251
|
Fischer NO, McIntosh CM, Simard JM, Rotello VM. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci U S A 2002; 99:5018-23. [PMID: 11929986 PMCID: PMC122714 DOI: 10.1073/pnas.082644099] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient binding of biomacromolecular surfaces by synthetic systems requires the effective presentation of complementary elements over large surface areas. We demonstrate here the use of mixed monolayer protected gold clusters (MMPCs) as scaffolds for the binding and inhibition of chymotrypsin. In these studies anionically functionalized amphiphilic MMPCs were shown to inhibit chymotrypsin through a two-stage mechanism featuring fast reversible inhibition followed by a slower irreversible process. This interaction is very efficient, with a K(i)(app) = 10.4 +/- 1.3 nM. The MMPC-protein complex was characterized by CD, demonstrating an almost complete denaturation of the enzyme over time. Dynamic light scattering studies confirm that inhibition proceeds without substantial MMPC aggregation. The electrostatic nature of the engineered interactions provides a level of selectivity: little or no inhibition of function was observed with elastase, beta-galactosidase, or cellular retinoic acid binding protein.
Collapse
Affiliation(s)
- Nicholas O Fischer
- Program in Molecular and Cellular Biology, Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
252
|
Abstract
The neuronal apoptosis inhibitory protein (NAIP) was identified as a candidate gene for the inherited neurodegenerative disorder spinal muscular atrophy. NAIP is the founding member of a human protein family that is characterized by highly conserved N-terminal motifs called baculovirus inhibitor of apoptosis repeats (BIR). Five members of the human family of inhibitor of apoptosis proteins including NAIP have been shown to be antiapoptotic in various systems. To date, a mechanism for the antiapoptotic effect of NAIP has not been elucidated. To investigate NAIP function, we found cytoprotection of NAIP-expressing primary cortical neurons treated to undergo caspase-3-dependent apoptosis. The additional treatment of these neurons with the pancaspase inhibitor boc-aspartyl(OMe)-fluoromethylketone did not result in increased survival. Similar cytoprotective effects were obtained using HeLa cells transiently transfected with a NAIP N-terminal construct and treated to undergo a caspase-3-dependent cell death. To examine whether NAIP inhibits caspases directly, recombinant N-terminal NAIP protein containing BIR domains was overexpressed, purified, and tested for caspase inhibition potential. Our results demonstrate that inhibition of caspases is selective and restricted to the effector group of caspases, with K(i) values as low as approximately 14 nm for caspase-3 and approximately 45 nm for caspase-7. Additional investigations with NAIP fragments containing either one or two NAIP BIRs revealed that the second BIR and to a lesser extent the third BIR alone are sufficient to mediate full caspase inhibition.
Collapse
|
253
|
Kati WM, Montgomery D, Maring C, Stoll VS, Giranda V, Chen X, Laver WG, Kohlbrenner W, Norbeck DW. Novel alpha- and beta-amino acid inhibitors of influenza virus neuraminidase. Antimicrob Agents Chemother 2001; 45:2563-70. [PMID: 11502530 PMCID: PMC90693 DOI: 10.1128/aac.45.9.2563-2570.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to discover novel, noncarbohydrate inhibitors of influenza virus neuraminidase we hypothesized that compounds which contain positively charged amino groups in an appropriate position to interact with the Asp 152 or Tyr 406 side chains might be bound tightly by the enzyme. Testing of 300 alpha- and beta-amino acids led to the discovery of two novel neuraminidase inhibitors, a phenylglycine and a pyrrolidine, which exhibited K(i) values in the 50 microM range versus influenza virus A/N2/Tokyo/3/67 neuraminidase but which exhibited weaker activity against influenza virus B/Memphis/3/89 neuraminidase. Limited optimization of the pyrrolidine series resulted in a compound which was about 24-fold more potent than 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in an anti-influenza cell culture assay using A/N2/Victoria/3/75 virus. X-ray structural studies of A/N9 neuraminidase-inhibitor complexes revealed that both classes of inhibitors induced the Glu 278 side chain to undergo a small conformational change, but these compounds did not show time-dependent inhibition. Crystallography also established that the alpha-amino group of the phenylglycine formed hydrogen bonds to the Asp 152 carboxylate as expected. Likewise, the beta-amino group of the pyrrolidine forms an interaction with the Tyr 406 hydroxyl group and represents the first compound known to make an interaction with this absolutely conserved residue. Phenylglycine and pyrrolidine analogs in which the alpha- or beta-amino groups were replaced with hydroxyl groups were 365- and 2,600-fold weaker inhibitors, respectively. These results underscore the importance of the amino group interactions with the Asp 152 and Tyr 406 side chains and have implications for anti-influenza drug design.
Collapse
Affiliation(s)
- W M Kati
- Discovery Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064-6217, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Walker MC, Kurumbail RG, Kiefer JR, Moreland KT, Koboldt CM, Isakson PC, Seibert K, Gierse JK. A three-step kinetic mechanism for selective inhibition of cyclo-oxygenase-2 by diarylheterocyclic inhibitors. Biochem J 2001; 357:709-18. [PMID: 11463341 PMCID: PMC1222000 DOI: 10.1042/0264-6021:3570709] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclo-oxygenase (COX) enzymes are the targets for non-steroidal anti-inflammatory drugs (NSAIDs). These drugs demonstrate a variety of inhibitory mechanisms, which include simple competitive, as well as slow binding and irreversible inhibition. In general, most NSAIDs inhibit COX-1 and -2 by similar mechanisms. A unique class of diarylheterocyclic inhibitors has been developed that is highly selective for COX-2 by virtue of distinct inhibitory mechanisms for each isoenzyme. Several of these inhibitors, with varying selectivity, have been utilized to probe the mechanisms of COX inhibition. Results from analysis of both steady-state and time-dependent inhibition were compared. A generalized mechanism for inhibition, consisting of three sequential reversible steps, can account for the various types of kinetic behaviour observed with these inhibitors.
Collapse
Affiliation(s)
- M C Walker
- Searle Discovery Research, Pharmacia Corp., 700 Chesterfield Parkway N., St Louis, MO 63198, USA.
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Affiliation(s)
- E S Furfine
- Glaxo Wellcome Research, Research Triangle Park, North Carolina, USA
| |
Collapse
|
256
|
Yan J, Cheng Q, Li CB, Aksoy S. Molecular characterization of two serine proteases expressed in gut tissue of the African trypanosome vector, Glossina morsitans morsitans. INSECT MOLECULAR BIOLOGY 2001; 10:47-56. [PMID: 11240636 DOI: 10.1046/j.1365-2583.2001.00232.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Serine proteases are major insect gut enzymes involved in digestion of dietary proteins, and in addition they have been implicated in the process of pathogen establishment in several vector insects. The medically important vector, tsetse fly (Diptera:Glossinidiae), is involved in the transmission of African trypanosomes, which cause devastating diseases in animals and humans. Both the male and female tsetse can transmit trypanosomes and both are strict bloodfeeders throughout all stages of their development. Here, we describe the characterization of two putative serine protease-encoding genes, Glossina serine protease-1 (Gsp1) and Glossina serine protease-2 (Gsp2) from gut tissue. Both putative cDNA products represent prepro peptides with hydrophobic signal peptide sequences associated with their 5'-end terminus. The Gsp1 cDNA encodes a putative mature protein of 245 amino acids with a molecular mass of 26 428 Da, while the predicted size of the 228 amino acid mature peptide encoded by Gsp2 cDNA is 24 573 Da. Both deduced peptides contain the Asp/His/Ser catalytic triad and the conserved residues surrounding it which are characteristic of serine proteases. In addition, both proteins have the six-conserved cysteine residues to form the three-cysteine bonds typically present in invertebrate serine proteases. Based on the presence of substrate specific residues, the Gsp1 gene encodes a chymotrypsin-like protease while Gsp2 gene encodes for a protein with trypsin-like activity. Both proteins are encoded by few loci in tsetse genome, being present in one or two copies only. The mRNA expression levels for the genes do not vary extensively throughout the digestive cycle, and high levels of mRNAs can be readily detected in the gut tissue of newly emerged flies. The levels of trypsin and chymotrypsin activities in the gut lumen increase following blood feeding and change significantly in the gut cells throughout the digestion cycle. Hence, the regulation of expression for trypsin and chymotrypsin occurs at the post-transcriptional level in tsetse. Both the coding sequences and patterns of expression of Gsp1 and Gsp2 genes are similar to the serine proteases that have been reported from the bloodfeeding insect Stomoxys calcitrans.
Collapse
Affiliation(s)
- J Yan
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, 60 College St., New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
257
|
Hung HC, Chang GG. Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase. Protein Sci 2001; 10:34-45. [PMID: 11266592 PMCID: PMC2249836 DOI: 10.1110/ps.35201] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Revised: 10/08/2000] [Accepted: 10/10/2000] [Indexed: 10/16/2022]
Abstract
The binding mechanism of Mg(2+) at the M3 site of human placental alkaline phosphatase was found to be a slow-binding process with a low binding affinity (K(Mg(app.)) = 3.32 mM). Quenching of the intrinsic fluorescence of the Mg(2+)-free and Mg(2+)-containing enzymes by acrylamide showed almost identical dynamic quenching constant (K(sv) = 4.44 +/- 0.09 M(-1)), indicating that there is no gross conformational difference between the M3-free and the M3-Mg(2+) enzymes. However, Zn(2+) was found to have a high affinity with the M3 site (K(Zn(app.)) = 0.11 mM) and was observed as a time-dependent inhibitor of the enzyme. The dependence of the observed transition rate from higher activity to lower activity (k(obs)) at different zinc concentrations resulted in a hyperbolic curve suggesting that zinc ion induces a slow conformational change of the enzyme, which locks the enzyme in a conformation (M3'-Zn) having an extremely high affinity for the Zn(2+) (K*(Zn(app.)) = 0.33 microM). The conformation of the M3'-Zn enzyme, however, is unfavorable for the catalysis by the enzyme. Both Mg(2+) activation and Zn(2+) inhibition of the enzyme are reversible processes. Structural information indicates that the M3 site, which is octahedrally coordinated to Mg(2+), has been converted to a distorted tetrahedral coordination when zinc ion substitutes for magnesium ion at the M3 site. This conformation of the enzyme has a small dynamic quenching constant for acrylamide (K(sv) = 3.86 +/- 0.04 M(-1)), suggesting a conformational change. Both Mg(2+) and phosphate prevent the enzyme from reaching this inactive structure. GTP plays an important role in reactivating the Zn-inhibited enzyme activity. We propose that, under physiological conditions, magnesium ion may play an important modulatory role in the cell for protecting the enzyme by retaining a favorable geometry of the active site needed for catalysis.
