251
|
Ren C, Sun J, Kong L, Wang H. Breast surgery for patients with de novo metastatic breast cancer: A meta-analysis of randomized controlled trials. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:107308. [PMID: 38048724 DOI: 10.1016/j.ejso.2023.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
The role of breast surgery in the treatment of patients with de novo metastatic breast cancer(dnMBC) remains controversial, with conflicting trial results. We did a meta-analysis to comprehensively investigate and assess whether breast surgery is associated with survival and quality of life outcomes in patients with dnMBC.We systematically searched PubMed, Embase, Google Scholar, Scopus, and Web of Science, from database inception to March 30, 2022, for randomized controlled trials(RCTs) that compared breast surgery or locoregional therapy with non-surgical treatment based on systemic therapy for managing dnMBC.We also reviewed abstracts and presentations from major conference proceedings. We excluded non-randomised trials and considered only papers published in English. The primary outcomes were overall survival(OS),locoregional progression-free survival(LPFS), distant progression-free survival(DPFS), and quality of life(QoL). The quality of RCTs was appraised with the Cochrane Collaboration risk of bias tool. Random-effects model or fixed effects model were used to calculate the effect sizes of included RCTs.Quality of evidence was assessed with GRADE criteria. Data analysis was performed with STATA 17.0. A total of 1018 women from seven randomized clinical trials were included in the analysis. Pooled analyses revealed that compared with systemic therapy, breast surgery was not associated with beneficial outcomes in OS(hazard ratio [HR],0.87; 95%CI,0.68 to 1.11; I2 = 53.08 %; p = 0.265),DPFS(HR,1.20; 95%CI,0.94 to 1.54; I2 = 86.45 %; p = 0.136), or QoL-global health status (standardized mean difference[SMD],0.08; 95%CI,-0.15 to 0.32; I2 = 79.45 %; p = 0.478) and QoL-mental-physical functionality(SMD,-0.19; 95%CI,-0.50 to 0.13; I2 = 0.00 %; p = 0.255), but was associated with a benefit in LPFS(HR,0.27; 95%CI,0.19 to 0.38; I2 = 84.16 %; p < 0.001). These findings were consistent in subgroup analyses of the timing of surgery, site and number of metastases and tumor molecular subtype. The evidence grade was moderate because of the substantial heterogeneity among studies. Based on the RCTs evidence, we found that breast surgery may benefit locoregional control but does not prolong OS and improve QoL in patients with dnMBC. The Prospero registration number: CRD42020206460.
Collapse
Affiliation(s)
- Chongxi Ren
- Department of Surgical Oncology, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cang Zhou, 061001, China.
| | - Jianna Sun
- Department of Breast Cancer Center, Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cang Zhou, 061001, China
| | - Lingjun Kong
- Department of Neurosurgery, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cang Zhou, 061001, China
| | - Hongqiao Wang
- Department of Surgical Oncology, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cang Zhou, 061001, China
| |
Collapse
|
252
|
Al Sukhun S, Temin S, Barrios CH, Antone NZ, Guerra YC, Mac Gregor MC, Chopra R, Danso MA, Gomez HL, Homian NM, Kandil A, Kithaka B, Koczwara B, Moy B, Nakigudde G, Petracci FE, Rugo HS, El Saghir NS, Arun BK. Systemic Treatment of Patients With Metastatic Breast Cancer: ASCO Resource-Stratified Guideline. JCO Glob Oncol 2024; 10:e2300285. [PMID: 38206277 DOI: 10.1200/go.23.00285] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE To guide clinicians and policymakers in three global resource-constrained settings on treating patients with metastatic breast cancer (MBC) when Maximal setting-guideline recommended treatment is unavailable. METHODS A multidisciplinary, multinational panel reviewed existing ASCO guidelines and conducted modified ADAPTE and formal consensus processes. RESULTS Four published resource-agnostic guidelines were adapted for resource-constrained settings; informing two rounds of formal consensus; recommendations received ≥75% agreement. RECOMMENDATIONS Clinicians should recommend treatment according to menopausal status, pathological and biomarker features when quality results are available. In first-line, for hormone receptor (HR)-positive MBC, when a non-steroidal aromatase inhibitor and CDK 4/6 inhibitor combination is unavailable, use hormonal therapy alone. For life-threatening disease, use single-agent chemotherapy or surgery for local control. For premenopausal patients, use ovarian suppression or ablation plus hormone therapy in Basic settings. For human epidermal growth factor receptor 2 (HER2)-positive MBC, if trastuzumab, pertuzumab, and chemotherapy are unavailable, use trastuzumab and chemotherapy; if unavailable, use chemotherapy. For HER2-positive, HR-positive MBC, use standard first-line therapy, or endocrine therapy if contraindications. For triple-negative MBC with unknown PD-L1 status, or if PD-L1-positive and immunotherapy unavailable, use single-agent chemotherapy. For germline BRCA1/2 mutation-positive MBC, if poly(ADP-ribose) polymerase inhibitor is unavailable, use hormonal therapy (HR-positive MBC) and chemotherapy (HR-negative MBC). In second-line, for HR-positive MBC, Enhanced setting recommendations depend on prior treatment; for Limited, use tamoxifen or chemotherapy. For HER2-positive MBC, if trastuzumab deruxtecan is unavailable, use trastuzumab emtansine; if unavailable, capecitabine and lapatinib; if unavailable, trastuzumab and/or chemotherapy (hormonal therapy alone for HR-positive MBC).Additional information is available at www.asco.org/resource-stratified-guidelines. It is ASCO's view that healthcare providers and system decision-makers should be guided by the recommendations for the highest stratum of resources available. The guideline is intended to complement but not replace local guidelines.
Collapse
Affiliation(s)
| | - Sarah Temin
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | - Yanin Chavarri Guerra
- Departamento de Hemato-Oncología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | | | - Alaa Kandil
- Alexandria Comprehensive Cancer Center, Alexandria, Egypt
| | | | | | | | | | | | - Hope S Rugo
- University of California San Francisco, San Francisco, CA
| | | | - Banu K Arun
- University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
253
|
Dong X, Li Y, Sheng X, Zhou W, Sun A, Dai H. Mitochondria-related signaling pathways involved in breast cancer regulate ferroptosis. Genes Dis 2024; 11:358-366. [PMID: 37588231 PMCID: PMC10425853 DOI: 10.1016/j.gendis.2023.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 08/18/2023] Open
Abstract
Ferroptosis is a novel form of regulated cell death characterized by iron-dependent excessive lipid peroxidation. The core organelle involved in ferroptosis is mitochondria. Mitochondria undergoing ferroptosis are distinct from normal mitochondria in terms of morphology, biochemistry, gene expression, and energy metabolism. An increasing number of studies have shown that mitochondria and their associated metabolic pathways mediate ferroptosis in the development and progression of breast cancer. In this review, we discuss the relevant research about ferroptosis in breast cancer and provide a comprehensive summary of mitochondrial regulation in ferroptosis from the perspective of lipid metabolism, oxidative phosphorylation, ion metabolism, glycometabolism, and nucleotide metabolism. We also summarize the application of mitochondrial metabolism-related pathways as ferroptosis treatment targets. Here we provide new insights into the relationship between mitochondria, ferroptosis, and breast cancer treatment.
Collapse
Affiliation(s)
- Xinrui Dong
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Ye Li
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Weihang Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huai'an, Jiangsu 223001, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
254
|
Zhu X, Yu J, Ai F, Wang Y, Lv W, Yu G, Cao X, Lin J. CD24 May Serve as an Immunotherapy Target in Triple-Negative Breast Cancer by Regulating the Expression of PD-L1. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:967-984. [PMID: 38164371 PMCID: PMC10758189 DOI: 10.2147/bctt.s409054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE CD24 mediates a "don't eat me" signal to escape the immune environment. However, the correlation between CD24 and PD-L1 is unclear. This study aimed to assess if CD24 can serve as a target for immunotherapy of triple-negative breast cancer (TNBC). METHODS Data on CD24 expression in breast cancer were acquired using the Oncomine and UALCAN tools. The role of CD24 expression on the prognosis of patients with TNBC was assessed using Kaplan-Meier analyses. Subsequently, STRING and TISIDB databases were used to construct protein-protein interaction networks and to explore immune-related molecules regulated by CD24. Immunofluorescence and immunohistochemistry assays were conducted to validate CD24 and PD-L1 expression and tumor infiltration lymphocyte (TIL) level. Survival analysis was also performed to explore the effect of CD24 and PD-L1 expression and TIL level in patients with TNBC. ShRNA was also used to explore the regulation role of CD24 on PD-L1 expression. RESULTS CD24 expression was significantly higher in breast cancer than in normal tissues, with high expression being significantly associated with a worse prognosis. CD24 was found to be significantly regulated by chemokines, immunoinhibitors, immunostimulators and TILs. Furthermore, CD24 expression showed a significant positive correlation with PD-L1 expression and a negative correlation with TIL level. In association with PD-L1, CD24 was found to positively regulate lymphocyte costimulation, T cell costimulation, and leukocyte activation. Furthermore, CD24 and PD-L1 co-expression contributed to worse survival outcomes. In addition, CD24 expression was found to attenuate the positive effects of high-level TILs on the prognosis of patients with TNBC. CD24 can also regulate the expression of PD-L1 in TNBC cells. CONCLUSION CD24 may attenuate the positive effects of high TIL levels on survival and may facilitate the immune escape of TNBC by regulating PD-L1 expression. Thus, it is a potential target for immunotherapy in TNBC.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People’s Republic of China
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Fulu Ai
- Department of General Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Wu Lv
- Department of General Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Guilin Yu
- Department of General Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Xiankui Cao
- Department of General Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| |
Collapse
|
255
|
Yoon JD, Jung JH, Cho HY, Shin HJ. The Immediate Effects of Muscle Energy Technique in Chronic Low Back Pain Patients with Functional Leg Length Discrepancy: A Randomized and Placebo-Controlled Trial. Healthcare (Basel) 2023; 12:53. [PMID: 38200959 PMCID: PMC10778948 DOI: 10.3390/healthcare12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This study was conducted to determine the effect of muscle energy technique (MET) on pelvic alignment, leg length, pain, and fatigue in chronic low back pain (CLBP) patients with leg length discrepancy (LLD). Forty-two CLBP patients with LLD volunteered to participate and were randomly assigned to the MET group (n = 21) and placebo group (n = 21). The intervention group performed three METs with 5 s of isometric contraction and 30 s of rest once, and the placebo group performed three times the placebo-MET, maintaining the same posture as the MET group without muscle isometric contraction. X-ray equipment, tape measure, and visual analog scale were used to evaluate pelvic alignment, leg length, pain, and fatigue before and after each intervention. In comparison pre- and postintervention, only the MET group showed significant changes in pelvic alignment, leg length, pain, and fatigue (p < 0.05). In comparison between groups, there were significant differences in all variables (pelvic alignment, leg length, pain, fatigue) (p < 0.05). The results of this study confirmed the therapeutic effect of MET for improving pelvic alignment, functional LLD, pain, and fatigue in CLBP patients with functional LLD. Future research is needed to evaluate the long-term effect on more chronic low back pain patients.
