251
|
Zhu X, Poghosyan E, Gopal R, Liu Y, Ciruelas KS, Maizy Y, Diener DR, King SM, Ishikawa T, Yang P. General and specific promotion of flagellar assembly by a flagellar nucleoside diphosphate kinase. Mol Biol Cell 2017; 28:3029-3042. [PMID: 28877983 PMCID: PMC5662260 DOI: 10.1091/mbc.e17-03-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
NDK5 promotes assembly of motile cilia and flagella with its structure and protein phosphorylation–related reactions instead of the canonical NDK activity. The novel mechanisms and dominant-negative effect of mutated functional NDK5 reveal the remarkable versatility of a molecular platform that is used in diverse cellular processes. Nucleoside diphosphate kinases (NDKs) play a central role in diverse cellular processes using the canonical NDK activity or alternative mechanisms that remain poorly defined. Our study of dimeric NDK5 in a flagellar motility control complex, the radial spoke (RS), has revealed new modalities. The flagella in Chlamydomonas ndk5 mutant were paralyzed, albeit only deficient in three RS subunits. RS morphology appeared severely changed in averaged cryo-electron tomograms, suggesting that NDK5 is crucial for the intact spokehead formation as well as RS structural stability. Intriguingly, ndk5’s flagella were also short, resembling those of an allelic spoke-less mutant. All ndk5’s phenotypes were rescued by expressions of NDK5 or a mutated NDK5 lacking the canonical kinase activity. Importantly, the mutated NDK5 that appeared fully functional in ndk5 cells elicited a dominant-negative effect in wild-type cells, causing paralyzed short flagella with hypophosphorylated, less abundant, but intact RSs, and accumulated hypophosphorylated NDK5 in the cell body. We propose that NDK5 dimer is an RS structural subunit with an additional mechanism that uses cross-talk between the two NDK monomers to accelerate phosphorylation-related assembly of RSs and entire flagella.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Radhika Gopal
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Kristine S Ciruelas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yousif Maizy
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Takashi Ishikawa
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
252
|
Liang Y, Dearnaley WJ, Varano AC, Winton CE, Gilmore BL, Alden NA, Sheng Z, Kelly DF. RETRACTED: Structural analysis of BRCA1 reveals modification hotspot. SCIENCE ADVANCES 2017; 3:e1701386. [PMID: 28948225 PMCID: PMC5606707 DOI: 10.1126/sciadv.1701386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/30/2017] [Indexed: 05/21/2023]
Abstract
Cancer cells afflicted with mutations in the breast cancer susceptibility protein (BRCA1) often suffer from increased DNA damage and genomic instability. The precise manner in which physical changes to BRCA1 influence its role in DNA maintenance remains unclear. We used single-particle electron microscopy to study the three-dimensional properties of BRCA1 naturally produced in breast cancer cells. Structural studies revealed new information for full-length BRCA1, engaging its nuclear binding partner, the BRCA1-associated RING domain protein (BARD1). Equally important, we identified a region in mutated BRCA1 that was highly susceptible to ubiquitination. We refer to this site as a modification "hotspot." Ubiquitin adducts in the hotspot region proved to be biochemically reversible. Collectively, we show how key changes to BRCA1 affect its structure-function relationship, and present new insights to potentially modulate mutated BRCA1 in human cancer cells.
Collapse
Affiliation(s)
- Yanping Liang
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - William J. Dearnaley
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - A. Cameron Varano
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Carly E. Winton
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- School of Biomedical Engineering and Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Brian L. Gilmore
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - Nick A. Alden
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA
| | - Deborah F. Kelly
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- School of Biomedical Engineering and Science, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
253
|
Gold VA, Chroscicki P, Bragoszewski P, Chacinska A. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography. EMBO Rep 2017; 18:1786-1800. [PMID: 28827470 PMCID: PMC5623831 DOI: 10.15252/embr.201744261] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
We employed electron cryo‐tomography to visualize cytosolic ribosomes on the surface of mitochondria. Translation‐arrested ribosomes reveal the clustered organization of the TOM complex, corroborating earlier reports of localized translation. Ribosomes are shown to interact specifically with the TOM complex, and nascent chain binding is crucial for ribosome recruitment and stabilization. Ribosomes are bound to the membrane in discrete clusters, often in the vicinity of the crista junctions. This interaction highlights how protein synthesis may be coupled with transport. Our work provides unique insights into the spatial organization of cytosolic ribosomes on mitochondria.
