251
|
Yu ZF, Mattson MP. Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: Evidence for a preconditioning mechanism. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990915)57:6<830::aid-jnr8>3.0.co;2-2] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
252
|
Abstract
Addition of lipopolysaccharide (LPS) to cells in the form of LPS-soluble (s)CD14 complexes induces strong cellular responses. During this process, LPS is delivered from sCD14 to the plasma membrane, and the cell-associated LPS is then rapidly transported to an intracellular site. This transport appears to be important for certain cellular responses to LPS, as drugs that block transport also inhibit signaling and cells from LPS-hyporesponsive C3H/HeJ mice fail to exhibit this transport. To identify the intracellular destination of fluorescently labeled LPS after its delivery from sCD14 into cells, we have made simultaneous observations of different organelles using fluorescent vital dyes or probes. Endosomes, lysosomes, the endoplasmic reticulum, and the Golgi apparatus were labeled using Texas red (TR)-dextran, LysoTrackertrade mark Red DND-99, DiOC6(3), and boron dipyrromethane (BODIPY)-ceramide, respectively. After 30 min, LPS did not colocalize with endosomes, lysosomes, or endoplasmic reticulum in polymorphonuclear leukocytes, although some LPS-positive vesicles overlapped with the endosomal marker, fluorescent dextran. On the other hand, LPS did appear to colocalize with two markers of the Golgi apparatus, BODIPY-ceramide and TRITC (tetramethylrhodamine isothiocyanate)-labeled cholera toxin B subunit. We further confirmed the localization of LPS in the Golgi apparatus using an epithelial cell line, HeLa, which responds to LPS-sCD14 complexes in a CD14-dependent fashion: BODIPY-LPS was internalized and colocalized with fluorescently labeled Golgi apparatus probes in live HeLa cells. Morphological disruption of the Golgi apparatus in brefeldin A-treated HeLa cells caused intracellular redistribution of fluorescent LPS. These results are consistent with the Golgi apparatus being the primary delivery site of monomeric LPS.
Collapse
|
253
|
Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res 1999; 57:195-206. [PMID: 10398297 DOI: 10.1002/(sici)1097-4547(19990715)57:2<195::aid-jnr5>3.0.co;2-p] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parkinson's disease (PD) is an age-related disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN) and corresponding motor deficits. Oxidative stress and mitochondrial dysfunction are implicated in the neurodegenerative process in PD. Although dietary restriction (DR) extends lifespan and reduces levels of cellular oxidative stress in several different organ systems, the impact of DR on age-related neurodegenerative disorders is unknown. We report that DR in adult mice results in resistance of dopaminergic neurons in the SN to the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-induced loss of dopaminergic neurons and deficits in motor function were ameliorated in DR rats. To mimic the beneficial effect of DR on dopaminergic neurons, we administered 2-deoxy-D-glucose (2-DG; a nonmetabolizable analogue of glucose) to mice fed ad libitum. Mice receiving 2-DG exhibited reduced damage to dopaminergic neurons in the SN and improved behavioral outcome following MPTP treatment. The 2-DG treatment suppressed oxidative stress, preserved mitochondrial function, and attenuated cell death in cultured dopaminergic cells exposed to the complex I inhibitor rotenone or Fe2+. 2-DG and DR induced expression of the stress proteins heat-shock protein 70 and glucose-regulated protein 78 in dopaminergic cells, suggesting involvement of these cytoprotective proteins in the neuroprotective actions of 2-DG and DR. The striking beneficial effects of DR and 2-DG in models of PD, when considered in light of recent epidemiological data, suggest that DR may prove beneficial in reducing the incidence of PD in humans.
Collapse
Affiliation(s)
- W Duan
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
| | | |
Collapse
|
254
|
Lee J, Bruce-Keller AJ, Kruman Y, Chan SL, Mattson MP. 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res 1999; 57:48-61. [PMID: 10397635 DOI: 10.1002/(sici)1097-4547(19990701)57:1<48::aid-jnr6>3.0.co;2-l] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food restriction can extend life span in rodents and was recently reported to increase the resistance of neurons in the brain to excitotoxic and metabolic insults. In principle, administration to ad libitum fed rodents of an agent that reduces glucose availability to cells should mimick certain aspects of food restriction. We now report that administration of 2-deoxy-D-glucose (2DG), a non-metabolizable analog of glucose, to adult rats results in a highly significant reduction in seizure-induced spatial memory deficits and hippocampal neuron loss. Pretreatment of rat hippocampal cell cultures with 2DG decreases the vulnerability of neurons to excitotoxic (glutamate) and oxidative (Fe2+) insults. The protective action of 2DG is associated with decreased levels of cellular oxidative stress and enhanced calcium homeostasis. 2DG treatment increased levels of the stress-responsive proteins GRP78 and HSP70 in hippocampal neurons, without affecting levels of Bcl-2 or GRP75, suggesting that mild reductions in glucose availability can increase neuronal resistance to oxidative and metabolic insults by a mechanism involving induction of stress proteins. Our findings establish cell culture and in vivo models of "chemical food restriction" which may prove useful in elucidating mechanisms of neuroprotection and in developing preventive approaches for neurodegenerative disorders that involve oxidative stress and excitotoxicity.
Collapse
Affiliation(s)
- J Lee
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
255
|
Abstract
The endoplasmic reticulum (ER) serves several important functions. Cholesterol, an essential component of cellular membranes, is synthesized on the ER surface. Inside the organelle, proteins destined for secretion or transport to the cell surface are folded and become glycosylated. Because these processes are essential for cell viability, a disturbance in ER function presents significant stress to the cell. In response to ER stress, three distinct signal transduction pathways can be activated. Two of these, the unfolded protein response and the ER-overload response, respond to disturbances in protein processing. The third, the sterol regulatory cascade, is activated by depletion of cholesterol. This review summarizes the recent advances in our understanding of these ER-nuclear signal transduction pathways. In addition, it points to novel regulatory mechanisms discovered in these pathways, which may be widely used in other systems.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
256
|
Sandig G, Kärgel E, Menzel R, Vogel F, Zimmer T, Schunck WH. Regulation of endoplasmic reticulum biogenesis in response to cytochrome P450 overproduction. Drug Metab Rev 1999; 31:393-410. [PMID: 10335443 DOI: 10.1081/dmr-100101926] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- G Sandig
- Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
257
|
Housby JN, Cahill CM, Chu B, Prevelige R, Bickford K, Stevenson MA, Calderwood SK. Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine 1999; 11:347-58. [PMID: 10328874 DOI: 10.1006/cyto.1998.0437] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent studies have shown that the non-steroidal anti-inflammatory drugs (NSAIDs) activate heat shock transcription factor (HSF1) from a latent cytoplasmic form to a nuclear, DNA binding state. As HSF1 can function as both an activator of heat shock genes and a repressor of non-heat shock genes such as IL1B and c- fos, we have examined the potential role of HSF1 in the effects of NSAIDs on gene expression in a human monocytic cell line THP-1. We found that two members of the NSAIDs, sodium salicylate and sulindac repress the IL1B promoter to similar degree to heat shock or HSF1 overexpression. In addition, sodium salicylate and additional NSAIDs used at concentrations that activate HSF1 also inhibited the expression of other monocytic genes (TNF-alpha, IL-1beta, IL-6, IL-8, IL-10, ICAM-1) activated by exposure to a pro-inflammatory stimulus (lipopolysaccharide, LPS). At least in the case of the IL1B promoter, repression did not seem to involve another factor whose activity is affected by the NSAIDs, NFkappaB as the IL1B promoter fragment used in our studies is not NFkappaB responsive and binds specifically to HSF1. Exposure to NSAIDs had a complex effect on HSP gene expression and while sulindac activated the stress responsive HSP70B promoter, sodium salicylate did not. In addition, only a subset of the NSAIDs induced HSP70 mRNA species. These findings reflect the properties of HSF1 which can be activated to at least two DNA binding forms only one of which activates heat shock promoters and suggest that individual NSAID family members may differentially induce one or other of these forms. Overall therefore, exposure to NSAIDs leads to a profound switch in gene expression in monocytic cells, with suppression of genes involved in macrophage activation and induction of stress genes and HSF1 appears to play a regulatory role in these effects.
