformulations and explore their future directions in the healthcare sector, aiming to bridge the gap between research and practical clinical application.
Collapse
Affiliation(s)
- Min Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Shuying Ji
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
258
|
Li P, Zhao J, Liang D, Peng C, Zhu J, Yeom B, Wang Z, Zhao Y, Ma W. Construction of Biomimetic Nanochannel, Property Regulation, and Biomarker Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501740. [PMID: 40296334 DOI: 10.1002/smll.202501740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/03/2025] [Indexed: 04/30/2025]
Abstract
The significance of biomimetic nanochannel in the field of biosensors is gaining increasing recognition. The controllable construction of biomimetic nanochannels and their performance modulation have demonstrated great importance and obtained wide interest. The nanochannels offer high sensitivity, enabling sensors to swiftly identify target biomarkers in complex biological samples, with detection limits reaching the picomolar level. Furthermore, they demonstrate exceptional selectivity and reproducibility, making them ideal tools for biomarker detection. In recent years, biosensors utilizing biomimetic nanochannel have shown remarkable performance in detecting a wide range of biomarkers. This review aims to explore the opportunities and challenges associated with biomimetic nanochannel technology in biosensor applications, focusing on the construction and performance modulation of these nanochannels, as well as their applications in detecting nucleic acids, proteins, organisms, and small molecules. Providing forward-looking insights into this cutting-edge field is aspired, with particular emphasis on technological advancements, addressing current challenges, and discussing future trends.
Collapse
Affiliation(s)
- Peizhi Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Dan Liang
- School of Food Science and Technology, International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chifang Peng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Zhu
- School of materials science and engineering, Nankai University, Tianjin, 300071, China
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuan Zhao
- School of Food Science and Technology, International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
259
|
Naffaa MM, Al-Ewaidat OA, Gogia S, Begiashvili V. Neoantigen-based immunotherapy: advancing precision medicine in cancer and glioblastoma treatment through discovery and innovation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002313. [PMID: 40309350 PMCID: PMC12040680 DOI: 10.37349/etat.2025.1002313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Neoantigen-based immunotherapy has emerged as a transformative approach in cancer treatment, offering precision medicine strategies that target tumor-specific antigens derived from genetic, transcriptomic, and proteomic alterations unique to cancer cells. These neoantigens serve as highly specific targets for personalized therapies, promising more effective and tailored treatments. The aim of this article is to explore the advances in neoantigen-based therapies, highlighting successful treatments such as vaccines, tumor-infiltrating lymphocyte (TIL) therapy, T-cell receptor-engineered T cells therapy (TCR-T), and chimeric antigen receptor T cells therapy (CAR-T), particularly in cancer types like glioblastoma (GBM). Advances in technologies such as next-generation sequencing, RNA-based platforms, and CRISPR gene editing have accelerated the identification and validation of neoantigens, moving them closer to clinical application. Despite promising results, challenges such as tumor heterogeneity, immune evasion, and resistance mechanisms persist. The integration of AI-driven tools and multi-omic data has refined neoantigen discovery, while combination therapies are being developed to address issues like immune suppression and scalability. Additionally, the article discusses the ongoing development of personalized immunotherapies targeting tumor mutations, emphasizing the need for continued collaboration between computational and experimental approaches. Ultimately, the integration of cutting-edge technologies in neoantigen research holds the potential to revolutionize cancer care, offering hope for more effective and targeted treatments.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ola A Al-Ewaidat
- Department of Internal Medicine, Ascension Saint Francis Hospital, Evanston, IL 60202, USA
| | - Sopiko Gogia
- Department of Internal Medicine, Ascension Saint Francis Hospital, Evanston, IL 60202, USA
| | - Valiko Begiashvili
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
260
|
Song R, Li X, Zhu J, He J, Na J. Clinical Translation Challenges and Strategies for Tumour Vaccines Considering Multiple Delivery Routes. Vaccines (Basel) 2025; 13:469. [PMID: 40432082 PMCID: PMC12115605 DOI: 10.3390/vaccines13050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND The high incidence and mortality rates of cancer have kept it at the top of the research agenda for the global healthcare industry, as well as put serious economic pressure on families and society. It has gradually been recognised that reducing the incidence of cancer through various interventions and that combining prevention and treatment are the key to alleviating the burden of cancer. METHODS Retrieve and summarize the literature related to the delivery methods of tumor vaccines, and investigate whether these delivery methods have been applied clinically or have been used in clinical trials. RESULTS there are a variety of methods for cancer vaccine development, but only a very small number of studies have been able to make strides towards implementing these methods in the clinic, which is closely linked to drawbacks with the means of vaccine delivery. CONCLUSIONS This review analyses the reasons why it is difficult to apply these methods in the clinic from the point of view of the delivery method rather than the design of the cancer vaccine. It also describes some of the delivery methods that have not yet been applied for cancer vaccines and, considering this in conjunction with those that are currently used for this purpose, predicts their prospects for future application.
Collapse
Affiliation(s)
- Ruiyun Song
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Xiao Li
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Junsong Zhu
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
261
|
Seo ES, Lee SK, Son YM. Multifaceted functions of tissue-resident memory T cells in tumorigenesis and cancer immunotherapy. Cancer Immunol Immunother 2025; 74:184. [PMID: 40285796 PMCID: PMC12033165 DOI: 10.1007/s00262-025-04035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Tissue-resident memory T (TRM) cells are well reported as a strong protective first line of defense against foreign antigens in non-lymphoid tissues. Moreover, TRM cells have demonstrated critical protective roles in antitumor immunity, contributing to enhanced survival and tumor growth inhibition across various cancer types. However, surprisingly, recent studies suggest that TRM cells can exhibit paradoxical effects, potentially promoting tumor progression under certain conditions and leading to adverse outcomes during antitumor immune responses. Understanding the complexities of TRM cell functions will enable us to harness their potential in advancing cancer immunotherapy more effectively. Therefore, this review comprehensively investigates the dual roles of TRM cells in different tumor contexts, highlighting their protective functions in combating cancers and their unfavorable potential to exacerbate tumor development. Additionally, we explore the implications of TRM cell behaviors for future cancer treatment strategies, emphasizing the need for further research to optimize the therapeutic exploitation of TRM cells while mitigating their deleterious effects.
Collapse
Affiliation(s)
- Eun Sang Seo
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sung-Kyu Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
262
|
Su Y, Chen R, Wang B, Wang T, Tao J, Diao Q, Jiang T, Zhao X. Erythrocyte membrane camouflaged celastrol and bilirubin self-assembly for rheumatoid arthritis immunotherapy based on STING inhibition and RONS clearance. J Nanobiotechnology 2025; 23:318. [PMID: 40287703 PMCID: PMC12032812 DOI: 10.1186/s12951-025-03389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Activation of cGAS-STING signaling pathway and accumulation of reactive oxygen and nitrogen species (RONS) are important issues facing the treatment of rheumatoid arthritis (RA). Here, we report a biomimetic nano-Chinese medicine (HA-RM-Cel-BR) for RA immunotherapy based on STING inhibition of celastrol (Cel) and RONS clearance of bilirubin (BR). HA-RM-Cel-BR is constructed by the carrier-free self-assembly of active ingredients Cel and BR from traditional Chinese medicine, and then camouflaged by hyaluronic acid (HA)-modified red blood cell membranes (RM). HA-RM-Cel-BR prolongs circulation time through RM camouflage, targets inflamed joints by HA modification, and remodels the joint immune microenvironment by STING inhibition and RONS clearance. More importantly, HA-RM-Cel-BR shows excellent therapeutic effects on RA rat model, and significantly reduces hepatotoxicity associated with Cel. Our work provides a new strategy for RA immunotherapy with traditional Chinese medicine ingredients.
Collapse
Affiliation(s)
- Yanguo Su
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Rui Chen
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qijie Diao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
263
|
Lv X, Zhang PB, Zhang EL, Yang S. Predictive factors and prognostic models for Hepatic arterial infusion chemotherapy in Hepatocellular carcinoma: a comprehensive review. World J Surg Oncol 2025; 23:166. [PMID: 40287734 PMCID: PMC12034129 DOI: 10.1186/s12957-025-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and lethal cancer, often diagnosed at advanced stages where traditional treatments such as surgical resection, liver transplantation, and locoregional therapies provide limited benefits. Hepatic arterial infusion chemotherapy (HAIC) has emerged as a promising treatment modality for advanced HCC, enhancing anti-tumor efficacy through targeted drug delivery while minimizing systemic side effects. However, the heterogeneous nature of HCC leads to variable responses to HAIC, highlighting the necessity for reliable predictive indicators to tailor personalized treatment strategies. This review explores the factors influencing HAIC success, including patient demographics, tumor characteristics, biomarkers, genomic profiles, and advanced imaging techniques such as radiomics and deep learning models. Additionally, the synergistic potential of HAIC combined with immunotherapy and molecular targeted therapies is examined, demonstrating improved survival outcomes. Prognostic scoring systems and nomograms that integrate clinical, molecular, and imaging data are discussed as superior tools for individualized prognostication compared to traditional staging systems. Understanding these predictors is essential for optimizing HAIC efficacy and enhancing survival and quality of life for patients with advanced HCC. Future research directions include large-scale prospective studies, integration of multi-omics data, and advancements in artificial intelligence to refine predictive models and further personalize treatment approaches.
Collapse
Affiliation(s)
- Xing Lv
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Peng-Bo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Er-Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - S Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
264
|
Ding Y, Xie Y, Zheng L, Lin M, Shi Y, Chen T, Du C, Ding J, Ning B. Hypoxia-responsive core-cross-linked supramolecular nanoprodrug based on dendritic drug-drug conjugates for synergetic anticancer therapy. J Nanobiotechnology 2025; 23:316. [PMID: 40287727 PMCID: PMC12032639 DOI: 10.1186/s12951-025-03394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Recently, the strategy of self-assembling dendritic drug-drug conjugates into supramolecular nanoprodrug was widely explored in biomedical applications. Herein, we construct a hypoxia-responsive core-cross-linked supramolecular nanoprodrug (CSN-IR806/CB) based on a dendritic drug-drug conjugate. METHODS We prepared a hypoxia-responsive dendritic drug-drug conjugates IR806-(Azo-CB)4, which was combined with β-cyclodextrin-pendant poly(ethylene glycol)-block-poly(glutamic acid) block copolymer (PEG-PGlu-CD) to construct the core-cross-linked supramolecular nanoprodrug (CSN-IR806/CB) with enhanced physiological stability through the synergy of π-π stacking interaction, host-guest complexation, hydrogen bonds, and hydrophobic interaction. RESULTS The near-infrared (NIR) light irradiation of the CSN-IR806/CB treated tumor cells induced IR806-mediated PDT and PTT, and aggravated hypoxia, which triggered the disassembly of CSN-IR806/CB and the subsequent release of activated CB for synergetic cancer cell killing. CONCLUSIONS The CSN-IR806/CB can realize a synergistic triple therapeutic effect of photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; i.e., PTT-PDT-CT).