Collapse
Affiliation(s)
- H C Hung
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | | |
Collapse
|
258
|
Wang F, Miles RW, Kicska G, Nieves E, Schramm VL, Angeletti RH. Immucillin-H binding to purine nucleoside phosphorylase reduces dynamic solvent exchange. Protein Sci 2000; 9:1660-8. [PMID: 11045613 PMCID: PMC2144693 DOI: 10.1110/ps.9.9.1660] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The rate and extent of hydrogen/deuterium (H/D) exchange into purine nucleoside phosphorylase (PNP) was monitored by electrospray ionization mass spectrometry (ESI-MS) to probe protein conformational and dynamic changes induced by a substrate analogue, products, and a transition state analogue. The genetic deficiency of PNP in humans is associated with severe T-cell immunodeficiency, while B-cell immunity remains functional. Inhibitors of PNP have been proposed for treatment of T-cell leukemia, to suppress the graft-vs.-host response, or to counter type IV autoimmune diseases without destroying humoral immunity. Calf spleen PNP is a homotrimer of polypeptide chains with 284 amino residues, molecular weight 31,541. Immucillin-H inhibits PNP with a Kd of 23 pM when only one of the three catalytic sites is occupied. Deuterium exchange occurs at 167 slow-exchange sites in 2 h when no catalytic site ligands are present. The substrate analogue and product prevented H/D exchange at 10 of the sites. Immucillin-H protected 32 protons from exchange at full saturation. When one of the three subunits of the homotrimer is filled with immucillin-H, and 27 protons are protected from exchange in all three subunits. Deuterium incorporation in peptides from residues 132-152 decreased in all complexes of PNP. The rate and/or extent of deuterium incorporation in peptides from residues 29-49, 50-70, 81-98, and 112-124 decreased only in the complex with the transition state analogue. The peptide-specific H/D exchange demonstrates that (1) the enzyme is most compact in the complex with immucillin-H, and (2) filling a single catalytic site of the trimer reduces H/D exchange in the same peptides in adjacent subunits. The peptides most highly influenced by the inhibitor surround the catalytic site, providing evidence for reduced protein dynamic motion caused by the transition state analogue.
Collapse
Affiliation(s)
- F Wang
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
259
|
Krupka HI, Huber R, Holt SC, Clausen T. Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5'-phosphate-dependent protein acting as a haemolytic enzyme. EMBO J 2000; 19:3168-78. [PMID: 10880431 PMCID: PMC313955 DOI: 10.1093/emboj/19.13.3168] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cystalysin is a C(beta)-S(gamma) lyase from the oral pathogen Treponema denticola catabolyzing L-cysteine to produce pyruvate, ammonia and H(2)S. With its ability to induce cell lysis, cystalysin represents a new class of pyridoxal 5'-phosphate (PLP)-dependent virulence factors. The crystal structure of cystalysin was solved at 1.9 A resolution and revealed a folding and quaternary arrangement similar to aminotransferases. Based on the active site architecture, a detailed catalytic mechanism is proposed for the catabolism of S-containing amino acid substrates yielding H(2)S and cysteine persulfide. Since no homologies were observed with known haemolysins the cytotoxicity of cystalysin is attributed to this chemical reaction. Analysis of the cystalysin-L-aminoethoxyvinylglycine (AVG) complex revealed a 'dead end' ketimine PLP derivative, resulting in a total loss of enzyme activity. Cystalysin represents an essential factor of adult periodontitis, therefore the structure of the cystalysin-AVG complex may provide the chemical basis for rational drug design.
Collapse
Affiliation(s)
- H I Krupka
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
260
|
Lohse A, Hardlei T, Jensen A, Plesner IW, Bols M. Investigation of the slow inhibition of almond beta-glucosidase and yeast isomaltase by 1-azasugar inhibitors: evidence for the 'direct binding' model. Biochem J 2000; 349:211-5. [PMID: 10861230 PMCID: PMC1221139 DOI: 10.1042/0264-6021:3490211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(-)-1-Azafagomine [(3R,4R,5R)-4,5-dihydroxy-3-hydroxymethylhexahydropyridazine; inhibitor 1] is a potent glycosidase inhibitor designed to mimic the transition state of a substrate undergoing glycoside cleavage. The inhibition of glycosidases by inhbitor 1 and analogues has been found to be a relatively slow process. This 'slow inhibition' process was investigated in the inhibition of almond beta-glucosidase and yeast isomaltase by inhibitor 1 and analogues. Progress-curve experiments established that the time-dependent inhibition of both enzymes by inhibitor 1 was a consequence of relatively slow dissociation and association of the inhibitor from and to the enzyme, and not a result of slow interchanges between protein conformations. A number of hydrazine-containing analogues of inhibitor 1 also inhibited beta-glucosidase and isomaltase slowly, while the amine isofagomine [(3R,4R,5R)-3,4-dihydroxy-5-hydroxymethylpiperidine; inhibitor 5] only inhibited beta-glucosidase slowly. Inhibitor 1 and related inhibitors were found to leave almond beta-glucosidase with almost identical rate constants, so that the difference in K(i) values depended almost entirely on changes in the binding rate constant, k(on). The same trend was observed for the inhibition of yeast isomaltase by inhibitor 1 and a related inhibitor. The values of the rate constants were obtained at 25 degrees C and at pH 6.8.
Collapse
Affiliation(s)
- A Lohse
- Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | | | | |
Collapse
|
261
|
Stathopoulos C, Tsagla A, Tekos A, Drainas D. Effect of peptidyltransferase inhibitors on ribonuclease P activity from Dictyostelium discoideum. Effect of antibiotics on RNase P. Mol Biol Rep 2000; 27:107-11. [PMID: 11092557 DOI: 10.1023/a:1007183306082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of several peptidyltransferase inhibitors on ribonuclease P activity from Dictyostelium discoideum was investigated. Among the inhibitors tested puromycin, amicetin and blasticidin S revealed a dose-dependent inhibition of tRNA maturation. Blasticidin S and amicetin do not compete with puromycin for the same site on the enzyme, suggesting the existence of distinct antibiotic binding sites on D. discoideum RNase P. Inhibition experiments further indicate that binding sites for blasticidin S and amicetin overlap.
Collapse
Affiliation(s)
- C Stathopoulos
- Deparment of Biochemistry, School of Medicine, University of Patras, Greece
| | | | | | | |
Collapse
|
262
|
Nash P, Barry M, Seet BT, Veugelers K, Hota S, Heger J, Hodgkinson C, Graham K, Jackson RJ, McFadden G. Post-translational modification of the myxoma-virus anti-inflammatory serpin SERP-1 by a virally encoded sialyltransferase. Biochem J 2000; 347:375-82. [PMID: 10749666 PMCID: PMC1220969 DOI: 10.1042/0264-6021:3470375] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SERP-1 is a secreted serpin (serine-proteinase inhibitor) encoded by myxoma virus, a poxvirus pathogen of rabbits. SERP-1 is required for myxoma-virus virulence, and the purified protein has been shown to possess independent anti-inflammatory activity in animal models of restenosis and antigen-induced arthritis. As an inhibitor of serine proteinases, SERP-1 acts against tissue-type plasminogen activator, urokinase-type plasminogen activator, plasmin, thrombin and Factor Xa. In the present study, examination of SERP-1 glycosylation-site mutants showed that the N-linked glycosylation of Asn(172) was essential for SERP-1 secretion, whereas mutation of Asn(99) decreased secretion efficiency, indicating that N-linked glycosylation plays an essential role in the processing and trafficking of SERP-1. Furthermore, comparison of SERP-1 from wild-type myxoma virus and a virus containing a targeted disruption of the MST3N sialyltransferase locus demonstrated that SERP-1 is specifically modified by this myxoma-virus-encoded sialyltransferase, and is thus the first reported viral protein shown to by modified by a virally encoded glycosyltransferase. Sialylation of SERP-1 by the MST3N gene product creates a uniquely charged species of secreted SERP-1 that is distinct from SERP-1 produced from other eukaryotic expression systems, though this has no apparent effect upon the kinetics of in vitro proteinase inhibition. Rather, the role of viral sialylation of SERP-1 likely relates to masking antigenicity or targeting SERP-1 to specific sites of action in vivo.
Collapse
Affiliation(s)
- P Nash
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Szeltner Z, Renner V, Polgár L. Substrate- and pH-dependent contribution of oxyanion binding site to the catalysis of prolyl oligopeptidase, a paradigm of the serine oligopeptidase family. Protein Sci 2000; 9:353-60. [PMID: 10716187 PMCID: PMC2144544 DOI: 10.1110/ps.9.2.353] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Prolyl oligopeptidase, an enzyme implicated in memory disorders, is a member of a new serine peptidase family. Crystallographic studies (Fülöp et al., 1998) revealed a novel oxyanion binding site containing a tyrosine residue, Tyr473. To study the importance of Tyr473 OH, we have produced prolyl oligopeptidase and its Tyr473Phe variant in Escherichia coli. The specificity rate constant, k(cat)/Km, for the modified enzyme decreased by a factor of 8-40 with highly specific substrates, Z-Gly-Pro-Nap, and a fluorogenic octapeptide. With these compounds, the decline in k(cat) was partly compensated for by reduction in Km, a difference from the extensively studied subtilisin. With the less specific suc-Gly-Pro-Nap, the Km value, which approximates Ks, was not significantly changed, resulting in greater diminution (approximately 500-fold) in k(cat)/Km. The second-order rate constant for the reaction with Z-Pro-prolinal, a slow tight-binding transition-state analogue inhibitor, and the Ki values for a slow substrate and two product-like inhibitors were not significantly affected by the Tyr473 OH group. The mechanism of transition-state stabilization was markedly dependent upon the nature of substrate and varied with pH as the enzyme interconverted between its two catalytically competent forms.