Collapse
Affiliation(s)
- J N Housby
- Dana Farber Cancer Institute and Joint Center for Radiation Therapy, Jimmy Fund Laboratories 205, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
258
|
Jousse C, Bruhat A, Harding HP, Ferrara M, Ron D, Fafournoux P. Amino acid limitation regulates CHOP expression through a specific pathway independent of the unfolded protein response. FEBS Lett 1999; 448:211-6. [PMID: 10218478 DOI: 10.1016/s0014-5793(99)00373-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gene encoding CHOP (C/EBP-homologous protein) is transcriptionally activated by many stimuli and by amino acid deprivation. CHOP induction was considered to be due to an accumulation of unfolded protein into the ER (unfolded protein response (UPR)). We investigate the role of the UPR in the induction of CHOP by amino acid deprivation and show that this induction is not correlated with BiP expression (an UPR marker). Moreover, amino acid deprivation and UPR inducers regulate the CHOP promoter activity using distinct cis elements. We conclude that amino acid deprivation does not activate the UPR and regulates CHOP expression through a pathway that is independent of the UPR.
Collapse
Affiliation(s)
- C Jousse
- UR 238 - Unité de Nutrition Cellulaire et Moléculaire, INRA de Theix, Saint Genès Champanelle, France
| | | | | | | | | | | |
Collapse
|
259
|
Piret B, Schoonbroodt S, Piette J. The ATM protein is required for sustained activation of NF-kappaB following DNA damage. Oncogene 1999; 18:2261-71. [PMID: 10327072 DOI: 10.1038/sj.onc.1202541] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells lacking an intact ATM gene are hypersensitive to ionizing radiation and show multiple defects in the cell cycle-coupled checkpoints. DNA damage usually triggers cell cycle arrest through, among other things, the activation of p53. Another DNA-damage responsive factor is NF-kappaB. It is activated by various stress situations, including oxidative stress, and by DNA-damaging compounds such as topoisomerase poisons. We found that cells from Ataxia Telangiectasia patients exhibit a defect in NF-kappaB activation in response to treatment with camptothecin, a topoisomerase I poison. In AT cells, this activation is shortened or suppressed, compared to that observed in normal cells. Ectopic expression of the ATM protein in AT cells increases the activation of NF-kappaB in response to camptothecin. MO59J glioblastoma cells that do not express the DNA-PK catalytic subunit respond normally to camptothecin. These results support the hypothesis that NF-kappaB is a DNA damage-responsive transcription factor and that its activation pathway by DNA damage shares some components with the one leading to p53 activation.
Collapse
Affiliation(s)
- B Piret
- Laboratory of Fundamental Virology and Immunology, University of Liège, CHU, Belgium
| | | | | |
Collapse
|
260
|
Ozawa K, Kuwabara K, Tamatani M, Takatsuji K, Tsukamoto Y, Kaneda S, Yanagi H, Stern DM, Eguchi Y, Tsujimoto Y, Ogawa S, Tohyama M. 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J Biol Chem 1999; 274:6397-404. [PMID: 10037731 DOI: 10.1074/jbc.274.10.6397] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the contribution of 150-kDa oxygen-regulated protein (ORP150) to cellular processes underlying adaptation to hypoxia, a cell line stably transfected to overexpress ORP150 antisense RNA was created. In human embryonic kidney (HEK) cells stably overexpressing ORP150 antisense RNA, ORP150 antigen and transcripts were suppressed to low levels in normoxia and hypoxia, whereas wild-type cells showed induction of ORP150 with oxygen deprivation. Inhibition of ORP150 in antisense transfectants was selective, as hypoxia-mediated enhancement of glucose-regulated protein (GRP) 78 and GRP94 was maintained. However, antisense ORP150 transfectants displayed reduced viability when subjected to hypoxia, compared with wild-type and sense-transfected HEK cells. In contrast, diminished levels of ORP150 had no effect on cytotoxicity induced by other stimuli, including oxygen-free radicals and sodium arsenate. Although cellular ATP content was similar in hypoxia, compared with ORP150 antisense transfectants and wild-type HEK cells, suppression of ORP150 expression was associated with accelerated apoptosis. Hypoxia-mediated cell death in antisense HEK transfectants did not cause an increase in caspase activity or in cytoplasmic cytochrome c antigen. A well recognized inducer of apoptosis in HEK cells, staurosporine, caused increased caspase activity and cytoplasmic cytochrome c levels in both wild-type and antisense cells. These data indicate that ORP150 has an important cytoprotective role in hypoxia-induced cellular perturbation and that ORP150-associated inhibition of apoptosis may involve mechanisms distinct from those triggered by other apoptotic stimuli.
Collapse
Affiliation(s)
- K Ozawa
- Department of Anatomy and Neuroscience, Biomedical Research Center, Osaka University Medical School, 2-2 Yamada-oka, Suita City 565, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Saunders PA, Chen RW, Chuang DM. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase isoforms during neuronal apoptosis. J Neurochem 1999; 72:925-32. [PMID: 10037463 DOI: 10.1046/j.1471-4159.1999.0720925.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Treatment with cytosine beta-D-arabinoside (AraC; 300 microM) induced a time-dependent accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein in nuclei purified from cultured cerebellar granule cells, with a concomitant degradation of lamin B1, a nuclear membrane protein and a substrate of CPP32/caspase-3. Moreover, Asp-Glu-Val-Asp-fluoromethyl ketone (DEVD-fmk), a CPP32-selective antagonist, dose-dependently suppressed AraC-induced apoptosis of these neurons. Nuclear accumulation of GAPDH protein was associated with a progressive decrease in the activity of uracil-DNA glycosylase (UDG), one of the nuclear functions of GAPDH. The nuclear dehydrogenase activity of GAPDH was initially increased after treatment and then decreased parallel to UDG activity. Six GAPDH isoforms were detected in the nuclei of AraC-treated cells. The more alkaline isoforms, 1-3, constituted the bulk of the nuclear GAPDH, and the remaining isoforms, 4-6, were the minor species. Levels of all six isoforms were increased after treatment with AraC for 16 h; a 4-h treatment increased levels of only isoforms 4 and 5. Thus, it appears that various GAPDH isoforms are differentially regulated and may have distinct apoptotic roles. Pretreatment with GAPDH antisense oligonucleotide blocked the nuclear translocation of GAPDH isoforms, and the latter process occurred concurrently with a decrease in cytosolic GAPDH isoforms. Sodium nitroprusside-induced NAD labeling of nuclear GAPDH showed a 60% loss of GAPDH labeling after AraC treatment, suggesting that the active site of GAPDH may be covalently modified, denatured, or improperly folded. The unfolded protein response elicited by denatured GAPDH may contribute to AraC-induced neuronal death.
Collapse
Affiliation(s)
- P A Saunders
- Section on Molecular Neurobiology, Biological Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1272, USA
| | | | | |
Collapse
|
262
|
Largo R, Gómez-Garre D, Soto K, Marrón B, Blanco J, Gazapo RM, Plaza JJ, Egido J. Angiotensin-converting enzyme is upregulated in the proximal tubules of rats with intense proteinuria. Hypertension 1999; 33:732-9. [PMID: 10024337 DOI: 10.1161/01.hyp.33.2.732] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Persistent proteinuria is considered a deleterious prognostic factor in most progressive renal diseases. However, the mechanisms by which proteinuria induces renal damage remain undetermined. Since proximal tubular cells possess all the machinery to generate angiotensin II (Ang II), we approached the hypothesis that proteinuria could elicit the renal activation of the renin-angiotensin system in a model of intense proteinuria and interstitial nephritis induced by protein overload. After uninephrectomy (UNX), Wistar-Kyoto rats received daily injections of 1 g BSA or saline for 8 days. The mean peak of proteinuria was observed at the fourth day (538+/-89 versus 3+/-1 mg/24 h in UNX controls; n=12; P<0.05) and was increased during the whole study period (at the eighth day: 438+/-49 mg/24 h; n=12; P=NS). Morphological examination of the kidneys at the end of the study showed marked tubular lesions (atrophy, vacuolization, dilation, and casts), interstitial infiltration of mononuclear cells, and mesangial expansion. In relation to UNX control rats, renal cortex of BSA-overloaded rats showed an increment in the gene expression of angiotensinogen (2.4-fold) and angiotensin-converting enzyme (ACE) (2.1-fold), as well as a diminution in renin gene expression. No changes were observed in angiotensin type 1 (AT1) receptor mRNA expression in both groups of rats. By in situ reverse transcription-polymerase chain reaction and immunohistochemistry, ACE expression (gene and protein) was mainly localized in proximal and distal tubules and in the glomeruli. By immunohistochemistry, angiotensinogen was localized only in proximal tubules, and AT1 receptor was localized mainly in proximal and distal tubules. In the tubular brush border, an increase in ACE activity was also seen (5. 5+/-0.5 versus 3.1+/-0.7 U/mg protein x10(-4) in UNX control; n=7; P<0.05). Our results show that in the kidney of rats with intense proteinuria, ACE and angiotensinogen were upregulated, while gene expression of renin was inhibited and AT1 was unmodified. On the whole, these data suggest an increase in Ang II intrarenal generation. Since Ang II can elicit renal cell growth and matrix production through the activation of AT1 receptor, this peptide may be responsible for the tubulointerstitial lesions occurring in this model. These results suggest a novel mechanism by which proteinuria may participate in the progression of renal diseases.