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China.
| | - Yu Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Liangshun Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Mingguang Lin
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yihai Shi
- Department of Gastroenterology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Chang Du
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China.
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China.
| | - Beifang Ning
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
265
|
Huang X, Ji M, Shang X, Zhang H, Zhang X, Zhou J, Yin T. Smart on-demand drug release strategies for cancer combination therapy. J Control Release 2025; 383:113782. [PMID: 40294796 DOI: 10.1016/j.jconrel.2025.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/06/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
In cancer therapy, enhancing therapeutic indices and patient compliance has been a central focus in recent drug delivery technology development. However, achieving a delicate balance between improving anti-tumor efficacy and minimizing toxicity to normal tissues remains a significant challenge. With the advent of smart on-demand drug release strategies, new opportunities have emerged. These strategies represent a promising approach to drug delivery, enabling precise control over the release of therapeutic agents in a programmed and spatiotemporal manner. Recent studies have focused on designing delivery systems capable of releasing multiple therapeutic agents sequentially, while achieving spatial resolution in vivo. Smart on-demand drug release strategies have demonstrated considerable potential in tumor combination therapy for achieving precision drug delivery and controlled release by responding to specific physiological signals or external physical stimuli in the tumor microenvironment. These strategies not only improve tumor targeting and reduce toxicity to healthy tissues but also enable sequential release in combination therapy, allowing multiple drugs to be released in a specific spatiotemporal order to enhance synergistic treatment effects. In this paper, we systematically reviewed the current research progress of smart on-demand drug release drug delivery strategies in anti-tumor combination therapy. We highlighted representative integrated drug delivery systems and discussed the challenges associated with their clinical application. Additionally, potential future research directions are proposed to further advance this promising field.
Collapse
Affiliation(s)
- Xiaolin Huang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Mengfei Ji
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xinyu Shang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Hengchuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xin Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
266
|
Hameed SA, Kolch W, Brennan DJ, Zhernovkov V. Direct cell interactions potentially regulate transcriptional programmes that control the responses of high grade serous ovarian cancer patients to therapy. Sci Rep 2025; 15:14484. [PMID: 40280979 PMCID: PMC12032223 DOI: 10.1038/s41598-025-98463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The tumour microenvironment is composed of a complex cellular network involving cancer, stromal and immune cells in dynamic interactions. A large proportion of this network relies on direct physical interactions between cells, which may impact patient responses to clinical therapy. Doublets in scRNA-seq are usually excluded from analysis. However, they may represent directly interacting cells. To decipher the physical interaction landscape in relation to clinical prognosis, we inferred a physical cell-cell interaction (PCI) network from 'biological' doublets in a scRNA-seq dataset of approximately 18,000 cells, obtained from 7 treatment-naive ovarian cancer patients. Focusing on cancer-stromal PCIs, we uncovered molecular interaction networks and transcriptional landscapes that stratified patients in respect to their clinical responses to standard therapy. Good responders featured PCIs involving immune cells interacting with other cell types including cancer cells. Poor responders lacked immune cell interactions, but showed a high enrichment of cancer-stromal PCIs. To explore the molecular differences between cancer-stromal PCIs between responders and non-responders, we identified correlating gene signatures. We constructed ligand-receptor interaction networks and identified associated downstream pathways. The reconstruction of gene regulatory networks and trajectory analysis revealed distinct transcription factor (TF) clusters and gene modules that separated doublet cells by clinical outcomes. Our results indicate (i) that transcriptional changes resulting from PCIs predict the response of ovarian cancer patients to standard therapy, (ii) that immune reactivity of the host against the tumour enhances the efficacy of therapy, and (iii) that cancer-stromal cell interaction can have a dual effect either supporting or inhibiting therapy responses.
Collapse
Affiliation(s)
- Sodiq A Hameed
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Donal J Brennan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
- UCD Gynaecological Oncology Group Catherine McAuley Research Centre, Mater Misericordiae University Hospital, Eccles Street, Dublin, D07 R2WY, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| |
Collapse
|
267
|
Mauthe A, Cedrone E, Villar-Hernández R, Rusch E, Springer M, Schuster M, Preyer R, Dobrovolskaia MA, Gutekunst M. IFN-γ/IL-2 Double-Color FluoroSpot Assay for Monitoring Human Primary T Cell Activation: Validation, Inter-Laboratory Comparison, and Recommendations for Clinical Studies. AAPS J 2025; 27:81. [PMID: 40281193 DOI: 10.1208/s12248-025-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
The enzyme-linked immunosorbent spot (EliSpot) assay and its fluorescence-based version, FluoroSpot, are sensitive immunoassays commonly used to quantify antigen-specific T and B lymphocytes and other immune cells in peripheral blood or homogenized tissues. Due to their high sensitivity, these assays are popular in clinical trials to evaluate the efficacy of immunotherapy and vaccines, which involve a high level of scrutiny to ensure valid study results. Besides industry consensus white papers and other research publications, there is no formal guidance for the industry on how to validate EliSpot and FluoroSpot assays to ensure their accurate performance for immune monitoring in clinical trials. Herein, we describe a comprehensive in vitro study using healthy human donor peripheral blood mononuclear cells (PBMCs) and model antigens to validate a double-color FluoroSpot assay for monitoring antigen-specific lymphocytes by detecting and quantifying IFN-γ and IL-2-producing lymphocytes. Validation parameters, acceptance criteria set-up, and assay limits-limit of detection (LOD), minimum positive control response, lower and upper limits of quantification (LLOQ and ULOQ)-were determined, and assay performance was demonstrated by assessing precision, specificity, linearity, and robustness. In addition, an inter-laboratory comparison demonstrated concordance between assay results from two laboratories. In summary, this study outlines a robust approach to EliSpot and FluoroSpot validation and demonstrates that the IFN-γ/IL-2 FluoroSpot assay is suitable for the reliable detection of antigen-specific immune responses from PBMC samples across laboratories and meets the current regulatory requirements for bioanalytical method validation.
Collapse
Affiliation(s)
- Alexandra Mauthe
- Department Immune Analytics, Genome Identification Diagnostics GmbH, Strassberg, Germany
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States of America
| | | | - Elisa Rusch
- Department Immune Analytics, Genome Identification Diagnostics GmbH, Strassberg, Germany
| | - Marco Springer
- Department Immune Analytics, Genome Identification Diagnostics GmbH, Strassberg, Germany
| | - Martin Schuster
- AID North America LLC, Murrieta, CA, United States of America
| | - Rosemarie Preyer
- Department Immune Analytics, Genome Identification Diagnostics GmbH, Strassberg, Germany
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States of America.
| | - Matthias Gutekunst
- Department Immune Analytics, Genome Identification Diagnostics GmbH, Strassberg, Germany.
| |
Collapse
|
268
|
Wu L, Wu J, Wang X, Xu Y, Lin Z, Chen J, Wu X. Natural product-based nanotechnological formulations for colorectal cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04175-y. [PMID: 40274619 DOI: 10.1007/s00210-025-04175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Colorectal cancer is one of the most common malignancies affecting the gastrointestinal tract. A silent onset often marks it and carries a poor prognosis. Studies have shown that natural products can suppress the growth of colorectal cancer and exert therapeutic effects at the molecular level. However, unfavorable physicochemical properties frequently hinder their clinical application, such as low solubility, limited bioavailability, short half-life, and rapid systemic clearance. As scientific and technological progress continues, increasing attention has been directed toward nanotechnology-based approaches. Techniques involving nanoparticles, liposomes, and micelles are being explored to improve drug delivery. These advancements provide a promising foundation for overcoming the limitations associated with natural products. This review systematically examines the application of nano-formulations for natural ingredients to offer meaningful insights into their. potential use in treating colorectal cancer.
Collapse
Affiliation(s)
- Lanfang Wu
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jiali Wu
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Xinyu Wang
- , Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Youfa Xu
- , Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Zhizhe Lin
- , Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- , Shanghai Wei Er Lab, Shanghai, 201707, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- , Shanghai Wei Er Lab, Shanghai, 201707, China.
| |
Collapse
|
269
|
Zhang X, Huang X, Zhang X, Lai L, Zhu B, Lin P, Kang Z, Yin D, Tian D, Chen Z, Gao J. The miR-941/FOXN4/TGF-β feedback loop induces N2 polarization of neutrophils and enhances tumor progression of lung adenocarcinoma. Front Immunol 2025; 16:1561081. [PMID: 40352924 PMCID: PMC12061992 DOI: 10.3389/fimmu.2025.1561081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a major subtype of lung cancer and one of the deadliest cancers in humans. Dysregulation of miRNA activity in tumor-associated neutrophils (TANs) in the tumor microenvironment plays an important role in the occurrence and development of LUAD. Method In this study, the miReact algorithm was used to analyze the single-cell RNA sequencing data of LUAD samples to reveal the miRNA profile characteristics of TANs in LUAD patients. The function of miR-941 was investigated in vivo and in vitro. The target gene and underlying signaling pathway of miR-941 were predicted and validated with qPCR, luciferase assay, WB and ELISA assay. Results The results indicated the crucial role of TANs, especially N2-TANs in LUAD and miR-941 activity was significantly upregulated in TANs of LUAD patients. MiR-941 overexpression promoted the proliferation, invasion, migration and anti-apoptosis of A549 and H1299. In vivo xenograft mouse model confirmed that miR-941 overexpression enhanced the growth of tumors formed by H1299 cells. Bioinformatics analysis showed that miR-941 targeted the tumor suppressor gene FOXN4, and we confirmed that FOXN4 overexpression could counteract the malignant effects of miR-941. In addition, miR-941 may drive LUAD progression through the FOXN4/TGF-β feedback signaling loop and participate in the N2-TAN polarization. Conclusion In summary, these findings reveal the key role of N2-TANs and the miR-941/FOXN4/TGF-β signaling loop in LUAD progression and provide potential therapeutic targets for future interventions.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Xitong Huang
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Xianying Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Lichang Lai
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Baoyi Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Peibin Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zhanfang Kang
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Dazhong Yin
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Dongbo Tian
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zisheng Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Jun Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
270
|
Zhu M, Liu Q, Wong WY, Xu L. Advancements in Carbon-Based Piezoelectric Materials: Mechanism, Classification, and Applications in Energy Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419970. [PMID: 40277183 DOI: 10.1002/adma.202419970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/06/2025] [Indexed: 04/26/2025]
Abstract
The piezoelectric phenomenon has garnered considerable interest due to its distinctive physical properties associated with the materials involved. Piezoelectric materials, which are inherently non-centrosymmetric, can generate an internal electric field under mechanical stress, enhancing carrier separation and transfer due to electric dipole moments. While inorganic piezoelectric materials are often investigated for their high piezoelectric coefficients, they come with potential drawbacks such as toxicity and high production cost, which hinder their practical applications. Consequently, carbon-based piezoelectric materials have emerged as an alternative to inorganic materials, boasting advantages such as a large specific surface area, high conductivity, flexibility, and eco-friendliness. Research into the applications of carbon-based piezoelectric materials spans environmental remediation, energy conversion, and biomedical treatments, indicating a promising future. This review marks the first comprehensive attempt to discuss and summarize the various types of carbon-based piezoelectric materials. It delves into the underlying mechanisms by which piezoelectricity influences catalysis, biomedical applications, nanogenerators, and sensors. Additionally, various potential techniques are presented to enhance the piezoelectric performance. The design principles of representative fabrication strategies for carbon-based piezoelectric materials are analyzed, emphasizing their current limitations and potential improvements for future development. It is believed that recent advances in carbon-based piezoelectric materials will make a significant impact.