Collapse
Affiliation(s)
- Vicki Am Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany .,Living Systems Institute, University of Exeter, Exeter, UK.,College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Piotr Chroscicki
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Piotr Bragoszewski
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Chacinska
- The International Institute of Molecular and Cell Biology, Warsaw, Poland .,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
254
|
Januliene D, Manavalan A, Ovesen PL, Pedersen KM, Thirup S, Nykjær A, Moeller A. Hidden Twins: SorCS Neuroreceptors Form Stable Dimers. J Mol Biol 2017; 429:2907-2917. [PMID: 28827148 DOI: 10.1016/j.jmb.2017.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 11/26/2022]
Abstract
SorCS1, SorCS2 and SorCS3 belong to the Vps10p-domain family of multiligand receptors. Genetic and functional studies have linked SorCS receptors to psychiatric disorders, Alzheimer's disease and type 2 diabetes, demonstrating critical roles in neuronal functionality and metabolic control. Surprisingly, their structural composition has so far not been studied. Here we have characterized SorCS1, SorCS2 and SorCS3 using biochemical methods and electron microscopy. We found that their purified extracellular domains co-exist in stable dimeric and monomeric populations. This was supported by co-immunoprecipitation experiments, where membrane-bound dimers were successfully pulled down from cell lysate. While dimers were virtually unbreakable, dimerization of the monomeric population was promoted through enzymatic deglycosylation. We conclude that post-translational modifications, specifically the degree and pattern of glycosylation, regulate the oligomeric state of the protein. Hence, cells may dictate ligand specificity by controlling the ratio between monomers and dimers and, therefore, regulate the multiple functions of SorCS receptors.
Collapse
Affiliation(s)
- Dovile Januliene
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; DANDRITE, iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | | | - Peter Lund Ovesen
- DANDRITE, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Karen-Marie Pedersen
- DANDRITE, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Søren Thirup
- MIND Centre, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Anders Nykjær
- Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA; DANDRITE, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Arne Moeller
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; DANDRITE, iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| |
Collapse
|
255
|
Abstract
Electron microscopy (EM) is a rapidly growing area of structural biology that permits us to decode biological assemblies at the nanoscale. To examine biological materials for single particle EM analysis, purified assemblies must be obtained using biochemical separation techniques. Here, we describe effective methodologies for isolating histidine (his)-tagged protein assemblies from the nucleus of disease-relevant cell lines. We further demonstrate how isolated assemblies are visualized using single particle EM techniques and provide representative results for each step in the process.
Collapse
|
256
|
Bhat JY, Miličić G, Thieulin-Pardo G, Bracher A, Maxwell A, Ciniawsky S, Mueller-Cajar O, Engen JR, Hartl FU, Wendler P, Hayer-Hartl M. Mechanism of Enzyme Repair by the AAA + Chaperone Rubisco Activase. Mol Cell 2017; 67:744-756.e6. [PMID: 28803776 DOI: 10.1016/j.molcel.2017.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/07/2017] [Accepted: 07/01/2017] [Indexed: 01/16/2023]
Abstract
How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.
Collapse
Affiliation(s)
- Javaid Y Bhat
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Goran Miličić
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gabriel Thieulin-Pardo
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andrew Maxwell
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Susanne Ciniawsky
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Oliver Mueller-Cajar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Petra Wendler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
257
|
Graf M, Arenz S, Huter P, Dönhöfer A, Novácek J, Wilson DN. Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions. Nucleic Acids Res 2017; 45:2887-2896. [PMID: 27986857 PMCID: PMC5389730 DOI: 10.1093/nar/gkw1272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 11/30/2022] Open
Abstract
Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA.
Collapse
Affiliation(s)
- Michael Graf
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Stefan Arenz
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Paul Huter
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Alexandra Dönhöfer
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Jirí Novácek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Daniel N Wilson
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany.,Department of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
258
|
Fibre diffraction studies of biological macromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:43-87. [DOI: 10.1016/j.pbiomolbio.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/27/2022]
|
259
|
Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat Struct Mol Biol 2017; 24:743-751. [PMID: 28759049 DOI: 10.1038/nsmb.3444] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Toll-like receptor (TLR) signaling is a key innate immunity response to pathogens. Recruitment of signaling adapters such as MAL (TIRAP) and MyD88 to the TLRs requires Toll/interleukin-1 receptor (TIR)-domain interactions, which remain structurally elusive. Here we show that MAL TIR domains spontaneously and reversibly form filaments in vitro. They also form cofilaments with TLR4 TIR domains and induce formation of MyD88 assemblies. A 7-Å-resolution cryo-EM structure reveals a stable MAL protofilament consisting of two parallel strands of TIR-domain subunits in a BB-loop-mediated head-to-tail arrangement. Interface residues that are important for the interaction are conserved among different TIR domains. Although large filaments of TLR4, MAL or MyD88 are unlikely to form during cellular signaling, structure-guided mutagenesis, combined with in vivo interaction assays, demonstrated that the MAL interactions defined within the filament represent a template for a conserved mode of TIR-domain interaction involved in both TLR and interleukin-1 receptor signaling.