Collapse
Affiliation(s)
- Jung-Dae Yoon
- Department of Health Science, Gachon University Graduate School, Incheon 21936, Republic of Korea;
- Barum Pilates and Rehabilitation Center, Incheon 22014, Republic of Korea
| | - Jin-Hwa Jung
- Department of Occupational Therapy, Semyung University, Jecheon 27136, Republic of Korea;
| | - Hwi-Young Cho
- Department of Health Science, Gachon University Graduate School, Incheon 21936, Republic of Korea;
- Department of Physical Therapy, Gachon University, Incheon 21936, Republic of Korea
| | - Ho-Jin Shin
- Department of Physical Therapy, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
256
|
Feng B, Gong C, You L, Lin Y, Wang Y, Ip WY, Wang Y. Central Sensitization in Patients with Chronic Pain Secondary to Carpal Tunnel Syndrome and Determinants. J Pain Res 2023; 16:4353-4366. [PMID: 38145037 PMCID: PMC10748611 DOI: 10.2147/jpr.s441786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose Central sensitization (CS) is commonly seen in chronic pain disorders, including neuropathic pain. However, there exist inconsistencies concerning the presence of CS in chronic pain secondary to carpal tunnel syndrome (CTS). CS and neuropathic pain manifestations in CTS remain not well established. Therefore, this study aims to investigate the CS and pain profiles in patients with CTS and to explore the potential determinants associated with CS. Patients and Methods Patients with suspected CTS symptoms lasting 3 months or above and healthy controls were enrolled. History, physical examinations, and nerve conduction studies were employed to confirm the diagnosis and severity of median nerve dysfunction. The central sensitization inventory (CSI) was used to screen CS. Other outcomes included neuropathic pain, CTS-specific symptom severity and functions, emotion, and health-related quality of life. Between-group comparisons were conducted in terms of the CS presence. Logistic regression analysis was performed to identify determinants associated with CS. Results Over 60% of participants with CTS were found with clinical CS, significantly higher than that in the control group. More than 70% of the CTS participants were identified to have possible or very likely neuropathic pain components. In addition, one-fourth of CTS cases had depression or anxiety. Anxiety was associated with an increased risk of developing CS in CTS (adjusted OR=1.31, 95% CI 1.08-1.59), whereas higher self-perceived general health rating was negatively associated with the presence of CS (adjusted OR=0.92, 95% CI 0.88-0.97) in the multivariate adjusted regression model. Conclusion CS is prevalent in patients with CTS. Predominant neuropathic pain characteristics were uncovered in CTS patients as well as comorbid psychological distress. Significant association was found between anxiety and CS presence. Self-perceived general health was inversely related to CS. Further research is warranted to explore the mechanisms of anxiety and central pain processing in painful entrapment neuropathy.
Collapse
Affiliation(s)
- Beibei Feng
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Orthopaedics & Traumatology, the University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, People’s Republic of China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chen Gong
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, People’s Republic of China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Longfei You
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, People’s Republic of China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, People’s Republic of China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yafei Wang
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, People’s Republic of China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wing Yuk Ip
- Department of Orthopaedics & Traumatology, the University of Hong Kong, Hong Kong, Special Administrative Regions, People’s Republic of China
| | - Yuling Wang
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, People’s Republic of China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
257
|
Wang J, Wu N, Peng M, Oyang L, Jiang X, Peng Q, Zhou Y, He Z, Liao Q. Ferritinophagy: research advance and clinical significance in cancers. Cell Death Discov 2023; 9:463. [PMID: 38110359 PMCID: PMC10728094 DOI: 10.1038/s41420-023-01753-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Ferritinophagy, a process involving selective autophagy of ferritin facilitated by nuclear receptor coactivator 4 (NCOA4), entails the recognition of ferritin by NCOA4 and subsequent delivery to the autophagosome. Within the autophagosome, ferritin undergoes degradation, leading to the release of iron in the lysosome. It is worth noting that excessive iron levels can trigger cell death. Recent evidence has elucidated the significant roles played by ferritinophagy and ferroptosis in regulation the initiation and progression of cancer. Given the crucial role of ferritinophagy in tumor biology, it may serve as a potential target for future anti-tumor therapeutic interventions. In this study, we have provided the distinctive features of ferritinophagy and its distinctions from ferroptosis. Moreover, we have briefly examined the fundamental regulatory mechanisms of ferritinophagy, encompassing the involvement of the specific receptor NCOA4, the Nrf2/HO-1 signaling and other pathways. Subsequently, we have synthesized the current understanding of the impact of ferritinophagy on cancer progression and its potential therapeutic applications, with a particular emphasis on the utilization of chemotherapy, nanomaterials, and immunotherapy to target the ferritinophagy pathway for anti-tumor purposes.
Collapse
Affiliation(s)
- Jiewen Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China.
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China.
| | - Qianjin Liao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China.
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
258
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
259
|
Tang Y, Tian W, Zheng S, Zou Y, Xie J, Zhang J, Li X, Sun Y, Lan J, Li N, Xie X, Tang H. Dissection of FOXO1-Induced LYPLAL1-DT Impeding Triple-Negative Breast Cancer Progression via Mediating hnRNPK/β-Catenin Complex. RESEARCH (WASHINGTON, D.C.) 2023; 6:0289. [PMID: 38111678 PMCID: PMC10726293 DOI: 10.34133/research.0289] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is considered as the most hazardous subtype of breast cancer owing to its accelerated progression, enormous metastatic potential, and refractoriness to standard treatments. Long noncoding RNAs (lncRNAs) are extremely intricate in tumorigenesis and cancerous metastasis. Nonetheless, their roles in the initiation and augmentation of TNBC remain elusive. Here, in silico analysis and validation experiments were utilized to analyze the expression pattern of clinically effective lncRNAs in TNBC, among which a protective lncRNA LYPLAL1-DT was essentially curbed in TNBC samples and indicated a favorable prognosis. Gain- and loss-of-function assays elucidated that LYPLAL1-DT considerably attenuated the proliferative and metastatic properties along with epithelial-mesenchymal transition of TNBC cells. Moreover, forkhead box O1 (FOXO1) was validated to modulate the transcription of LYPLAL1-DT. Mechanistically, LYPLAL1-DT impinged on the malignancy of TNBC mainly by restraining the aberrant reactivation of the Wnt/β-catenin signaling pathway, explicitly destabilizing and diminishing β-catenin protein by interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and constricting the formation of the hnRNPK/β-catenin complex. Conclusively, our present research revealed the anti-oncogenic effects of LYPLAL1-DT in TNBC, unraveling the molecular mechanisms of the FOXO1/LYPLAL1-DT/hnRNPK/β-catenin signaling axis, which shed innovative light on the potential curative medicine of TNBC.
Collapse
Affiliation(s)
- Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Wenwen Tian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou 510095, P. R. China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, P. R. China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Junsheng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jing Lan
- Department of General Surgery,
The First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| | - Ning Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| |
Collapse
|
260
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
261
|
Jiang J, Zhu J, Qiu P, Ni J, Zhu W, Wang X. HNRNPA2B1-mediated m6A modification of FOXM1 promotes drug resistance and inhibits ferroptosis in endometrial cancer via regulation of LCN2. Funct Integr Genomics 2023; 24:3. [PMID: 38091112 DOI: 10.1007/s10142-023-01279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
N6-methyladenosine (m6A) methylation is an extensive posttranscriptional RNA modification, and it is associated with various cellular responses, especially in tumor progression. An m6A "reader"-HNRNPA2B1 has been found oncogenic in multiple malignancies. As a key proliferation-related transcription factor, forkhead box protein M1 (FOXM1) is involved in tumorigenesis. Here, we elucidated the underlying mechanism by which HNRNPA2B1-mediated modification of FOXM1 promotes endometrial cancer (EC). The GSE115810 dataset was used to analyze the upregulated gene mRNA in late-stage EC tissues. The expression levels of HNRNPA2B1, FOXM1, and LCN2 in EC samples were shown by western blotting and qPCR. The interaction among HNRNPA2B1, FOXM1, and LCN2 in EC cells was detected using bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down, RNA decay analysis, and luciferase reporter experiments. Cisplatin (DDP)-resistant EC cells were constructed using HEC-1-A and HEC-1-B cells, named HEC-1-A/DDP and HEC-1-B/DDP, respectively. Proliferation, migration, and invasiveness in treated HEC-1-A/DDP and HEC-1-B/DDP cells were detected by EdU, wound healing, and transwell assays. Ferroptosis-resistant gene expression, MDA level, and ROS level were measured. The m6A modification level in EC tissues was elevated. HNRNPA2B1 and FOXM1 levels were upregulated in EC. HNRNPA2B1 expression was positively related to FOXM1 expression in EC samples, and HNRNPA2B1 bound to the 3'UTR of FOXM1 and stabilized FOXM1 mRNA via m6A modification. FOXM1 positively regulated LCN2 expression in EC cells by binding to the LCN2 promotor. Knockdown of FOXM1 downregulated ferroptosis-resistant gene expression and increased MDA and ROS levels in DDP-resistant EC cells. Rescue assays revealed that LCN2 overexpression eliminated the effects mediated by FOXM1 knockdown on the proliferation, migration, invasiveness, and ferroptosis in DDP-resistant EC cells. In conclusion, HNRNPA2B1-mediated mA modification of FOXM1 facilitates drug resistance and inhibits ferroptosis in EC cells by upregulating LCN2 expression.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Jiamei Zhu
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China.
| | - Ping Qiu
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Jie Ni
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Wei Zhu
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Xinyan Wang
- Department of Gynaecology, Jingjiang People's Hospital, NO.28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| |
Collapse
|
262
|
Zhang L, Zhao T, Wu X, Tian H, Gao P, Chen Q, Chen C, Zhang Y, Wang S, Qi X, Sun N. Construction of a ferroptosis-based prognostic model for breast cancer helps to discriminate high/low risk groups and treatment priority. Front Immunol 2023; 14:1264206. [PMID: 38152394 PMCID: PMC10751362 DOI: 10.3389/fimmu.2023.1264206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Breast cancer is a common malignant tumor associated with high morbidity and mortality. The role of ferroptosis, a regulated form of cell death, in breast cancer development and prognosis remains unclear. This study aims to investigate the relationship between ferroptosis-related genes and breast cancer and develop a prognostic model. Methods RNA-seq expression datasets and clinical samples of breast cancer patients were obtained from public databases. Immunity- and drug resistance-related data were integrated. A preliminary screening was performed, resulting in the identification of 73 candidate ferroptosis factors. Univariate Cox regression analysis was conducted to select 12 genes, followed by LASSO Cox regression analysis to construct a prognostic risk prediction model consisting of 10 ferroptosis-related genes. The model was further characterized by immune cell infiltration. The expression levels of ferroptosis-related genes were validated in human breast cancer cell lines, and immunohistochemical (IHC) analysis was conducted on cancer specimens to assess ferroptosis-related protein expression. Results The study identified 10 ferroptosis-related genes that were significantly associated with breast cancer prognosis. The constructed prognostic risk prediction model showed potential for predicting the prognostic value of these genes. In addition, the infiltration of immune cells was observed to be a characteristic of the model. The expression levels of ferroptosis-related genes were confirmed in human breast cancer cell lines, and IHC analysis provided evidence of ferroptosis-related protein expression in cancer specimens. Discussion This study provides a novel prognostic model for breast cancer, incorporating 10 ferroptosis-related genes. The model demonstrates the potential for predicting breast cancer prognosis and highlights the involvement of immune cell infiltration. The expression levels of ferroptosis-related genes and proteins further support the association between ferroptosis and breast cancer development.
Collapse
Affiliation(s)
- Liyong Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Tingting Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiujuan Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pingping Gao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qingqiu Chen
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shushu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Na Sun
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
263
|
Xu C, Yao S, Wei W, Zhang H, Ma J, Shang L. Cross-cultural adaptation and validation for central sensitization inventory: based on Chinese patients undergoing total knee arthroplasty for knee osteoarthritis. J Orthop Surg Res 2023; 18:960. [PMID: 38093300 PMCID: PMC10717624 DOI: 10.1186/s13018-023-04375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND This study was conducted to develop a simplified Chinese version of the central sensitization inventory (CSI-CV) and to evaluate its reliability and validity. METHODS The CSI-CV was developed through a process involving the translation and back translation of the original CSI. Subsequently, experts reviewed and revised the content of the items to ensure their appropriateness. A total of 325 patients with knee osteoarthritis (KOA), who were scheduled to undergo total knee arthroplasty (TKA), completed the CSI-CV at a prominent orthopedic center in Xi'an, China. Afterward, a random selection of 100 participants was chosen for retesting after one week. The reliability and validity of the inventory were evaluated through exploratory factor analysis, correlation coefficient calculation and other methods. RESULTS The CSI-CV consists of 25 items in five dimensions (emotional distress, headache and jaw symptoms, physical symptoms, urological symptoms, and fatigue and sleep problems). The cumulative variance contribution rate was 75.3%, the Cronbach's α coefficient was 0.83, the Guttman split-half reliability coefficient was 0.88 and the intraclass correlation coefficient was 0.965. The CSI-CV scores correlated moderately with the total scores of the brief pain inventory (r = 0.506), Western Ontario and McMaster Universities Osteoarthritis Index (r = 0.466) and EuroQoL Group's five-dimension questionnaire (r = 0.576). CONCLUSIONS The findings demonstrate that the CSI was successfully trans-culturally adapted into a simplified Chinese version (CSI-CV) that was reliable and valid for Chinese-speaking patients who awaiting TKA for KOA.