Collapse
Affiliation(s)
- R Largo
- Renal and Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Chapman R, Sidrauski C, Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu Rev Cell Dev Biol 1999; 14:459-85. [PMID: 9891790 DOI: 10.1146/annurev.cellbio.14.1.459] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding ER resident proteins. The information is transmitted from the ER lumen to the nucleus by an intracellular signaling pathway called the unfolded protein response (UPR). Recent work has shown that this signaling pathway utilizes several novel mechanisms, including translational attenuation and a regulated mRNA splicing step. In this review we aim to integrate these recent advances with current knowledge about maintenance of ER composition and abundance.
Collapse
Affiliation(s)
- R Chapman
- Howard Hughes Medical Institute, University of California, San Francisco 94143-0448, USA
| | | | | |
Collapse
|
264
|
Reduced Expression of Adhesion Molecules and Cell Signaling Receptors by Chronic Lymphocytic Leukemia Cells With 11q Deletion. Blood 1999. [DOI: 10.1182/blood.v93.2.624] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Deletions in chromosome bands 11q22-q23 were recently shown to be one of the most frequent chromosome aberrations in B-cell chronic lymphocytic leukemia (B-CLL). Patients suffering from B-CLL with 11q deletion are characterized by extensive lymphadenopathy, rapid disease progression, and short survival times. Phenotypic and functional characteristics of B-CLL cells with 11q deletion that may help to explain the pathophysiology of this entity are yet unknown. In the present study, B-CLL cells with (n = 19) and without (n = 19) 11q deletion were analyzed for their expression of functionally relevant cell surface molecules (n = 57). B-CLL cells with 11q deletion carried significantly lower levels of the adhesion molecules CD11a/CD18 (integrin L/β2), CD11c/CD18 (integrin X/β2), CD31 (PECAM-1), CD48, and CD58 (LFA-3). Furthermore, B-CLL cells with 11q deletion expressed less the cell signaling receptors CD45 (leukocyte common antigen [LCA]), CD6, CD35 (complement receptor 1), and CD39. Reduced CD45 levels and low-level expression of CD49d correlated with decreased overall survival. B-CLL cells with or without 11q deletion did not differ in their growth fractions, expression levels of transcription factor NF-κB, or their response to mitogenic stimuli. Decreased levels of functionally relevant adhesion molecules and of cell signaling receptors may contribute to the pathogenesis of the subgroup of B-CLL characterized by 11q22-q23 deletion.
Collapse
|
265
|
Reduced Expression of Adhesion Molecules and Cell Signaling Receptors by Chronic Lymphocytic Leukemia Cells With 11q Deletion. Blood 1999. [DOI: 10.1182/blood.v93.2.624.402k10_624_631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletions in chromosome bands 11q22-q23 were recently shown to be one of the most frequent chromosome aberrations in B-cell chronic lymphocytic leukemia (B-CLL). Patients suffering from B-CLL with 11q deletion are characterized by extensive lymphadenopathy, rapid disease progression, and short survival times. Phenotypic and functional characteristics of B-CLL cells with 11q deletion that may help to explain the pathophysiology of this entity are yet unknown. In the present study, B-CLL cells with (n = 19) and without (n = 19) 11q deletion were analyzed for their expression of functionally relevant cell surface molecules (n = 57). B-CLL cells with 11q deletion carried significantly lower levels of the adhesion molecules CD11a/CD18 (integrin L/β2), CD11c/CD18 (integrin X/β2), CD31 (PECAM-1), CD48, and CD58 (LFA-3). Furthermore, B-CLL cells with 11q deletion expressed less the cell signaling receptors CD45 (leukocyte common antigen [LCA]), CD6, CD35 (complement receptor 1), and CD39. Reduced CD45 levels and low-level expression of CD49d correlated with decreased overall survival. B-CLL cells with or without 11q deletion did not differ in their growth fractions, expression levels of transcription factor NF-κB, or their response to mitogenic stimuli. Decreased levels of functionally relevant adhesion molecules and of cell signaling receptors may contribute to the pathogenesis of the subgroup of B-CLL characterized by 11q22-q23 deletion.
Collapse
|
266
|
Alvarez C, Sztul ES. Brefeldin A (BFA) disrupts the organization of the microtubule and the actin cytoskeletons. Eur J Cell Biol 1999; 78:1-14. [PMID: 10082419 DOI: 10.1016/s0171-9335(99)80002-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous inquiries into the effects of Brefeldin A (BFA) have largely concentrated on dynamics of ER-Golgi membrane traffic, predominantly after relatively short treatments with the drug. We have now analyzed the effects of long BFA treatment on overall cell morphology, behavior of resident and cycling Golgi proteins, and microtubular and actin cytoskeletons organization. Prolonged (15 h or 40 h) treatment of normal rat kidney (NRK) cells with BFA caused dramatic swelling of the Endoplasmic Reticulum (ER) and shifted its localization to the periphery of the cells. The Golgi complex was disassembled and Golgi proteins redistributed and persisted in partially distinct compartments. Prolonged BFA treatment resulted in marked disruption of the MT and actin cytoskeleton. Peripheral MT were absent and tubulin staining was concentrated in short astral MT emanating from the microtubule organizing center (MTOC). Actin stress fibers were largely absent and actin staining was concentrated within a perinuclear area. Within this region, actin localization overlapped that of the membrane transport factor p115. BFA effects on Golgi structure and on MT and actin organization showed the same threshold -- all could be partially reversed after 30 min and 15 h BFA treatment but were irreversible after 40h incubation with the drug. The observed effects were not induced by signaling pathways involved in apoptotic phenomena or in ER stress response pathways. These results suggest that BFA inhibits the activity of key molecules that regulate MT and actin cytoskeleton dynamics. The findings can be used as the basis for elucidating the molecular mechanism of BFA action on the cytoskeleton.
Collapse
Affiliation(s)
- C Alvarez
- Department of Cell Biology, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
267
|
Affiliation(s)
- G Remuzzi
- Mario Negri Institute for Pharmacological Research, Nephrology Unit, Ospedali Riuniti di Bergamo, Italy
| | | |
Collapse
|
268
|
Suzuki H, Kumagai T, Goto A, Sugiura T. Increase in intracellular hydrogen peroxide and upregulation of a nuclear respiratory gene evoked by impairment of mitochondrial electron transfer in human cells. Biochem Biophys Res Commun 1998; 249:542-5. [PMID: 9712733 DOI: 10.1006/bbrc.1998.9181] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated an interorganelle communication pathway between the nucleus and mitochondria. We loaded a stress specific to mitochondria of human fibroblast cells by antimycin A (AA), an inhibitor of the mitochondrial cytochrome bc1 complex. AA inhibited cellular respiration in a dose-dependent manner. When the respiratory capacity was reduced to 50-70% of the original one, mRNA levels of cytochrome c1 as well as cytochrome b increased at 24 h after AA treatment, resulting in maintenance of the cell viability. In contrast, the cells retaining less than 40% of the original capacity showed no increase in either mRNA level and were targeted for death. Intracellular H2O2 level monitored by the fluorescence of dichlorofluorescein increased within 3 h in both the cases, although this increase was higher in the cells where the mRNA levels increased. An antioxidant N-acetylcysteine repressed the increases of not only H2O2 but also cytochrome c1 mRNA levels. These results suggest that the cells can respond to a limited impairment of electron transfer by promoting expression of nuclear and mitochondrial genes, probably through an H2O2-dependent signaling pathway.