Collapse
|
260
|
Refined Cryo-EM Structure of the T4 Tail Tube: Exploring the Lowest Dose Limit. Structure 2017; 25:1436-1441.e2. [PMID: 28757144 DOI: 10.1016/j.str.2017.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/16/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022]
Abstract
The bacteriophage T4 contractile tail (containing a tube and sheath) was the first biological assembly reconstructed in three dimensions by electron microscopy at a resolution of ∼35 Å in 1968. A single-particle reconstruction of the T4 baseplate was able to generate a 4.1 Å resolution map for the first two rings of the tube using the overall baseplate for alignment. We have now reconstructed the T4 tail tube at a resolution of 3.4 Å, more than a 1,000-fold increase in information content for the tube from 1968. We have used legacy software (Spider) to show that we can do better than the typical 2/3 Nyquist frequency. A reasonable map can be generated with only 1.5 electrons/Å2 using the higher dose images for alignment, but increasing the dose results in a better map, consistent with other reports that electron dose does not represent the main limitation on resolution in cryo-electron microscopy.
Collapse
|
261
|
Scheffer MP, Gonzalez-Gonzalez L, Seybert A, Ratera M, Kunz M, Valpuesta JM, Fita I, Querol E, Piñol J, Martín-Benito J, Frangakis AS. Structural characterization of the NAP; the major adhesion complex of the human pathogen Mycoplasma genitalium. Mol Microbiol 2017; 105:869-879. [PMID: 28671286 DOI: 10.1111/mmi.13743] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2017] [Indexed: 01/09/2023]
Abstract
Mycoplasma genitalium, the causative agent of non-gonococcal urethritis and pelvic inflammatory disease in humans, is a small eubacterium that lacks a peptidoglycan cell wall. On the surface of its plasma membrane is the major surface adhesion complex, known as NAP that is essential for adhesion and gliding motility of the organism. Here, we have performed cryo-electron tomography of intact cells and detergent permeabilized M. genitalium cell aggregates, providing sub-tomogram averages of free and cell-attached NAPs respectively, revealing a tetrameric complex with two-fold rotational (C2) symmetry. Each NAP has two pairs of globular lobes (named α and β lobes), arranged as a dimer of heterodimers with each lobe connected by a stalk to the cell membrane. The β lobes are larger than the α lobes by 20%. Classification of NAPs showed that the complex can tilt with respect to the cell membrane. A protein complex containing exclusively the proteins P140 and P110, was purified from M. genitalium and was structurally characterized by negative-stain single particle EM reconstruction. The close structural similarity found between intact NAPs and the isolated P140/P110 complexes, shows that dimers of P140/P110 heterodimers are the only components of the extracellular region of intact NAPs in M. genitalium.
Collapse
Affiliation(s)
- Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Luis Gonzalez-Gonzalez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Anja Seybert
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Mercè Ratera
- Parc Científic de Barcelona, Instituto de Biología Molecular de Barcelona del (IBMB-CSIC), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Michael Kunz
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - José M Valpuesta
- Department for Macromolecular Structures, Centro Nacional de Biotecnologıa (CNB-CSIC), Madrid 28049, Spain
| | - Ignacio Fita
- Parc Científic de Barcelona, Instituto de Biología Molecular de Barcelona del (IBMB-CSIC), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Jaume Piñol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Jaime Martín-Benito
- Department for Macromolecular Structures, Centro Nacional de Biotecnologıa (CNB-CSIC), Madrid 28049, Spain
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| |
Collapse
|
262
|
Kroh HK, Chandrasekaran R, Rosenthal K, Woods R, Jin X, Ohi MD, Nyborg AC, Rainey GJ, Warrener P, Spiller BW, Lacy DB. Use of a neutralizing antibody helps identify structural features critical for binding of Clostridium difficile toxin TcdA to the host cell surface. J Biol Chem 2017; 292:14401-14412. [PMID: 28705932 DOI: 10.1074/jbc.m117.781112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/05/2017] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile is a clinically significant pathogen that causes mild-to-severe (and often recurrent) colon infections. Disease symptoms stem from the activities of two large, multidomain toxins known as TcdA and TcdB. The toxins can bind, enter, and perturb host cell function through a multistep mechanism of receptor binding, endocytosis, pore formation, autoproteolysis, and glucosyltransferase-mediated modification of host substrates. Monoclonal antibodies that neutralize toxin activity provide a survival benefit in preclinical animal models and prevent recurrent infections in human clinical trials. However, the molecular mechanisms involved in these neutralizing activities are unclear. To this end, we performed structural studies on a neutralizing monoclonal antibody, PA50, a humanized mAb with both potent and broad-spectrum neutralizing activity, in complex with TcdA. Electron microscopy imaging and multiangle light-scattering analysis revealed that PA50 binds multiple sites on the TcdA C-terminal combined repetitive oligopeptides (CROPs) domain. A crystal structure of two PA50 Fabs bound to a segment of the TcdA CROPs helped define a conserved epitope that is distinct from previously identified carbohydrate-binding sites. Binding of TcdA to the host cell surface was directly blocked by either PA50 mAb or Fab and suggested that receptor blockade is the mechanism by which PA50 neutralizes TcdA. These findings highlight the importance of the CROPs C terminus in cell-surface binding and a role for neutralizing antibodies in defining structural features critical to a pathogen's mechanism of action. We conclude that PA50 protects host cells by blocking the binding of TcdA to cell surfaces.