Collapse
Affiliation(s)
- Chao Xu
- Department of Health Statistics, Faculty of Preventive Medicine, Fourth Military Medical University, No.169. Changle West Rd, Xi'an, Shaanxi, China
- Department of Knee Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Rd, Xi'an, Shaanxi, China
| | - Shuxin Yao
- Department of Knee Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Rd, Xi'an, Shaanxi, China
| | - Wei Wei
- Department of Orthopedics, 989th Hospital of PLA, No. 2 Huaxia West Rd, Luoyang, Henan, China
| | - Haiyue Zhang
- Department of Health Statistics, Faculty of Preventive Medicine, Fourth Military Medical University, No.169. Changle West Rd, Xi'an, Shaanxi, China
| | - Jianbing Ma
- Department of Knee Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Rd, Xi'an, Shaanxi, China.
| | - Lei Shang
- Department of Health Statistics, Faculty of Preventive Medicine, Fourth Military Medical University, No.169. Changle West Rd, Xi'an, Shaanxi, China.
| |
Collapse
|
264
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
265
|
Lei M, Zhang YL, Huang FY, Chen HY, Chen MH, Wu RH, Dai SZ, He GS, Tan GH, Zheng WP. Gankyrin inhibits ferroptosis through the p53/SLC7A11/GPX4 axis in triple-negative breast cancer cells. Sci Rep 2023; 13:21916. [PMID: 38081931 PMCID: PMC10713534 DOI: 10.1038/s41598-023-49136-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Gankyrin is found in high levels in triple-negative breast cancer (TNBC) and has been established to form a complex with the E3 ubiquitin ligase MDM2 and p53, resulting in the degradation of p53 in hepatocarcinoma cells. Therefore, this study sought to determine whether gankyrin could inhibit ferroptosis through this mechanism in TNBC cells. The expression of gankyrin was investigated in relation to the prognosis of TNBC using bioinformatics. Co-immunoprecipitation and GST pull-down assays were then conducted to determine the presence of a gankyrin and MDM2 complex. RT-qPCR and immunoblotting were used to examine molecules related to ferroptosis, such as gankyrin, p53, MDM2, SLC7A11, and GPX4. Additionally, cell death was evaluated using flow cytometry detection of 7-AAD and a lactate dehydrogenase release assay, as well as lipid peroxide C11-BODIPY. Results showed that the expression of gankyrin is significantly higher in TNBC tissues and cell lines, and is associated with a poor prognosis for patients. Subsequent studies revealed that inhibiting gankyrin activity triggered ferroptosis in TNBC cells. Additionally, silencing gankyrin caused an increase in the expression of the p53 protein, without altering its mRNA expression. Co-immunoprecipitation and GST pull-down experiments indicated that gankyrin and MDM2 form a complex. In mouse embryonic fibroblasts lacking both MDM2 and p53, this gankyrin/MDM2 complex was observed to ubiquitinate p53, thus raising the expression of molecules inhibited by ferroptosis, such as SLC7A11 and GPX4. Furthermore, silencing gankyrin in TNBC cells disrupted the formation of the gankyrin/MDM2 complex, hindered the degradation of p53, increased SLC7A11 expression, impeded cysteine uptake, and decreased GPX4 production. Our findings suggest that TNBC cells are able to prevent cell ferroptosis through the gankyrin/p53/SLC7A11/GPX4 signaling pathway, indicating that gankyrin may be a useful biomarker for predicting TNBC prognosis or a potential therapeutic target.
Collapse
Affiliation(s)
- Ming Lei
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Yun-Long Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Feng-Ying Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Heng-Yu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China
| | - Ming-Hui Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Ri-Hong Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Shu-Zhen Dai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Gui-Sheng He
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Guang-Hong Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China.
| | - Wu-Ping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
266
|
Rodrigues-de-Souza DP, Casas-Castro A, Carmona-Pérez MC, García-Luque L, Alcaraz-Clariana S, Garrido-Castro JL, Alburquerque-Sendín F. Between-sexes differences in lumbopelvic muscle mechanical properties of non-climacteric adults: a cross-sectional design. Sci Rep 2023; 13:21612. [PMID: 38062151 PMCID: PMC10703780 DOI: 10.1038/s41598-023-48984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The lumbopelvic muscle mechanical properties (MMPs) are clinically relevant, but their dependence on sex remains unknown. Therefore, this study aimed to identify if lumbopelvic MMPs depend on the sex in a young adult population. Thirty-five healthy nulliparous women and 35 healthy men were analyzed (age range: 18-50). Lumbopelvic MMPs, that is, tone, stiffness, elasticity, relaxation and creep, assessed with MyotonPRO®, and pelvic floor (PF) health questionnaires were compared between-sexes. Intra-group correlations between sociodemographic and clinical data, and MMPs were also determined. The MMPs of PF were different between healthy non-climacteric adults of both sexes, with women showing higher values of tone and stiffness and lower values of elasticity and viscoelastic properties than men (in all cases, p < 0.03). At lumbar level, tone and stiffness were higher for men at both sides (in all cases, p < 0.04), and relaxation was lower at left side (p = 0.02). The MMPs showed few correlations with sociodemographic data within women. However, within males, there were positive correlations for PF stiffness and viscoelastic parameters with age, BMI and function (0.334 < r < 0.591) and, at lumbar level, negative correlations for tone and stiffness ( - 0.385 < r < -0.590) and positive correlations for viscoelastic properties (0.564 < r < 0.719), with BMI. This indicated that between-sexes differences of lumbopelvic MMPs depend on the specific location of assessment in healthy non-obese young individuals. Women show higher tone and stiffness and lower elasticity and viscoelasticity than men, at PF level.
Collapse
Affiliation(s)
- Daiana Priscila Rodrigues-de-Souza
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
| | - Azahara Casas-Castro
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
| | - María Cristina Carmona-Pérez
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
| | - Lourdes García-Luque
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
| | - Sandra Alcaraz-Clariana
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
| | - Juan Luis Garrido-Castro
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba, 14071, Córdoba, Spain
| | - Francisco Alburquerque-Sendín
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain.
| |
Collapse
|
267
|
Zhao J, Luo Z, Fu R, Zhou J, Chen S, Wang J, Chen D, Xie X. Disulfidptosis-related signatures for prognostic and immunotherapy reactivity evaluation in hepatocellular carcinoma. Eur J Med Res 2023; 28:571. [PMID: 38057871 PMCID: PMC10698993 DOI: 10.1186/s40001-023-01535-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and a nonnegligible health concern on a worldwide scale. Disulfidptosis is a novel mode of cell death, which is mainly caused by the collapse of the actin skeleton. Although many studies have demonstrated that various types of cell death are associated with cancer treatment, the relationship between disulfidptosis and HCC has not been elucidated. METHODS Here, we mainly applied bioinformatics methods to construct a disulfidptosis related risk model in HCC patients. Specifically, transcriptome data and clinical information were downloaded from the Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) database. A total of 45 co-expressed genes were extracted between the disulfidptosis-related genes (DRGs) and the differential expression genes (DEGs) of liver hepatocellular carcinoma (LIHC) in the TCGA database. The LIHC cohort was divided into two subgroups with different prognosis by k-mean consensus clustering and functional enrichment analysis was performed. Subsequently, three hub genes (CDCA8, SPP2 and RDH16) were screened by Cox regression and LASSO regression analysis. In addition, a risk signature was constructed and the HCC cohort was divided into high risk score and low risk score subgroups to compare the prognosis, clinical features and immune landscape between the two subgroups. Finally, the prognostic model of independent risk factors was constructed and verified. CONCLUSIONS High DRGs-related risk score in HCC individuals predict poor prognosis and are associated with poor immunotherapy response, which indicates that risk score assessment model can be utilized to guide clinical treatment strategy.
Collapse
Affiliation(s)
- Jiajing Zhao
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Zeminshan Luo
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Ruizhi Fu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jinghong Zhou
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Shubiao Chen
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jianjie Wang
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Dewang Chen
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Xiaojun Xie
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China.
| |
Collapse
|
268
|
Xie J, Deng W, Deng X, Liang JY, Tang Y, Huang J, Tang H, Zou Y, Zhou H, Xie X. Single-cell histone chaperones patterns guide intercellular communication of tumor microenvironment that contribute to breast cancer metastases. Cancer Cell Int 2023; 23:311. [PMID: 38057779 DOI: 10.1186/s12935-023-03166-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Histone chaperones (HCs) are crucial for governing genome stability and gene expression in multiple cancers. However, the functioning of HCs in the tumor microenvironment (TME) is still not clearly understood. METHODS Self-tested single-cell RNA-seq data derived from 6 breast cancer (BC) patients with brain and liver metastases were reanalyzed by nonnegative matrix factorization (NMF) algorithm for 36 HCs. TME subclusters were observed with BC and immunotherapy public cohorts to assess their prognosis and immune response. The biological effect of HSPA8, one of the HCs, was verified by transwell assay and wound-healing assays. RESULTS Cells including fibroblasts, macrophages, B cells, and T cells, were classified into various subclusters based on marker genes. Additionally, it showed that HCs might be strongly associated with biological and clinical features of BC metastases, along with the pseudotime trajectory of each TME cell type. Besides, the results of bulk-seq analysis revealed that TME cell subclusters mediated by HCs distinguished significant prognostic value for BC patients and were relevant to patients' immunotherapy responses, especially for B cells and macrophages. In particular, CellChat analysis exhibited that HCs-related TME cell subclusters revealed extensive and diverse interactions with malignant cells. Finally, transwell and wound-healing assays exhibited that HSPA8 deficiency inhibited BC cell migration and invasion. CONCLUSIONS Collectively, our study first dissected HCs-guided intercellular communication of TME that contribute to BC metastases.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Wei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Jie-Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Jun Huang
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| | - Huamao Zhou
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| |
Collapse
|
269
|
Li J, Deng Q, Zhu J, Min W, Hu X, Yu Chen H, Luo Z, Lin L, Wei X, Zhang Y, Lou K, Gao Y, Zhang G, Bai J. Methylation of ESR1 promoter induced by SNAI2-DNMT3B complex promotes epithelial-mesenchymal transition and correlates with poor prognosis in ERα-positive breast cancers. MedComm (Beijing) 2023; 4:e403. [PMID: 37881785 PMCID: PMC10594044 DOI: 10.1002/mco2.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023] Open
Abstract
Estrogen receptor α (ERα) serves as an essential therapeutic predictor for breast cancer (BC) patients and is regulated by epigenetic modification. Abnormal methylation of cytosine phosphoric acid guanine islands in the estrogen receptor 1 (ESR1) gene promoter could silence or decrease ERα expression. In ERα-negative BC, we previously found snail family transcriptional repressor 2 (SNAI2), a zinc-finger transcriptional factor, recruited lysine-specific demethylase 1 to the promoter to transcriptionally suppress ERα expression by demethylating histone H3 lysine 4 dimethylation (H3K4me2). However, the role of SNAI2 in ERα-positive BC remains elusive. In this study, we observed a positive correlation between SNAI2 and ESR1 methylation, and SNAI2 promoted ESR1 methylation by recruiting DNA methyltransferase 3 beta (DNMT3B) rather than DNA methyltransferase 1 (DNMT1) in ERα-positive BC cells. Subsequent enrichment analysis illustrated that ESR1 methylation is strongly correlated with cell adhesion and junction. Knocking down DNMT3B could partially reverse SNAI2 overexpression-induced cell proliferation, migration, and invasion. Moreover, high DNMT3B expression predicted poor relapse-free survival and overall survival in ERα-positive BC patients. In conclusion, this study demonstrated the novel mechanisms of the ESR1 methylation mediated with the SNAI2/DNMT3B complex and enhanced awareness of ESR1 methylation's role in promoting epithelial-mesenchymal transition in BC.