Collapse
Affiliation(s)
- Z Szeltner
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest
| | | | | |
Collapse
|
264
|
Khalil EM, De Angelis J, Ishii M, Cole PA. Mechanism-based inhibition of the melatonin rhythm enzyme: pharmacologic exploitation of active site functional plasticity. Proc Natl Acad Sci U S A 1999; 96:12418-23. [PMID: 10535937 PMCID: PMC22936 DOI: 10.1073/pnas.96.22.12418] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/1999] [Accepted: 08/23/1999] [Indexed: 11/18/2022] Open
Abstract
Serotonin N-acetyltransferase is the enzyme responsible for the diurnal rhythm of melatonin production in the pineal gland of animals and humans. Inhibitors of this enzyme active in cell culture have not been reported previously. The compound N-bromoacetyltryptamine was shown to be a potent inhibitor of this enzyme in vitro and in a pineal cell culture assay (IC(50) approximately 500 nM). The mechanism of inhibition is suggested to involve a serotonin N-acetyltransferase-catalyzed alkylation reaction between N-bromoacetyltryptamine and reduced CoA, resulting in the production of a tight-binding bisubstrate analog inhibitor. This alkyltransferase activity is apparently catalyzed at a functionally distinct site compared with the acetyltransferase activity active site on serotonin N-acetyltransferase. Such active site plasticity is suggested to result from a subtle conformational alteration in the protein. This plasticity allows for an unusual form of mechanism-based inhibition with multiple turnovers, resulting in "molecular fratricide." N-bromoacetyltryptamine should serve as a useful tool for dissecting the role of melatonin in circadian rhythm as well as a potential lead compound for therapeutic use in mood and sleep disorders.
Collapse
Affiliation(s)
- E M Khalil
- Laboratory of Bioorganic Chemistry, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
265
|
Falk S, Oulianova N, Berteloot A. Kinetic mechanisms of inhibitor binding: relevance to the fast-acting slow-binding paradigm. Biophys J 1999; 77:173-88. [PMID: 10388748 PMCID: PMC1300320 DOI: 10.1016/s0006-3495(99)76880-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Although phlorizin inhibition of Na+-glucose cotransport occurs within a few seconds, 3H-phlorizin binding to the sodium-coupled glucose transport protein(s) requires several minutes to reach equilibrium (the fast-acting slow-binding paradigm). Using kinetic models of arbitrary dimension that can be reduced to a two-state diagram according to Cha's formalism, we show that three basic mechanisms of inhibitor binding can be identified whereby the inhibitor binding step either (A) represents, (B) precedes, or (C) follows the rate-limiting step in a binding reaction. We demonstrate that each of mechanisms A-C is associated with a set of unique kinetic properties, and that the time scale over which one may expect to observe mechanism C is conditioned by the turnover number of the catalytic cycle. In contrast, mechanisms A and B may be relevant to either fast-acting or slow-binding inhibitors. However, slow-binding inhibition according to mechanism A may not be compatible with a fast-acting behavior on the steady-state time scale of a few seconds. We conclude that the recruitment hypothesis (mechanism C) cannot account for slow phlorizin binding to the sodium-coupled glucose transport protein(s), and that mechanism B is the only alternative that may explain the fast-acting slow-binding paradigm.
Collapse
Affiliation(s)
- S Falk
- Membrane Transport Research Group, Department of Physiology, Faculty of Medicine, Université de Montréal, CP 6128, succursale Centre-Ville, Montreal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
266
|
Do-Régo JC, Hue H, Costentin J, Bonnet JJ. Evidence for the sequential formation of two complexes between an uptake inhibitor, GBR 12783 [1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine], and the neuronal transporter of dopamine. J Neurochem 1999; 72:396-404. [PMID: 9886093 DOI: 10.1046/j.1471-4159.1999.0720396.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Incubation of a crude synaptosomal fraction from rat striatum with GBR 12783 at 37 degrees C produced an inhibition of the specific uptake of [3H]dopamine that increased with time. The inhibition increased when GBR 12783 was present during preincubation and incubation (IC50 = 1.85+/-0.1 nM) instead of incubation alone (IC50 = 25+/-3.5 nM). Time-course studies of uptake inhibition demonstrated that a first collision transporter-inhibitor complex (TI) was formed immediately after addition of GBR 12783 so that the initial uptake velocity (V0) decreased for increasing concentrations of inhibitor (Ki > or = 20 nM). TI slowly isomerized to a more stable complex TI* (Ki* < or = 5 nM) with a value of t1/2 = 20-270 s. Fits of data to model 2 in which the steady-state uptake (VS) is set to zero were generally preferred, suggesting that formation of TI* could tend to irreversibility, as a consequence of a very low reverse isomerization. As expected, k, V0, and VS tended to steady-state values in an asymptotic manner for high concentrations of GBR 12783. GBR 12783 at 2.5 nM produced a mixed inhibition of the uptake, with an increase in KM and a decrease in Vmax; these effects were improved for 10 nM GBR 12783 and at 20 degrees C. These results are discussed in relation to previous data concerning [3H]GBR 12783 binding. The present work gives the first experimental demonstration that dopamine uptake blockers can act according to a two-step mechanism of inhibition; this is of great interest, because these inhibitors can oppose the effects of cocaine or amphetamine on the transporter according to a reaction that is partly nondependent on the concentration of the abused agent.
Collapse
Affiliation(s)
- J C Do-Régo
- UPRESA CNRS 6036, IFRMP 23, UFR de Médecine et Pharmacie, Saint Etienne du Rouvray, France
| | | | | | | |
Collapse
|
267
|
Cappello M, Li S, Chen X, Li CB, Harrison L, Narashimhan S, Beard CB, Aksoy S. Tsetse thrombin inhibitor: bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans. Proc Natl Acad Sci U S A 1998; 95:14290-5. [PMID: 9826693 PMCID: PMC24366 DOI: 10.1073/pnas.95.24.14290] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tsetse thrombin inhibitor, a potent and specific low molecular mass (3,530 Da) anticoagulant peptide, was purified previously from salivary gland extracts of Glossina morsitans morsitans (Diptera: Glossinidae). A 303-bp coding sequence corresponding to the inhibitor has now been isolated from a tsetse salivary gland cDNA library by using degenerate oligonucleotide probes. The full-length cDNA contains a 26-bp untranslated segment at its 5' end, followed by a 63-bp sequence corresponding to a putative secretory signal peptide. A 96-bp segment codes for the mature tsetse thrombin inhibitor, whose predicted molecular weight matches that of the purified native protein. Based on its lack of homology to any previously described family of molecules, the tsetse thrombin inhibitor appears to represent a unique class of naturally occurring protease inhibitors. Recombinant tsetse thrombin inhibitor expressed in Escherichia coli and the chemically synthesized peptide are both substantially less active than the purified native protein, suggesting that posttranslational modification(s) may be necessary for optimal inhibitory activity. The tsetse thrombin inhibitor gene, which is present as a single copy in the tsetse genome, is expressed at high levels in salivary glands and midguts of adult tsetse flies, suggesting a possible role for the anticoagulant in both feeding and processing of the bloodmeal.
Collapse
Affiliation(s)
- M Cappello
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Schick C, Brömme D, Bartuski AJ, Uemura Y, Schechter NM, Silverman GA. The reactive site loop of the serpin SCCA1 is essential for cysteine proteinase inhibition. Proc Natl Acad Sci U S A 1998; 95:13465-70. [PMID: 9811823 PMCID: PMC24842 DOI: 10.1073/pnas.95.23.13465] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high-molecular-weight serine proteinase inhibitors (serpins) are restricted, generally, to inhibiting proteinases of the serine mechanistic class. However, the viral serpin, cytokine response modifier A, and the human serpins, antichymotrypsin and squamous cell carcinoma antigen 1 (SCCA1), inhibit different members of the cysteine proteinase class. Although serpins employ a mobile reactive site loop (RSL) to bait and trap their target serine proteinases, the mechanism by which they inactivate cysteine proteinases is unknown. Our previous studies suggest that SCCA1 inhibits papain-like cysteine proteinases in a manner similar to that observed for serpin-serine proteinase interactions. However, we could not preclude the possibility of an inhibitory mechanism that did not require the serpin RSL. To test this possibility, we employed site-directed mutagenesis to alter the different residues within the RSL. Mutations to either the hinge or the variable region of the RSL abolished inhibitory activity. Moreover, RSL swaps between SCCA1 and the nearly identical serpin, SCCA2 (an inhibitor of chymotrypsin-like serine proteinases), reversed their target specificities. Thus, there were no unique motifs within the framework of SCCA1 that independently accounted for cysteine proteinase inhibitory activity. Collectively, these data suggested that the sequence and mobility of the RSL of SCCA1 are essential for cysteine proteinase inhibition and that serpins are likely to utilize a common RSL-dependent mechanism to inhibit both serine and cysteine proteinases.