Collapse
Affiliation(s)
- H Suzuki
- Laboratory of Molecular Biology and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka-cho, Yoshida-gun, Fukui, 9101195, Japan
| | | | | | | |
Collapse
|
269
|
Vandenbroeck K, Billiau A. Interferon-gamma is a target for binding and folding by both Escherichia coli chaperone model systems GroEL/GroES and DnaK/DnaJ/GrpE. Biochimie 1998; 80:729-37. [PMID: 9865495 DOI: 10.1016/s0300-9084(99)80026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
IFN-gamma can be physicochemically distinguished from interferons-alpha, -beta or -omega through the loss of its tertiary structure and biological activity upon exposure to acid or heat. This loss is due to the irreversible aggregation of an unfolded or partially folded state. The conformational instability of IFN-gamma is reflected by its impairment to fold properly when overexpressed in Escherichia coli, resulting in its accumulation in cytoplasmic inclusion bodies. Chaperones were originally identified as a heterogeneous group of proteins that mediate the folding and correct assembly of various polypeptide substrates, and protect thermolabile proteins against inactivation. In either of both cases, chaperones prevent irreversible misfolding by assisting the substrate protein along its pathway to a stable tertiary conformation. Among the best characterized chaperones are the Escherichia coli Hsp60 and Hsp70 heat shock protein complexes, i.e., GroEL/GroES and DnaK/DnaJ/GrpE. They exhibit entirely different reaction mechanisms, which, however, both depend on hydrolysis of ATP. The unfolding of recombinant IFN-gamma by acid or heat can be used as a tool to assess its in vitro interaction with each of both chaperone systems at physiological temperature (35 degrees C). Using such an experimental set-up, both the DnaK and GroEL chaperone systems appeared to form complexes with IFN-gamma from which correctly folded protein was released in an ATP-dependent manner. In addition to the biotechnological implication of these observations, the relevance to de novo folding of IFN-gamma is discussed.
Collapse
Affiliation(s)
- K Vandenbroeck
- Laboratory of Immunobiology, Rega Institute for Medical Research, Leuven, Belgium
| | | |
Collapse
|
270
|
Basu S, Rosenzweig KR, Youmell M, Price BD. The DNA-dependent protein kinase participates in the activation of NF kappa B following DNA damage. Biochem Biophys Res Commun 1998; 247:79-83. [PMID: 9636658 DOI: 10.1006/bbrc.1998.8741] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The NFkB transcription factor is activated by diverse stimuli, including Ionizing Radiation (IR) and the cytokine TNF alpha. The role of DNA-PK, a protein kinase involved in the response to DNA damage, in the activation of NF kappa B by IR and TNF alpha was examined. In M059K cells, which express DNA-PK, NF kappa B was activated by both TNF alpha and IR. In M059J cells, which do not express DNA-PK, IR did not activate NF kappa B, whereas TNF alpha induction of NF kappa B was still observed. In HeLa cells, wortmannin, an inhibitor of DNA-PK, blocked the induction of NF kappa B by IR but not by TNF alpha. DNA-PK also phosphorylated the NF kappa B inhibitory proteins IkB-alpha and IkB-beta in vitro, and deletion analysis demonstrated that DNA-PK phosphorylates 2 distinct regions of IkB-beta. These results indicate that DNA-PK participates in the activation of NF kappa B by IR but not by TNF alpha.
Collapse
Affiliation(s)
- S Basu
- Joint Center for Radiation Therapy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
271
|
Zoja C, Donadelli R, Colleoni S, Figliuzzi M, Bonazzola S, Morigi M, Remuzzi G. Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kappa B activation. Kidney Int 1998; 53:1608-15. [PMID: 9607191 DOI: 10.1046/j.1523-1755.1998.00905.x] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abnormal traffic of proteins through the glomerular capillary has an intrinsic renal toxicity possibly linked to the subsequent process of proximal tubular reabsorption. Here we investigated in vitro the effect of protein overload on proximal tubular cell production of RANTES, a nuclear factor-kappa B (NF-kappa B)-dependent chemokine with potent chemotactic activity for monocytes/macrophages and T lymphocytes. Confluent pig LLC-PK1 cells were incubated for 24 and 48 hours with Eagle's MEM plus 0.5% FCS containing bovine serum albumin (BSA, 1 to 30 mg/ml). Tumor necrosis factor-alpha (TNF-alpha; 100 U/ml) was used as a positive control. RANTES was measured in cell supernatants by ELISA. Bovine serum albumin (BSA) induced a time- and dose-dependent increase in proximal tubular cell RANTES production. Selected experiments using transwells showed that the RANTES release was predominantly basolateral. The stimulatory effect on tubular RANTES was not specific to albumin but was shared by immunoglobulin (Ig) G. We then explored the role of NF-kappa B on BSA-induced RANTES. The NF-kappa B inhibitors pyrrolidine dithiocarbamate (PDTC; 25 microM) and sodium salicylate (10 mM) significantly reduced BSA-induced RANTES production. Electrophoretic mobility shift assay of nuclear extracts of LLC-PK1 exposed to BSA revealed an intense NF-kappa B activation as early as 30 minutes in a dose-dependent fashion, which was inhibited by PDTC. Supershift analysis revealed that the protein subunits of activated NF-kappa B were p65/p65 homodimer, p65/cRel, p50/p65 heterodimers. Given its chemotactic activity, RANTES released into the interstitium might promote inflammatory cell recruitment and contribute to interstitial inflammation and renal disease progression.
Collapse
Affiliation(s)
- C Zoja
- Mario Negri Institute for Pharmacological Research, Azienda Ospedaliera, Ospedali Riuniti di Bergamo, Italy
| | | | | | | | | | | | | |
Collapse
|
272
|
Eleouet JF, Chilmonczyk S, Besnardeau L, Laude H. Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway. J Virol 1998; 72:4918-24. [PMID: 9573259 PMCID: PMC110052 DOI: 10.1128/jvi.72.6.4918-4924.1998] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1997] [Accepted: 03/16/1998] [Indexed: 02/07/2023] Open
Abstract
In this report, we show that apoptosis (or programmed cell death) is induced in different cell lines infected with a coronavirus, the porcine transmissible gastroenteritis virus (TGEV). Kinetic analysis of internucleosomal DNA cleavage by agarose gel electrophoresis and flow cytometry or cytometric monitoring of the mitochondrial transmembrane potential showed that, for ST cells infected with TGEV, the first overt signs of apoptosis appeared from 10 to 12 h postinfection on. They preceded morphological changes characteristic of cells undergoing apoptosis, as observed by light and electron microscopy. The tripeptide pan-ICE (caspase) inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone blocked TGEV-induced apoptosis with no effect on virus production. The thiol agent pyrrolidine dithiocarbamate inhibited apoptosis, suggesting that TGEV infection may lead to apoptosis via cellular oxidative stress. The effect of TGEV infection on activation of NF-kappaB, a transcription factor known to be activated by oxidative stress, was examined. NF-kappaB DNA binding was shown to be strongly and quickly induced by TGEV infection. However, transcription factor decoy experiments showed that NF-kappaB activation is not critical for TGEV-induced apoptosis.
Collapse
Affiliation(s)
- J F Eleouet
- Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
273
|
Maehama T, Patzelt A, Lengert M, Hutter KJ, Kanazawa K, Hausen H, Rösl F. Selective down-regulation of human papillomavirus transcription by 2-deoxyglucose. Int J Cancer 1998; 76:639-46. [PMID: 9610719 DOI: 10.1002/(sici)1097-0215(19980529)76:5<639::aid-ijc5>3.0.co;2-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The glycolytic pathway inhibitor 2-deoxyglucose (2-DG) is capable of suppressing the transcription of the human pathogenic papillomavirus type 18 (HPV 18) in cervical carcinoma cells and derived non-tumorigenic somatic cell hybrids at the level of transcription initiation. HPV down-regulation is selective, since other reference genes are not affected or even up-regulated under the same experimental conditions. Moreover, 2-DG appears to restore the normal half-life of the tumor suppressor gene product p53, because the protein is strongly up-regulated after HPV 18 E6/E7 suppression. The observed 2-DG-effect is not cytotoxic and is reversible after refeeding with fresh medium. HPV 18 suppression by 2-DG can be completely abrogated by simultaneous treatment with the intracellular Ca2+ antagonist TMB-8, indicating that Ca2+, a known intracellular "second messenger", is involved in this process. Elevated c-myc and p53 expression appears to be responsible for the time-dependent accumulation of apoptotic cells after prolonged 2-DG treatment. The finding that 2-DG acts selectively against the expression of a human pathogenic papillomavirus strongly suggests that an appropriate level of glycolysis is not only a peculiarity of growing tumors, but even may be an essential prerequisite for the maintenance of virus-specific E6/E7 gene expression. Our results may have substantial implications for the potential therapeutic application of 2-DG or other glucose derivatives in the treatment of precancerous and malignant HPV-associated lesions.