Collapse
|
270
|
He X, Fang J, Gong M, Zhang J, Xie R, Zhao D, Gu Y, Ma L, Pang X, Cui Y. Identification of immune-associated signatures and potential therapeutic targets for pulmonary arterial hypertension. J Cell Mol Med 2023; 27:3864-3877. [PMID: 37753829 PMCID: PMC10718157 DOI: 10.1111/jcmm.17962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/09/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) comprises a heterogeneous group of diseases with diverse aetiologies. It is characterized by increased pulmonary arterial pressure and right ventricular (RV) failure without specific drugs for treatment. Emerging evidence suggests that inflammation and autoimmune disorders are common features across all PAH phenotypes. This provides a novel idea to explore the characteristics of immunological disorders in PAH and identify immune-related genes or biomarkers for specific anti-remodelling regimens. In this study, we integrated three gene expression profiles and performed Gene Ontology (GO) and KEGG pathway analysis. CIBERSORT was utilized to estimate the abundance of tissue-infiltrating immune cells in PAH. The PPI network and machine learning were constructed to identify immune-related hub genes and then evaluate the relationship between hub genes and differential immune cells using ImmucellAI. Additionally, we implemented molecular docking to screen potential small-molecule compounds based on the obtained genes. Our findings demonstrated the density and distribution of infiltrating CD4 T cells in PAH and identified four immune-related genes (ROCK2, ATHL1, HSP90AA1 and ACTR2) as potential targets. We also listed 20 promising molecules, including TDI01953, pemetrexed acid and radotinib, for PAH treatment. These results provide a promising avenue for further research into immunological disorders in PAH and potential novel therapeutic targets.
Collapse
Affiliation(s)
- Xu He
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Jiansong Fang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Mingli Gong
- Department of PharmacyPeking University First HospitalBeijingChina
- School of PharmacyXu Zhou Medical UniversityXuzhouChina
| | - Juqi Zhang
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Ran Xie
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Dai Zhao
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yanlun Gu
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Lingyue Ma
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Xiaocong Pang
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Yimin Cui
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| |
Collapse
|
271
|
Yu Y, Lou Y, Zhu J, Wang X. Comprehensive analysis of diverse programmed cell death patterns in the prognosis, tumor microenvironment and drug sensitivity in hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e36239. [PMID: 38050240 PMCID: PMC10695610 DOI: 10.1097/md.0000000000036239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
Treatment failure in patients with liver hepatocellular carcinoma (LIHC) is primarily caused by tumor progression and therapy resistance. Tumor immunity plays a crucial role in regulating the homeostasis of cells through the process of programmed cell death (PCD). However, the expression profile and clinical significance of PCD-related genes in LIHC require further investigation. In this study, we analyzed twelve commonly observed PCD patterns to construct a prognostic model. We collected RNA-seq data, genomics, and clinical information from TCGA-LIHC and GSE14520 cohorts to validate the prognostic gene signature. We discovered 75 PCD-related differentially expressed genes (DEGs) with prognostic significance in LIHC. Using these genes, we constructed a PCD-related score (PCDscore) with an 11-gene signature through LASSO COX regression analysis. Validation in the GSE14520 cohort demonstrated that LIHC patients with high PCDscore had poorer prognoses. Unsupervised clustering based on the 11 model genes revealed 3 molecular subtypes of LIHC with distinct prognoses. By incorporating PCDscore with clinical features, we constructed a highly predictive nomogram. Additionally, PCDscore was correlated with immune checkpoint genes and immune cell infiltration. LIHC patients with high PCDscore exhibited sensitivity to common chemotherapy drugs (such as cisplatin and docetaxel). To summarize, our study developed a novel PCDscore model that comprehensively analyzed different cell death modes, providing an accurate prediction of clinical prognosis and drug sensitivity for LIHC patients.
Collapse
Affiliation(s)
- Youlin Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Yanglieguang Lou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Jinlong Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
272
|
Li C, Song W, Zhang J, Luo Y. Single-cell transcriptomics reveals heterogeneity in esophageal squamous epithelial cells and constructs models for predicting patient prognosis and immunotherapy. Front Immunol 2023; 14:1322147. [PMID: 38098487 PMCID: PMC10719955 DOI: 10.3389/fimmu.2023.1322147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC), characterized by its high invasiveness and malignant potential, has long been a formidable challenge in terms of treatment. Methods A variety of advanced analytical techniques are employed, including single-cell RNA sequencing (scRNA-seq), cell trajectory inference, transcription factor regulatory network analysis, GSVA enrichment analysis, mutation profile construction, and the inference of potential immunotherapeutic drugs. The purpose is to conduct a more comprehensive exploration of the heterogeneity among malignant squamous epithelial cell subgroups within the ESCC microenvironment and establish a model for predicting the prognosis and immunotherapy outcomes of ESCC patients. Results An analysis was conducted through scRNA-seq, and three Cluster of malignant epithelial cells were identified using the infer CNV method. Cluster 0 was found to exhibit high invasiveness, whereas Cluster 1 displayed prominent characteristics associated with epithelial-mesenchymal transition. Confirmation of these findings was provided through cell trajectory analysis, which positioned Cluster 0 at the initiation stage of development and Cluster 1 at the final developmental stage. The abundance of Cluster 0-2 groups in TCGA-LUAD samples was assessed using ssGSEA and subsequently categorized into high and low-expression groups. Notably, it was observed that Cluster 0-1 had a significant impact on survival (p<0.05). Furthermore, GSVA enrichment analysis demonstrated heightened activity in hallmark pathways for Cluster 0, whereas Cluster 1 exhibited notable enrichment in pathways related to cell proliferation. It is noteworthy that a prognostic model was established utilizing feature genes from Cluster 0-1, employing the Lasso and stepwise regression methods. The results revealed that in TCGA and GSE53624 cohorts, the low-risk group demonstrated significantly higher overall survival and increased levels of immune infiltration. An examination of four external immunotherapy cohorts unveiled that the low-risk group exhibited improved immunotherapeutic efficacy. Additionally, more meaningful treatment options were identified for the low-risk group. Conclusion The findings revealed distinct interactions between malignant epithelial cells of ESCC and subgroups within the tumor microenvironment. Two cell clusters, strongly linked to survival, were pinpointed, and a signature was formulated. This signature is expected to play a crucial role in identifying and advancing precision medicine approaches for the treatment of ESCC.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Cardiothoracic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Wei Song
- Department of Gastroenterology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Jialing Zhang
- Department of Gastroenterology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Yonggang Luo
- Department of Cardiothoracic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
273
|
Liu Z, Wang D, Zhang J, Xiang P, Zeng Z, Xiong W, Shi L. cGAS-STING signaling in the tumor microenvironment. Cancer Lett 2023; 577:216409. [PMID: 37748723 DOI: 10.1016/j.canlet.2023.216409] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
The cGAS-STING signaling is an important pathway involved in the regulation of tumor microenvironment, which affects many cellular functions including immune activation. Its role in combating tumor progression is widely recognized, especially with its function in inducing innate and adaptive immune responses, on which many immunotherapies have been developed. However, a growing number of findings also suggest a diversity of its roles in shaping tumor microenvironment, including functions that promote tumor progression. Here, we summarize the functions of the cGAS-STING signaling in tumor microenvironment to maintain tumor survival and proliferation through facilitating the forming of an immunosuppressive tumor microenvironment and discuss the current advances of STING-related immunotherapies.
Collapse
Affiliation(s)
- Ziqi Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jiarong Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
274
|
Zhang Y, Chen S, Ma J, Zhou X, Sun X, Jing H, Lin M, Zhou C. Enzyme-catalyzed electrochemical aptasensor for ultrasensitive detection of soluble PD-L1 in breast cancer based on decorated covalent organic frameworks and carbon nanotubes. Anal Chim Acta 2023; 1282:341927. [PMID: 37923412 DOI: 10.1016/j.aca.2023.341927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Soluble programmed death-ligand 1 (sPD-L1) is critically involved in breast cancer recurrence and metastasis. However, the clinical application of highly sensitive sPD-L1 assays remains a challenge due to its low abundance in peripheral blood. To address this issue, for the first time, an enzyme-catalyzed electrochemical aptasensing platform was devised, incorporating covalent organic frameworks-gold nanoparticles-antibody-horseradish peroxidase (COFs-AuNPs-Ab-HRP) and polyethyleneimine-functionalized multiwalled carbon nanotubes (MWCNTs-PEI-AuNPs) for the highly specific and ultrasensitive detection of sPD-L1. RESULTS MWCNTs-PEI-AuNPs possessed an extensive specific surface area and exhibited excellent electrical conductivity, facilitating the immobilization of aptamer and amplifying the signal. COFs modified with AuNPs not only amplified the electrical signal but also proffered a loading platform for the Ab and HRP. The favorable biocompatibility of COFs contributed to the preservation of enzyme activity and stability. HRP acted in synergy with hydrogen peroxide (H2O2) to catalyze the oxidation of hydroquinone (HQ) to benzoquinone (BQ). Subsequently, BQ underwent electrochemical reduction to HQ, inducing an enzymatic redox cycle that amplified the electrochemical signal and enhanced the sensitivity and selectivity of the detection method. The developed aptasensor displayed a liner range for sPD-L1 identification from 1 pg mL-1 to 100 ng mL-1 and the detection limit reached 0.143 pg mL-1 (S/N = 3). SIGNIFICANCE Paving the way for clinical application, this strategy detected differences in sPD-L1 in cell supernatants and peripheral blood of breast cancer patients with higher sensitivity compared to commercial sPD-L1 ELISA kit. This work demonstrates significant potential in offering reference information for early diagnosis and disease surveillance of breast cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China; School of Public Health, Nantong University, 9 Qiangyuan Rd, Nantong, 226019, China.
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Jie Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Hongyun Jing
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Mei Lin
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
275
|
Ding S, Liu J, Han X, Tang M. CRISPR/Cas9-Mediated Genome Editing in Cancer Therapy. Int J Mol Sci 2023; 24:16325. [PMID: 38003514 PMCID: PMC10671490 DOI: 10.3390/ijms242216325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, an RNA-based adaptive immune system found in bacteria and archaea, has catalyzed the development and application of a new generation of gene editing tools. Numerous studies have shown that this system can precisely target a wide range of human genes, including those associated with diseases such as cancer. In cancer research, the intricate genetic mutations in tumors have promoted extensive utilization of the CRISPR/Cas9 system due to its efficient and accurate gene editing capabilities. This includes improvements in Chimeric Antigen Receptor (CAR)-T-cell therapy, the establishment of tumor models, and gene and drug target screening. Such progress has propelled the investigation of cancer molecular mechanisms and the advancement of precision medicine. However, the therapeutic potential of genome editing remains underexplored, and lingering challenges could elevate the risk of additional genetic mutations. Here, we elucidate the fundamental principles of CRISPR/Cas9 gene editing and its practical applications in tumor research. We also briefly discuss the primary challenges faced by CRISPR technology and existing solutions, intending to enhance the efficacy of this gene editing therapy and shed light on the underlying mechanisms of tumors.
Collapse
Affiliation(s)
- Shuai Ding
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Jinfeng Liu
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Mengfan Tang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| |
Collapse
|
276
|
SONG HEEJU, KIM TAEHEE, CHOI HANNA, KIM SOOJIN, LEE SANGDO. TonEBP expression is essential in the IL-1β-induced migration and invasion of human A549 lung cancer cells. Oncol Res 2023; 32:151-161. [PMID: 38188678 PMCID: PMC10767233 DOI: 10.32604/or.2023.030690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 01/09/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers, in part because it readily metastasizes. The tumor microenvironment, comprising blood vessels, fibroblasts, immune cells, and macrophages [including tumor-associated macrophages (TAMs)], is closely related to cancer cell growth, migration, and invasion. TAMs secrete several cytokines, including interleukin (IL)-1β, which participate in cancer migration and invasion. p21-activated kinase 1 (PAK1), an important signaling molecule, induces cell migration and invasion in several carcinomas. Tonicity-responsive enhancer-binding protein (TonEBP) is also known to participate in cancer cell growth, migration, and invasion. However, the mechanisms by which it increases lung cancer migration remain unclear. Therefore, in this study, we aimed to elucidate the mechanisms by which IL-1β and TonEBP affect lung cancer cell migration and invasion. We found that A549 cocultured-MΦ-secreted IL-1β induced A549 cell migration and invasion via the PAK1 pathway. TonEBP deficiency reduced A549 cell migration and invasion and increased responsiveness to IL-1β-induced migration and invasion. PAK1 phosphorylation, which was promoted by IL-1β, was reduced when TonEBP was depleted. These results suggest that TonEBP plays an important role in IL-1β induction and invasiveness of A549 cells via the PAK1 pathway. These findings could be valuable in identifying potential targets for lung cancer treatment.