Collapse
Affiliation(s)
- Heather K Kroh
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | - Ramyavardhanee Chandrasekaran
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | | | - Rob Woods
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | - Xiaofang Jin
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | - Melanie D Ohi
- the Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232-8240
| | | | | | | | - Benjamin W Spiller
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, .,the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, and
| | - D Borden Lacy
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, .,the Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212-2637
| |
Collapse
|
263
|
Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 2017; 547:118-122. [PMID: 28658211 DOI: 10.1038/nature22981] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Mechanosensory transduction for senses such as proprioception, touch, balance, acceleration, hearing and pain relies on mechanotransduction channels, which convert mechanical stimuli into electrical signals in specialized sensory cells. How force gates mechanotransduction channels is a central question in the field, for which there are two major models. One is the membrane-tension model: force applied to the membrane generates a change in membrane tension that is sufficient to gate the channel, as in the bacterial MscL channel and certain eukaryotic potassium channels. The other is the tether model: force is transmitted via a tether to gate the channel. The transient receptor potential (TRP) channel NOMPC is important for mechanosensation-related behaviours such as locomotion, touch and sound sensation across different species including Caenorhabditis elegans, Drosophila and zebrafish. NOMPC is the founding member of the TRPN subfamily, and is thought to be gated by tethering of its ankyrin repeat domain to microtubules of the cytoskeleton. Thus, a goal of studying NOMPC is to reveal the underlying mechanism of force-induced gating, which could serve as a paradigm of the tether model. NOMPC fulfils all the criteria that apply to mechanotransduction channels and has 29 ankyrin repeats, the largest number among TRP channels. A key question is how the long ankyrin repeat domain is organized as a tether that can trigger channel gating. Here we present a de novo atomic structure of Drosophila NOMPC determined by single-particle electron cryo-microscopy. Structural analysis suggests that the ankyrin repeat domain of NOMPC resembles a helical spring, suggesting its role of linking mechanical displacement of the cytoskeleton to the opening of the channel. The NOMPC architecture underscores the basis of translating mechanical force into an electrical signal within a cell.
Collapse
|
264
|
Kasson P, DiMaio F, Yu X, Lucas-Staat S, Krupovic M, Schouten S, Prangishvili D, Egelman EH. Model for a novel membrane envelope in a filamentous hyperthermophilic virus. eLife 2017. [PMID: 28639939 PMCID: PMC5517147 DOI: 10.7554/elife.26268] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biological membranes create compartments, and are usually formed by lipid bilayers. However, in hyperthermophilic archaea that live optimally at temperatures above 80°C the membranes are monolayers which resemble fused bilayers. Many double-stranded DNA viruses which parasitize such hosts, including the filamentous virus AFV1 of Acidianus hospitalis, are enveloped with a lipid-containing membrane. Using cryo-EM, we show that the membrane in AFV1 is a ~2 nm-thick monolayer, approximately half the expected membrane thickness, formed by host membrane-derived lipids which adopt a U-shaped ‘horseshoe’ conformation. We hypothesize that this unusual viral envelope structure results from the extreme curvature of the viral capsid, as ‘horseshoe’ lipid conformations favor such curvature and host membrane lipids that permit horseshoe conformations are selectively recruited into the viral envelope. The unusual envelope found in AFV1 also has many implications for biotechnology, since this membrane can survive the most aggressive conditions involving extremes of temperature and pH. DOI:http://dx.doi.org/10.7554/eLife.26268.001 Virtually every environment on the planet is home to some form of life, even places that, at first glance, appear to be too harsh for any organism to survive in. For example, a microscopic organism known as Acidianus hospitalis thrives in highly acidic environments that are hotter than 80°C, conditions that would kill humans and many other species. Acidianus hospitalis has many adaptations that allow it to survive in its extreme environment. For example, the membrane that surrounds its cells has a different structure to the membranes that surround the cells of most other species. Membranes are made of molecules known as lipids. Generally these lipids assemble into two distinct layers (known as a bilayer) to form the membrane. However, in A. hospitalis the membrane contains only a single layer of lipids that resembles a bilayer in which lipids in opposite layers have fused together to make longer molecules. A virus known as AFV1 is able to infect A. hospitalis. Like many other viruses, AFV1 steals part of its host cell’s membrane when it leaves the cell in search of new cells to infect. This stolen membrane helps to protect the virus from its surroundings, however, the structure of the membrane surrounding AFV1 was not known. Kasson et al. combined a technique called cryo-electron microscopy with computer simulations to study the membrane surrounding AFV1. The study shows that this membrane is only half as thick as the membrane that surrounds A. hospitalis. To make this thinner membrane, flexible lipid molecules from the A. hospitalis membrane bend into a U-shape. These findings reveal a new type of membrane structure not previously seen in the natural world. In the future, this thinner membrane could have many uses in biotechnology, such as to make probes for medical imaging in patients or to deliver drugs to specific sites in the body. Enveloped by this unusual membrane, these structures may be more resistant to the normal processes that degrade and destroy foreign materials in humans and other organisms. DOI:http://dx.doi.org/10.7554/eLife.26268.002