Collapse
Affiliation(s)
- T Maehama
- Department of Obstetrics and Gynecology, School of Medicine, University of the Ryukyus, Japan
| | | | | | | | | | | | | |
Collapse
|
274
|
Baumann B, Kistler B, Kirillov A, Bergman Y, Wirth T. The mutant plasmacytoma cell line S107 allows the identification of distinct pathways leading to NF-kappaB activation. J Biol Chem 1998; 273:11448-55. [PMID: 9565556 DOI: 10.1074/jbc.273.19.11448] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies on the mechanisms of inducible and constitutive activity of NF-kappaB transcription factors have been hampered by the lack of appropriate mutant cell lines. We have analyzed the defect in the murine S107 plasmacytoma cell line, which was previously found to lack both constitutive and inducible NF-kappaB activity. Our analysis shows that these cells bear a specific defect that interferes with NF-kappaB induction by many diverse stimuli, such as lipopolysaccharide, phorbol 12-myristate 13-acetate, UV light, x-rays, and H2O2. This does not however represent a general signal transduction defect, because AP-1 transcription factors are readily induced by the same stimuli. Phosphatase inhibitors such as okadaic acid as well as calyculin A can efficiently induce NF-kappaB in S107 cells via a pathway apparently insensitive to the radical scavenger pyrrolidine dithiocarbamate. Furthermore, MEKK1 a protein kinase supposedly induced by some of the above stimuli, is also capable of activating NF-kappaB. Interestingly, both the potent physiological inducer of NF-kappaB TNFalpha as well as endoplasmic reticulum overload can induce NF-kappaB via a PDTC sensitive pathway. In all cases, DNA-binding NF-kappaB complexes are comprised predominantly of p50-RelA heterodimers, and NF-kappaB activation results in the induction of transiently transfected or resident reporter genes. In summary, these results suggest that the pathways for many NF-kappaB-inducing stimuli converge at a specific junction, and this pivotal step is mutated in the S107 cell line. Yet there are alternative routes bypassing this critical step that also lead to NF-kappaB induction. These routes utilized by tumor necrosis factor alpha and endoplasmic reticulum overload are still intact in this cell line.
Collapse
Affiliation(s)
- B Baumann
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
275
|
Hirano F, Chung M, Tanaka H, Maruyama N, Makino I, Moore DD, Scheidereit C. Alternative splicing variants of IkappaB beta establish differential NF-kappaB signal responsiveness in human cells. Mol Cell Biol 1998; 18:2596-607. [PMID: 9566879 PMCID: PMC110639 DOI: 10.1128/mcb.18.5.2596] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To release transcription factor NF-kappaB into the nucleus, the mammalian IkappaB molecules IkappaB alpha and IkappaB beta are inactivated by phosphorylation and proteolytic degradation. Both proteins contain conserved signal-responsive phosphorylation sites and have conserved ankyrin repeats. To confer specific physiological functions to members of the NF-kappaB/Rel family, the different IkappaB molecules could vary in their specific NF-kappaB/Rel factor binding activities and could respond differently to activation signals. We have demonstrated that both mechanisms apply to differential regulation of NF-kappaB function by IkappaB beta relative to IkappaB alpha. Via alternative RNA processing, human IkappaB beta gives rise to different protein isoforms. IkappaB beta1 and IkappaB beta2, the major forms in human cells, differ in their carboxy-terminal PEST sequences. IkappaB beta2 is the most abundant species in a number of human cell lines tested, whereas IkappaB beta1 is the only form detected in murine cells. These isoforms are indistinguishable in their binding preferences to cellular NF-kappaB/Rel homo- and heterodimers, which are distinct from those of IkappaB alpha, and both are constitutively phosphorylated. In unstimulated B cells, however, IkappaB beta1, but not IkappaB beta2, is found in the nucleus. Furthermore, the two forms differ markedly in their efficiency of proteolytic degradation after stimulation with several inducing agents tested. While IkappaB beta1 is nearly as responsive as IkappaB alpha, indicative of a shared activation mechanism, IkappaB beta2 is only weakly degraded and often not responsive at all. Alternative splicing of the IkappaB beta pre-mRNA may thus provide a means to selectively control the amount of IkappaB beta-bound NF-kappaB heteromers to be released under NF-kappaB stimulating conditions.
Collapse
Affiliation(s)
- F Hirano
- Max-Delbrück-Center for Molecular Medicine MDC, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
276
|
Glocker E, Lange C, Covacci A, Bereswill S, Kist M, Pahl HL. Proteins encoded by the cag pathogenicity island of Helicobacter pylori are required for NF-kappaB activation. Infect Immun 1998; 66:2346-8. [PMID: 9573128 PMCID: PMC108202 DOI: 10.1128/iai.66.5.2346-2348.1998] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is the etiological agent in the development of chronic gastritis, duodenal ulceration, and gastric adenocarcinoma. The difference in virulence between individual strains is reflected in their ability to induce interleukin-8 (IL-8) secretion from gastric epithelial cells. It has been shown that virulence is associated with the presence of a bacterial gene cluster (a pathogenicity island). We have recently demonstrated that H. pylori-mediated IL-8 secretion requires activation of the transcription factor NF-kappaB. Here, we show that NF-kappaB induction requires six membrane proteins encoded within the pathogenicity island.
Collapse
Affiliation(s)
- E Glocker
- Institute for Experimental Cancer Research, Tumor Biology Center, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
277
|
Kretz-Remy C, Bates EE, Arrigo AP. Amino acid analogs activate NF-kappaB through redox-dependent IkappaB-alpha degradation by the proteasome without apparent IkappaB-alpha phosphorylation. Consequence on HIV-1 long terminal repeat activation. J Biol Chem 1998; 273:3180-91. [PMID: 9452429 DOI: 10.1074/jbc.273.6.3180] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report here that amino acid analogs, which activate hsp70 promoter, are powerful transcriptional activators of human immunodeficiency virus 1 (HIV-1) long terminal repeat (LTR), an activation which was impaired when the two kappaB sites present in the LTR were mutated or deleted. Amino acid analogs also stimulated the transcription of a kappaB-controlled reporter gene. Upon treatment with amino acid analogs, the two NF-kappaB subunits (p65 and p50), which are characterized by a relatively long half-life, redistributed into the nucleus where they bound to kappaB elements. This phenomenon, which began to be detectable after 1 h of treatment, was concomitant with the degradation of the short lived inhibitory subunit IkappaB-alpha by the proteasome. However, contrasting with other NF-kappaB inducers that trigger IkappaB-alpha degradation through a phosphorylation step, amino acid analogs did not change IkappaB-alpha isoform composition. Antioxidant conditions inhibited amino acid analog stimulatory action toward NF-kappaB. This suggests that aberrant protein conformation probably generates a pro-oxidant state that is necessary for IkappaB-alpha proteolysis by the proteasome. Moreover, this activation of NF-kappaB appeared different from that mediated by endoplasmic reticulum overload as it was not inhibited by calcium chelation.