Collapse
Affiliation(s)
- HEE JU SONG
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - TAEHEE KIM
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - HAN NA CHOI
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - SOO JIN KIM
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - SANG DO LEE
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| |
Collapse
|
277
|
Bu Y, Wu D, Zhao Y, Wang G, Dang X, Xie X, Wang S. Genetically Engineered Cell Membrane-Coated Nanoparticles with High-Density Customized Membrane Receptor for High-Performance Drug Lead Discovery. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37933874 DOI: 10.1021/acsami.3c10907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cell membrane coating strategies have been increasingly researched due to their unique capabilities of biomimicry and biointerfacing, which can mimic the functionality of the original source cells in vivo but fail to provide customized nanoparticle surfaces with new or enhanced capabilities beyond natural cells. However, the field of drug lead discovery necessitates the acquisition of sufficient surface density of specific target membrane receptors, presenting a heightened demand for this technology. In this study, we developed a novel approach to fabricate high density of fibroblast growth factor receptor 4 (FGFR4) cell membrane-coated nanoparticles through covalent site-specific immobilization between genetically engineered FGFR4 with HaloTag anchor on cell membrane and chloroalkane-functionalized magnetic nanoparticles. This technique enables efficient screening of tyrosine kinase inhibitors from natural products. And the enhanced density of FGFR4 on the surface of nanoparticles were successfully confirmed by Western blot assay and confocal laser scanning microscopy. Further, the customized nanoparticles demonstrated exceptional sensitivity (limit of detection = 0.3 × 10-3 μg mL-1). Overall, the proposed design of a high density of membrane receptors, achieved through covalent site-specific immobilization with a HaloTag anchor, demonstrates a promising strategy for the development of cell membrane surface engineering. This approach highlights the potential of cell membrane coating technology for facilitating the advanced extraction of small molecules for drug discovery.
Collapse
Affiliation(s)
- Yusi Bu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Dan Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Ying Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Guoxiang Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xintao Dang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
- School of Medical, Tibet University, Lhasa 850000, China
| |
Collapse
|
278
|
Baroni F, Schleip R, Arcuri L, Consorti G, D’Alessandro G, Zegarra-Parodi R, Vitali AM, Tramontano M, Lunghi C. Functional Neuromyofascial Activity: Interprofessional Assessment to Inform Person-Centered Participative Care-An Osteopathic Perspective. Healthcare (Basel) 2023; 11:2886. [PMID: 37958030 PMCID: PMC10667998 DOI: 10.3390/healthcare11212886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Introduction: Health professionals and bodyworkers may be pivotal in promoting prevention programs, providing tailored advice and guidance to patients' adherence to self-care strategies, such as physical activity. Contemporary evidence encourages manual therapists to involve patients in decision-making and treatment procedures integrating passive and active approaches in treatment planning. This manuscript provides a definition and applications of neuromyofascial movement patterns, discusses the significance of functional assessment, and gives an example of clinical applications in the osteopathic field to highlight how this assessment can promote interdisciplinarity. Methods: The reporting framework used in the current manuscript followed guidelines for writing a commentary. Results: The manuscript highlights the crucial role that the neuromyofascial system plays in human movement and overall well-being and the importance of a functional neuromyofascial activity assessment in the context of person-centered participative care. Conclusions: Understanding individual neuromyofascial patterns could help healthcare practitioners, movement specialists, and bodyworkers in tailoring treatment plans, meeting patients' unique needs, and promoting a more effective personalized approach to care. The current perspective could spark debates within the professional community and provide a research roadmap for developing an evidence-informed interprofessional framework.
Collapse
Affiliation(s)
- Francesca Baroni
- BMS Formation, 75116 Paris, France; (F.B.); (C.L.)
- Osteopatia Lunghi-Baroni Private Practice, 00146 Rome, Italy
| | - Robert Schleip
- Department of Sport and Health Sciences, Conservative and Rehabilitative Orthopedics, Technical University of Munich, 80333 Munich, Germany;
| | - Lorenzo Arcuri
- Clinical-Based Human Research Department, Foundation COME Collaboration, 65121 Pescara, Italy
| | - Giacomo Consorti
- Education Department of Osteopathy, Istituto Superiore di Osteopatia, 20126 Milan, Italy
| | - Giandomenico D’Alessandro
- Clinical-Based Human Research Department, Foundation COME Collaboration, 65121 Pescara, Italy
- Centre pour l’Etude, la Recherche et la Diffusion Ostéopathiques “C.E.R.D.O.”, 00199 Rome, Italy
| | | | | | - Marco Tramontano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40126 Bologna, Italy
| | - Christian Lunghi
- BMS Formation, 75116 Paris, France; (F.B.); (C.L.)
- Osteopatia Lunghi-Baroni Private Practice, 00146 Rome, Italy
| |
Collapse
|
279
|
Hu X, Deng X, Xie J, Tang H, Zou Y. Heterogeneous PD-L1 expression in metastases impacts immunotherapy response. EBioMedicine 2023; 97:104816. [PMID: 37804568 PMCID: PMC10570695 DOI: 10.1016/j.ebiom.2023.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Affiliation(s)
- Xiaoqian Hu
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong 999077, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou 510060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou 510060, China.
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou 510060, China.
| |
Collapse
|
280
|
Zang J, Xiao L, Shi X, Liu S, Wang Y, Sun B, Ju S, Cui M, Jing R. Hsa_circ_0001479 accelerates tumorigenesis of gastric cancer and mediates immune escape. Int Immunopharmacol 2023; 124:110887. [PMID: 37683398 DOI: 10.1016/j.intimp.2023.110887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Gastric cancer (GC) is a common fatal malignant tumor of the digestive tract, particularly in Asia. Circular RNA (circRNA) has been proved to regulate malignancy progression and immunotherapeutic efficacy in multiple tumors, including GC. Notably, the function of circRNAs in GC has not been completely revealed. Therefore, exploration of more GC related circRNAs may provide potential strategies for GC treatment. In the study, it was observed that hsa_circ_0001479 exhibited a high level of expression in GC and was subsequently found to be associated with the depth of invasion, lymph node metastasis, and TNM stage. Functionally, the overexpression of hsa_circ_0001479 was found to enhance the proliferation and migration of GC cells, as evidenced by various experiments such as CCK-8, EdU, colony forming and transwell. Dual-luciferase reporter assay verified that hsa_circ_0001479 upregulated DEK expression by sponge targeting miR-133a-5p. Further investigations indicated DEK affected the entry of β-catenin into the nucleus by activating Wnt/β-catenin signaling pathway to promote accumulation of downstream c-Myc. As a transcription factor, c-Myc combined with the promoter of hsa_circ_0001479 parent gene to stimulate hsa_circ_0001479 generation. Besides, hsa_circ_0001479 inhibited theinfiltration with CD8+T cells in GC and associated with immune checkpoints. In summary, hsa_circ_0001479 accelerated the development and metastasis of GC and mediates immune escape of CD8+T cells. Targeting it may provide a novel immunotherapy to better locally treat GC and reduce the incidence of metastases.
Collapse
Affiliation(s)
- Jiayi Zang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lin Xiao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xin Shi
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Sinan Liu
- Department of Laboratory Medicine, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Baolan Sun
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
281
|
Yoshino R, Yoshida N, Ujiie N, Nakatsubo M, Tanino M, Kitada M. The Add-On Effect of Fluorouracil, Epirubicin, and Cyclophosphamide Regimens for Neoadjuvant Chemotherapy in Human Epidermal Receptor 2 (HER2)-Positive Breast Cancer: A Single-Center Retrospective Study. Cureus 2023; 15:e48255. [PMID: 38054134 PMCID: PMC10694781 DOI: 10.7759/cureus.48255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The addition of pertuzumab to trastuzumab in neoadjuvant chemotherapy (NAC) for anti-human epidermal receptor 2 (HER2) positive breast cancer has shown a significant improvement in the pathologic complete response (pCR) rate. However, the add-on effect of an anthracycline-based regimen (standard-of-care regimen) remains unclear. In this retrospective, observational study, participants received pertuzumab combination therapy as NAC for HER2-positive primary breast cancer. METHODS This study was conducted from January 1, 2020, to December 31, 2022. Patients who had not received at least three courses of pertuzumab owing to adverse events or those who had received preoperative radiotherapy were excluded. RESULTS The pCR rate was 35.3% (12/34 patients). The pCR group had a significantly higher percentage of histopathologic grade III (1/11 patients, p=0.030) and a significantly higher percentage of hormone receptor-negative patients (7/12 patients, p=0.015) than the non-pCR group. The non-pCR group had a significantly higher incidence of vascular invasion than the pCR group (7/22 patients, p=0.036). Menopausal status, stage, and ki-67 values were not significantly different between the two groups. CONCLUSIONS This study suggests an unlikely add-on effect of an anthracycline-based regimen for NAC in HER2-positive breast cancer. Moreover, our results support that the pCR rate is high in patients with hormone receptor-negative, HER2-positive breast cancer.
Collapse
Affiliation(s)
- Ryusei Yoshino
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Nana Yoshida
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Nanami Ujiie
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Masaki Nakatsubo
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Mishie Tanino
- Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Masahiro Kitada
- Thoracic Surgery and Breast Surgery, Asahikawa Medical University Hospital, Asahikawa, JPN
| |
Collapse
|
282
|
Baretton GB, Lordick F, Gaiser T, Hofheinz R, Horst D, Lorenzen S, Moehler M, Röcken C, Schirmacher P, Stahl M, Thuss-Patience P, Tiemann K. Standardized and quality-assured predictive PD-L1 testing in the upper gastrointestinal tract. J Cancer Res Clin Oncol 2023; 149:16231-16238. [PMID: 37874352 PMCID: PMC10620316 DOI: 10.1007/s00432-023-05180-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 10/25/2023]
Abstract
As a result of the high approval dynamics and the growing number of immuno-oncological concepts, the complexity of treatment decisions and control in the area of cancers of the esophagus, gastroesophageal junction and stomach is constantly increasing. Since the treatment indication for PD-1 inhibitors that are currently approved in the European Union is often linked to the expression of PD-L1 (programmed cell death-ligand 1), the evaluation of tissue-based predictive markers by the pathologist is of crucial importance for treatment stratification. Even though the immunohistochemical analysis of the PD-L1 expression status is one of the best studied, therapy-relevant biomarkers for an immuno-oncological treatment, due to the high heterogeneity of carcinomas of the upper gastrointestinal tract, there are challenges in daily clinical diagnostic work with regard to implementation, standardization and interpretation of testing. An interdisciplinary group of experts from Germany has taken a position on relevant questions from daily pathological and clinical practice, which concern the starting material, quality-assured testing and the interpretation of pathological findings, and has developed recommendations for structured reporting.
Collapse
Affiliation(s)
- Gustavo B Baretton
- Institute for Pathology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Florian Lordick
- Department of Medicine II (Oncology, Gastroenterology, Hepatology and Pulmonology) and University Cancer Center Leipzig, University of Leipzig Medical Center, Leipzig, Germany.
| | - T Gaiser
- Institute of Applied Pathology, 67346, Speyer, Germany
| | - R Hofheinz
- University Medicine Mannheim, Mannheim, Germany
| | - D Horst
- Institute of Pathology of the Charité-University Medicine Berlin, Berlin, Germany
| | - S Lorenzen
- Department of Medicine III, Klinikum Rechts der Isar, Munich, Germany
| | - M Moehler
- Department of Medicine I, University Medicine Mainz, Mainz, Germany
| | - C Röcken
- Institute of Pathology, Christian-Albrechts University, Kiel, Germany
| | - P Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - M Stahl
- Department of Oncology and Palliative Care, Kliniken Essen Mitte, Evangelische Huyssens-Stiftung, Essen-Huttrop, Essen, Germany
| | - P Thuss-Patience
- Charité Center of Tumor Medicine CC14, Charité Campus Virchow-University Medicine Berlin, Berlin, Germany
| | - K Tiemann
- Institute of Hematopathology, Hamburg, Germany
| |
Collapse
|
283
|
Li R, Dong X, Chen S, Tan J, Chen X, Liu J, Wen T, Ru X. Tn antigen promotes breast cancer metastasis via impairment of CASC4. Cell Biol Int 2023; 47:1854-1867. [PMID: 37493437 DOI: 10.1002/cbin.12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023]
Abstract
Breast cancer is one of the most serious and deadly cancers in women worldwide, with distant metastases being the leading cause of death. Tn antigen, a tumor-associated carbohydrate antigen, was frequently detected in breast cancer, but its exact role in breast cancer metastasis has not been well elucidated. Here we investigated the impact of Tn antigen expression on breast cancer metastasis and its underlying mechanisms. The expression of Tn antigen was induced in two breast cancer cell lines by deleting T-synthase or Cosmc, both of which are required for normal O-glycosylation. It showed that Tn-expressing cancer cells promoted epithelial-mesenchymal transition (EMT) and metastatic features as compared to Tn(-) control cells both in vitro and in vivo. Mechanistically, we found that cancer susceptibility candidate 4 (CASC4), a heavily O-glycosylated protein, was significantly downregulated in both Tn(+) cells. Overexpression of CASC4 suppressed Tn-induced activation of EMT and cancer metastasis via inhibition of Cdc42 signaling. Furthermore, we confirmed that O-glycosylation is essential for the functional role of CASC4 because defective O-glycosylated CASC4 (mutant CASC4, which lacks nine O-glycosylation sites) exerted marginal metastatic-suppressing effects in comparison with WT CASC4. Collectively, these data suggest that Tn-mediated aberrant O-glycosylation contributes to breast cancer metastasis via impairment of CASC4 expression and function.