Collapse
Affiliation(s)
- Mude Zhu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Qingyou Liu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
271
|
Chen H, Ding B, Tan J, Meng Q, Li J, Zhang W, Zheng P, Liu B, Ma P, Lin J. Silver Molybdate Nanoparticles for Enhanced Tumor Immunotherapy through Pyroptosis Conversion and Ferroptosis Induction. Angew Chem Int Ed Engl 2025; 64:e202501530. [PMID: 39961790 DOI: 10.1002/anie.202501530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Indexed: 02/27/2025]
Abstract
Pyroptosis holds great potential in tumor therapy due to its strong immunogenicity. Several strategies, including ion interference therapy (IIT), are developed to induce pyroptosis. However, the mechanism by which metal oxoanions induced pyroptosis remained unclear. It was reported that MoO4 2- ions could stimulate immune responses, but their pyroptosis-inducing mechanisms were not fully understood. Herein, we synthesized uniform and dispersed silver molybdate (Ag2MoO4) nanoparticles (AMO) via a solvothermal method. AMO responded to H2O2 and glutathione (GSH) stimuli, releasing Ag+ and MoO4 2- ions, generating reactive oxygen species (ROS), and depleting GSH, thereby inducing ferroptosis and pyroptosis. The MoO4 2- also inhibited cell migration and upregulated GSDME expression, converting apoptosis into caspase-3/GSDME-mediated pyroptosis. Additionally, DNA damage and ROS activated the cGAS-STING pathway, enhancing innate immunity. In vivo experiments demonstrated that the combination of AMO and the immune checkpoint inhibitor αPD-1 significantly inhibited tumor growth. This combination promoted dendritic cells (DCs) maturation, increased effector T cell numbers, induced M1 macrophage polarization, and alleviated immunosuppression. This study contributed to a deeper understanding of metal oxoanion-mediated pyroptosis, supporting its potential application in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wenying Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Pan Zheng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
272
|
Dang H, Lucci A, Barry A, Johnson V, Ruiz B, Reynolds L, Wojnar A, Chewe K, Pomyen Y, Eckert C, Zhang K, Hill J, Shah A, Bodzin A, Grabocka E, Gaida M, Fawzi N. Phase separation of NELFE modulates chromatin accessibility to promote dichotomous signaling pathways in hepatocellular carcinoma. RESEARCH SQUARE 2025:rs.3.rs-5843408. [PMID: 40313774 PMCID: PMC12045374 DOI: 10.21203/rs.3.rs-5843408/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Biomolecular condensates partition various cellular processes including transcription, DNA repair, and RNA metabolism. We report NELFE, a member of the Negative Elongation Factor complex required for Polymerase II (Pol II) pausing, forms distinct foci mediated by two low complexity sequences. We show NELFE is oncogenic in hepatocellular carcinoma (HCC) by undergoing liquid-liquid phase separation (LLPS) with SMARCB1 to modulate chromatin accessibility to downregulate pro-apoptotic genes through Pol II pausing while activating pro-growth signals to promote HCC progression. Our work highlights the importance of NELFE LLPS as a mechanism of chromatin accessibility to regulate both paused and non-paused genes to drive tumorigenesis in hepatocellular carcinoma.
Collapse
|
273
|
Chen M, Feng X, Liu C, Huang Y, Su L, Li X, Zhu J. Diagnostic value of exosome-derived lncRNA PITPNA-AS1 in lung cancer. Front Immunol 2025; 16:1539557. [PMID: 40342419 PMCID: PMC12058797 DOI: 10.3389/fimmu.2025.1539557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/25/2025] [Indexed: 05/11/2025] Open
Abstract
Background Lung cancer is one of the most lethal types of cancer, and effective diagnostic biomarkers are required. There is increasing evidences that exosome-secreted lncRNAs could play an important role in lung cancer diagnosis. However, the diagnostic value and molecular mechanism of the key lncRNA PITPNA-AS1 in lung cancer remain unclear. Methods qRT-PCR was conducted to determine the levels of exosomal lncRNA PITPNA-AS1 in pleural effusions from lung adenocarcinoma, squamous cell lung carcinoma, and small cell lung cancer patients. Receiver operating characteristic (ROC) curve analyses were used to evaluate the diagnostic accuracy of PITPNA-AS1. Its role in lung cancer development was determined by a series of experiments, including CCK-8, flow cytometry, and transwell assays. RNA pull-down and RNA immunoprecipitation assays were carried out to examine the interaction between PITPNA-AS1 and Fragile X messenger ribonucleoprotein 1 (FMR1). Results We discovered PITPNA-AS1 in exosomes from lung cancer patients. Its expression was significantly increased in lung cancer patients compared to non-cancer patients, and it was strongly associated with tumor stage, lymph node metastasis, and distant metastasis in all lung cancer subtypes assessed (all p<0.05). ROC curve analyses demonstrated that exosomal PITPNA-AS1 had a high accuracy for differentiating among lung cancer subtypes. Furthermore, PITPNA-AS1 boosted H1299 and A549 cell proliferation, migration, and invasion. Mechanistically, via direct interaction, PITPNA-AS1 increased FMR1 stability by preventing its ubiquitination. Conclusions These results reveal that exosome-derived lncRNA PITPNA-AS1 acts as an oncogene to promote malignant biological behaviors and is a promising diagnostic biomarker in lung cancer.
Collapse
Affiliation(s)
- Mujin Chen
- Department of Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Fujian, Quanzhou, China
| | - XiaoHui Feng
- Department of Oncology, Loujiang New City Hospital of Taicang (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine), Suzhou, China
| | - ChengChen Liu
- Department of Gastroenterology, WuWei City The Second People’s Hospital, Gansu, China
| | - Yan Huang
- Department of Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Fujian, Quanzhou, China
| | - LiJuan Su
- Department of Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Fujian, Quanzhou, China
| | - XiaoFeng Li
- Department of Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Fujian, Quanzhou, China
| | - JinFeng Zhu
- Department of Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Fujian, Quanzhou, China
| |
Collapse
|
274
|
Sharma K, Puri NK, Singh B. Self-assembled nano-hybrid composite based on Cu/Cu XO nanoflower decorated onto hBNNS for high-performance and ultra-sensitive electrochemical detection of CEA biomarker. Bioelectrochemistry 2025; 165:108993. [PMID: 40315690 DOI: 10.1016/j.bioelechem.2025.108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
Synergistic combination of metal/metal oxide with semiconductor as nano-hybrid composites (NHC), exhibits unmatched potential for developing nano-biosensors with superior stability, sensitivity, and selectivity. In this study, we report the fabrication of hydrothermally synthesized 3D2D NHC based on self-assembled Cu/CuXO-hBNNS for label-free detection of Carcinoembryonic Antigen (CEA). A systematic investigation into the synthesis of CuXO-NF, hBNNS, and Cu/CuXO-hBNNS NHC was carried out using extensive spectroscopic and advanced nanoscale imaging techniques. Uniform deposition of Cu/CuXO-hBNNS films onto pre-hydrolyzed ITO electrodes was achieved at a low DC potential of 15 V using electrophoretic deposition (EPD). Optimum immunoelectrode efficacy was analyzed by monitoring antibody incubation time, electrolyte pH, and control study through FTIR and electrochemical techniques. Electrode study revealed remarkably improved surface chemistry upon Cu/CuXO integration with hBNNS, yielding ∼74 % and ∼ 31 % increase in CV and DPV response along with 3-fold increase in diffusion coefficient compared to bare hBNNS. The sensing response of the BSA/Anti-CEA/Cu/CuXO-hBNNS/ITO nano-biosensor detected CEA concentrations from 0 to 50 ng/mL utilizing [Fe(CN6)3-/4-] as a redox probe and demonstrated an exceptionally low limit of detection of 3.22 pg/mL (R2 = 0.99998). Electrochemical clinical evaluation supported by ELISA test established that Cu/CuXO-hBNNS-based nano-biosensor demonstrates exceptional shelf life, low cross-reactivity, and superior recovery rates in human serum, highlighting its effectiveness for precise and reliable detection.