Collapse
Affiliation(s)
- C Kretz-Remy
- Laboratoire du Stress Cellulaire, Centre de Génétique Moléculaire et Cellulaire, CNRS-UMR 5534, Université Claude Bernard Lyon-I, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
278
|
Hauri H, Schweizer A. The
ER
–Golgi Membrane System: Compartmental Organization and Protein Traffic. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
279
|
Abstract
Expression of many components of the secretory pathway in peptidergic neuroendocrine cells is precisely controlled in response to secretagogues. Regulated endocrine-specific protein (RESP18) was identified as a dopamine-regulated intermediate pituitary transcript. Although the amino acid sequence of RESP18 initially suggested that it might be a novel preprohormone, its widespread expression in peptide-producing neurons and endocrine cells and its localization to the lumen of the endoplasmic reticulum suggested that it subserves a unique function. Subtractive hybridization of a pituitary corticotrope AtT-20 cell line engineered for inducible RESP18 expression demonstrated a RESP18-dependent induction of several transcripts. Regulation of RESP18 expression in vitro and in vivo was accompanied by changes in the same transcripts. Several cDNAs encoding transcripts up-regulated by RESP18 were analyzed by DNA sequencing, searching the GenBank databases for homologous proteins, and Northern blotting. One novel clone showed a tissue distribution nearly identical to that of RESP18. One clone was identical to rat LIMK2, a protein kinase containing modular protein-protein interaction LIM (lin-11, isl-1, mec-3) domains. Another clone was similar to monomeric bacterial isocitrate dehydrogenases. Like the unfolded protein response, these data demonstrate a novel signaling pathway from the secretory pathway lumen to the nucleus. RESP18 acts as a lumicrine peptide (an intracellular luminal autocrine hormone) inducing this pathway.
Collapse
Affiliation(s)
- M R Schiller
- The Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105, USA
| | | | | |
Collapse
|
280
|
Xu Z, Jensen G, Yen TS. Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum. J Virol 1997; 71:7387-92. [PMID: 9311817 PMCID: PMC192084 DOI: 10.1128/jvi.71.10.7387-7392.1997] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) codes for three forms of surface protein. The minor, large form is translated from transcripts specified by the preS1 promoter, while the middle and small forms are translated from transcripts specified by the downstream S promoter. When the large surface protein is overexpressed, the secretion of both subviral and virion particles is blocked within the secretory pathway. We show here that overexpression of the large surface protein leads to up to a 10-fold activation of the S promoter but not of an unrelated promoter. Neither the middle nor the small surface protein, nor a secretable form of the large surface protein, activates the S promoter, but agents that induce endoplasmic reticulum (ER) stress have an effect similar to that of the large surface protein. The large surface protein also activates the S promoter in the context of the entire viral genome. Therefore, it appears that HBV has evolved a feedback mechanism, such that ER stress induced by accumulation of the large surface protein increases the synthesis of the middle and small surface proteins, which in combination with the large surface protein can form mixed, secretable particles. In addition, like other agents that induce ER stress, the large surface protein can activate the cellular grp78 and grp94 promoters, raising the possibility that it may alter the physiology of the host cell.
Collapse
Affiliation(s)
- Z Xu
- Department of Pathology, University of California, San Francisco, USA
| | | | | |
Collapse
|
281
|
Sun Z, Lee MS, Rhee HK, Arrandale JM, Dannies PS. Inefficient secretion of human H27A-prolactin, a mutant that does not bind Zn2+. Mol Endocrinol 1997; 11:1544-51. [PMID: 9280069 DOI: 10.1210/mend.11.10.0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human PRL binds Zn2+, but the function of the binding is not known. We investigated the effect on PRL production in pituitary cells by obtaining clones of GH4C1 cells stably transfected with human H27A-PRL, a mutant that does not bind Zn2+. Unexpectedly, clones transfected with the mutant human PRL made little rat PRL. Untransfected GH4C1 cells made between 0.5 to 10 microg rat PRL/10(5) cells in 24 h. Clones transfected with vector alone (four of four), wild type human PRL (six of six), or with human K69A-PRL (two of two) made amounts of rat PRL in the same range. Clones transfected with human H27A-PRL (five of five) made 0.003-0.1 microg rat PRL/10(5) cells in 24 h, and the production of rat PRL mRNA was reduced. Human H27A-PRL was not efficiently secreted; 20-40% newly synthesized H27A-PRL was degraded by 60 min, and there was usually a delay in release of newly synthesized H27A-PRL. Reduction of rat PRL production is not mediated through the PRL receptor, because no sequences for the receptor in GH4C1 cells were detected by RT-PCR. Proteins involved in folding, such as BiP, were not specifically elevated in the H27A-PRL clones. In transient transfections, in which cells have not undergone selection, we found no evidence for disulfide-bonded aggregates of the mutant protein. The results indicate that Zn2+ binding stabilizes PRL in the secretory pathway; the instablility of the mutant protein may trigger effects that suppress rat PRL production directly or that indirectly result in selection of clones with low rat PRL production.
Collapse
Affiliation(s)
- Z Sun
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
282
|
Abstract
We have isolated and characterized a 12-kb mouse genomic DNA fragment containing the entire calreticulin gene and 2.14 kb of the promoter region. The mouse calreticulin gene consists of nine exons and eight introns, and it spans 4.2 kb of genomic DNA. A 1.8-kb fragment of the calreticulin promoter was subcloned into a reporter gene plasmid containing chloramphenicol acetyltransferase. This construct was then used in transient and stable transfection of NIH/ 3T3 cells. Treatment of transfected cells either with the Ca2+ ionophore A23187, or with the ER Ca2+-ATPase inhibitor thapsigargin, resulted in a five- to sevenfold increase of the expression of chloramphenicol acetyltransferase protein. Transactivation of the calreticulin promoter was also increased by fourfold in NIH/3T3 cells treated with bradykinin, a hormone that induces Ca2+ release from the intracellular Ca2+ stores. Analysis of the promoter deletion constructs revealed that A23187- and thapsigargin-responsive regions are confined to two regions (-115 to -260 and -685 to -1,763) in the calreticulin promoter that contain the CCAAT nucleotide sequences. Northern blot analysis of cells treated with A23187, or with thapsigargin, revealed a fivefold increase in calreticulin mRNA levels. Thapsigargin also induced a fourfold increase in calreticulun protein levels. Importantly, we show by nuclear run-on transcription analysis that calreticulin gene transcription is increased in NIH/3T3 cells treated with A23187 and thapsigargin in vivo. This increase in gene expression required over 4 h of continuous incubation with the drugs and was also sensitive to treatment with cycloheximide, suggesting that it is dependent on protein synthesis. Changes in the concentration of extracellular and cytoplasmic Ca2+ did not affect the increased expression of the calreticulin gene. These studies suggest that stress response to the depletion of intracellular Ca2+ stores induces expression of the calreticulin gene in vitro and in vivo.
Collapse
Affiliation(s)
- M Waser
- Medical Research Council Group in Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
283
|
Wesselborg S, Bauer MK, Vogt M, Schmitz ML, Schulze-Osthoff K. Activation of transcription factor NF-kappaB and p38 mitogen-activated protein kinase is mediated by distinct and separate stress effector pathways. J Biol Chem 1997; 272:12422-9. [PMID: 9139689 DOI: 10.1074/jbc.272.19.12422] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases are important mediators of the cellular stress response. Here, we investigated the relationship between activation of the MAP kinase p38 and transcription factor NF-kappaB. Different forms of cellular stress were found to preferentially trigger either p38 or NF-kappaB. Arsenite or osmotic stress potently activated p38 but were ineffective in inducing NF-kappaB activation. Tumor necrosis factor-alpha and hydrogen peroxide, in contrast, led to NF-kappaB activation but only modestly stimulated p38. The activation of NF-kappaB was strongly abolished by antioxidants, while the activity of p38 and transcription factor AP-1 were increased. Inhibition of small GTPases including Rac and Cdc42 prevented p38 and AP-1 activation without interfering with NF-kappaB. In addition, inhibition of p38 by a pharmacological inhibitor or a dominant-negative mutant of MAP kinase kinase-6, an activator of the p38 pathway, interfered with NF-kappaB-dependent gene expression but not its DNA binding activity. Our results indicate that activation of p38 and NF-kappaB are mediated by separate pathways, which may converge further downstream in the cell nucleus. Different forms of cellular stress, however, initially trigger distinct signaling cascades involving either oxidative stress or GTPase-coupled pathways.