Collapse
Affiliation(s)
- C Schick
- Department of Pediatrics, Harvard Medical School, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
269
|
Fox T, Coll JT, Xie X, Ford PJ, Germann UA, Porter MD, Pazhanisamy S, Fleming MA, Galullo V, Su MS, Wilson KP. A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase. Protein Sci 1998; 7:2249-55. [PMID: 9827991 PMCID: PMC2143869 DOI: 10.1002/pro.5560071102] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine kinases that mediate intracellular signal transduction pathways. Pyridinyl imidazole compounds block pro-inflammatory cytokine production and are specific p38 kinase inhibitors. ERK2 is related to p38 in sequence and structure, but is not inhibited by pyridinyl imidazole inhibitors. Crystal structures of two pyridinyl imidazoles complexed with p38 revealed these compounds bind in the ATP site. Mutagenesis data suggested a single residue difference at threonine 106 between p38 and other MAP kinases is sufficient to confer selectivity of pyridinyl imidazoles. We have changed the equivalent residue in human ERK2, Q105, into threonine and alanine, and substituted four additional ATP binding site residues. The single residue change Q105A in ERK2 enhances the binding of SB202190 at least 25,000-fold compared to wild-type ERK2. We report enzymatic analyses of wild-type ERK2 and the mutant proteins, and the crystal structure of a pyridinyl imidazole, SB203580, bound to an ERK2 pentamutant, I103L, Q105T, D106H, E109G. T110A. These ATP binding site substitutions induce low nanomolar sensitivity to pyridinyl imidazoles. Furthermore, we identified 5-iodotubercidin as a potent ERK2 inhibitor, which may help reveal the role of ERK2 in cell proliferation.
Collapse
Affiliation(s)
- T Fox
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139-4242, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Abstract
All chemical transformations pass through an unstable structure called the transition state, which is poised between the chemical structures of the substrates and products. The transition states for chemical reactions are proposed to have lifetimes near 10(-13) sec, the time for a single bond vibration. No physical or spectroscopic method is available to directly observe the structure of the transition state for enzymatic reactions. Yet transition state structure is central to understanding catalysis, because enzymes function by lowering activation energy. An accepted view of enzymatic catalysis is tight binding to the unstable transition state structure. Transition state mimics bind tightly to enzymes by capturing a fraction of the binding energy for the transition state species. The identification of numerous transition state inhibitors supports the transition state stabilization hypothesis for enzymatic catalysis. Advances in methods for measuring and interpreting kinetic isotope effects and advances in computational chemistry have provided an experimental route to understand transition state structure. Systematic analysis of intrinsic kinetic isotope effects provides geometric and electronic structure for enzyme-bound transition states. This information has been used to compare transition states for chemical and enzymatic reactions; determine whether enzymatic activators alter transition state structure; design transition state inhibitors; and provide the basis for predicting the affinity of enzymatic inhibitors. Enzymatic transition states provide an understanding of catalysis and permit the design of transition state inhibitors. This article reviews transition state theory for enzymatic reactions. Selected examples of enzymatic transition states are compared to the respective transition state inhibitors.
Collapse
Affiliation(s)
- V L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| |
Collapse
|
271
|
Alderton WK, Boyhan A, Lowe PN. Nitroarginine and tetrahydrobiopterin binding to the haem domain of neuronal nitric oxide synthase using a scintillation proximity assay. Biochem J 1998; 332 ( Pt 1):195-201. [PMID: 9576868 PMCID: PMC1219468 DOI: 10.1042/bj3320195] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide synthases (NOS) have a bidomain structure comprised of an N-terminal oxygenase domain and a C-terminal reductase domain. The oxygenase domain binds haem, (6R)-5,6,7,8-tetrahydro-l-biopterin (tetrahydrobiopterin) and arginine, is the site where nitric oxide synthesis takes place and contains determinants for dimeric interactions. A novel scintillation proximity assay has been established for equilibrium and kinetic measurements of substrate, inhibitor and cofactor binding to a recombinant N-terminal haem-binding domain of rat neuronal NOS (nNOS). Apparent Kd values for nNOS haem-domain-binding of arginine and Nomega-nitro-L-arginine (nitroarginine) were measured as 1.6 microM and 25 nM respectively. The kinetics of [3H]nitroarginine binding and dissociation yielded an association rate constant of 1.3x10(4) s-1.M-1 and a dissociation rate constant of 1.2x10(-4) s-1. These values are comparable to literature values obtained for full-length nNOS, suggesting that many characteristics of the arginine binding site of NOS are conserved in the haem-binding domain. Additionally, apparent Kd values were compared and were found to be similar for the inhibitors, L-NG-monomethylarginine, S-ethylisothiourea, N-iminoethyl-L-ornithine, imidazole, 7-nitroindazole and 1400W (N-[3-(aminomethyl) benzyl] acetamidine). [3H]Tetrahydrobiopterin bound to the nNOS haem domain with an apparent Kd of 20 nM. Binding was inhibited by 7-nitroindazole and stimulated by S-ethylisothiourea. The kinetics of interaction with tetrahydrobiopterin were complex, showing a triphasic binding process and a single off rate. An alternating catalytic site mechanism for NOS is proposed.
Collapse
Affiliation(s)
- W K Alderton
- Glaxo Wellcome Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts. SG1 2NY, UK.
| | | | | |
Collapse
|
272
|
Ermolieff J, Duranton J, Petitou M, Bieth JG. Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: potent effect of O-butyrylated heparin. Biochem J 1998; 330 ( Pt 3):1369-74. [PMID: 9494108 PMCID: PMC1219284 DOI: 10.1042/bj3301369] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heparin tightly binds cathepsin G and so protects the enzyme from inhibition by alpha1-antichymotrypsin, alpha1-proteinase inhibitor and eglin c, three proteins which do not bind heparin [Ermolieff J., Boudier C., Laine A., Meyer B. and Bieth J.G. (1994) J. Biol. Chem. 269, 29502-29508]. Here we show that heparin no longer protects cathepsin G from inhibition when the enzyme is reacted with mucus proteinase inhibitor (MPI), a heparin-binding protein. Heparin fragments of Mr=4500 and 8100 and O-butyrylated heparin of Mr=8000 form tight complexes with cathepsin G (Kd=0.5-2.2 nM) and MPI (Kd=0. 4-0.8 muM) and accelerate the MPI-promoted inhibition of cathepsin G by a factor of 17-26. They also accelerate the inhibition of neutrophil elastase and pancreatic chymotrypsin. The rate acceleration is due to the binding of heparin to MPI. Butyrylation of heparin slightly decreases its affinity for cathepsin G and MPI but sharply decreases the ionic interactions between the positively charged proteins and the negatively charged polyanion. The butyrylated heparin derivative is the best rate accelerator: it increases the rate constant for the MPI-induced inhibition of cathepsin G and elastase by factors of 26 and 23, respectively. This, together with the fact that it has a good bioavailability and a very low anticoagulant activity, suggests that it might be an adjuvant of MPI-based therapy of cystic fibrosis.
Collapse
Affiliation(s)
- J Ermolieff
- Laboratoire d'Enzymologie, INSERM Unite 392, Universite Louis Pasteur de Strasbourg, F-67400 Illkirch, France
| | | | | | | |
Collapse
|
273
|
Lamarre D, Croteau G, Wardrop E, Bourgon L, Thibeault D, Clouette C, Vaillancourt M, Cohen E, Pargellis C, Yoakim C, Anderson PC. Antiviral properties of palinavir, a potent inhibitor of the human immunodeficiency virus type 1 protease. Antimicrob Agents Chemother 1997; 41:965-71. [PMID: 9145853 PMCID: PMC163834 DOI: 10.1128/aac.41.5.965] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Palinavir is a potent inhibitor of the human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) proteases. Replication of laboratory strains (HIV-1, HIV-2, and simian immunodeficiency virus) and HIV-1 clinical isolates is inhibited by palinavir with 50% effective concentrations ranging from 0.5 to 30 nM. The average cytotoxic concentration of palinavir (35 microM) in the various target cells indicates a favorable therapeutic index. Potent antiviral activity is retained with increased doses of virus and with clinical isolates resistant to zidovudine (AZT), didanosine (ddI), or nevirapine. Combinations of palinavir with either AZT, ddI, or nevirapine demonstrate synergy or additivity in the inhibition of HIV-1 replication. Palinavir retains anti-HIV-1 activity when administered postinfection until times subsequent to the reverse transcription step. In chronically infected CR-10 cells, palinavir blocks Gag precursor polyprotein processing completely, reducing greater than 99% of infectious particle production. The results indicate that the antiviral activity of palinavir is specific to inhibition of the viral protease and occurs at a late stage in the replicative cycle of HIV-1. On the basis of the potent in vitro activity, low-level cytotoxicity, and other data, palinavir was selected for in-depth preclinical evaluation.
Collapse
Affiliation(s)
- D Lamarre
- Department of Biochemistry, Bio-Méga Research Division of Boehringer Ingelheim (Canada) Ltd., Laval, Quebec
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Douglas DA, Shi YE, Sang QA. Computational sequence analysis of the tissue inhibitor of metalloproteinase family. JOURNAL OF PROTEIN CHEMISTRY 1997; 16:237-55. [PMID: 9188064 DOI: 10.1023/a:1026348808069] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tissue inhibitor of metalloproteinase (TIMP) family regulates extracellular matrix turnover and tissue remodeling by forming tight-binding inhibitory complexes with matrix metalloproteinases (MMPs). MMPs and TIMPs have been implicated in many normal and pathological processes, such as morphogenesis, development, angiogenesis, and cancer metastasis. This minireview provides information that would aid in classification of the TIMP family and in understanding the similarities and differences among TIMP members according to the physical data, primary structure, and homology values. Calculations of molecular weight, isoelectric point values, and molar extinction coefficients are reported. This study also compares sequence similarities and differences among the TIMP members through calculations of homology within their individual loop regions and the mature region of the molecule. Lastly, this report examines structure-function relationships of TIMPs. Thorough knowledge of TIMP primary and tertiary structure would facilitate the uncovering of the molecular mechanisms underlying metalloproteinase, inhibitory activities and biological functions of TIMPs.