Collapse
Affiliation(s)
- Kanika Sharma
- Nanomaterials Research Laboratory (NRL), Department of Applied Physics, Delhi Technological University, Delhi - 110042, India
| | - Nitin K Puri
- Nanomaterials Research Laboratory (NRL), Department of Applied Physics, Delhi Technological University, Delhi - 110042, India; National Institute of Electronics & Information Technology (NIELIT), Bihta, Patna - 801106, India.
| | - Bharti Singh
- Nanomaterials Research Laboratory (NRL), Department of Applied Physics, Delhi Technological University, Delhi - 110042, India
| |
Collapse
|
275
|
Yu J, Yu J, Kang Z, Peng Y. Integration of single-cell sequencing and mendelian randomization reveals novel causal pathways between monocytes and hepatocellular carcinoma. Discov Oncol 2025; 16:604. [PMID: 40272662 PMCID: PMC12021761 DOI: 10.1007/s12672-025-02357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/09/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents one of the most prevalent malignant neoplasms worldwide, characterized by poor prognosis and low 5-year survival rates. Despite extensive research, its pathogenesis remains largely unclear. Within the tumor microenvironment (TME), monocytes play a dual role: they participate in tumor cell recognition and elimination while regulating immune responses through cytokine secretion. This study aims to investigate the association between differentially expressed genes in monocytes and HCC development. METHODS This investigation employed single-cell transcriptomic analysis of human hepatic innate lymphoid cells (ILCs) to identify monocyte subpopulations and their cellular markers. Subsequently, two-sample Mendelian randomization (MR) analysis was conducted to examine the causal relationships between these cells, their associated genes, and HCC development. RESULTS Through comprehensive analysis of the monocyte cluster, we identified 2338 differentially expressed genes (DEGs). MR analysis revealed 13 genes significantly associated with HCC risk: CONCLUSION: This study represents the first integration of single-cell sequencing technology with MR analysis to investigate the relationship between monocytes and HCC. Through this innovative methodological approach, we have revealed potential associations between monocyte gene expression and HCC development, providing new directions for further research on HCC prevention and treatment, as well as identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Jiang Yu
- North Sichuan Medical College, No. 234 Fujiang Road, Shunqing District, Nanchong City, Postal Code: 637000, Sichuan Province, China
| | - Jing Yu
- North Sichuan Medical College, No. 234 Fujiang Road, Shunqing District, Nanchong City, Postal Code: 637000, Sichuan Province, China
| | - Zhou Kang
- North Sichuan Medical College, No. 234 Fujiang Road, Shunqing District, Nanchong City, Postal Code: 637000, Sichuan Province, China
| | - Yong Peng
- Department of General Surgery, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, No. 97, Renmin South Road, Shunqing District, Nanchong City, Postal Code: 637000, Sichuan Province, China.
| |
Collapse
|
276
|
Sun J, Li HL, Zhou WJ, Ma ZX, Huang XP, Li C. Current status and recent progress of nanomaterials in transcatheter arterial chemoembolization therapy for hepatocellular carcinoma. World J Clin Oncol 2025; 16:104435. [PMID: 40290691 PMCID: PMC12019268 DOI: 10.5306/wjco.v16.i4.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common cancers worldwide. Transcatheter arterial chemoembolization has become a common treatment modality for some patients with unresectable advanced HCC. Since the introduction of nanomaterials in 1974, their use in various fields has evolved rapidly. In medical applications, nanomaterials can serve as carriers for the delivery of chemotherapeutic drugs to tumour tissues. Additionally, nanomaterials have potential for in vivo tumour imaging. This article covers the properties and uses of several kinds of nanomaterials, focusing on their use in transcatheter arterial chemoembolization for HCC treatment. This paper also discusses the limitations currently associated with the use of nanomaterials.
Collapse
Affiliation(s)
- Jia Sun
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Hai-Liang Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Wen-Jun Zhou
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Zeng-Xin Ma
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Xiao-Pei Huang
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| | - Cheng Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, Guangdong Province, China
| |
Collapse
|
277
|
Mukherjee A, Samanta S, Das S, Haque MZ, Jana PS, Samanta I, Kar I, Das S, Nanda PK, Thomas P, Dandapat P. Leveraging CRISPR-Cas-Enhanced Isothermal Amplification Tools for Quick Identification of Pathogens Causing Livestock Diseases. Curr Microbiol 2025; 82:260. [PMID: 40274667 DOI: 10.1007/s00284-025-04226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Prompt and accurate diagnosis of infectious pathogens of livestock origin is of utmost importance for epidemiological surveillance and effective therapeutic strategy formulation. Among various methods, nucleic acid-based detection of pathogens is the most sensitive and specific; but the majority of these assays need expensive equipment and skilled workers. Due to the rapid advancement of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein (CRISPR-Cas)-based nucleic acid detection methods, these are now being widely used for pathogen detection. CRISPR-Cas is a bacterial counterpart of "adaptive immunity", generally used for editing genome. Many CRISPR systems have been modified for nucleic acid detection due to their excellent selectivity in detecting DNA and RNA sequences. The combination of CRISPR with suitable isothermal amplification technologies has made it more sensitive, specific, versatile, and reproducible for the detection of pathogen nucleic acids at the point of care. Amplification of pathogen nucleic acid by isothermal amplification followed by CRISPR-Cas-based detection has several advantages, including short sample-to-answer times and no requirement for laboratory set-up. They are also significantly less expensive than the existing nucleic acid detection methods. This review focuses on the recent trends in the use of this precision diagnostic method for diagnosis of a wide range of animal pathogens with or without zoonotic potential, particularly various isothermal amplification strategies, and visualization methods for sensing bacteria, viruses, and parasites of veterinary and public health importance.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India.
| | - Sukhen Samanta
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, 741 235, India
| | - Subhasree Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Molla Zakirul Haque
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Partha Sarathi Jana
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indranil Samanta
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indrajit Kar
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Srinibas Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
- Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700 094, West Bengal, India
| | - Pramod Kumar Nanda
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Prasad Thomas
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Premanshu Dandapat
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| |
Collapse
|
278
|
Elhaieg A, Farag A, Koung Ngeun S, Kaneda M, Yokoi A, Mandour AS, Tanaka R. Therapeutic Potential of Local and Systemic Adipose-Derived Mesenchymal Stem Cell Injections in a Rat Model of Experimental Periodontitis: Implications for Cardiac Function. Int J Mol Sci 2025; 26:3984. [PMID: 40362223 PMCID: PMC12071214 DOI: 10.3390/ijms26093984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Periodontitis is a common inflammatory disease that not only damages periodontal tissues but also induces systemic effects, including cardiac dysfunction. Mesenchymal stem cells (MSCs) offer regenerative potential due to their ability to differentiate, modulate immune responses, and secrete anti-inflammatory factors. However, the relative efficacy of local versus systemic MSC administration remains unclear. This study evaluated the therapeutic effects of adipose-derived MSCs (AD-MSCs) in a rat model of experimental periodontitis, comparing local and systemic administration. AD-MSCs were characterized based on morphology, surface marker expression, and differentiation potential. Ligature-induced periodontitis was established over 60 days, after which AD-MSCs (1 × 106 cells) were administered either supraperiosteally (local group) or intravenously (systemic group). Periodontal regeneration was assessed through clinical, radiographic, and histopathological analyses, while cardiac function was evaluated using echocardiography and histopathological examinations. Results demonstrated that local AD-MSC administration provided superior therapeutic benefits compared to systemic delivery. Locally administered cells significantly enhanced bone regeneration, reduced inflammation, and improved periodontal tissue architecture. In contrast, systemic administration offered moderate benefits but was less effective in restoring periodontal integrity. Similarly, in the heart, local treatment resulted in greater improvements in systolic function, as indicated by enhanced ejection fraction and fractional shortening, along with reduced myocardial fibrosis. Although systemic administration also provided cardioprotective effects, diastolic dysfunction persisted in both treatment groups. In conclusion, local AD-MSC administration proved more effective in regenerating periodontal tissues and mitigating cardiac dysfunction, highlighting its potential as an optimized therapeutic strategy for periodontitis and its systemic complications.
Collapse
Affiliation(s)
- Asmaa Elhaieg
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
| | - Ahmed Farag
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Department of Neurophysiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Aimi Yokoi
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
| |
Collapse
|
279
|
Lin KT, Muneer G, Huang PR, Chen CS, Chen YJ. Mass Spectrometry-Based Proteomics for Next-Generation Precision Oncology. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40269546 DOI: 10.1002/mas.21932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Cancer is the leading cause of death worldwide characterized by patient heterogeneity and complex tumor microenvironment. While the genomics-based testing has transformed modern medicine, the challenge of diverse clinical outcomes highlights unmet needs for precision oncology. As functional molecules regulating cellular processes, proteins hold great promise as biomarkers and drug targets. Mass spectrometry (MS)-based clinical proteomics has illuminated the molecular features of cancers and facilitated discovery of biomarkers or therapeutic targets, paving the way for innovative strategies that enhance the precision of personalized treatment. In this article, we introduced the tools and current achievements of MS-based proteomics, choice of discovery and targeted MS from discovery to validation phases, profiling sensitivity from bulk samples to single-cell level and tissue to liquid biopsy specimens, current regulatory landscape of MS-based protein laboratory-developed tests (LDTs). The challenges, success and future perspectives in translating research MS assay into clinical applications are also discussed. With well-designed validation studies to demonstrate clinical benefits and meet the regulatory requirements for both analytical and clinical performance, the future of MS-based assays is promising with numerous opportunities to improve cancer diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
280
|
Li K, Mathew B, Saldanha E, Ghosh P, Krainer AR, Dasarathy S, Huang H, Xiang X, Mishra L. New insights into biomarkers and risk stratification to predict hepatocellular cancer. Mol Med 2025; 31:152. [PMID: 40269686 PMCID: PMC12020275 DOI: 10.1186/s10020-025-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the third major cause of cancer death worldwide, with more than a doubling of incidence over the past two decades in the United States. Yet, the survival rate remains less than 20%, often due to late diagnosis at advanced stages. Current HCC screening approaches are serum alpha-fetoprotein (AFP) testing and ultrasound (US) of cirrhotic patients. However, these remain suboptimal, particularly in the setting of underlying obesity and metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), which are also rising in incidence. Therefore, there is an urgent need for novel biomarkers that can stratify risk and predict early diagnosis of HCC, which is curable. Advances in liver cancer biology, multi-omics technologies, artificial intelligence, and precision algorithms have facilitated the development of promising candidates, with several emerging from completed phase 2 and 3 clinical trials. This review highlights the performance of these novel biomarkers and algorithms from a mechanistic perspective and provides new insight into how pathological processes can be detected through blood-based biomarkers. Through human studies compiled with animal models and mechanistic insight in pathways such as the TGF-β pathway, the biological progression from chronic liver disease to cirrhosis and HCC can be delineated. This integrated approach with new biomarkers merit further validation to refine HCC screening and improve early detection and risk stratification.