Collapse
Affiliation(s)
- Peter Kasson
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States.,Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Xiong Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| | | | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Stefan Schouten
- NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands.,Department of Marine Microbiology and Biogeochemistry, Utrecht University, Texel, Netherlands
| | | | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| |
Collapse
|
265
|
Ca 2+-induced movement of tropomyosin on native cardiac thin filaments revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2017; 114:6782-6787. [PMID: 28607071 DOI: 10.1073/pnas.1700868114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Muscle contraction relies on the interaction of myosin motors with F-actin, which is regulated through a translocation of tropomyosin by the troponin complex in response to Ca2+ The current model of muscle regulation holds that at relaxing (low-Ca2+) conditions tropomyosin blocks myosin binding sites on F-actin, whereas at activating (high-Ca2+) conditions tropomyosin translocation only partially exposes myosin binding sites on F-actin so that binding of rigor myosin is required to fully activate the thin filament (TF). Here we used a single-particle approach to helical reconstruction of frozen hydrated native cardiac TFs under relaxing and activating conditions to reveal the azimuthal movement of the tropomyosin on the surface of the native cardiac TF upon Ca2+ activation. We demonstrate that at either relaxing or activating conditions tropomyosin is not constrained in one structural state, but rather is distributed between three structural positions on the surface of the TF. We show that two of these tropomyosin positions restrain actomyosin interactions, whereas in the third position, which is significantly enhanced at high Ca2+, tropomyosin does not block myosin binding sites on F-actin. Our data provide a structural framework for the enhanced activation of the cardiac TF over the skeletal TF by Ca2+ and lead to a mechanistic model for the regulation of the cardiac TF.
Collapse
|
266
|
Egelman EH. Cryo-EM of bacterial pili and archaeal flagellar filaments. Curr Opin Struct Biol 2017; 46:31-37. [PMID: 28609682 DOI: 10.1016/j.sbi.2017.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/07/2017] [Accepted: 05/25/2017] [Indexed: 01/24/2023]
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have opened up the possibility that a large class of biological structures, helical polymers, may now be readily reconstructed at near-atomic resolution. This will have a huge impact, since most of these structures are unlikely to be crystallized. This review focuses on new cryo-EM studies involving three classes of bacterial pili (chaperone-usher, mating, and Type IV) as well as on archaeal flagellar filaments. While it has long been known that one domain within archaeal flagellar filaments is homologous to a domain within bacterial Type IV pilins, the new studies shed light on how homologous and even highly conserved subunits can pack together in different ways with only small changes in sequence.
Collapse
Affiliation(s)
- Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, United States.
| |
Collapse
|
267
|
Willhoft O, McCormack EA, Aramayo RJ, Bythell-Douglas R, Ocloo L, Zhang X, Wigley DB. Crosstalk within a functional INO80 complex dimer regulates nucleosome sliding. eLife 2017; 6. [PMID: 28585918 PMCID: PMC5472440 DOI: 10.7554/elife.25782] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/03/2017] [Indexed: 01/17/2023] Open
Abstract
Several chromatin remodellers have the ability to space nucleosomes on DNA. For ISWI remodellers, this involves an interplay between H4 histone tails, the AutoN and NegC motifs of the motor domains that together regulate ATPase activity and sense the length of DNA flanking the nucleosome. By contrast, the INO80 complex also spaces nucleosomes but is not regulated by H4 tails and lacks the AutoN and NegC motifs. Instead nucleosome sliding requires cooperativity between two INO80 complexes that monitor DNA length simultaneously on either side of the nucleosome during sliding. The C-terminal domain of the human Ino80 subunit (Ino80CTD) binds cooperatively to DNA and dimerisation of these domains provides crosstalk between complexes. ATPase activity, rather than being regulated, instead gradually becomes uncoupled as nucleosome sliding reaches an end point and this is controlled by the Ino80CTD. A single active ATPase motor within the dimer is sufficient for sliding. DOI:http://dx.doi.org/10.7554/eLife.25782.001
Collapse
Affiliation(s)
- Oliver Willhoft
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| | - Elizabeth A McCormack
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| | - Ricardo J Aramayo
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| | - Rohan Bythell-Douglas