Collapse
Affiliation(s)
- D A Douglas
- Department of Chemistry, Florida State University, Tallahassee 32306-3006, USA
| | | | | |
Collapse
|
275
|
Blonski C, De Moissac D, Périé J, Sygusch J. Inhibition of rabbit muscle aldolase by phosphorylated aromatic compounds. Biochem J 1997; 323 ( Pt 1):71-7. [PMID: 9173904 PMCID: PMC1218317 DOI: 10.1042/bj3230071] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The interactions of the phosphorylated derivatives of hydroquinone (HQN-P2), resorcinol (RSN-P2), 4-hydroxybenzaldehyde (HBA-P) and 2, 4-dihydroxybenzaldehyde (DHBA-P; phosphate group at position 4) with fructose bisphosphate aldolase were analysed by enzyme kinetics, UV/visible difference spectroscopy and site-directed mutagenesis. Enzyme activity was competitively inhibited in the presence of HQN-P2, RSN-P2 and HBA-P, whereas DHBA-P exhibited slow-binding inhibition. Inhibition by DHBA-P involved active-site Schiff-base formation and required a phenol group ortho to the aldehyde moiety. Rates of enzyme inactivation and of Schiff-base formation by DHBA-P were identical, and corresponded to 3.2-3.5 DHBA-P molecules covalently bound per aldolase tetramer at maximal inactivation. Site-directed mutagenesis of the active-site lysine residues at positions 107, 146 and 229 was found to be consistent with Schiff-base formation between DHBA-P and Lys-146, and this was promoted by Lys-229. Mutation of Glu-187, located vicinally between Lys-146 and Lys-229 in the active site, perturbed the rate of Schiff-base formation, suggesting a functional role for Glu-187 in Schiff-base formation and stabilization. The decreased cleavage activity of the active-site mutants towards fructose 1, 6-bisphosphate is consistent with a proton-transfer mechanism involving Lys-229, Glu-187 and Lys-146.
Collapse
Affiliation(s)
- C Blonski
- Groupe de Chimie Organique Biologique, UMR 5623, Bât IIR1, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
276
|
Pappu KM, Kunnumal B, Serpersu EH. A new metal-binding site for yeast phosphoglycerate kinase as determined by the use of a metal-ATP analog. Biophys J 1997; 72:928-35. [PMID: 9017217 PMCID: PMC1185615 DOI: 10.1016/s0006-3495(97)78726-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Suicide substrate beta, gamma-bidentate Rh(III)ATP (RhATP) was used to map the metal ion-binding site in yeast phosphoglycerate kinase (PGK). Cleavage of the RhATP-inactivated enzyme with pepsin and subsequent separation of peptides by reverse-phase high-performance liquid chromatography gave two Rh-nucleotide bound peptides. One of the peptides corresponded to the C-terminal residues of PGK, and the other to a part of helix V. Of the four glutamates present in the C-terminal peptide, Glu 398 may be a likely metal coordination site. Therefore, importance of the C-terminal residues in PGK catalysis may be attributed, in part to the coordination of metal ion of the metal-ATP substrate. Metal coordination may then align the C-terminal peptide to extend toward the N-terminal domain and form the "closed" active site. Results presented in this paper suggest that one or more side chains of the enzyme may be coordinated to the metal ion in the PGK.3-phospho-D-glycerate-RhATP complex, and that exchange-inert metal-ATP analogs could be used to determine metal coordination sites on kinases and other metal-ATP-utilizing enzymes.
Collapse
Affiliation(s)
- K M Pappu
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville 37996-0840, USA
| | | | | |
Collapse
|
277
|
Croteau G, Doyon L, Thibeault D, McKercher G, Pilote L, Lamarre D. Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors. J Virol 1997; 71:1089-96. [PMID: 8995629 PMCID: PMC191160 DOI: 10.1128/jvi.71.2.1089-1096.1997] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
One hope to maintain the benefits of antiviral therapy against the human immunodeficiency virus type 1 (HIV-1), despite the development of resistance, is the possibility that resistant variants will show decreased viral fitness. To study this possibility, HIV-1 variants showing high-level resistance (up to 1,500-fold) to the substrate analog protease inhibitors BILA 1906 BS and BILA 2185 BS have been characterized. Active-site mutations V32I and I84V/A were consistently observed in the protease of highly resistant viruses, along with up to six other mutations. In vitro studies with recombinant mutant proteases demonstrated that these mutations resulted in up to 10(4)-fold increases in the Ki values toward BILA 1906 BS and BILA 2185 BS and a concomitant 2,200-fold decrease in catalytic efficiency of the enzymes toward a synthetic substrate. When introduced into viral molecular clones, the protease mutations impaired polyprotein processing, consistent with a decrease in enzyme activity in virions. Despite these observations, however, most mutations had little effect on viral replication except when the active-site mutations V32I and I84V/A were coexpressed in the protease. The latter combinations not only conferred a significant growth reduction of viral clones on peripheral blood mononuclear cells but also caused the complete disappearance of mutated clones when cocultured with wild-type virus on T-cell lines. Furthermore, the double nucleotide mutation I84A rapidly reverted to I84V upon drug removal, confirming its impact on viral fitness. Therefore, high-level resistance to protease inhibitors can be associated with impaired viral fitness, suggesting that antiviral therapies with such inhibitors may maintain some clinical benefits.
Collapse
Affiliation(s)
- G Croteau
- Department of Biochemistry, Bio-Méga/Boehringer Ingelheim Research Inc., Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
278
|
Bevec T, Stoka V, Pungercic G, Dolenc I, Turk V. Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J Exp Med 1996; 183:1331-8. [PMID: 8666891 PMCID: PMC2192513 DOI: 10.1084/jem.183.4.1331] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The invariant chain (Ii) is associated with major histocompatibility complex class II molecules during early stages of their intracellular transport. In an acidic endosomal/lysosomal compartment, it is proteolytically cleaved and removed from class II heterodimers. Participation of aspartic and cysteine proteases has been observed in in vitro degradation of Ii, but the specific enzymes responsible for its in vivo processing are as yet undefined. We have previously isolated a noncovalent complex of the lysosomal cysteine protease cathepsin L with a peptide fragment derived from the p41 form of Ii from human kidney. Here we show that this Ii fragment, which is identical to the alternatively spliced segment of p41, is a very potent competitive inhibitor of cathepsin L (equilibrium inhibition constant Ki = 1.7 X 10(-12) M). It inhibits two other cysteine proteases, cathepsin H and papain, but to much lesser extent. Cysteine proteases cathepsins B, C, and S, as well as representatives of serine, aspartic, and metalloproteases, are not inhibited at all. These findings suggest a novel role for p41 in the regulation of various proteolytic activities during antigen processing and presentation. The Ii inhibitory fragment shows no sequence homology with the known cysteine protease inhibitors, and may, therefore, represent a new class.
Collapse
Affiliation(s)
- T Bevec
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
279
|
Cappello M, Vlasuk GP, Bergum PW, Huang S, Hotez PJ. Ancylostoma caninum anticoagulant peptide: a hookworm-derived inhibitor of human coagulation factor Xa. Proc Natl Acad Sci U S A 1995; 92:6152-6. [PMID: 7597095 PMCID: PMC41660 DOI: 10.1073/pnas.92.13.6152] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human hookworm infection is a major cause of gastrointestinal blood loss and iron deficiency anemia, affecting up to one billion people in the developing world. These soil-transmitted helminths cause blood loss during attachment to the intestinal mucosa by lacerating capillaries and ingesting extravasated blood. We have isolated the major anticoagulant used by adult worms to facilitate feeding and exacerbate intestinal blood loss. This 8.7-kDa peptide, named the Ancylostoma caninum anticoagulant peptide (AcAP), was purified by using a combination of ion-exchange chromatography, gel-filtration chromatography, and reverse-phase HPLC. N-terminal sequencing of AcAP reveals no homology to any previously identified anticoagulant or protease inhibitor. Single-stage chromogenic assays reveal that AcAP is a highly potent and specific inhibitor of human coagulation, with an intrinsic K*i for the inhibition of free factor Xa of 323.5 pM. In plasma-based clotting time assays, AcAP was more effective at prolonging the prothrombin time than both recombinant hirudin and tick anticoagulant peptide. These data suggest that AcAP, a specific inhibitor of factor Xa, is one of the most potent naturally occurring anticoagulants described to date.
Collapse
Affiliation(s)
- M Cappello
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
280
|
Hill PA, Docherty AJ, Bottomley KM, O'Connell JP, Morphy JR, Reynolds JJ, Meikle MC. Inhibition of bone resorption in vitro by selective inhibitors of gelatinase and collagenase. Biochem J 1995; 308 ( Pt 1):167-75. [PMID: 7755562 PMCID: PMC1136859 DOI: 10.1042/bj3080167] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two low-molecular-mass inhibitors of matrix metalloproteinases (MMPs), CT1166, a concentration-dependent selective inhibitor of gelatinases A and B, and Ro 31-7467, a concentration-dependent selective inhibitor of collagenase, were examined for their effects on bone resorption and type-I collagenolysis. The test systems consisted of measuring (1) the release of [3H]proline from prelabelled mouse calvarial explants; (2) the release of 14C from prelabelled type-I collagen films by mouse calvarial osteoblasts; and (3) lacunar resorption by isolated rat osteoclasts cultured on ivory slices. In 24 h cultures, CT1166 and Ro 31-7467 inhibited both interleukin-1 alpha- (IL-1 alpha; 10(-10) M) and 1,25-dihydroxyvitamin D3 (10(-8) M)-stimulated bone resorption in cultured neonatal mouse calvariae at concentration selective for the inhibition of gelatinase (10(-9) M for CT1166) and collagenase (10(-8) M for Ro 31-7467) respectively. For each compound the inhibition was dose-dependent, reversible, and complete at a 10(-7) M concentration. However, CT1166 (10(-9) M) and Ro 31-7467 (10(-8) M) in combination were required to completely abolish IL-1 alpha-stimulated bone resorption in mouse calvariae throughout a 96 h culture period. Neither of the inhibitors affected protein synthesis, DNA synthesis nor the IL-1 alpha-stimulated secretion of the lysosomal enzyme, beta-glucuronidase. Both CT1166 and Ro 31-7467 partially inhibited IL-1 alpha-stimulated lacunar resorption by isolated osteoclasts, but were without effect on unstimulated lacunar resorption. Rodent osteoclasts produced collagenase and gelatinases-A and -B activity. In contrast the substrate used to assess osteoclast lacunar resorption contained no detectable collagenase or gelatinase activity. Both compounds dose-dependently inhibited 1,25-dihydroxyvitamin D3 (10(-8) M)-stimulated degradation of type-I collagen by mouse calvarial osteoblasts; however, complete inhibition of collagenolysis was only achieved at concentrations at which CT1166 and Ro 31-7467 act as general MMP inhibitors. This study demonstrates that collagenase and gelatinases A and/or B participate in bone resorption. While these MMPs may be primarily involved in osteoid removal, we conclude that they may also be released by osteoclasts, where they participate in bone collagen degradation within the resorption lacunae.