Collapse
Affiliation(s)
- Ruijun Li
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xichen Dong
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shibin Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingyu Tan
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiangyu Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoli Ru
- Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
284
|
Cui H, Ren X, Zhao X, Dai L, Liu D, Bao Y, Hu L, Xiao Z, Ma X, Kang H. Prognostic value and mode selection of locoregional treatment in Stage-IV breast cancer patients. J Cancer Res Clin Oncol 2023; 149:13591-13605. [PMID: 37515611 DOI: 10.1007/s00432-023-05159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE This study aimed to assess the actual prognostic significance of different locoregional treatment (LRT) (surgery and radiotherapy) modalities for stage-IV breast cancer (BC) patients and construct a competing risk nomogram to make precise predictions of the breast cancer-specific death (BCSD) risk among LRT recipients. METHODS A total of 9279 eligible stage-IV BC patients from the Surveillance Epidemiology and End Results (SEER) database were included in this study. Initially, we evaluated the impact of LRT on survival both before and after the propensity score matching (PSM). Then, we used the Cox hazard proportional model and competing risk model to identify the independent prognostic factors for LRT recipients. Based on the screened variables, a comprehensive nomogram was established. RESULTS Kaplan-Meier curves demonstrated that LRT significantly prolonged overall survival (OS) and breast cancer-specific survival (BCSS) (P < 0.001). In addition, patients treated with surgery combined with postoperative radiotherapy (PORT) possessed the optimal survival (P < 0.001). Regardless of the surgical modalities, primary tumor resection combined with radiotherapy could ameliorate the prognosis (P < 0.05). Subgroup analysis showed that in patients with T2-T4 stage, PORT had a survival benefit compared with those undergoing surgery combined with preoperative radiotherapy (PRRT) and surgery only. Based on the screened independent prognostic factors, we established a comprehensive nomogram to forecast BCSD in 1 year, 2 years and 3 years, which showed robust predictive ability. CONCLUSION PORT was associated with a lower BCSD in stage-IV BC patients. The practical nomogram could provide a precise prediction of BCSD for LRT recipients, which was meaningful for patients' individualized management.
Collapse
Affiliation(s)
- Hanxiao Cui
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueting Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuyan Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Luyao Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dandan Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanhang Bao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liqun Hu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhengtao Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical College, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
285
|
Zhao X, Wang Y, Xia H, Liu S, Huang Z, He R, Yu L, Meng N, Wang H, You J, Li J, Yam JWP, Xu Y, Cui Y. Roles and Molecular Mechanisms of Biomarkers in Hepatocellular Carcinoma with Microvascular Invasion: A Review. J Clin Transl Hepatol 2023; 11:1170-1183. [PMID: 37577231 PMCID: PMC10412705 DOI: 10.14218/jcth.2022.00013s] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) being a leading cause of cancer-related death, has high associated mortality and recurrence rates. It has been of great necessity and urgency to find effective HCC diagnosis and treatment measures. Studies have shown that microvascular invasion (MVI) is an independent risk factor for poor prognosis after hepatectomy. The abnormal expression of biomacromolecules such as circ-RNAs, lncRNAs, STIP1, and PD-L1 in HCC patients is strongly correlated with MVI. Deregulation of several markers mentioned in this review affects the proliferation, invasion, metastasis, EMT, and anti-apoptotic processes of HCC cells through multiple complex mechanisms. Therefore, these biomarkers may have an important clinical role and serve as promising interventional targets for HCC. In this review, we provide a comprehensive overview on the functions and regulatory mechanisms of MVI-related biomarkers in HCC.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yudan Wang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junqi You
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglin Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
286
|
Xu J, Yu C, Zeng X, Tang W, Xu S, Tang L, Huang Y, Sun Z, Yu T. Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis. Eur J Med Res 2023; 28:461. [PMID: 37885035 PMCID: PMC10605986 DOI: 10.1186/s40001-023-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer, as a daunting global health threat, has driven an exponential growth in related research activity in recent decades. An area of research of paramount importance is protein synthesis, and the analysis of specific proteins inextricably linked to breast cancer. In this article, we undertake a bibliometric analysis of the literature on breast cancer and protein synthesis, aiming to provide crucial insights into this esoteric realm of investigation. Our approach was to scour the Web of Science database, between 2003 and 2022, for articles containing the keywords "breast cancer" and "protein synthesis" in their title, abstract, or keywords. We deployed bibliometric analysis software, exploring a range of measures such as publication output, citation counts, co-citation analysis, and keyword analysis. Our search yielded 2998 articles that met our inclusion criteria. The number of publications in this area has steadily increased, with a significant rise observed after 2003. Most of the articles were published in oncology or biology-related journals, with the most publications in Journal of Biological Chemistry, Cancer Research, Proceedings of the National Academy of Sciences of the United States of America, and Oncogene. Keyword analysis revealed that "breast cancer," "expression," "cancer," "protein," and "translation" were the most commonly researched topics. In conclusion, our bibliometric analysis of breast cancer and related protein synthesis literature underscores the burgeoning interest in this research. The focus of the research is primarily on the relationship between protein expression in breast cancer and the development and treatment of tumors. These studies have been instrumental in the diagnosis and treatment of breast cancer. Sustained research in this area will yield essential insights into the biology of breast cancer and the genesis of cutting-edge therapies.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Chengdong Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Weifeng Tang
- Fuzhou Medical College of Nanchang University, Fuzhou, 344000, China
| | - Siyi Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Lei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Yanxiao Huang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| |
Collapse
|
287
|
Ibragimova MK, Tsyganov MM, Kravtsova EA, Tsydenova IA, Litviakov NV. Organ-Specificity of Breast Cancer Metastasis. Int J Mol Sci 2023; 24:15625. [PMID: 37958607 PMCID: PMC10650169 DOI: 10.3390/ijms242115625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) remains one of the most common malignancies among women worldwide. Breast cancer shows metastatic heterogeneity with priority to different organs, which leads to differences in prognosis and response to therapy among patients. The main targets for metastasis in BC are the bone, lung, liver and brain. The molecular mechanism of BC organ-specificity is still under investigation. In recent years, the appearance of new genomic approaches has led to unprecedented changes in the understanding of breast cancer metastasis organ-specificity and has provided a new platform for the development of more effective therapeutic agents. This review summarises recent data on molecular organ-specific markers of metastasis as the basis of a possible therapeutic approach in order to improve the diagnosis and prognosis of patients with metastatically heterogeneous breast cancer.
Collapse
Affiliation(s)
- Marina K. Ibragimova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
- Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Matvey M. Tsyganov
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Ekaterina A. Kravtsova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
| | - Irina A. Tsydenova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
| | - Nikolai V. Litviakov
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
- Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| |
Collapse
|
288
|
de Camargo AV, de Mattos MD, Kawasaki MK, Gomes DNS, Borges ABB, Vazquez VDL, Araujo RLC. Treatment of patients with multiple brain metastases by isolated radiosurgery: Toxicity and survival. World J Clin Oncol 2023; 14:400-408. [PMID: 37970107 PMCID: PMC10631349 DOI: 10.5306/wjco.v14.i10.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Radiosurgery for multiple brain metastases has been more reported recently without using whole-brain radiotherapy. Nevertheless, the sparsity of the data still claims more information about toxicity and survival and their association with both dosimetric and geometric aspects of this treatment. AIM To assess the toxicity and survival outcome of radiosurgery in patients with multiple (four or more lesions) brain metastases. METHODS In a single institution, data were collected retrospectively from patients who underwent radiosurgery to treat brain metastases from diverse primary sites. Patients with 4-21 brain metastases were treated with a single fraction with a dose of 18 Gy or 20 Gy. The clinical variables collected were relevant to toxicity, survival, treatment response, planning, and dosimetric variables. The Spearman's rank correlation coefficients, Mann-Whitney test, Kruskal-Wallis test, and Log-rank test were used according to the type of variable and outcomes. RESULTS From August 2017 to February 2020, 55 patients were evaluated. Headache was the most common complaint (38.2%). The median overall survival (OS) for patients with karnofsky performance status (KPS) > 70 was 8.9 mo, and this was 3.6 mo for those with KPS ≤ 70 (P = 0.047). Patients with treated lesions had a median progression-free survival of 7.6 mo. There were no differences in OS (19.7 vs 9.5 mo) or progression-free survival (10.6 vs 6.3 mo) based on prior irradiation. There was no correlation found between reported toxicities and planning, dosimetric, and geometric variables, implying that no additional significant toxicity risks appear to be added to the treatment of multiple (four or more) lesions. CONCLUSION No associations were found between the evaluated toxicities and the planning dosimetric parameters, and no differences in survival rates were detected based on previous treatment status.
Collapse
Affiliation(s)
| | | | - Murilo Kenji Kawasaki
- Department of Radiotherapy, Barretos Cancer Hospital, São Paulo, Barretos 14784-400, Brazil
| | | | | | | | - Raphael L C Araujo
- Department of Surgery, Universidade Federal de São Paulo, São Paulo 04024-002, Brazil
- IEP, Barretos Cancer Hospital, São Paulo, Barretos 14784-400, Brazil
| |
Collapse
|
289
|
Kotsifaki A, Alevizopoulos N, Dimopoulou V, Armakolas A. Unveiling the Immune Microenvironment's Role in Breast Cancer: A Glimpse into Promising Frontiers. Int J Mol Sci 2023; 24:15332. [PMID: 37895012 PMCID: PMC10607694 DOI: 10.3390/ijms242015332] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), one of the most widespread and devastating diseases affecting women worldwide, presents a significant public health challenge. This review explores the emerging frontiers of research focused on deciphering the intricate interplay between BC cells and the immune microenvironment. Understanding the role of the immune system in BC is critical as it holds promise for novel therapeutic approaches and precision medicine strategies. This review delves into the current literature regarding the immune microenvironment's contribution to BC initiation, progression, and metastasis. It examines the complex mechanisms by which BC cells interact with various immune cell populations, including tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). Furthermore, this review highlights the impact of immune-related factors, such as cytokines and immune checkpoint molecules. Additionally, this comprehensive analysis sheds light on the potential biomarkers associated with the immune response in BC, enabling early diagnosis and prognostic assessment. The therapeutic implications of targeting the immune microenvironment are also explored, encompassing immunotherapeutic strategies and combination therapies to enhance treatment efficacy. The significance of this review lies in its potential to pave the way for novel therapeutic interventions, providing clinicians and researchers with essential knowledge to design targeted and personalized treatment regimens for BC patients.