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| | - Lorraine Ocloo
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| | - Xiaodong Zhang
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| | - Dale B Wigley
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
268
|
Lynch EM, Hicks DR, Shepherd M, Endrizzi JA, Maker A, Hansen JM, Barry RM, Gitai Z, Baldwin EP, Kollman JM. Human CTP synthase filament structure reveals the active enzyme conformation. Nat Struct Mol Biol 2017; 24:507-514. [PMID: 28459447 PMCID: PMC5472220 DOI: 10.1038/nsmb.3407] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
The universally conserved enzyme CTP synthase (CTPS) forms filaments in bacteria and eukaryotes. In bacteria, polymerization inhibits CTPS activity and is required for nucleotide homeostasis. Here we show that for human CTPS, polymerization increases catalytic activity. The cryo-EM structures of bacterial and human CTPS filaments differ considerably in overall architecture and in the conformation of the CTPS protomer, explaining the divergent consequences of polymerization on activity. The structure of human CTPS filament, the first structure of the full-length human enzyme, reveals a novel active conformation. The filament structures elucidate allosteric mechanisms of assembly and regulation that rely on a conserved conformational equilibrium. The findings may provide a mechanism for increasing human CTPS activity in response to metabolic state and challenge the assumption that metabolic filaments are generally storage forms of inactive enzymes. Allosteric regulation of CTPS polymerization by ligands likely represents a fundamental mechanism underlying assembly of other metabolic filaments.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Matthew Shepherd
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - James A Endrizzi
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Allison Maker
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jesse M Hansen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, Washington, USA
| | - Rachael M Barry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Enoch P Baldwin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
269
|
Morris EP, da Fonseca PCA. High-resolution cryo-EM proteasome structures in drug development. Acta Crystallogr D Struct Biol 2017; 73:522-533. [PMID: 28580914 PMCID: PMC5458494 DOI: 10.1107/s2059798317007021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
With the recent advances in biological structural electron microscopy (EM), protein structures can now be obtained by cryo-EM and single-particle analysis at resolutions that used to be achievable only by crystallographic or NMR methods. We have explored their application to study protein-ligand interactions using the human 20S proteasome, a well established target for cancer therapy that is also being investigated as a target for an increasing range of other medical conditions. The map of a ligand-bound human 20S proteasome served as a proof of principle that cryo-EM is emerging as a realistic approach for more general structural studies of protein-ligand interactions, with the potential benefits of extending such studies to complexes that are unfavourable to other methods and allowing structure determination under conditions that are closer to physiological, preserving ligand specificity towards closely related binding sites. Subsequently, the cryo-EM structure of the Plasmodium falciparum 20S proteasome, with a new prototype specific inhibitor bound, revealed the molecular basis for the ligand specificity towards the parasite complex, which provides a framework to guide the development of highly needed new-generation antimalarials. Here, the cryo-EM analysis of the ligand-bound human and P. falciparum 20S proteasomes is reviewed, and a complete description of the methods used for structure determination is provided, including the strategy to overcome the bias orientation of the human 20S proteasome on electron-microscope grids and details of the icr3d software used for three-dimensional reconstruction.
Collapse
Affiliation(s)
- Edward P. Morris
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, England
| | | |
Collapse
|
270
|
Liu D, Liu X, Shang Z, Sindelar CV. Structural basis of cooperativity in kinesin revealed by 3D reconstruction of a two-head-bound state on microtubules. eLife 2017; 6. [PMID: 28504639 PMCID: PMC5459574 DOI: 10.7554/elife.24490] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/09/2017] [Indexed: 12/26/2022] Open
Abstract
The detailed basis of walking by dimeric molecules of kinesin along microtubules has remained unclear, partly because available structural methods have been unable to capture microtubule-bound intermediates of this process. Utilizing novel electron cryomicroscopy methods, we solved structures of microtubule-attached, dimeric kinesin bound to an ATP analog. We find that under these conditions, the kinesin dimer can attach to the microtubule with either one or two motor domains, and we present sub-nanometer resolution reconstructions of both states. The former structure reveals a novel kinesin conformation that revises the current understanding of how ATP binding is coupled to forward stepping of the motor. The latter structure indicates how tension between the two motor domains keeps their cycles out of phase in order to stimulate directional motility. The methods presented here pave the way for future structural studies of a variety of challenging macromolecules that bind to microtubules and other filaments.