Collapse
Affiliation(s)
- P A Hill
- Cell and Molecular Biology Department, Strangeways Research Laboratory, Worts Causeway, Cambridge, U.K
| | | | | | | | | | | | | |
Collapse
|
281
|
Zarnt T, Lang K, Burtscher H, Fischer G. Time-dependent inhibition of peptidylprolyl cis-trans-isomerases by FK506 is probably due to cis-trans isomerization of the inhibitor's imide bond. Biochem J 1995; 305 ( Pt 1):159-64. [PMID: 7529995 PMCID: PMC1136444 DOI: 10.1042/bj3050159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Free in solution, the immunosuppressive compounds cyclosporin A (CsA), FK506, ascomycin and rapamycin are present in many solvents in various slowly interconverting conformations. Together with their cellular receptor proteins, cyclophilin (CyP) and FK506-binding protein (FKBP), however, these inhibitors have been shown to have a homogeneous conformation. The existence of a slow cis-trans interconversion of an imidic bond in the inhibitor molecule during the course of the formation of the CsA-CyP18cy complex (where CyP18cy is human 18 kDa cytosolic CyP) prompted us to investigate the reaction of the peptidomacrolides FK506, ascomycin and rapamycin with two specific binding-proteins in more detail. Since formation of the FK506-FKBP complex results in the inhibition of the peptidylprolyl cis-trans-isomerase activity of the binding protein, we used the enzyme's decrease in enzymic activity to monitor binding of the inhibitors to their enzyme targets. For FK506, the kinetics of inhibition of human 12 kDa cytosolic FKBP (FKBP12cy) were clearly dependent on time. Subsequent to a rapid inactivation reaction, not resolved in its kinetics due to manual mixing, a slow dominant first-order inactivation process with a relaxation time of 1163 s at 10 degrees C was observed. Concomitantly the Ki value of the slow phase dropped 2.6-fold within the first 60 min of incubation. Using the FKBP12cy homologue 25 kDa membrane FKBP (FKBP25mem), a bacterial peptidylprolyl cis-trans-isomerase, the rate and amplitudes of the inhibition reactions were very similar to FKBP12cy. On the other hand, the kinetics and amplitudes of the inhibition of FKBP12cy varied significantly if rapamycin was used as an inhibitor instead of FK 506. Owing to reduced conformation transition in rapamycin upon binding to FKBP12cy, the slow phase during inhibition was significantly decreased in amplitude. A likely reason for this became apparent when the activation-enthalpy and the pH-dependence of the rate constants of the slow phase were determined. We conclude that the cis to trans interconversion of the pipecolinyl bond of the three peptidomacrolides may be responsible for the slow process. There was no indication of a suicide catalysis of this process by FKBPs.
Collapse
Affiliation(s)
- T Zarnt
- Max-Planck-Gesellschaft, Arbeitsgruppe Enzymologie der Peptidbindung, Halle, Germany
| | | | | | | |
Collapse
|
282
|
Boudier C, Bieth JG. Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor. Biochem J 1994; 303 ( Pt 1):61-8. [PMID: 7945266 PMCID: PMC1137557 DOI: 10.1042/bj3030061] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not.
Collapse
Affiliation(s)
- C Boudier
- Laboratoire d'Enzymologie, INSERM Unité 237, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | |
Collapse
|
283
|
Yiotakis A, Lecoq A, Nicolaou A, Labadie J, Dive V. Phosphinic peptide analogues as potent inhibitors of Corynebacterium rathayii bacterial collagenase. Biochem J 1994; 303 ( Pt 1):323-7. [PMID: 7945258 PMCID: PMC1137593 DOI: 10.1042/bj3030323] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pseudo-substrate analogues of collagenase from Corynebacterium rathayii, in which the scissile peptide bond is replaced by a phosphinic moiety, were synthesized and evaluated as inhibitors of this enzyme. The phosphinic tetrapeptide, Z-Phe-psi(PO2CH2)-Gly-Pro-Nle (1), was found to be a potent inhibitor of collagenase with a Ki value of 8 nM. Increasing the length of the phosphinic-containing inhibitors from tetra- to hepta-peptide size further improves the potency of these compounds. The heptapeptide analogue, Z-Phe-Gly-Pro-Phe-psi(PO2CH2)-Gly-Pro-Nle-OMe, with a Ki value of 0.6 nM, is the most potent inhibitor reported to date for bacterial collagenases. A comparison between the phosphinic analogue Z-Phe-psi(PO2CH2)-Gly-Pro-Nle (1) and the phosphonamide peptide Z-Phe-psi(PO2NH)-Gly-Pro-Nle (2) shows that for bacterial collagenase the replacement of a CH2 by an NH group results only in a modest increase in affinity from Ki = 8 nM for compound 1 to Ki = 6 nM for compound 2. Most of the phosphorus-containing inhibitors of this series are slow- or slow-tight-binding inhibitors with second-order rate constants for association and dissociation varying respectively for the kon values from 1 x 10(3) to 26 x 10(3) M-1.s-1 and for the koff values from 3 x 10(-4) to 2 x 10(-5) s-1. Interestingly, the lower affinity of the molecule containing a D residue in the P1 position of the inhibitor, compared with the molecule with an L residue in this position, is mainly the consequence of a lower rate constant for association of these D stereoisomers with the enzyme. This study demonstrates that phosphinic peptide analogues are potent inhibitors of a bacterial collagenase. The development of new phosphinic peptides should lead to the discovery of potent inhibitors of other zinc metalloproteases. Details of how the analogues were synthesized are given in Supplementary Publication SUP 50176 (14 pages), which has been deposited with the British Library Document Supply Centre, Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, from whom copies can be obtained on the terms indicated in Biochem. J. (1994) 297, 9.
Collapse
Affiliation(s)
- A Yiotakis
- Department of Organic Chemistry, University of Athens, Greece
| | | | | | | | | |
Collapse
|
284
|
Kaplan AH, Michael SF, Wehbie RS, Knigge MF, Paul DA, Everitt L, Kempf DJ, Norbeck DW, Erickson JW, Swanstrom R. Selection of multiple human immunodeficiency virus type 1 variants that encode viral proteases with decreased sensitivity to an inhibitor of the viral protease. Proc Natl Acad Sci U S A 1994; 91:5597-601. [PMID: 8202533 PMCID: PMC44043 DOI: 10.1073/pnas.91.12.5597] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Inhibitors of the human immunodeficiency virus type 1 (HIV-1) protease represent a promising addition to the available agents used to inhibit virus replication in a therapeutic setting. HIV-1 is capable of generating phenotypic variants in the face of a variety of selective pressures. The potential to generate variants with reduced sensitivity to a protease inhibitor was examined by selecting for virus growth in cell culture in the presence of the protease inhibitor A-77003. Virus variants grew out in the presence of the inhibitor, and these variants encoded proteases with reduced sensitivity to the inhibitor. Variants were identified that encoded changes in each of the three subsites of the protease that interact with the inhibitor. HIV-1 displays significant potential for altering its interaction with this protease inhibitor, suggesting the need for multiple protease inhibitors with varying specificities.
Collapse
Affiliation(s)
- A H Kaplan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599
| | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Lindhout T, Willems G, Blezer R, Hemker HC. Kinetics of the inhibition of human factor Xa by full-length and truncated recombinant tissue factor pathway inhibitor. Biochem J 1994; 297 ( Pt 1):131-6. [PMID: 8280090 PMCID: PMC1137801 DOI: 10.1042/bj2970131] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The inhibition equilibrium and kinetics of association and dissociation of the binding of three types of recombinant tissue factor pathway inhibitor (TFPI), namely full-length TFPI, C-terminal-truncated TFPI, and TFPI without the third Kunitz domain (TFPI1-161), to factor Xa have been measured. Formation and dissociation of the complexes were monitored by continuous measurement of the changes in the rate of hydrolysis of a peptidyl-p-nitroanilide substrate. Progress curves of product formation were fitted to a set of equations describing a one-step bimolecular inhibitory reaction in the presence of a competing substrate. For full-length TFPI the rate constants of association (kon) and dissociation (koff) were (5.1 +/- 0.7) x 10(6) M-1.s-1 and (2.6 +/- 0.9) x 10(-4)s-1 respectively. Thus, although the inhibition constant (50 pM) is far below the plasma concentration (2.5 nM) of TFPI, the half-time for transition to equilibrium in plasma is rather long (66s). The truncated forms of TFPI differ in that they have a 4-fold lower kon value but a similar dissociation rate constant. Therefore the inhibition constant, Ki, is 4-fold higher (0.2 nM) and the half-time to achieve equilibrium is prolonged to 250 s. The kon values of full-length and C-terminal-truncated TFPI, but not that of TFPI1-161, were found to decrease with increasing ionic strength.