Collapse
Affiliation(s)
- Katrina Li
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Brandon Mathew
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Ethan Saldanha
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Puja Ghosh
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Hai Huang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
- Department of Surgery, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
281
|
Modestov A, Buzdin A, Suntsova M. Unveiling RNA Editing by ADAR and APOBEC Protein Gene Families. FRONT BIOSCI-LANDMRK 2025; 30:26298. [PMID: 40302320 DOI: 10.31083/fbl26298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 05/02/2025]
Abstract
RNA editing is a crucial post-transcriptional modification that alters the transcriptome and proteome and affects many cellular processes, including splicing, microRNA specificity, stability of RNA molecules, and protein structure. Enzymes from the adenosine deaminase acting on RNA (ADAR) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) protein families mediate RNA editing and can alter a variety of non-coding and coding RNAs, including all regions of mRNA molecules, leading to tumor development and progression. This review provides novel insights into the potential use of RNA editing parameters, such as editing levels, expression of ADAR and APOBEC genes, and specifically edited genes, as biomarkers for cancer progression, distinguishing it from previous studies that focused on isolated aspects of RNA editing mechanisms. The methodological section offers clues to accelerate high-throughput analysis of RNA or DNA sequencing data for the identification of RNA editing events.
Collapse
Affiliation(s)
- Alexander Modestov
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
| | - Anton Buzdin
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Maria Suntsova
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
282
|
Bai J, Gao Y, Zhang G. The treatment of breast cancer in the era of precision medicine. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0510. [PMID: 40269562 PMCID: PMC12032834 DOI: 10.20892/j.issn.2095-3941.2024.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
The management of breast cancer, one of the most common and heterogeneous malignancies, has transformed with the advent of precision medicine. This review explores current developments in genetic profiling, molecular diagnostics, and targeted therapies that have revolutionized breast cancer treatment. Key innovations, such as cyclin-dependent kinases 4/6 (CDK4/6) inhibitors, antibody-drug conjugates (ADCs), and immune checkpoint inhibitors (ICIs), have improved outcomes for hormone receptor-positive (HR+), HER2-positive (HER2+), and triple-negative breast cancer (TNBC) subtypes remarkably. Additionally, emerging treatments, such as PI3K inhibitors, poly (ADP-ribose) polymerase (PARP) inhibitors, and mRNA-based therapies, offer new avenues for targeting specific genetic mutations and improving treatment response, particularly in difficult-to-treat breast cancer subtypes. The integration of liquid biopsy technologies provides a non-invasive approach for real-time monitoring of tumor evolution and treatment response, thus enabling dynamic adjustments to therapy. Molecular imaging and artificial intelligence (AI) are increasingly crucial in enhancing diagnostic precision, personalizing treatment plans, and predicting therapeutic outcomes. As precision medicine continues to evolve, it has the potential to significantly improve survival rates, decrease recurrence, and enhance quality of life for patients with breast cancer. By combining cutting-edge diagnostics, personalized therapies, and emerging treatments, precision medicine can transform breast cancer care by offering more effective, individualized, and less invasive treatment options.
Collapse
Affiliation(s)
- Jingwen Bai
- The Breast Center of Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Yiyang Gao
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, School of Medicine, Xiamen University, Xiamen 361100, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, China
| | - Guojun Zhang
- The Breast Center of Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Peking University Cancer Hospital Yunnan, Kunming 650118, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, School of Medicine, Xiamen University, Xiamen 361100, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, China
| |
Collapse
|
283
|
Zhao W, Li J, Zhang S, Yao Y, Pan H. Colorimetric-fluorescent dual-mode background fluorescence-quenching lateral flow immunoassay: Principle, modeling, and application to folic acid detection. Talanta 2025; 294:128202. [PMID: 40286745 DOI: 10.1016/j.talanta.2025.128202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Conventional lateral flow immunoassays (LFIAs) face challenges in competitive detection of small molecule antigens, including inverse correlation between signal and analyte concentration and insufficient sensitivity. Background fluorescence quenching lateral flow immunoassay (BF-LFIA) offers a novel solution, but quantitative models to guide quencher design and sensitivity optimization are lacking. This study developed a dual-mode colorimetric-fluorescent BF-LFIA for highly sensitive folic acid (FA) detection using polystyrene-encapsulated ZnS@CdSe quantum dots (QDs) as background fluorophores and gold nanorods (AuNRs) or gold nanoparticles (AuNPs) as quenchers. Based on the inner filter effect (IFE) and heterogeneous capture reaction kinetics, we constructed a mathematical model for this dual-mode BF-LFIA. Under quasi-steady-state approximation, analytical expressions relating FA concentration to colorimetric and fluorescent signals were derived, enabling quantitative description of calibration curves for both modes. Due to higher molar extinction coefficients at excitation and emission wavelengths, AuNRs as quenchers exhibited superior sensitivity compared to AuNPs, achieving limits of detection of 0.14 ng/mL and 0.15 ng/mL for colorimetric and fluorescent modes, respectively. The mathematical model showed good agreement with experimental results. The derived calibration curve equations demonstrated better fitting goodness and residual normal distribution characteristics compared to conventional four-parameter logistic equations. Passing-Bablok regression analysis confirmed good consistency and comparability between the dual-mode BF-LFIA and a commercial FA fluorescent immunoassay kit. This study provides theoretical foundations for understanding dual-mode BF-LFIA principles and guiding optimization, offering new strategies for highly sensitive rapid detection of small molecules and other biomarkers.
Collapse
Affiliation(s)
- Wenlin Zhao
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Jishun Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shenglan Zhang
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yu Yao
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
284
|
Guo J, Zhang L, Yu Q, Qi Y, Zhang H, Zhang L, Yuan C, Li M, Xiong H. Self-Calibrated Stimulated Raman Scattering Spectroscopy for Rapid Cholangiocarcinoma Diagnosis. Anal Chem 2025; 97:8499-8505. [PMID: 40204279 PMCID: PMC12020738 DOI: 10.1021/acs.analchem.5c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy with poor clinical outcomes. The current "gold standard" diagnostic approach, endoscopic retrograde cholangiopancreatography (ERCP)-obtained biopsy, has a relatively low sensitivity (i.e., ∼50%). Here, we developed a bile-based diagnostic system using transient stimulated Raman scattering (T-SRS). Except for the tolerance to autofluorescence inherited from traditional SRS spectroscopy, T-SRS features quantum-limit spectral line shapes and is further improved with self-calibration ability in this research. These advantages make the acquired Raman spectra insensitive to the drifting of the excitation parameters, facilitating long-term reliability. Based on the T-SRS spectra in the C-H stretching region from 76 bile samples accumulated over more than 1 year, we demonstrated high accuracy (i.e., 85 ± 3%) and sensitivity (i.e., 87 ± 9%) for classification between CCA and benign diseases. The T-SRS acquisition only requires ∼9-μL bile samples and features a drastically improved time cost. This study suggests that the self-calibrated T-SRS analysis of the bile sample offers a promising approach for rapid CCA diagnosis.
Collapse
Affiliation(s)
- Jin Guo
- National
Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
| | - Lingfu Zhang
- Department
of General Surgery, Peking University Third
Hospital, Beijing 100191, China
| | - Qiaozhi Yu
- National
Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
| | - Yafeng Qi
- National
Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
| | - Haojie Zhang
- National
Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
| | - Lan Zhang
- School
of Biomedical Engineering and Guangdong Provincial Key Laboratory
of Medical Image Processing, Southern Medical
University, Guangzhou 510515, China
| | - Chunhui Yuan
- Department
of General Surgery, Peking University Third
Hospital, Beijing 100191, China
| | - Muxing Li
- Department
of General Surgery, Peking University Third
Hospital, Beijing 100191, China
| | - Hanqing Xiong
- National
Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
| |
Collapse
|
285
|
Wang S, Li C, Fan W, Chen T, Xu W, Hu X, Wu Z, Xiao Z, Lin G, Ma B, Cheng L. Neurotrophin-3/chitosan inhibits cuproptosis-related genes to enable functional recovery after spinal cord injury. Int J Biol Macromol 2025; 310:143403. [PMID: 40268016 DOI: 10.1016/j.ijbiomac.2025.143403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES This study investigated the regulatory mechanisms of cuproptosis-related genes (CRGs) in spinal cord injury (SCI) and explored the therapeutic potential of neurotrophin-3 (NT3)-loaded chitosan in promoting functional recovery. METHODS We conducted integrated bulk RNA-seq and single-cell RNA-seq (scRNA-seq) analyses of mouse spinal cord tissue at various time points after SCI. The key CRGs were identified using differential expression analysis, weighted gene co-expression network analysis, and machine learning. The therapeutic effects of NT3-loaded chitosan were evaluated using animal models and molecular docking analysis. RESULTS We identified four key CRGs (Atp7a, Cp, Loxl2, and Pde3b) and three key transcription factors (C/EBPα, Stat6, and Runx1) that were upregulated post-SCI, promoting cuproptosis and neuroinflammation. NT3-loaded chitosan treatment significantly inhibited CRG expression and enhanced functional recovery in the animal models. Molecular docking analysis demonstrated binding interactions between chitosan and key CRGs, suggesting a potential mechanism for their therapeutic effects. CONCLUSIONS Our findings highlight the critical role of CRGs in SCI progression and the potential of NT3-loaded chitosan as a therapeutic strategy for inhibiting cuproptosis and promoting functional recovery. Future studies should focus on validating these findings in larger cohorts and exploring the detailed mechanisms by which NT3-loaded chitosan modulates CRG expression.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Wenyong Fan
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Tao Chen
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhihui Xiao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China
| | - Gufa Lin
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China.
| | - Bei Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
286
|
Metarfi Y, Chellal W, Ben Khadda Z, Hoummani H, Amara B, Achour S. Therapeutic drug monitoring in anti-tuberculosis treatment: a systematic review. J Antimicrob Chemother 2025:dkaf126. [PMID: 40256853 DOI: 10.1093/jac/dkaf126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/28/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND AND OBJECTIVES The treatment of tuberculosis (TB) depends on anti-TB drugs to eradicate the infection and prevent its transmission. Variability in drug metabolism, interactions, and adherence can affect treatment efficacy. Therapeutic drug monitoring (TDM) is essential for optimizing treatment by adjusting dosages. This systematic review aimed to assess the effectiveness of TDM for anti-TB drugs using different biological matrices and to reveal the techniques employed in TDM. METHODS A systematic review included studies reporting anti-TB drug monitoring with relevant analytical methods. Reports were screened to include the type of study, population, countries, sample size, anti-TB drugs, biological matrices, sampling time, and analytical methods. RESULTS This systematic review includes 35 articles that focus on methods for quantifying anti-TB drugs in clinical settings through observational studies. The research covers 21 countries, including China, USA, India, Italy, Indonesia, the Republic of Korea, and Germany, and involves diverse populations such as adults, children, and patients with MDR- and XDR-TB, as well as those with HIV co-infection. The studies examine a range of anti-TB drugs, from first-line treatments like isoniazid and rifampicin to second-line options such as bedaquiline and linezolid. Various sampling methods were employed, including human plasma, dried blood spots, urine, hair, and peripheral blood mononuclear cells, with analytical techniques such as LC-MS/MS, HPLC, and UPLC utilized to ensure precise measurement of drug levels. CONCLUSIONS The assessment of diverse biological matrices and analytical techniques demonstrates that TDM improves treatment efficacy and safety by individualizing drug dosages. Further research is essential to standardize TDM protocols and investigate novel methodologies to enhance TB treatment outcomes.