Collapse
Affiliation(s)
- Daifei Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Xueqi Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Zhiguo Shang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Charles V Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| |
Collapse
|
271
|
Abstract
Integrins αVβ6 and αVβ8 are specialized for recognizing pro-TGF-β and activating its growth factor by releasing it from the latency imposed by its surrounding prodomain. The integrin αVβ8 is atypical among integrins in lacking sites in its cytoplasmic domain for binding to actin cytoskeleton adaptors. Here, we examine αVβ8 for atypical binding to pro-TGF-β1. In contrast to αVβ6, αVβ8 has a constitutive extended-closed conformation, and binding to pro-TGF-β1 does not stabilize the open conformation of its headpiece. Although Mn2+ potently activates other integrins and increases affinity of αVβ6 for pro-TGF-β1 25- to 55-fold, it increases αVβ8 affinity only 2- to 3-fold. This minimal effect correlates with the inability of Mn2+ and pro-TGF-β1 to stabilize the open conformation of the αVβ8 headpiece. Moreover, αVβ8 was inhibited by high concentrations of Mn2+ and was stimulated and inhibited at markedly different Ca2+ concentrations than αVβ6 These unusual characteristics are likely to be important in the still incompletely understood physiologic mechanisms that regulate αVβ8 binding to and activation of pro-TGF-β.
Collapse
|
272
|
Toussaint F, Pierman B, Bertin A, Lévy D, Boutry M. Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Nicotiana tabacum BY-2 suspension cells. Biochem J 2017; 474:1689-1703. [PMID: 28298475 DOI: 10.1042/bcj20170108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 11/17/2022]
Abstract
Pleiotropic drug resistance (PDR) transporters belong to the ABCG subfamily of ATP-binding cassette (ABC) transporters and are involved in the transport of various molecules across plasma membranes. During evolution, PDR genes appeared independently in fungi and in plants from a duplication of a half-size ABC gene. The enzymatic properties of purified PDR transporters from yeast have been characterized. This is not the case for any plant PDR transporter, or, incidentally, for any purified plant ABC transporter. Yet, plant PDR transporters play important roles in plant physiology such as hormone signaling or resistance to pathogens or herbivores. Here, we describe the expression, purification, enzymatic characterization and 2D analysis by electron microscopy of NpABCG5/NpPDR5 from Nicotiana plumbaginifolia, which has been shown to be involved in the plant defense against herbivores. We constitutively expressed NpABCG5/NpPDR5, provided with a His-tag in a homologous system: suspension cells from Nicotiana tabacum (Bright Yellow 2 line). NpABCG5/NpPDR5 was targeted to the plasma membrane and was solubilized by dodecyl maltoside and purified by Ni-affinity chromatography. The ATP-hydrolyzing specific activity (27 nmol min-1 mg-1) was stimulated seven-fold in the presence of 0.1% asolectin. Electron microscopy analysis indicated that NpABCG5/NpPDR5 is monomeric and with dimensions shorter than those of known ABC transporters. Enzymatic data (optimal pH and sensitivity to inhibitors) confirmed that plant and fungal PDR transporters have different properties. These data also show that N. tabacum suspension cells are a convenient host for the purification and biochemical characterization of ABC transporters.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 5/isolation & purification
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/isolation & purification
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphate/metabolism
- Batch Cell Culture Techniques
- Bioreactors
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cells, Cultured
- Chromatography, Affinity
- Detergents/chemistry
- Glucosides/chemistry
- Hydrogen-Ion Concentration
- Image Processing, Computer-Assisted
- Membrane Transport Modulators/pharmacology
- Microscopy, Electron
- Molecular Weight
- Phosphatidylcholines/chemistry
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/isolation & purification
- Plant Proteins/metabolism
- Protein Conformation
- Protein Transport/drug effects
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Solubility
- Nicotiana/cytology
- Nicotiana/enzymology
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Frédéric Toussaint
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Baptiste Pierman
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Daniel Lévy
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Marc Boutry
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
273
|
Ichikawa M, Liu D, Kastritis PL, Basu K, Hsu TC, Yang S, Bui KH. Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins. Nat Commun 2017; 8:15035. [PMID: 28462916 PMCID: PMC5418579 DOI: 10.1038/ncomms15035] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
Cilia are ubiquitous, hair-like appendages found in eukaryotic cells that carry out functions of cell motility and sensory reception. Cilia contain an intriguing cytoskeletal structure, termed the axoneme that consists of nine doublet microtubules radially interlinked and longitudinally organized in multiple specific repeat units. Little is known, however, about how the axoneme allows cilia to be both actively bendable and sturdy or how it is assembled. To answer these questions, we used cryo-electron microscopy to structurally analyse several of the repeating units of the doublet at sub-nanometre resolution. This structural detail enables us to unambiguously assign α- and β-tubulins in the doublet microtubule lattice. Our study demonstrates the existence of an inner sheath composed of different kinds of microtubule inner proteins inside the doublet that likely stabilizes the structure and facilitates the specific building of the B-tubule. Cilia are hair-like appendages involved in cell motility and sensory reception. Here, the authors report a high resolution cryo-EM structure of the microtubule doublet from motile cilia and identify microtubule inner proteins (MIPs) bound to the inner surface of the doublet that appear to stabilize its structure.