Collapse
Affiliation(s)
| | | | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (N.A.); (V.D.)
| |
Collapse
|
290
|
Luo Q, Zheng J, Fan B, Liu J, Liao W, Zhang X. Enriched environment attenuates ferroptosis after cerebral ischemia/reperfusion injury by regulating iron metabolism. Brain Res Bull 2023; 203:110778. [PMID: 37812906 DOI: 10.1016/j.brainresbull.2023.110778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Preventing neuronal death after ischemic stroke (IS) is crucial for neuroprotective treatment, yet current management options are limited. Enriched environment (EE) is an effective intervention strategy that promotes the recovery of neurological function after cerebral ischemia/reperfusion (I/R) injury. Ferroptosis has been identified as one of the mechanisms of neuronal death during IS, and inhibiting ferroptosis can reduce cerebral I/R injury. Our previous research has demonstrated that EE reduced ferroptosis by inhibiting lipid peroxidation, but the underlying mechanism still needs to be investigated. This study aims to explore the potential molecular mechanisms by which EE modulates iron metabolism to reduce ferroptosis. The experimental animals were randomly divided into four groups based on the housing environment and the procedure the animals received: the sham-operated + standard environment (SSE) group, the sham-operated + enriched environment (SEE) group, the ischemia/reperfusion + standard environment (ISE) group, and the ischemia/reperfusion + enriched environment (IEE) group. The results showed that EE reduced IL-6 expression during cerebral I/R injury, hence reducing JAK2-STAT3 pathway activation and hepcidin expression. Reduced hepcidin expression led to decreased DMT1 expression and increased FPN1 expression in neurons, resulting in lower neuronal iron levels and alleviated ferroptosis. In addition, EE also reduced the expression of TfR1 in neurons. Our research suggested that EE played a neuroprotective role by modulating iron metabolism and reducing neuronal ferroptosis after cerebral I/R injury, which might be achieved by inhibiting inflammatory response and down-regulating hepcidin expression.
Collapse
Affiliation(s)
- Qihang Luo
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Fan
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingying Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
291
|
Yu X, Yang X, Nie H, Jiang W, He X, Ou C. Immunological role and prognostic value of somatostatin receptor family members in colon adenocarcinoma. Front Pharmacol 2023; 14:1255809. [PMID: 37900156 PMCID: PMC10603271 DOI: 10.3389/fphar.2023.1255809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Colon adenocarcinoma (COAD) is among the most prevalent cancers worldwide, ranking as the third most prevalent malignancy in incidence and mortality. The somatostatin receptor (SSTR) family comprises G-protein-coupled receptors (GPCRs), which couple to inhibitory G proteins (Gi and Go) upon binding to somatostatin (SST) analogs. GPCRs are involved in hormone release, neurotransmission, cell growth inhibition, and cancer suppression. However, their roles in COAD remain unclear. This study used bioinformatics to investigate the expression, prognosis, gene alterations, functional enrichment, and immunoregulatory effects of the SSTR family members in COAD. SSTR1-4 are differentially downregulated in COAD, and low SSTR2 expression indicates poor survival. Biological processes and gene expression enrichment of the SSTR family in COAD were further analyzed using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology. A strong correlation was observed between SSTR expression and immune cell infiltration. We also quantified SSTR2 expression in 25 COAD samples and adjacent normal tissues using quantitative real-time polymerase chain reaction. We analyzed its correlation with the dendritic cell-integrin subunit alpha X marker gene. The biomarker exploration of the solid tumors portal was used to confirm the correlation between SSTR2 with immunomodulators and immunotherapy responses. Our results identify SSTR2 as a promising target for COAD immunotherapy. Our findings provide new insights into the biological functions of the SSTR family and their implications for the prognosis of COAD.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenying Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
292
|
Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ, Wang WT. New insight into circRNAs: characterization, strategies, and biomedical applications. Exp Hematol Oncol 2023; 12:91. [PMID: 37828589 PMCID: PMC10568798 DOI: 10.1186/s40164-023-00451-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed, endogenous ncRNAs. Most circRNAs are derived from exonic or intronic sequences by precursor RNA back-splicing. Advanced high-throughput RNA sequencing and experimental technologies have enabled the extensive identification and characterization of circRNAs, such as novel types of biogenesis, tissue-specific and cell-specific expression patterns, epigenetic regulation, translation potential, localization and metabolism. Increasing evidence has revealed that circRNAs participate in diverse cellular processes, and their dysregulation is involved in the pathogenesis of various diseases, particularly cancer. In this review, we systematically discuss the characterization of circRNAs, databases, challenges for circRNA discovery, new insight into strategies used in circRNA studies and biomedical applications. Although recent studies have advanced the understanding of circRNAs, advanced knowledge and approaches for circRNA annotation, functional characterization and biomedical applications are continuously needed to provide new insights into circRNAs. The emergence of circRNA-based protein translation strategy will be a promising direction in the field of biomedicine.
Collapse
Affiliation(s)
- Xin-Yi Feng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shun-Xin Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke-Jia Pu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Heng-Jing Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
293
|
Tong Y, Xu S, Jiang L, Zhao C, Zhao D. A visualized model for identifying optimal candidates for aggressive locoregional surgical treatment in patients with bone metastases from breast cancer. Front Endocrinol (Lausanne) 2023; 14:1266679. [PMID: 37867528 PMCID: PMC10585269 DOI: 10.3389/fendo.2023.1266679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Background The impact of surgical resection of primary (PTR) on the survival of breast cancer (BC) patients with bone metastasis (BM) has been preliminarily investigated, but it remains unclear which patients are suitable for this procedure. Finally, this study aims to develop a predictive model to screen BC patients with BM who would benefit from local surgery. Methods BC patients with BM were identified using the Surveillance, Epidemiology, and End Results (SEER) database (2010 and 2015), and 39 patients were obtained for external validation from an Asian medical center. According to the status of local surgery, patients were divided into Surgery and Non-surgery groups. Propensity score matching (PSM) analysis was performed to reduce selection bias. Kaplan-Meier (K-M) survival and Cox regression analyses were conducted before and after PSM to study the survival difference between the two groups. The survival outcome and treatment modality were also investigated in patients with different metastatic patterns. The logistic regression analyses were utilized to determine significant surgery-benefit-related predictors, develop a screening nomogram and its online version, and quantify the beneficial probability of local surgery for BC patients with BM. Receiver operating characteristic (ROC) curves, the area under the curves (AUC), and calibration curves were plotted to evaluate the predictive performance and calibration of this model, whereas decision curve analysis (DCA) was used to assess its clinical usefulness. Results This study included 5,625 eligible patients, of whom 2,133 (37.92%) received surgical resection of primary lesions. K-M survival analysis and Cox regression analysis demonstrated that local surgery was independently associated with better survival. Surgery provided significant survival benefits in most subgroups and metastatic patterns. After PSM, patients who received surgery had a longer survival time (OS: 46 months vs. 32 months, p < 0.001; CSS: 50 months vs. 34 months, p < 0.001). Logistic regression analysis determined six significant surgery-benefit-related variables: T stage, radiotherapy, race, liver metastasis, brain metastasis, and breast subtype. These factors were combined to establish the nomogram and a web probability calculator (https://sunshine1.shinyapps.io/DynNomapp/), with an AUC of 0.673 in the training cohort and an AUC of 0.640 in the validation cohort. The calibration curves exhibited excellent agreement. DCA indicated that the nomogram was clinically useful. Based on this model, surgery patients were assigned into two subsets: estimated sur-non-benefit and estimated sur-benefit. Patients in the estimated sur-benefit subset were associated with longer survival (median OS: 64 months vs. 33 months, P < 0.001). Besides, there was no difference in survival between the estimated sur-non-benefit subset and the non-surgery group. Conclusion Our study further confirmed the significance of local surgery in BC patients with BM and proposed a novel tool to identify optimal surgical candidates.
Collapse
Affiliation(s)
- Yuexin Tong
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Shaoqing Xu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liming Jiang
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chengliang Zhao
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dongxu Zhao
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
294
|
Wang R, Huang W, Cai K, Xiao S, Zhang W, Hu X, Guo J, Mao L, Yuan W, Xu Y, Chen Z, Chen Z, Lai C. FLOT1 promotes gastric cancer progression and metastasis through BCAR1/ERK signaling. Int J Biol Sci 2023; 19:5104-5119. [PMID: 37928269 PMCID: PMC10620819 DOI: 10.7150/ijbs.82606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023] Open
Abstract
Flotillin-1 (FLOT1) is a member of the flotillin family and serves as a hallmark of lipid rafts involved in the process of signaling transduction and vesicular trafficking. Here, we find FLOT1 promotes gastric cancer cell progression and metastasis by interacting with BCAR1, through ERK signaling. FLOT1 regulates BCAR1 phosphorylation and translocation. Overexpression of FLOT1 increases, while knockdown of FLOT1 decreases gastric cancer cell proliferation, migration and invasion. BCAR1 knockdown could block FLOT1 induced gastric cancer cell proliferation, migration and invasion. Re-expression of wildtype rather than mutant BCAR1 (Y410F) could partially restore FLOT1 knockdown induced gastric cancer cell migration and invasion, while the restore could be inhibited by ERK inhibitor. Furthermore, FLOT1 and BCAR1 expression is closely related to gastric cancer patients' poor outcome. Thus, our findings confirm that BCAR1 mediates FLOT1 induced gastric cancer progression and metastasis through ERK signaling, which may provide a novel pathway for gastric cancer treatment.
Collapse
Affiliation(s)
- Ran Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Kaimei Cai
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
| | - Shihan Xiao
- Department of Breast and Thyroid Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430000, Hubei Province, China
| | - Wuming Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
| | - Xianqin Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
| | - Jianping Guo
- Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, Guangdong Province, China
| | - Linfeng Mao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of GuangXi Medical University, Nanning, 530021, Guangxi Province, China
| | - Weijie Yuan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital, Central South University, Changsha,410000, Hunan Province, China
| | - Yi Xu
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital, Central South University, Changsha,410000, Hunan Province, China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital, Central South University, Changsha,410000, Hunan Province, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha,410008, Hunan Province, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital, Central South University, Changsha,410000, Hunan Province, China
| |
Collapse
|
295
|
Guo S, Jiang H, Deng Y, Dong Y, Yin A, Wang Q, Lan Q, Zhang Y, Xu C. Reduced 2,4-dienoyl-CoA reductase 1 is served as an unfavorable biomarker and is related to immune infiltration in cervical cancer. J Obstet Gynaecol Res 2023; 49:2475-2486. [PMID: 37497824 DOI: 10.1111/jog.15751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Worldwide, cervical cancer (CC) remains the most prevalent malignancy of the female reproductive system, posing a threat to women's life and health, and increasing the medical and economic burden on society. Therefore, the search for tumor biomarkers for CC remains an important research direction. Immunotherapy has significantly improved patient outcomes, and genes related to tumor immune infiltration have been clinically relevant and highly reproducible biomarkers that affect the prognosis and response to treatment of CC. 2,4-dienoyl-CoA reductase 1 (DECR1) was considered to be an oncogene in a previous study, but relationship between DECR1 and immune infiltration was not mentioned. Our study aimed to reveal the clinical value of DECR1 in CC and to investigate its relationship with immune infiltration. METHODS Human Protein Atlas was used to identify the localization of DECR1. The Ualcan database, TCGA, and IHC were used to assess the prognostic value of DECR1. GSEA was used to assess the possible signaling pathways of DECR1 in CC. The TIMER database was applied to reveal the relevance between DECR1 and immune infiltration. GEPIA was conducted to detect the co-relationship among DECR1, immune markers, and typical molecules of apoptosis. RESULTS DECR1 was mainly distributed in the cytoplasm and overlapped with the endoplasmic reticulum. DECR1 was downregulated in CC compared to adjacent tissue. Survival analysis showed that patients with lower expression of DECR1 have a worse prognosis in CC. GSEA suggested that DECR1 was closely related to apoptosis signaling. TIMER showed that DECR1 was positively correlated with CD8+ T cell and CD4+ T cell but not with B cell in CC. CONCLUSION DECR1 may be a potential cancer suppressor in CC and may be involved in apoptotic pathways and associated with immune infiltration.
Collapse
Affiliation(s)
- Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Huiping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuanrun Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yanqi Dong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Aiqi Yin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qinghai Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiudai Lan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yilin Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Caiqiu Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
296
|
Tian Y, Ma J, Wang M, Yi X, Guo S, Wang H, Zhang H, Wang H, Yang Y, Zhang B, Du J, Shi Q, Gao T, Li C, Guo W. BCKDHA contributes to melanoma progression by promoting the expressions of lipogenic enzymes FASN and ACLY. Exp Dermatol 2023; 32:1633-1643. [PMID: 37377173 DOI: 10.1111/exd.14865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
The dysregulation of branched-chain amino acid (BCAA) metabolism and related enzymes has been greatly implicated in the progression of multiple types of cancer, whereas remains far from understood in melanoma. Here, we explored the role of the BCAA metabolism enzyme BCKDHA in melanoma pathogenesis and elucidated the underlying mechanisms. In vitro cell biology experiments and in vivo pre-clinical mice model experiments were performed to investigate the role of BCKDHA in melanoma progression. RNA sequencing, immunohistochemical/immunofluorescence staining and bioinformatics analysis were used to examine the underlying mechanism. BCKDHA expression was prominently increased in both melanoma tissues and cell lines. The up-regulation of BCKDHA promoted long-term tumour cell proliferation, invasion and migration in vitro and tumour growth in vivo. Through RNA-sequencing technology, it was found that BCKDHA regulated the expressions of lipogenic fatty acid synthase (FASN) and ATP-citrate lyase (ACLY), which was thereafter proved to mediate the oncogenic role of BCKDHA in melanoma. Our results demonstrate that BCKDHA promotes melanoma progression by regulating FASN and ACLY expressions. Targeting BCKDHA could be exploited as a promising strategy to restrain tumour progression in melanoma.