Collapse
Affiliation(s)
- S Wesselborg
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
284
|
Shatrov VA, Lehmann V, Chouaib S. Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-kappa B in U937 cells. Biochem Biophys Res Commun 1997; 234:121-4. [PMID: 9168973 DOI: 10.1006/bbrc.1997.6598] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sphingosine-1-phosphate (SPP), a metabolite of sphingolipids, has been implicated as a second messenger in cell growth regulation and signal transduction via calcium mobilization from internal stores. This study shows that SPP mobilizes intracellular calcium in U937 cells and demonstrates for the first time the ability of SPP to activate the transcription factor NF-kappa B in these cells. Furthermore, calcium release from the internal stores by thapsigargin (TG), an inhibitor of the endoplasmic reticulum Ca2+ pump, was associated with activation of NF-kappa B. Moreover, we have shown that while an intracellular calcium chelator BAPTA/AM was able to inhibit both SPP- and TG-induced NF-kappa B activation, it had no effect on TNF-induced NF-kappa B activation. In addition, SPP-induced NF-kappa B activation was blocked both by cyclosporin A, known to inhibit calcineurin phosphatase activity, and by the antioxidant butylated hydroxyanisole. These observations suggest that intracellular calcium mobilization is required for SPP-induced NF-kappa B activation, which may involve calcineurin- and redox-dependent mechanisms.
Collapse
Affiliation(s)
- V A Shatrov
- CJF 94-11 INSERM Cytokines et Immunitè Antitumorale, Institut Gustave-Roussy, Villejuif, France
| | | | | |
Collapse
|
285
|
Abstract
Calnexin and calreticulin are molecular chaperones in the endoplasmic reticulum (ERJ. They are lectins that interact with newly synthesized glycoproteins that have undergone partial trimming of their core N-linked oligosaccharides. Together with the enzymes responsible for glucose removal and a glucosyltransferase that re-glucosylates already-trimmed glycoproteins, they provide a novel mechanism for promoting folding, oligomeric assembly and quality control in the ER.
Collapse
|
286
|
Marianneau P, Cardona A, Edelman L, Deubel V, Desprès P. Dengue virus replication in human hepatoma cells activates NF-kappaB which in turn induces apoptotic cell death. J Virol 1997; 71:3244-9. [PMID: 9060688 PMCID: PMC191457 DOI: 10.1128/jvi.71.4.3244-3249.1997] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The severe outcome of the dengue (DEN) virus infection known as DEN hemorrhagic fever-DEN shock syndrome (DHF-DSS) is, in some cases, accompanied by liver injury. Councilman bodies observed in liver biopsies of DHF-DSS cases may correspond to hepatocytes in apoptosis. We show here that infection of the hepatoma cell line HepG2 with DEN type 1 virus induced cell death typical of apoptosis late in the virus cycle. The transcription factor NF-kappaB was activated concomitantly with viral protein synthesis and thus before the appearance of apoptotic cells. Inhibition of apoptosis was observed when DEN virus-infected cells were treated with NF-kappaB decoys, indicating the involvement of this transcription factor in induction of cell death. Thus, infected hepatocytes appear to be subject to apoptosis in vitro, and this may be a key element in the pathophysiology of hepatic failure associated with DHF-DSS.
Collapse
Affiliation(s)
- P Marianneau
- Unité des Arbovirus et Virus des Fièvres Hémorragiques, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
287
|
Pahl HL, Baeuerle PA. Endoplasmicreticulum-induced signal transduction and gene expression. Trends Cell Biol 1997; 7:50-5. [PMID: 17708906 DOI: 10.1016/s0962-8924(96)10050-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cells can respond to perturbations in endoplasmic reticulum (ER) function by activating two distinct signal-transduction pathways: one responds to unfolded proteins, the other to an overload of the organelle with membrane proteins. A third pathway is activated upon sterol depletion of cells and involves the cleavage and subsequent nuclear translocation of an ER membrane-bound transcription factor. Thus, three distinct pathways each activated by a different signal are currently known to project from the ER into the nucleus. This review summarizes the current understanding of these three pathways.
Collapse
Affiliation(s)
- H L Pahl
- The Institute for Experimental Cancer Research, Tumor Biology Center, PO Box 1120, D-79106 Freiburg, Germany
| | | |
Collapse
|
288
|
Abstract
Various conditions that perturb the function of the endoplasmic reticulum (ER) were recently shown to activate the transcription factor NF-kappa B. Activation of NF-kappa B is caused by the accumulation of proteins in the ER membrane, a condition we have called ER overload. Both the release of Ca2+ from the ER and the subsequent production of reactive oxygen intermediates are required for ER-overload-mediated NF-kappa B activation. This novel intracellular signal transduction pathway might be important in antiviral defense and play a role in various diseases as well as in B-cell development.
Collapse
Affiliation(s)
- H L Pahl
- Institute for Experimental Cancer Research, Tumor Biology Center, Freiburg, Germany.
| | | |
Collapse
|
289
|
Trawick JD, Wang SL, Bell D, Davis RA. Transcriptional induction of cholesterol 7alpha-hydroxylase by dexamethasone in L35 hepatoma cells requires sulfhydryl reducing agents. J Biol Chem 1997; 272:3099-102. [PMID: 9006961 DOI: 10.1074/jbc.272.5.3099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is known that hepatic levels of reduced glutathione correlate with the activity of the liver-specific enzyme cholesterol-7alpha-hydroxylase. We examined the possibility that sulfhydryl reducing agents activate transcription of cholesterol 7alpha-hydroxylase. Adding dithiothreitol (DTT, 1 mM) and dexamethasone to L35 hepatoma cells increased the content of 7alpha-hydroxylase mRNA 3-fold above the levels observed with dexamethasone alone. Without dexamethasone, DTT had no affect. The addition of reduced glutathione to L35 cells demonstrated a similar potentiation of expression dependent on dexamethasone. Nuclear run-on assays showed that in the presence of both dexamethasone and DTT, the transcription of the 7alpha-hydroxylase gene was clearly increased. In contrast, by itself, dexamethasone did not cause a detectable increase in the transcription of the 7alpha-hydroxylase gene. Dexamethasone and DTT did not affect the transcription of beta-actin, suggesting a selective induction of the 7alpha-hydroxylase gene. DTT reversed repression of 7alpha-hydroxylase expression by insulin but not the repression by phorbol ester. Our data show for the first time that the sulfhydryl redox potential of the hepatocyte (i.e. level of reduced glutathione) has a marked influence on the transcription and expression of the liver-specific gene 7alpha-hydroxylase.
Collapse
Affiliation(s)
- J D Trawick
- Mammalian Cell and Molecular Biology Laboratory, Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182-0057, USA
| | | | | | | |
Collapse
|
290
|
Abstract
Animal and human proteinuric glomerulopathies evolve to terminal renal failure by a process leading to progressive parenchymal damage, which appears to be relatively independent of the initial insult. Despite the fact that the mechanism(s) leading to renal disease progression has been only partially clarified, several studies have found that the amount of urinary proteins (taken to reflect the degree of protein trafficking through the glomerular capillary) correlated with the tendency of a given disease to progress more than the underlying renal pathology. On the other hand, dietary protein restriction and ACE inhibitors were capable of limiting the progressive decline in GFR to the extent that they could effectively lower the urinary protein excretion rate. A constant feature of proteinuric nephritis is also the concomitant presence of tubulointerstitial inflammation. So far it was not clear if this is a reaction to the ischemic obliteration of peritubular capillaries that follows glomerular obsolescence or whether albumin and other proteins that accumulated in the urinary space are indeed instrumental for the formation of the interstitial inflammatory reaction. In recent years several studies have convincingly documented that excessive and sustained protein trafficking could have an intrinsic renal toxicity. Here we have reviewed the abundant evidence in the literature that the process of reabsorption of filtered proteins activates the proximal tubular epithelium. Biochemical events associated with tubular cell activation in response to protein stress include up-regulation of inflammatory and vasoactive genes such as MCP-1 and endothelins. The corresponding molecules formed in an excessive amount by renal tubuli are secreted toward the basolateral compartment of the cell and give rise to an inflammatory reaction that in most forms of glomerulonephritis consistently precede renal scarring.