Collapse
Affiliation(s)
- Youssra Metarfi
- Biomedical and Translational Research Laboratory, Faculty of Medicine Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Wissal Chellal
- Biomedical and Translational Research Laboratory, Faculty of Medicine Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Zineb Ben Khadda
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Hasnae Hoummani
- Biomedical and Translational Research Laboratory, Faculty of Medicine Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco
- Laboratory of Pharmacology and Toxicology, CHU Hassan II, Fez, Morocco
| | - Bouchra Amara
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco
- Department of Pneumology, CHU Hassan II, Fez, Morocco
| | - Sanae Achour
- Biomedical and Translational Research Laboratory, Faculty of Medicine Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco
- Laboratory of Pharmacology and Toxicology, CHU Hassan II, Fez, Morocco
| |
Collapse
|
287
|
Ren B, Liu J, Wang Y, Tang Q, Fang J, Yang S, Liu JG. Near-Infrared Light-Controlled Nitric Oxide Delivery Combined with In Situ Activated Chemotherapy for Enhanced Multimodal Therapy. ACS APPLIED BIO MATERIALS 2025; 8:3431-3442. [PMID: 40196998 DOI: 10.1021/acsabm.5c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Development of nanoplatforms with in situ activation for chemotherapy represents a promising modality for biomedical application. Herein, a multifunctional nanoplatform, CMS@DTC@PDA@RuNO@FA (abbreviated as CDPNF NPs), was developed for highly efficient antitumor therapy, in which diethyldithiocarbamate (DTC)-loaded mesoporous Cu2MoS4 (CMS) nanoparticles were covered by polydopamine (PDA) layers and further covalently modified with a NO donor (RuNO) and a folic acid (FA)-directing moiety. Under the mild acidic tumor microenvironment (TME), the CDPNF NPs co-liberated DTC and Cu2+ in the tumor site, where in situ formation of the highly cytotoxic Cu(DTC)2 complex effectively killed tumor cells. Furthermore, under near-infrared (NIR) light irradiation, the CDPNF NPs could deliver nitric oxide (NO) and produce superoxide anions (O2•-), followed by the formation of more toxic peroxynitrite (ONOO-), which led to promoted cell apoptosis. Under 1064 nm NIR light irradiation, in vivo experiments with CDPNF NPs demonstrated an impressively high tumor inhibition rate (∼97%) while with good biocompatibility. This work represents an in situ activated approach for precision medicine that might imply its promising potential for clinical applications.
Collapse
Affiliation(s)
- Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jing Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wang
- Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Fang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shiping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
288
|
Li Z, Du L, Du B, Ullah Z, Zhang Y, Tu Y, Zhou Y, Guo B. Inorganic and hybrid nanomaterials for NIR-II fluorescence imaging-guided therapy of Glioblastoma and perspectives. Theranostics 2025; 15:5616-5665. [PMID: 40365286 PMCID: PMC12068291 DOI: 10.7150/thno.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM) is the most invasive and lethal brain tumor, with limited therapeutic options due to its highly infiltrative nature, resistance to conventional therapies, and blood-brain barriers. Recent advancements in near-infrared II (NIR-II) fluorescence imaging have facilitated greater tissue penetration, improved resolution, and real-time visualization of GBM, providing a promising approach for precise diagnosis and treatment. The inorganic and hybrid NIR-II fluorescent materials have developed rapidly for NIR-II fluorescence imaging-guided diagnosis and therapy of many diseases, including GBM. Herein, we offer a timely update to explore the contribution of inorganic/hybrid NIR-II fluorescent nanomaterials, such as quantum dots, rare-earth-doped nanoparticles, carbon-based nanomaterials, and metal nanoclusters in imaging-guided treatment for GBM. These nanomaterials provide high photostability, strong fluorescence intensity, and tunable optical properties, allowing for multimodal imaging and enhanced therapeutic efficacy. Additionally, their integration with modern therapeutic strategies, such as photothermal therapy, chemodynamic therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, has shown significant potential in overcoming the limitations of traditional treatments. Looking forward, future advancements including safe body clearance, long-term biocompatibility, efficient BBB penetration, and extended emission wavelengths beyond 1500 nm could enhance the theranostic outcomes. The integration of dual imaging with immunotherapy and AI-driven strategies will further enhance precision and accelerate the clinical translation of smart theranostic platforms for GBM treatment.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Binghua Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, Guangdong Province, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
289
|
Wang G, Pang Y, Li N, Hui Y, Jin D. CXCR7 promoted proliferation, migration and invasion in HCC Cells by inactivating Hippo-YAP signaling. Discov Oncol 2025; 16:561. [PMID: 40249447 PMCID: PMC12008102 DOI: 10.1007/s12672-025-02324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND CXCR7 (ACKR3) has been well-supported as a promoter of growth and metastasis in hepatocellular carcinoma (HCC). Both CXCR7 and Hippo signaling play roles in organ development. We aimed to verify the involvement of Hippo-YAP signaling in CXCR7-regulated HCC proliferation, migration, and invasion. METHODS HCCLM3 cells were transfected with si-CXCR7, pcDNA-CXCR7, or related control RNA/empty vector. Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8), and mRNA and protein levels were measured via quantitative real-time PCR (qPCR) and Western blotting. Colony formation assays were conducted to evaluate proliferation capacity, and Transwell assays were used to assess invasion and migration. Transcriptome data from the TCGA-LIHC dataset were analyzed to investigate the potential effects of CXCR7 in HCC. RESULTS si-CXCR7 inhibited cell proliferation in HCCLM3 cells, while pcDNA-CXCR7 promoted it. Migration and invasion were suppressed by si-CXCR7 but enhanced by pcDNA-CXCR7. Patients with higher CXCR7 expression in the TCGA-LIHC dataset had lower overall survival rates and increased gene transcription. The CXCR7-high expressing samples were characterized by the activation of several pathways, including PI3K-AKT signaling, calcium signaling, and the Hippo signaling pathway. si-CXCR7 reduced the relative protein levels of Gαq/11 and GαS while increasing phosphorylated LATS and phosphorylated YAP. Opposite trends in these proteins were observed with pcDNA-CXCR7. Finally, the inhibitory effects of si-CXCR7 on cell proliferation, migration, and invasion were reversed by the YAP inhibitor verteporfin. CONCLUSION We suggest that CXCR7 promotes the growth and metastasis of HCC cells, at least in part, by inactivating the Hippo-YAP signaling pathway.
Collapse
Affiliation(s)
- Genwang Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, China
| | - Yu Pang
- Intra Day Ward, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Nan Li
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, China
| | - Dong Jin
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
290
|
Guo W, Wang S, Yang Z, Dong Y, Xia Z, Xue W, Zhang C. SAP30 promotes clear cell renal cell carcinoma proliferation and inhibits apoptosis through the MT1G axis. Eur J Med Res 2025; 30:306. [PMID: 40247376 PMCID: PMC12007153 DOI: 10.1186/s40001-025-02440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025] Open
Abstract
Sin3A-associated protein 30 (SAP30) is a crucial component of the SIN/HDAC histone deacetylase complex and acts as a scaffold that facilitates target gene binding. SAP30 is highly expressed in various tumours; however, its role in renal cell carcinoma (RCC) remains unclear. In our study, we observed the upregulation of SAP30 in clear cell renal cell carcinoma (ccRCC) tissues, and its elevated expression was correlated with a poor prognosis. Previous research has suggested that SAP30 may influence the growth, proliferation, and apoptosis of RCC cells. Gene Ontology (GO) analysis of the downstream regulatory targets of SAP30 revealed that SAP30 suppressed the expression of MT1G, a protein that binds to p53. Mechanistically, SAP30 inhibited MT1G transcription, thereby impairing the function of MT1G in delivering zinc ions to p53, which diminished p53 activity. Moreover, reduced MT1G levels attenuated the inhibitory effect of MT1G on MDM2, further destabilizing p53. Consequently, this cascade promoted RCC progression. In conclusion, our findings indicate that SAP30 inhibits the p53 pathway through MT1G suppression, suggesting that SAP30 and MT1G are potential prognostic markers and therapeutic targets for RCC.
Collapse
Affiliation(s)
- Wei Guo
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shuwen Wang
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zitong Yang
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yu Dong
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zhinan Xia
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Xue
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Cheng Zhang
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
291
|
Li M, Tang J, Zhu W, Cheng C, Guo L, Liu P, Mo Z. ATG9B-4 accelerates the proliferation and migration of liver cancer cells in an ARNTL-CDK5 pathway-dependent manner: A case-control study. Medicine (Baltimore) 2025; 104:e42227. [PMID: 40258750 PMCID: PMC12014037 DOI: 10.1097/md.0000000000042227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/03/2025] [Indexed: 04/23/2025] Open
Abstract
Lnc ATG9B-4 aggravated the progression of liver cancer by up-regulating cyclin-dependent-kinase 5 (CDK5). It could be inferred that ATG9B-4 indirectly regulates the expression of CDK5 via lncRNA-mediated negative regulation of target genes. Therefore, the specific molecular mechanism by which ATG9B-4 regulates the malignant characteristics of liver cancer cells still needs further study. The differentially expressed genes were identified by mRNA sequencing in liver cancer cells transfected with or without ATG9B-4. Liver cancer cells were transfected with ATG9B-4, ARNTL, or si-CDK5. The expression of aryl basic helix-loop-helix ARNT like 1 (BMAL1, also known as ARNTL), CDK5, and ATG9B-4 was analyzed by real-time quantitative PCR and western blotting. The proliferation and invasion of the transfected cells were respectively analyzed by cell counting kit-8 and wound healing assays, respectively. The ARNTL expression was down-regulated in the liver cancer tissues and liver cancer cells transfected with ATG9B-4. Low ARNTL expression indicated poor overall survival in patients with liver cancer. The optical density of cells transfected with ATG9B-4 and ARNTL was significantly lower than that of cells transfected with ATG9B-4. The wound areas of cells transfected with ATG9B-4 and ARNTL were markedly wider than those of cells transfected with ATG9B-4. The expression of CDK5 was down-regulated in cells transfected with ARNTL. CDK5 knockdown partially attenuated the ATG9B-4-induced increase in proliferation and migration in liver cancer cells. ATG9B-4 deteriorated the proliferation and migration of liver cancer cells in an ARNTL-CDK5 pathway-dependent manner.