Collapse
Affiliation(s)
- T Lindhout
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands
| | | | | | | |
Collapse
|
286
|
Abstract
The inhibition of activated protein C by six different serine protease inhibitors (serpins) that have arginine residues in the P1 position has been investigated. Micromolar concentrations of C1-inhibitor failed to inhibit the enzyme, and it was inhibited only slowly by antithrombin III with an association rate constant (kass.) of 0.15 M-1.s-1. The kass. values for the other serpins tested (protease nexin I, protein C inhibitor, and mutants of alpha 1-antichymotrypsin and alpha 1-antitrypsin with P1 arginine residues) were at least 1000-fold higher, with P1-Arg-alpha 1-antitrypsin (kass. = 7 x 10(4) M-1.s-1) being the most effective inhibitor. The inhibition with these four serpins appeared to be reversible, with inhibition constants in the nanomolar range. The relatively high value of kass. for protease nexin I (5 x 10(3) M-1.s-1) suggested that it may be involved in the control of activated protein C on the surface of platelets where protein nexin I is present at relatively high concentrations. The value of kass. for protease nexin I, protein C inhibitor and antithrombin III showed a bell-shaped dependence on heparin concentration. At optimal concentrations, heparin accelerated the rate of inhibition by protease nexin I, protein C inhibitor and antithrombin III by 44-, 18- and 13-fold respectively. The kinetic constants for the inhibition of thrombin were also determined, and in all cases the serpins were more effective inhibitors of thrombin. Comparison of the sequences of the active-site regions of activated protein C and thrombin suggested that the more hydrophobic active site of thrombin may be more favourable for interactions with serpins.
Collapse
Affiliation(s)
- J M Hermans
- Department of Haematology, University of Cambridge, MRC Centre, U.K
| | | |
Collapse
|
287
|
Page MG. The kinetics of non-stoichiometric bursts of beta-lactam hydrolysis catalysed by class C beta-lactamases. Biochem J 1993; 295 ( Pt 1):295-304. [PMID: 8216231 PMCID: PMC1134852 DOI: 10.1042/bj2950295] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Class C beta-lactamases from Pseudomonas aeruginosa and several species of the Enterobacteriaceae have been observed to undergo a rapid burst in hydrolysis of beta-lactam antibiotics before relaxation to a steady-state rate of hydrolysis. The amplitude of the burst corresponds to the hydrolysis of between 1 and 10,000 mol of the substrate per mol of enzyme. The decay of the rate of hydrolysis in the burst phase comprises two exponential reactions, which indicates that there are three different reactive states of the enzymes. Examination of the kinetics of acylation by slowly reacting beta-lactams suggests that there are three forms of the free enzyme in slow equilibrium. Thus it would appear that the burst kinetics exhibited by class C enzymes can be attributed to redistribution of the enzyme between different conformations induced by the reaction with substrate.
Collapse
Affiliation(s)
- M G Page
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
288
|
Waley SG. The kinetics of slow-binding and slow, tight-binding inhibition: the effects of substrate depletion. Biochem J 1993; 294 ( Pt 1):195-200. [PMID: 8363573 PMCID: PMC1134584 DOI: 10.1042/bj2940195] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inhibitors with dissociation constants in the micromolar to nanomolar range are important, but hard to characterize kinetically, especially when the substrate concentration in the assay is less than Km. When inhibition increases during the course of the assay (slow-binding inhibition) the concentration of substrate may decrease appreciably. Methods that take substrate depletion into account are described for analysing experiments in which the initial substrate concentration is below Km. Fitting progress curves gives the rate constants for the second (slow) step in a two-step mechanism. An approximate value for the overall dissociation constant may be determined from measurements of rates when the reaction is treated as a first-order process. When the concentrations of inhibitor and enzyme are comparable numerical methods are required. Procedures, suitable for implementation on a microcomputer, for the solution of the differential equations and the fitting of progress curves are described.
Collapse
Affiliation(s)
- S G Waley
- University of Oxford, New Chemistry Laboratory, Oxford Centre for Molecular Sciences, U.K
| |
Collapse
|
289
|
Martín J, Mancheño JM, Arche R. Inactivation of penicillin acylase from Kluyvera citrophila by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline: a case of time-dependent non-covalent enzyme inhibition. Biochem J 1993; 291 ( Pt 3):907-14. [PMID: 8489517 PMCID: PMC1132455 DOI: 10.1042/bj2910907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Penicillin acylase (PA) from Kluyvera citrophila was inhibited by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), a specific carboxy-group-reactive reagent. Enzyme activity progressively decreased to a residual value depending on EEDQ concentration. Neither enzymic nor non-enzymic decomposition of EEDQ is concomitant with PA inactivation. Moreover, enzyme re-activation is achieved by chromatographic removal of EEDQ, pH increase or displacement of the reagent with penicillin G. It was then concluded that PA inactivation is due to an equilibrium reaction. The kinetics of enzyme inactivation was analysed by fitting data to theoretical equations derived in accordance with this mechanism. Corrections for re-activation during the enzyme assay were a necessary introduction. The pH-dependence of the rate constant for EEDQ hydrolysis either alone or in the presence of enzyme was studied by u.v. spectroscopy. It turned out to be coincident with the pH-dependence of the forward and reverse rate constants for the inactivation process. It is suggested that previous protonation of the EEDQ molecule is required for these reactions to occur. The thermodynamic values associated with the overall reaction showed little change. Finally it is proposed that the inactivation of PA by EEDQ proceeds through a two-step reaction. The initial and rapid reversible binding is followed by a slow, time-dependent, non-covalent, reversible inactivating step. The expected behaviour in the case of enzyme modification by covalent activation of carboxy residues is also reviewed.
Collapse
Affiliation(s)
- J Martín
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
290
|
Eldering E, Huijbregts CC, Nuijens JH, Verhoeven AJ, Hack CE. Recombinant C1 inhibitor P5/P3 variants display resistance to catalytic inactivation by stimulated neutrophils. J Clin Invest 1993; 91:1035-43. [PMID: 8450033 PMCID: PMC288057 DOI: 10.1172/jci116260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Proteolytic inactivation of serine protease inhibitors (serpins) by neutrophil elastase (HNE) is presumed to contribute to the deregulation of plasma cascade systems in septic shock. Here, we report a supplementary approach to construct serpins, in our case C1 inhibitor, that are resistant to catalytic inactivation by HNE. Instead of shifting the specificity of alpha 1-antitrypsin towards the proteases of the contact activation and complement systems, we attempted to obtain a C1 inhibitor species which resists proteolytic inactivation by HNE. 12 recombinant C1 inhibitor variants were produced with mainly conservative substitutions at the cleavage sites for HNE, 440-Ile and/or 442-Val. Three variants significantly resisted proteolytic inactivation, both by purified HNE, as well as by activated neutrophils. The increase in functional half-life in the presence of FMLP-stimulated cells was found to be 18-fold for the 440-Leu/442-Ala variant. Inhibitory function of these variants was relatively unimpaired, as examined by the formation of stable complexes with C1s, beta-Factor XIIa, kallikrein, and plasmin, and as determined by kinetic analysis. The calculated association rate constants (k(on)) were reduced twofold at most for C1s, and appeared unaffected for beta-Factor XIIa. The effect on the k(on) with kallikrein was more pronounced, ranging from a significant ninefold reduction to an unmodified rate. The results show that the reactive centre loop of C1 inhibitor can be modified towards decreased sensitivity for nontarget proteases without loss of specificity for target proteases. We conclude that this approach extends the possibilities of applying recombinant serpin variants for therapeutic use in inflammatory diseases.
Collapse
Affiliation(s)
- E Eldering
- Department of Autoimmune Diseases, The Netherlands Red Cross Blood Transfusion Service, Amsterdam
| | | | | | | | | |
Collapse
|
291
|
Faller B, Frommherz K, Bieth JG. Heparin interferes with the inhibition of neutrophil elastase by its physiological inhibitors. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1992; 373:503-8. [PMID: 1515082 DOI: 10.1515/bchm3.1992.373.2.503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heparin depresses the second-order rate constant kass for the inhibition of neutrophil elastase by alpha 1-proteinase inhibitor. For high and low molecular weight heparin the decrease in kass is 290-fold and 40-fold, respectively. This is due to a tight binding of the polymer to elastase: Kd = 3.3 nM or 89 nM for high or low molecular weight heparin respectively. In contrast heparin increases the rate of inhibition of elastase by mucus proteinase inhibitor. For low molecular weight heparin, there is a 27-fold increase in kass. This is due to a strong binding of the polymer to the inhibitor (Kd = 50 nM) which undergoes a conformational change.
Collapse
Affiliation(s)
- B Faller
- Université Louis Pasteur de Strasbourg, INSERM U 237, Laboratoire d'Enzymologie, Faculté de Pharmacie, Illkirch, France
| | | | | |
Collapse
|
292
|
Stone SR, Rennex D, Wikstrom P, Shaw E, Hofsteenge J. Peptidyldiazomethanes. A novel mechanism of interaction with prolyl endopeptidase. Biochem J 1992; 283 ( Pt 3):871-6. [PMID: 1590775 PMCID: PMC1130967 DOI: 10.1042/bj2830871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptidyldiazomethanes with proline in the P1 position were found to be competitive slow-binding inhibitors of prolyl endopeptidase. Progress-curve experiments monitoring the increase in the degree of inhibition with time indicated that the kinetic mechanism involved an initial complex that isomerized to form a tighter complex. Reversibility of the inhibited complex was demonstrated by monitoring the regain of enzyme activity after removal of free inhibitor and dilution into an assay containing competing substrate. The kinetics of the reversal of inhibition indicated a more complicated inhibitory mechanism involving more than one pathway for reversal of the tight complex. A slow-binding mechanism of inhibition has not been previously observed with peptidyldiazomethanes. Incorporation of [3H]Ac-Ala-Ala-Pro-diazomethane into prolyl endopeptidase was observed after denaturation of the inhibited complex. The peptide labelled with [3H]Ac-Ala-Ala-Pro-diazomethane was isolated and found to contain the active-site serine residue.
Collapse
Affiliation(s)
- S R Stone
- Friedrich-Miescher-Institut, Basel, Switzerland
| | | | | | | | | |
Collapse
|
293
|
Murphy G, Willenbrock F, Ward RV, Cockett MI, Eaton D, Docherty AJ. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J 1992; 283 ( Pt 3):637-41. [PMID: 1317162 PMCID: PMC1130931 DOI: 10.1042/bj2830637] [Citation(s) in RCA: 214] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recombinant 72 kDa gelatinase A and a truncated form lacking the C-terminal domain were shown to be activated by organomercurials and to possess similar activities towards a number of substrates. The truncated proenzyme differed from the full-length gelatinase in that it could not be activated by a membrane activator and did not bind tissue inhibitor of metalloproteinase (TIMP)-2. Kinetic studies also showed that the inhibition of the activated truncated enzyme, by both TIMP-1 and TIMP-2, was considerably decreased compared with the full-length enzyme. We conclude that the C-terminal domain plays an important role in the regulation of gelatinase A by a potential physiological activator and inhibitors.