Collapse
Affiliation(s)
- Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengru Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
297
|
Placke JM, Kimmig M, Griewank K, Herbst R, Terheyden P, Utikal J, Pföhler C, Ulrich J, Kreuter A, Mohr P, Gutzmer R, Meier F, Dippel E, Welzel J, Engel DR, Kreft S, Sucker A, Lodde G, Krefting F, Stoffels I, Klode J, Roesch A, Zimmer L, Livingstone E, Hadaschik E, Becker JC, Weichenthal M, Tasdogan A, Schadendorf D, Ugurel S. Correlation of tumor PD-L1 expression in different tissue types and outcome of PD-1-based immunotherapy in metastatic melanoma - analysis of the DeCOG prospective multicenter cohort study ADOREG/TRIM. EBioMedicine 2023; 96:104774. [PMID: 37660535 PMCID: PMC10483509 DOI: 10.1016/j.ebiom.2023.104774] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND PD-1-based immune checkpoint inhibition (ICI) is the major backbone of current melanoma therapy. Tumor PD-L1 expression represents one of few biomarkers predicting ICI therapy outcome. The objective of the present study was to systematically investigate whether the type of tumor tissue examined for PD-L1 expression has an impact on the correlation with ICI therapy outcome. METHODS Pre-treatment tumor tissue was collected within the prospective DeCOG cohort study ADOREG/TRIM (CA209-578; NCT05750511) between February 2014 and May 2020 from 448 consecutive patients who received PD-1-based ICI for non-resectable metastatic melanoma. The primary study endpoint was best overall response (BOR), secondary endpoints were progression-free (PFS) and overall survival (OS). All endpoints were correlated with tumor PD-L1 expression (quantified with clone 28-8; cutoff ≥5%) and stratified by tissue type. FINDINGS Tumor PD-L1 was determined in 95 primary tumors (PT; 36.8% positivity), 153 skin/subcutaneous (34.0% positivity), 115 lymph node (LN; 50.4% positivity), and 85 organ (40.8% positivity) metastases. Tumor PD-L1 correlated with BOR if determined in LN (OR = 0.319; 95% CI = 0.138-0.762; P = 0.010), but not in skin/subcutaneous metastases (OR = 0.656; 95% CI = 0.311-1.341; P = 0.26). PD-L1 positivity determined on LN metastases was associated with favorable survival (PFS, HR = 0.490; 95% CI = 0.310-0.775; P = 0.002; OS, HR = 0.519; 95% CI = 0.307-0.880; P = 0.014). PD-L1 positivity determined in PT (PFS, HR = 0.757; 95% CI = 0.467-1.226; P = 0.27; OS; HR = 0.528; 95% CI = 0.305-0.913; P = 0.032) was correlated with survival to a lesser extent. No relevant survival differences were detected by PD-L1 determined in skin/subcutaneous metastases (PFS, HR = 0.825; 95% CI = 0.555-1.226; P = 0.35; OS, HR = 1.083; 95% CI = 0.698-1.681; P = 0.72). INTERPRETATION For PD-1-based immunotherapy in melanoma, tumor PD-L1 determined in LN metastases was stronger correlated with therapy outcome than that assessed in PT or organ metastases. PD-L1 determined in skin/subcutaneous metastases showed no outcome correlation and therefore should be used with caution for clinical decision making. FUNDING Bristol-Myers Squibb (ADOREG/TRIM, NCT05750511); German Research Foundation (DFG; Clinician Scientist Program UMEA); Else Kröner-Fresenius-Stiftung (EKFS; Medical Scientist Academy UMESciA).
Collapse
Affiliation(s)
- Jan-Malte Placke
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Mona Kimmig
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Klaus Griewank
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | | | | | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - Claudia Pföhler
- Department of Dermatology, Saarland University Medical School, Homburg/Saar, Germany.
| | - Jens Ulrich
- Skin Cancer Center, Department of Dermatology, Harz Clinics, Quedlinburg, Germany.
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, Germany.
| | - Peter Mohr
- Department of Dermatology, Elbe Kliniken Buxtehude, Buxtehude, Germany.
| | - Ralf Gutzmer
- Department of Dermatology, Skin Cancer Center Minden, Minden, Germany.
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| | - Edgar Dippel
- Department of Dermatology, Ludwigshafen Medical Center, Ludwigshafen, Germany.
| | - Julia Welzel
- Department of Dermatology, Augsburg Medical Center, Augsburg, Germany.
| | - Daniel Robert Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Sophia Kreft
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Frederik Krefting
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Ingo Stoffels
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Joachim Klode
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Eva Hadaschik
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Jürgen C Becker
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; Translational Skin Cancer Research, West German Cancer Center, University Medicine Essen, Essen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Michael Weichenthal
- Department of Dermatology, University Hospital of Schleswig-Holstein, Kiel, Germany.
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| |
Collapse
|
298
|
Huang X, Wu J, Wang Y, Xian Z, Li J, Qiu N, Li H. FOXQ1 inhibits breast cancer ferroptosis and progression via the circ_0000643/miR-153/SLC7A11 axis. Exp Cell Res 2023; 431:113737. [PMID: 37591453 DOI: 10.1016/j.yexcr.2023.113737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Dysregulation of ferroptosis is involved in breast cancer progression and therapeutic responses. Inducing ferroptosis can be a potential therapeutic strategy for breast cancer treatment. Forkhead box Q1 (FOXQ1) is an oncogenic transcription factor that highly expressed and related with poor outcomes in various tumors. However, the specific effects of FOXQ1 on ferroptosis in breast cancer is unclear. In this study, we intended to explore the functions and potential mechanisms of FOXQ1 in breast cancer ferroptosis. By CCK-8, colony formation, wound healing, transwell and ferroptosis related assays, we explored the functions of FOXQ1 in breast cancer ferroptosis and progression. Through bioinformatics analysis of public database, luciferase reporter assay, RIP and ChIP assay, we investigated the potential mechanisms of FOXQ1 in breast cancer ferroptosis and progression. We found that FOXQ1 was overexpressed in breast cancer and associated with worse survival. Additionally, inhibition of FOXQ1 suppressed breast cancer ferroptosis and progression. Mechanically, we confirmed that FOXQ1 could bind to the promoter of circ_0000643 host gene to increase the levels of circ_0000643, which could sponge miR-153 and enhance the expression of SLC7A11, leading to reduced cell ferroptosis in breast cancer cells. Targeting the FOXQ1/circ_0000643/miR-153/SLC7A11 axis could be a promising strategy in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jinna Wu
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Yizhuo Wang
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Zhuoyu Xian
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jia Li
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Ni Qiu
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Hongsheng Li
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China.
| |
Collapse
|
299
|
Zhang J, Liu Y, Xia L, Zhen J, Gao J, Atsushi T. Constructing heterogeneous single-cell landscape and identifying microenvironment molecular characteristics of primary and lymphatic metastatic head and neck squamous cell carcinoma. Comput Biol Med 2023; 165:107459. [PMID: 37713790 DOI: 10.1016/j.compbiomed.2023.107459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) accounts for more than half of head and neck tumors, roughly 90%. This study focused on constructing the heterogeneous landscape using single-cell and bulk transcriptomic data to identify molecular characteristics of the microenvironment in primary and lymphatic metastatic head and neck squamous carcinomas. METHOD The study enrolled 23 HNSCC samples with scRNA-seq data and 546 HNSCC samples from TCGA. We used Monocle to sort the cells and used CellPhoneDB to explore the cell-cell interactions. Infercnv, which was used to infer cells with apparent copy number variation based on single-cell sequencing transcriptome data. We re-evaluated HNSCC bulk RNA transcriptome data to characterize the functions of different cell types in shaping the immune microenvironment of HNSCC. RESULTS We combined genealogical reconstruction, CNV inference, and cellular interactions to uncover the characteristics of distinct cell populations in different disease states, differences in cancer and immune cell lineages of differentiation trajectories, and interactions between non-immune and immune cell. PD-1 and PD-L1/PD-L2 expressed extremely rare in T cells, the immune checkpoint molecule KLRB1-CLEC2D achieved a high-level expression. We identified three microenvironment-based HNSCC subtypes associated with the prognosis of HNSCC patients. CONCLUSIONS In summary, the present study dissected the intratumoral heterogeneity and immune microenvironment of primary and metastatic HNSCC, which is crucial to reveal the mechanisms of resistance to immunotherapy in HNSCC in different disease states and is expected to assist in the further investigation of the mechanism of HNSCC cell metastasis and guide the treatment of clinical patients.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 0608586, Japan
| | - Yunqing Liu
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Sapporo, 0608586, Japan
| | - Lianheng Xia
- Department of Peripheral Vascular Diseases, First Affiliated hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Jia Zhen
- Department of Peripheral Vascular Diseases, First Affiliated hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Jie Gao
- Department of Peripheral Vascular Diseases, First Affiliated hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| | - Tomokiyo Atsushi
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Sapporo, 0608586, Japan.
| |
Collapse
|
300
|
Li Y, Wu Q, Lv J, Gu J. A comprehensive pan-cancer analysis of CDH5 in immunological response. Front Immunol 2023; 14:1239875. [PMID: 37809080 PMCID: PMC10551168 DOI: 10.3389/fimmu.2023.1239875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background Cadherin 5 (CDH5) functions critically in maintaining cell adhesion and integrity of endothelial and vascular cells. The expression of CDH5 is abnormal in tumor cells, which may have great potential to serve as a new immune checkpoint. The current pan-cancer analysis was performed to better understand the role of CDH5 in tumor. Methods The clinical significance and immunological function of CDH5 in pan-cancers were comprehensively analyzed based on the correlations between CDH5 and clinicopathologic features, prognosis values, tumor mutation burden (TMB), microsatellite instability (MSI), immune cells infiltration and immune response genes using 33 datasets from The Cancer Genome Atlas (TCGA). We further confirmed the expression of CDH5 in bladder cancer (BCa) tissues and cell lines. The CD8+ T cells were screened from peripheral blood of healthy controls and activated. BCa cell-CD8+ T cell co-culture assay and ELISA assay were carried out to verify the immunological function of CDH5. Results The expression of CDH5 was down-regulated in 8 types of tumors including in BCa but up-regulated in 4 types of tumors. CDH5 was significantly correlated with tumor stage in 6 types of tumors. In addition, CDH5 was positively or negatively correlated with tumor prognosis. Furthermore, CDH5 was closely associated with TMB in 15 types of tumors and with MSI in 9 types of tumors. KEGG-GSEA and Hallmarks-GSEA analyses results indicated that CDH5 was positively related to immune response in most tumor types. In many tumors, CDH5 showed a positive correlation with immune cell infiltration. Enrichment analyses demonstrated that CDH5 was significantly related to the expression of many immunomodulators and chemokines. Further experiments showed that CDH5 was low-expressed in BCa tissues and cell lines in comparison to adjacent normal tissues and normal urothelial cell line, but it was positively associated with a better prognosis of BCa patients. The results of in vitro co-culture assay and ELISA assay demonstrated that CDH5 could promote the function of CD8+ T cells in TME of BCa. Conclusion In summary, CDH5 was positively associated with a favorable prognosis and effective immune response in tumors, showing a great potential to serve as a novel tumor biomarker and immune checkpoint.
Collapse
Affiliation(s)
- Yuantao Li
- Department of Gastroenterology, Linyi County People’s Hospital, Dezhou, China
| | - Qikai Wu
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, China
| | - Jiancheng Lv
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, China
| | - Junwei Gu
- Department of Urology, The First People's Hospital of Xiushui County, Jiujiang, Jiangxi, China
| |
Collapse
|