Collapse
Affiliation(s)
- Ming Li
- School of Basic Medical Sciences, The First Affiliated Hospital, Hunan University of Medicine, Huaihua, Hunan, China
| | - Jiefu Tang
- School of Basic Medical Sciences, The First Affiliated Hospital, Hunan University of Medicine, Huaihua, Hunan, China
| | - Wenxiong Zhu
- Department of Orthopaedics, Dongguan People’s Hospital, Dongguan, Guangdong, China
| | - Changshen Cheng
- Department of Hepatology, Guidong People’s Hospital of Guangxi Zhuang Autonomous Region, Affiliated Guidong People’s Hospital of Guilin Medical University, Wuzhou, Guangxi, China
| | - Lili Guo
- Department of Orthopaedics, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Pinyue Liu
- School of Basic Medical Sciences, The First Affiliated Hospital, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
292
|
Biswas B, Sugimoto M, Hoque MA. Discovery of Genomic Targets and Therapeutic Candidates for Liver Cancer Using Single-Cell RNA Sequencing and Molecular Docking. BIOLOGY 2025; 14:431. [PMID: 40282296 PMCID: PMC12024973 DOI: 10.3390/biology14040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Liver cancer is one of the most common malignancies and the second leading cause of cancer-related deaths worldwide, particularly in developing countries, where it poses a significant financial burden. Early detection and timely treatment remain challenging due to the complex mechanisms underlying the initiation and progression of liver cancer. This study aims to uncover key genomic features, analyze their functional roles, and propose potential therapeutic drugs identified through molecular docking, utilizing single-cell RNA sequencing (scRNA-seq) data from liver cancer studies. We applied two advanced hybrid methods known for their robust identification of differentially expressed genes (DEGs) regardless of sample size, along with four top-performing individual methods. These approaches were used to analyze four scRNA-seq datasets, leading to the identification of essential DEGs. Through a protein-protein-interaction (PPI) network, we identified 25 hub-of-hub genes (hHubGs) and 20 additional hHubGs from two naturally occurring gene clusters, ultimately validating a total of 36 hHubGs. Functional, pathway, and survival analyses revealed that these hHubGs are strongly linked to liver cancer. Based on molecular docking and binding-affinity scores with 36 receptor proteins, we proposed 10 potential therapeutic drugs, which we selected from a pool of 300 cancer meta-drugs. The choice of these drugs was further validated using 14 top-ranked published receptor proteins from a set of 42. The proposed candidates include Adozelesin, Tivozanib, NVP-BHG712, Nilotinib, Entrectinib, Irinotecan, Ponatinib, and YM201636. This study provides critical insights into the genomic landscape of liver cancer and identifies promising therapeutic candidates, serving as a valuable resource for advancing liver cancer research and treatment strategies.
Collapse
Affiliation(s)
- Biplab Biswas
- Department of Statistics, Faculty of Science, Gopalganj Science & Technology University, Gopalganj 8100, Bangladesh;
- Department of Statistics, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan;
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Md. Aminul Hoque
- Department of Statistics, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
293
|
Banik D, Banerjee S, Halder S, Ganguly R, Karak A, Ghosh P, Jana K, Mahapatra AK. A dual-responsive ratiometric fluorescent probe for the detection of hypochlorite and hydrazine in environmental samples, live cells, and plant tissues. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3290-3304. [PMID: 40197602 DOI: 10.1039/d5ay00153f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Hypochlorite (ClO-), a potent oxidizer and disinfectant, and hydrazine, a powerful reducing agent, are widely used in daily life and various industries. However, their extensive use comes with significant risks, as they are highly toxic to both the environment and human health. They have been associated with various health issues and even linked to cancer. Therefore, the simultaneous detection of hypochlorite and hydrazine is crucial for assessing their impact and monitoring the onset and progression of related diseases. A phenanthroimidazole-indandione based colorimetric and ratiometric fluorescent probe PIID was designed and synthesized for dual channel detection of hypochlorite and hydrazine in environmental and biological samples. Probe PIID, which showed a strong yellow-orange emission at 640 nm with a massive Stokes shift of 220 nm, exhibited excellent fluorescence change from yellow-orange to green (526 nm) in the presence of ClO- and from yellow-orange to blue (424 nm) in the presence of hydrazine in an aqueous-THF solvent system. A strong ICT effect, which was acting in probe PIID, gets weakened through ClO- - mediated cleavage of the CC bridge bond to produce aldehyde PIB with a blue shift of 114 nm and hydrazine-induced hydrazinolysis of the indanedione moiety to form hydrazone compound PIBH with a blue shift of 216 nm and that was also confirmed by DFT studies. Not only that, the probe exhibits excellent selectivity over other ROS (reactive oxygen species) and amines with a very fast response time of 40 seconds for hypochlorite and 90 seconds for hydrazine, and high sensitivity was observed with detection limits of 32.75 nM for hypochlorite and 92 nM for hydrazine. Moreover, PIID was employed to monitor both the analytes successfully in environmental water samples and in a solid-state TLC strip study. Hypochlorite was monitored in commercial disinfectants, and by exogenous bioimaging in human breast cancer cells (MDA-MB 231) and endogenous bioimaging in RAW 264.7 macrophage cells with very low cytotoxicity and good cell viability. Meanwhile, hydrazine was tracked in soil samples, and confocal imaging was performed on onion tissue.
Collapse
Affiliation(s)
- Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rajdeep Ganguly
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
294
|
Niu W, Wang X, Li T, Feng B. Biomechanics-based Gradient Nano-surface Implants Screening and Its Adoption in Dental Implant Repair. SLAS Technol 2025; 32:100293. [PMID: 40252976 DOI: 10.1016/j.slast.2025.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND this study aimed to screen the micro/nano surface of pure titanium implant gradient for performance analysis, and to explore its role in dental implant repair. METHODS after treatment with different concentrations of hydrofluoric acid and varying etching times, titanium plates with micro/nano gradient surfaces were selected and divided into four groups: polished, b, c, and d. The microscopic morphology of the titanium surfaces was observed, and the contact angle was measured. One implant was inserted into the femoral metaphysis on both sides of 28 SD rats. Histological sections were analyzed, and the maximum pull-out force was measured. RESULTS the new bone trabeculae on the surfaces of groups b, c, and d were wider as against polished group. The surface morphology of the titanium disks etched with 1.2 % hydrofluoric acid for 15 min (group d) was more uniform, the diameter of micropores was the largest, and the contact angle was the smallest (12.1 ± 1.17°). The new bone structure on the surface of implant screws in group d was slightly higher as against groups b and c. The bone-to-implant contact (BIC) and the maximum pullout force in groups b (33.25±2.57 %, 58.52±4.03 N), c (35.16±2.35 %, 59.43±3.97 N), d (40.93±2.71 %, 68.22±4.36 N) were higher as against polished group (22.41±2.86 %, 30.12±4.71 N) (P < 0.05). Three months after implantation, the bone fusion rate in the other three groups was significantly higher than that in the polishing group, with group d showing higher rates compared to groups b and c (P < 0.05). CONCLUSION the gradient micro/nano surface was constructed by hydrofluoric acid. The osseointegration of hydrofluoric acid etching implant surface and implant was clearly better as against polished group.
Collapse
Affiliation(s)
- Wei Niu
- Department of Prosthodontics, Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha 410004, Hunan Province, PR China
| | - Xin Wang
- Department of Geriatrics, Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha 410004, Hunan Province, PR China
| | - Tao Li
- Department of Prosthodontics, Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha 410004, Hunan Province, PR China
| | - Bo Feng
- Department of Prosthodontics, Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha 410004, Hunan Province, PR China.
| |
Collapse
|
295
|
Asghar S, Iliescu R, Stiufiuc RI, Dragoi B. Co-Encapsulation of Multiple Antineoplastic Agents in Liposomes by Exploring Microfluidics. Int J Mol Sci 2025; 26:3820. [PMID: 40332493 PMCID: PMC12027889 DOI: 10.3390/ijms26083820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
The inherent complexity of cancer proliferation and malignancy cannot be addressed by the conventional approach of relying on high doses of a single powerful anticancer agent, which is associated with poor efficacy, higher toxicity, and the development of drug resistance. Multiple drug therapy (MDT) rationally designed to target tumor heterogeneity, block alternative survival pathways, modulate the tumor microenvironment, and reduce toxicities would be a viable solution against cancer. Liposomes are the most suitable carrier for anticancer MDT due to their ability to encapsulate both hydrophilic and hydrophobic agents, biocompatibility, and controlled release properties; however, an adequate manufacturing method is important for effective co-encapsulation. Microfluidics involves the manipulation of fluids at the microscale for the controlled synthesis of liposomes with desirable properties. This work critically reviews the use of microfluidics for the synthesis of anticancer MDT liposomes. MDT success not only relies on the identification of synergistic dose combinations of the anticancer modalities but also warrants the loading of multiple therapeutic entities within liposomes in optimal ratios, the protection of the drugs by the nanocarrier during systemic circulation, and the synchronous release at the target site in the same pattern as confirmed in preliminary efficacy studies. Prospects have been identified for the bench-to-bedside translation of anticancer MDT liposomes using microfluidics.