Collapse
Affiliation(s)
- G Murphy
- Strangeways Research Laboratory, Worts Causeway, Cambridge, U.K
| | | | | | | | | | | |
Collapse
|
294
|
al-Bar OA, O'Connor CD, Giles IG, Akhtar M. D-alanine: D-alanine ligase of Escherichia coli. Expression, purification and inhibitory studies on the cloned enzyme. Biochem J 1992; 282 ( Pt 3):747-52. [PMID: 1554356 PMCID: PMC1130851 DOI: 10.1042/bj2820747] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A 1.2 kb BamHI fragment from pDK30 [Robinson, Kenan, Sweeney & Donachie (1986) J. Bacteriol. 167, 809-817] was cloned in pDOC55 [O'Connor & Timmis (1987) J. Bacteriol. 169, 4457-4482] to give two constructs, pDOC89 and pDOC87, in which the Escherichia coli D-alanine:D-alanine ligase (EC 6.3.2.4) gene (ddl) was placed under the control of the lac and lambda PL promoters respectively. Both constructs, when used to transform E. coli M72, gave similar levels of expression of the ddl gene. The expressed enzyme was purified to homogeneity and the amino acid sequence of its N-terminal region was found to be consistent with that predicted from the gene sequence, except that the N-terminal methionine was not present in the mature protein. [1(S)-Aminoethyl][(2RS)2-carboxy-1-octyl]phosphinic acid (I), previously shown to bind tightly to Enterococcus faecalis and Salmonella typhimurium D-alanine:D-alanine ligases following phosphorylation Parsons, Patchett, Bull, Schoen, Taub, Davidson, Combs, Springer, Gadebusch, Weissberger, Valiant, Mellin & Busch (1988) J. Med. Chem. 31, 1772-1778; Duncan & Walsh (1988) Biochemistry 27, 3709-3714], was found to be a classical slow-binding inhibitor of the E. coli ligase.
Collapse
Affiliation(s)
- O A al-Bar
- Department of Biochemistry, University of Southampton, Bassett Crescent East, U.K
| | | | | | | |
Collapse
|
295
|
Abstract
The kinetics of binding of recombinant eglin c to bovine pancreatic chymotrypsin was studied by conventional and stopped-flow techniques. With nanomolar enzyme and inhibitor concentrations, the inhibition was fast and pseudo-irreversible (k(assoc.) = 4 x 10(6) m-1.s-1 at 7.4 and 25 degrees C). Reaction of the enzyme-inhibitor complex with alpha 1-proteinase inhibitor, an irreversible chymotrypsin ligand, resulted in a slow release of free eglin c, which was monitored by electrophoresis (k(dissoc.) approximately 1.6 x 10(-6) s-1, t1/2 approximately 5 days). The proflavin displacement method and a stopped-flow apparatus were used to monitor the association of chymotrypsin with eglin c under a wide range of inhibitor concentration and under pseudo-first-order conditions. At pH 7.4 and 25 degrees C or 5 degrees C, or at pH 5.0 and 25 degrees C, the pseudo-first-order rate constant of proflavin displacement increased linearly with eglin c up to the highest concentration tested, suggesting a one-step bimolecular association reaction: E + I in equilibrium with EI. However, kassoc. is much lower than the rate constant for a bimolecular reaction and its activation energy (66 kJ.mol-1 at pH 7.4 and 78 kJ.mol-1 at pH 5.0) is far too high for a diffusion-controlled step. The enzyme-inhibitor association may therefore occur via a loose pre-equilibrium complex EI* (Ki* much greater than 5 x 10(-4) M) that rapidly isomerizes (k2 much greater than 2 x 10(3) s-1) into an extremely stable final complex (Ki approximately 4 x 10(-13) M). Unlike other proteinase-inhibitor systems, the chymotrypsin-eglin association is virtually pH-independent.
Collapse
Affiliation(s)
- B Faller
- INSERM U 237, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | |
Collapse
|
296
|
Mao B. Mass-weighted molecular dynamics simulation of the protein-ligand complex of rhizopuspepsin and inhibitor. Biophys J 1991; 60:966-73. [PMID: 1742463 PMCID: PMC1260147 DOI: 10.1016/s0006-3495(91)82130-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mass-weighted molecular dynamics simulation method was developed previously for sampling the multidimensional conformational space of linear and cyclic polypeptides and studying their conformational flexibility. Herein results from molecular dynamics simulations of the protein-ligand complex of the aspartyl protease rhizopuspepsin and a polypeptide inhibitor are reported. The dihedral conformational space sampling for the linear peptide inhibitor in situ was found to be increased in the mass-weighted simulation as in other molecular systems previously studied. More significantly, the physical space of the enzyme binding pocket was also sampled efficiently in the simulations and multiple binding sites were identified for the inhibitor. These results suggest that it may be possible now to study, by computer simulations, the putative initial enzyme-inhibitor complex suggested experimentally from the time-dependent kinetics of enzyme inhibition by slow-binding inhibitors (Morrison, J. F., and C. T. Walsh. 1988. Adv. Enzymol. 61:201), and/or conformational substates in protein-ligand complexes suggested in the study of reassociation dynamics of myoglobin and carbon monoxide following photolysis (Austin, R. H., K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. 1975. Biochemistry. 14:5355). Moreover, the intermediate binding steps and the molecular flexibility of the inhibitor shown in the MWMD simulation may have crucial roles in the ligand binding process.
Collapse
Affiliation(s)
- B Mao
- Upjohn Research Laboratories, Kalamazoo, Michigan 49001
| |
Collapse
|
297
|
Abstract
The kinetics of a branched-pathway mechanism for a simple enzymic reaction were studied. In this mechanism there is reversible formation of an inactive form of the second complex along the pathway. This substrate-induced inactivation typically results in the progress curve showing a burst. Three parameters can be obtained from the progress curve: the initial rate, the final rate and the rate constant characterizing the transient. The rate constant for the conversion of the inactive form of the complex into the active form can be obtained either from these parameters or by measuring the regain of enzymic activity. The partition ratio can also be obtained from the three parameters; this is the ratio of the rate of conversion of complex into product to the rate of conversion of complex into inactive form. Simulations give guidance to the conditions required for accurate determinations of the rate constants.
Collapse
Affiliation(s)
- S G Waley
- Laboratory of Molecular Biophysics, University of Oxford, U.K
| |
Collapse
|
298
|
Hofsteenge J, Vincentini A, Stone SR. Purification and characterization of truncated ribonuclease inhibitor. Biochem J 1991; 275 ( Pt 2):541-3. [PMID: 2025233 PMCID: PMC1150084 DOI: 10.1042/bj2750541] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A recombinant pig ribonuclease inhibitor (delta r-RI) lacking 90 or 93 N-terminal amino acid residues was isolated from a preparation of recombinant inhibitor. The kinetic parameters for the inhibition of ribonuclease A by delta r-RI were determined and found to be only slightly altered in comparison with the full-length inhibitor. The deletion did, however, affect the surface properties of RI. The results are discussed in relation to those obtained by Lee & Vallee [(1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1879-1883].
Collapse
|
299
|
'Slow-binding' sixth-ligand inhibitors of cytochrome P-450 aromatase. Studies with 19-thiomethyl- and 19-azido-androstenedione. Biochem J 1991; 273 ( Pt 3):533-9. [PMID: 1996954 PMCID: PMC1149795 DOI: 10.1042/bj2730533] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The progress curves for the inhibition of aromatase by 19-thiomethylandrostenedione and 19-azidoandrostenedione were found to be non-linear where the extent of inhibition increased with time. Further experiments enabled these compounds to be classified as 'slow-binding' inhibitors of aromatase. The phenomenon was attributed to the formation of an initial E.I complex that rearranged to another species (E.I*) in which the interaction between the enzyme and inhibitor had been maximized, giving rise to tighter binding. When 19-thiomethylandrostenedione was used as the inhibitor the t0.5 (half-time) for the dissociation of E.I* was calculated to be 12.6 min with Ki and Ki* values of 2.4 and 1.4 nM respectively. In the case of 19-azidoandrostenedione, the two separate dissociation constants were not determined, and a single Ki value of 5 nM was obtained. The conclusions drawn from kinetic studies were confirmed by absorption spectrometry, when time-dependent formation of complexes between aromatase and either 19-thiomethylandrostenedione or 19-azidoandrostenedione were observed by the formation of 'Type II' spectra. The two complexes respectively had maxima at 429 and 418 nm. The spectral data suggested that the two inhibitors interact with the haem iron of aromatase, forming hexaco-ordinated species for which structural models are presented.
Collapse
|
300
|
Skoglof A, Göthe PO, Deinum J. Effect of temperature and chloride on steady-state inhibition of angiotensin I-converting enzyme by enalaprilat and ramiprilat. Biochem J 1990; 272:415-9. [PMID: 2176463 PMCID: PMC1149715 DOI: 10.1042/bj2720415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kinetics of the steady-state inhibition of angiotension I-converting enzyme (EC 3.4.15.1) at 25 degrees C and 37 degrees C with enalaprilat and ramiprilat can be simulated, assuming only one inhibitor-binding site, consistent with a 1:1 stoichiometry if the protein concentration was determined by amino acid analysis. In this temperature range the apparent inhibition constants for ramiprilat and enalaprilat were roughly doubled by a decrease in the chloride concentration from 0.300 M to 0.120 M.
Collapse
Affiliation(s)
- A Skoglof
- Department of Biochemistry and Biophysics, Chalmers University of Technology, Göteborg, Sweden
| | | | | |
Collapse
|