Collapse
Affiliation(s)
- G Remuzzi
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | |
Collapse
|
291
|
Michalak M, Burns K, Andrin C, Mesaeli N, Jass GH, Busaan JL, Opas M. Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression. J Biol Chem 1996; 271:29436-45. [PMID: 8910610 DOI: 10.1074/jbc.271.46.29436] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Calreticulin is a ubiquitously expressed Ca2+-binding protein of the endoplasmic reticulum (ER), which inhibits DNA binding in vitro and transcriptional activation in vivo by steroid hormone receptors. Transient transfection assays were carried out to investigate the effects of different intracellular targeting of calreticulin on transactivation mediated by glucocorticoid receptor. BSC40 cells were transfected with either calreticulin expression vector (ER form of calreticulin) or calreticulin expression vector encoding calreticulin minus leader peptide, resulting in cytoplasmic localization of the recombinant protein. Transfection of BSC40 cells with calreticulin expression vector encoding the ER form of the protein led to 40-50% inhibition of the dexamethasone-sensitive stimulation of luciferase expression. However, in a similar experiment, but using the calreticulin expression vector encoding cytoplasmic calreticulin, dexamethasone-stimulated activation of the luciferase reporter gene was inhibited by only 10%. We conclude that the ER, but not cytosolic, form of calreticulin is responsible for inhibition of glucocorticoid receptor-mediated gene expression. These effects are specific to calreticulin, since overexpression of the ER lumenal proteins (BiP, ERp72, or calsequestrin) has no effect on glucocorticoid-sensitive gene expression. The N domain of calreticulin binds to the DNA binding domain of the glucocorticoid receptor in vitro; however, we show that the N+P domain of calreticulin, when synthesized without the ER signal sequence, does not inhibit glucocorticoid receptor function in vivo. Furthermore, expression of the N domain of calreticulin and the DNA binding domain of glucocorticoid receptor as fusion proteins with GAL4 in the yeast two-hybrid system revealed that calreticulin does not interact with glucocorticoid receptor under these conditions. We conclude that calreticulin and glucocorticoid receptor may not interact in vivo and that the calreticulin-dependent modulation of the glucocorticoid receptor function may therefore be due to a calreticulin-dependent signaling from the ER.
Collapse
Affiliation(s)
- M Michalak
- Medical Research Council Group in Molecular Biology of Membranes, the Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2 Canada.
| | | | | | | | | | | | | |
Collapse
|
292
|
Bar-Peled M, Bassham DC, Raikhel NV. Transport of proteins in eukaryotic cells: more questions ahead. PLANT MOLECULAR BIOLOGY 1996; 32:223-249. [PMID: 8980481 DOI: 10.1007/bf00039384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Some newly synthesized proteins contain signals that direct their transport to their final location within or outside of the cell. Targeting signals are recognized by specific protein receptors located either in the cytoplasm or in the membrane of the target organelle. Specific membrane protein complexes are involved in insertion and translocation of polypeptides across the membranes. Often, additional targeting signals are required for a polypeptide to be further transported to its site of function. In this review, we will describe the trafficking of proteins to various cellular organelles (nucleus, chloroplasts, mitochondria, peroxisomes) with emphasis on transport to and through the secretory pathway.
Collapse
Affiliation(s)
- M Bar-Peled
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing 48824-1312, USA
| | | | | |
Collapse
|
293
|
Pahl HL, Baeuerle PA. Activation of NF-kappa B by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett 1996; 392:129-36. [PMID: 8772190 DOI: 10.1016/0014-5793(96)00800-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The eukaryotic transcription factor NF-kappaB is activated by a large variety of stimuli. We have recently shown that ER stress, caused by an aberrant accumulation of membrane proteins within this organelle, also activates NF-kappaB. Here, we show that activation of NF-kappaB by ER stress requires an increase in the intracellular levels of both reactive oxygen intermediates (ROIs) and Ca2+. Two distinct intracellular Ca2+ chelators and a panel of structurally unrelated antioxidants prevented NF-kappaB activation by various ER stress-eliciting agents, whereas only antioxidants but not the Ca2+ chelators prevented NF-kappaB activation by the inflammatory cytokine TNF-alpha. Consistent with an involvement of calcium, the ER-resident Ca2+-ATPase inhibitors thapsigargin and cyclopiazonic acid (CPA), which trigger a rapid efflux of Ca2+ from the ER, also potently activated NF-kappaB. Pretreatment with a Ca2+ chelator abrogated this induction. The Ca2+ chelator BAPTA-AM inhibited ROI formation in response to thapsigargin and CPA treatment, suggesting that the Ca2+ increase preceded ROI formation during NF-kappaB activation. The selective inhibitory effect of the drug tepoxalin suggests that the peroxidase activity of cyclooxygenases or lipoxygenases was responsible for the increased ROI production in response to Ca2+ release by thapsigargin.
Collapse
Affiliation(s)
- H L Pahl
- Institute for Experimental Cancer Research, Tumor Biology Center, Freiburg, Germany
| | | |
Collapse
|
294
|
Abstract
In human Jurkat T cells and its subclone Wurzburg cells oxidant challenge elevated [Ca2+]i by mobilizing Ca2+ from intracellular stores. In Jurkat cells this effect was rapid and transient, but in Wurzburg cells the response was slow and sustained. H2O2-induced NF-kappaB activation in Wurzburg cells was not influenced by the presence of extracellular EGTA but was totally inhibited in cells that were loaded with esterified EGTA. In Jurkat cells that are not sensitive to H2O2-induced NF-kappaB activation, H2O2 potentiated NF-kappaB activation in the presence of sustained high [Ca2+]i following thapsigargin treatment. NF-kappaB regulatory effect of alpha-lipoate and N-acetylcysteine appeared to be, at least in part, due to their ability to stabilize elevation of [Ca2+]i following oxidant challenge. Results of this study indicate that a sustained elevated [Ca2+]i is a significant factor in oxidant-induced NF-kappaB activation.
Collapse
Affiliation(s)
- C K Sen
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720-3200, USA
| | | | | |
Collapse
|
295
|
Vassilakos A, Cohen-Doyle MF, Peterson PA, Jackson MR, Williams DB. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J 1996; 15:1495-506. [PMID: 8612572 PMCID: PMC450057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Calnexin, a membrane protein of the endoplasmic reticulum, is generally thought to function as a molecular chaperone, based on indirect or correlative evidence. To examine calnexin's functions more directly, we reconstituted the assembly of class I histocompatibility molecules in the absence or presence of calnexin in Drosophila melanogaster cells. Calnexin enhanced the assembly of class I heavy chains with beta 2-microglobulin as much as 5-fold. The improved assembly appeared largely due to more efficient folding of heavy chains, as evidenced by increased reactivity with a conformation-sensitive monoclonal antibody and by a reduction in the level of aggregates. Similar findings were obtained in mouse or human cells when the interaction of calnexin with class I heavy chains was prevented by treatment with the oligosaccharide processing inhibitor castanospermine. The ability of calnexin to facilitate castanospermine. The ability of calnexin to facilitate heavy chain folding and to prevent the formation of aggregates provides compelling evidence that calnexin functions as a bona fide molecular chaperone.
Collapse
Affiliation(s)
- A Vassilakos
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
296
|
Schmidt KN, Traenckner EB, Meier B, Baeuerle PA. Induction of oxidative stress by okadaic acid is required for activation of transcription factor NF-kappa B. J Biol Chem 1995; 270:27136-42. [PMID: 7592968 DOI: 10.1074/jbc.270.45.27136] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The widely used phosphatase 1 and 2A inhibitor okadaic acid is one of the many stimuli activating transcription factor NF-kappa B in cultured cells. Phosphorylation of I kappa B-alpha, one of NF-kappa B's inhibitory subunits, is a prerequisite for I kappa B degradation and the subsequent liberation of transcriptionally active NF-kappa B. This observation suggested that the phosphorylation status of I kappa B is influenced by an okadaic acid-sensitive phosphatase. In this study, we provide evidence that the effect of okadaic acid on NF-kappa B activation is indirect and dependent on the production of reactive oxygen intermediates rather than the inhibition of an I kappa B-alpha phosphatase. Okadaic acid was found to be a strong inducer of cellular H2O2 and superoxide production in two distinct cell lines. The structurally unrelated phosphatase inhibitor calyculin A also induced oxidative stress. The delayed onset of reactive oxygen production in response to okadaic acid correlated with the delayed activation of NF-kappa B. Moreover, NF-kappa B induction was optimal at the same okadaic acid concentration that caused optimal H2O2 production. Both reactive oxygen intermediates production and NF-kappa B activation were inhibited by the antioxidant pyrrolidine dithiocarbamate and 8-(diethylamino)octyl-3,4,5-trimethyoxybenzoate, a Ca2+ chelator. Future experiments using phosphatase inhibitors in intact cells must consider that the compounds can act as strong inducers of oxidative stress, which provides one explanation for their tumor-promoting activity.
Collapse
Affiliation(s)
- K N Schmidt
- Institute of Biochemistry, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | |
Collapse
|