Collapse
Affiliation(s)
- Sajid Asghar
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iași, Romania;
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Radu Iliescu
- Proteomics Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iași, Romania
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania
| | - Rares-Ionut Stiufiuc
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iași, Romania;
- Department of NanoSciences, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Brindusa Dragoi
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iași, Romania;
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iași, 11 Bd. Carol I, 700506 Iași, Romania
| |
Collapse
|
296
|
Lin L, Su K, Zhang X, Shi L, Yan X, Fu Q, Yao K, Siegwart DJ, Liu S. A Versatile Strategy to Transform Cationic Polymers for Efficient and Organ-Selective mRNA Delivery. Angew Chem Int Ed Engl 2025; 64:e202500306. [PMID: 39929776 DOI: 10.1002/anie.202500306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Indexed: 02/19/2025]
Abstract
The progress of mRNA therapeutics underscores the imperative demand for the development of targeted delivery systems. While cationic polymers hold promise as genetic vectors, their poor in vivo efficacy and numerous variants highlight the urgent need for a universal functionalization strategy to bolster their delivery capabilities. Here, we present a versatile strategy to transform low-cost commercial cationic polymers into phospholipidated and alkylated polymers (PAPs), enabling efficient and organ-selective mRNA delivery in vivo. This straightforward post-functionalization method can be readily broadened to a diverse array of existing cationic polymers, enhancing their cellular uptake, endosomal escape, and mRNA release functionalities. Consequently, PAPs facilitate up to 30,500-fold higher mRNA expression compared to their unmodified counterparts in vivo. Notably, the one-component PAPs enable spleen-specific mRNA delivery, with their vaccine application validated in a mouse melanoma model following intravenous administration. Better still, PAPs can synergize with different helper lipids to formulate four-component lipid nanoparticles (LNPs), achieving respective lung- and liver-specific mRNA delivery. Noteworthy is that these organ-selective mRNA delivery systems significantly outperform previous polymer and LNP benchmarks. This transformation strategy for cationic polymers represents a generalized methodology to give highly effective mRNA carriers, highlighting substantial potential for clinical translation of mRNA therapies with organ-targeting requirements.
Collapse
Affiliation(s)
- Lixin Lin
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Kexin Su
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Zhang
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lu Shi
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xinxin Yan
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Daniel J Siegwart
- Department of Biomedical Engineering Department of Biochemistry Simmons Comprehensive Cancer Center Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuai Liu
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
297
|
Narváez A, Jiménez J, Rodríguez-Núñez M, Torre M, Carro E, Marco MP, Domínguez E. A Fast Immunosensor Based on Biohybrid Self-Assembled Nanostructures for the Detection of KYNA as a Cerebrospinal Fluid Biomarker for Alzehimer's Disease. ACS MEASUREMENT SCIENCE AU 2025; 5:242-249. [PMID: 40255604 PMCID: PMC12006949 DOI: 10.1021/acsmeasuresciau.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 04/22/2025]
Abstract
Although the role of kynurenic acid (KYNA) is not yet fully understood, recent research has implicated this tryptophan (Trp) metabolite as a significant biomarker in neurodegenerative diseases. In this study, we developed an immunosensor platform based on self-assembled polyelectrolyte multilayers (PEMs), employing an enzyme-labeled immunoreagent in a competitive displacement format that requires only a single wash step. This immunosensor enables the detection of KYNA and Trp with detection limits (LOD) of 9 pg/mL and 1.2 ng/mL, respectively. Results validated by traditional ELISA methods indicated elevated levels of KYNA and an increased KYNA/Trp ratio in the cerebrospinal fluid (CSF) of Alzheimer's patients compared to controls, consistent with previous findings. Additionally, this immunosensor platform can be readily adapted to detect other neuroactive Trp metabolites by substituting specific immunoreagents, supporting a flexible profile-based approach. This platform could serve as a rapid, cost-effective clinical tool for monitoring neurological and psychiatric disorders, potentially advancing therapeutic strategy development.
Collapse
Affiliation(s)
- A. Narváez
- Bioanalysis
and Biosensor group, University of Alcalá, 28805 Alcalá
de Henares, Spain
| | - J. Jiménez
- Bioanalysis
and Biosensor group, University of Alcalá, 28805 Alcalá
de Henares, Spain
| | - M. Rodríguez-Núñez
- Surfactants
and Nanobiotechnology Department, Nanobiotechnology for Diagnostics
(Nb4D) Group, Institute for Advanced Chemistry
of Catalonia (IQAC) of the Spanish National Research Council (CSIC), 08034 Barcelona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - M. Torre
- Bioanalysis
and Biosensor group, University of Alcalá, 28805 Alcalá
de Henares, Spain
| | - E. Carro
- Group
of Neurodegenerative Diseases, Hospital
12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- CIBER
de Enfermedades Neurodegenerativas (CIBERNED)s, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - M.-P. Marco
- Surfactants
and Nanobiotechnology Department, Nanobiotechnology for Diagnostics
(Nb4D) Group, Institute for Advanced Chemistry
of Catalonia (IQAC) of the Spanish National Research Council (CSIC), 08034 Barcelona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - E. Domínguez
- Bioanalysis
and Biosensor group, University of Alcalá, 28805 Alcalá
de Henares, Spain
| |
Collapse
|
298
|
Gao J, Tang L, Fu C, Cao Y, Liu H, Yin Y, Li Z, Zhu Y, Shu W, Zhang Y, Ru X, Wang W. A Nano-Strategy for Advanced Triple-Negative Breast Cancer Therapy by Regulating Intratumoral Microbiota. NANO LETTERS 2025; 25:6134-6144. [PMID: 40177896 DOI: 10.1021/acs.nanolett.5c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Intratumoral microbiota have been identified as a component of the tumor microenvironment that regulates the metastatic behavior of tumors. They serve not only as indicators of tumor pathology but also as potential drug targets in cancer therapy. Herein, a multifunctional nanoplatform (DD@FEL) is prepared by combining antibiotic doxycycline (DOXY) that can combat intratumoral microbiota and the chemotherapeutic drug doxorubicin (DOX) in ergosterol-originated liposome. Specially, ergosterol is utilized as a substitute for cholesterol in liposomes to exert pharmacological activity. Mechanistically, DD@FEL leveraged DOXY to inhibit cancer metastasis based on the regulation of intratumoral microbiota, which synergizes with the chemotherapeutic effect of DOX, eventually inhibiting the progression of triple-negative breast cancer (TNBC). Verified both in vitro and in vivo, DD@FEL effectively exerts a cytotoxic effect on TNBC cells, delays the growth of primary TNBC, and attenuates the development of its lung metastasis, providing a promising therapeutic strategy to control both orthotopic and metastatic TNBC.
Collapse
Affiliation(s)
- Jifan Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn 53127, Germany
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zixuan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuanbo Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weijie Shu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xinrong Ru
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
299
|
Molino J, Ibrahim M, Serra R, de Tristán S. Optimization of seebeck coefficients in polyaniline-doped manganese dioxide nanocomposites. PLoS One 2025; 20:e0321385. [PMID: 40238809 PMCID: PMC12002486 DOI: 10.1371/journal.pone.0321385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
Polyaniline (PANI) and PANI-MnO2 composites were synthesized via a chemical route with varying manganese dioxide (MnO2) content, specifically 5wt% and 15wt%. X-ray diffraction (XRD) confirmed the structural formation of both PANI and PANI-MnO2 composites. The direct current conductivity was measured, showing an increase with temperature: at 393K, pure PANI had a conductivity of 2.25 × 10-4 S/cm, which increased significantly in the composites, reaching 9.03 × 10-4 S/cm for the 15wt% MnO2 composite. The Seebeck coefficient also increased with temperature and MnO2 concentration, achieving a maximum value of 52 mV K-1 at 373K for the 15wt% MnO2 composite. These results indicate that the synthesized PANI- MnO2 composites exhibit semiconducting behavior with improved thermoelectric properties, making them promising candidates for applications in thermoelectric devices such as generators and thermopiles. The study highlights the potential of these materials in enhancing the efficiency of thermoelectric energy conversion.
Collapse
Affiliation(s)
- Jay Molino
- Universidad Especializada de las Américas (UDELAS), Faculty of Biosciences and Public Health, Biomedical Engineering, Centro I+D+i de Biotecnología, Energías Verdes y Cambio Climático, Albrook, Paseo de La Iguana, Republic of Panama
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City, Republic of Panama
| | - Muhammad Ibrahim
- Faculty of Engineering and Science, Bahauddin Zakariya University – BZU, Punjab, Pakistan
| | - Rolando Serra
- Departamento de Física, Universidad Tecnológica de La Habana José Antonio Echeverría, La Habana, Cuba
| | - Svetlana de Tristán
- Universidad Especializada de las Américas (UDELAS), Faculty of Biosciences and Public Health, Biomedical Engineering, Centro I+D+i de Biotecnología, Energías Verdes y Cambio Climático, Albrook, Paseo de La Iguana, Republic of Panama
| |
Collapse
|
300
|
Mahata R, Manna S, Modak M, Choudhury SM. A review on the advancement of polydopamine (PDA)-based nanomaterials for cancer treatment. Med Oncol 2025; 42:165. [PMID: 40237855 DOI: 10.1007/s12032-025-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
The significance of cancer treatment research lies in addressing the high incidence of cancer, overcoming treatment challenges, and mitigating the harsh side effects of chemotherapeutic agents. Currently, nanotechnology is garnering significant attention for its potential applications in diagnostics and drug delivery, offering innovative solutions for disease detection and treatment. Among different types of nanoparticles (NPs), polymeric nanoparticles comprise biocompatible and biodegradable polymers that enhance drug pharmacokinetics and pharmacodynamics, minimize adverse effects, increase stability, and facilitate sustained drug release. These polymeric nanoparticle-based nanomedicines offer a versatile platform for various cancer treatments, notably enabling targeted drug delivery directly to tumors, tumor-imaging, hyperthermia, and photodynamic therapy. Being polymeric in nature polydopamine (PDA) nanomaterials are appeared as promising approaches in biology and medicine. This review article offers a concise summary of the latest developments in polydopamine-based cancer treatment, covering key findings, limitations, and emerging trend therapeutic approach of polydopamine nanomaterials, along with the properties and various methods of preparation. Physico-chemical properties of PDA-based nanomaterials in therapeutics have permitted several successful modifications in the field of cancer treatment.
Collapse
Affiliation(s)
- Rumi Mahata
- Department of Human Physiology, Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sounik Manna
- Department of Human Physiology, Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Mrinmoyee Modak
- Department of Human Physiology, Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sujata Maiti Choudhury
- Department of Human Physiology, Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|