Collapse
Affiliation(s)
- Muneyoshi Ichikawa
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada H3A 0C7
| | - Dinan Liu
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada H3A 0C7
| | - Panagiotis L Kastritis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kaustuv Basu
- Facility for Electron Microscopy Research, McGill University, Montréal, Québec, Canada H3A 0C7
| | - Tzu Chin Hsu
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada H3A 0C7
| | - Shunkai Yang
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada H3A 0C7
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada H3A 0C7.,Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Montréal, Québec, Canada H3G 0B1
| |
Collapse
|
274
|
Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, House CM, Kondos SC, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I, Saibil HR, Hoogenboom BW. Real-time visualization of perforin nanopore assembly. NATURE NANOTECHNOLOGY 2017; 12:467-473. [PMID: 28166206 DOI: 10.1038/nnano.2016.303] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.
Collapse
Affiliation(s)
- Carl Leung
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Adrian W Hodel
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Amelia J Brennan
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
| | - Natalya Lukoyanova
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Sharon Tran
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
| | - Colin M House
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
| | - Stephanie C Kondos
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- The ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- The ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria 3800, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Joseph A Trapani
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ilia Voskoboinik
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helen R Saibil
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| |
Collapse
|
275
|
Cui J, Zhu Q, Zhang H, Cianfrocco MA, Leschziner AE, Dixon JE, Xiao J. Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding. eLife 2017; 6. [PMID: 28432788 PMCID: PMC5413348 DOI: 10.7554/elife.23990] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
Mutations in FAM20A cause tooth enamel defects known as Amelogenesis Imperfecta (AI) and renal calcification. We previously showed that Fam20A is a secretory pathway pseudokinase and allosterically activates the physiological casein kinase Fam20C to phosphorylate secreted proteins important for biomineralization (Cui et al., 2015). Here we report the nucleotide-free and ATP-bound structures of Fam20A. Fam20A exhibits a distinct disulfide bond pattern mediated by a unique insertion region. Loss of this insertion due to abnormal mRNA splicing interferes with the structure and function of Fam20A, resulting in AI. Fam20A binds ATP in the absence of divalent cations, and strikingly, ATP is bound in an inverted orientation compared to other kinases. Fam20A forms a dimer in the crystal, and residues in the dimer interface are critical for Fam20C activation. Together, these results provide structural insights into the function of Fam20A and shed light on the mechanism by which Fam20A mutations cause disease. DOI:http://dx.doi.org/10.7554/eLife.23990.001
Collapse
Affiliation(s)
- Jixin Cui
- Department of Pharmacology, University of California, San Diego, United States
| | - Qinyu Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Hui Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Michael A Cianfrocco
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, United States
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
276
|
Liu X, Li M, Xia X, Li X, Chen Z. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 2017; 544:440-445. [PMID: 28424519 DOI: 10.1038/nature22036] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Chromatin remodellers are helicase-like, ATP-dependent enzymes that alter chromatin structure and nucleosome positions to allow regulatory proteins access to DNA. Here we report the cryo-electron microscopy structure of chromatin remodeller Switch/sucrose non-fermentable (SWI2/SNF2) from Saccharomyces cerevisiae bound to the nucleosome. The structure shows that the two core domains of Snf2 are realigned upon nucleosome binding, suggesting activation of the enzyme. The core domains contact each other through two induced Brace helices, which are crucial for coupling ATP hydrolysis to chromatin remodelling. Snf2 binds to the phosphate backbones of one DNA gyre of the nucleosome mainly through its helicase motifs within the major domain cleft, suggesting a conserved mechanism of substrate engagement across different remodellers. Snf2 contacts the second DNA gyre via a positively charged surface, providing a mechanism to anchor the remodeller at a fixed position of the nucleosome. Snf2 locally deforms nucleosomal DNA at the site of binding, priming the substrate for the remodelling reaction. Together, these findings provide mechanistic insights into chromatin remodelling.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Meijing Li
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Xian Xia
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueming Li
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Zhucheng Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
277
|
Structure of the Ebola virus glycoprotein spike within the virion envelope at 11 Å resolution. Sci Rep 2017; 7:46374. [PMID: 28397863 PMCID: PMC5387728 DOI: 10.1038/srep46374] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
We present the structure of the surface Ebola virus (EBOV) trimeric glycoprotein (GP) spike at 11 Å resolution, in situ within the viral plasma membrane of purified virus particles. GP functions in cellular attachment, endosomal entry, and membrane fusion to initiate infection, and is a key therapeutic target. Nevertheless, only about half of the GP molecule has yet been solved to atomic resolution, excluding the mucin-like and transmembrane domains, and some of the glycans. Fitting of the atomic resolution X-ray data from expressed, truncated deletion constructs within our 11 Å structure of the entire molecule demonstrates the relationship between the GP1-GP2 domains, the mucin-like and transmembrane domains, and the bilaminar lipid envelope. We show that the mucin-like domain covers the glycan cap and partially occludes the receptor binding sites prior to proteolytic cleavage. Our structure is also consistent with key antibody neutralisation sites on GP being accessible prior to proteolysis. Based on the findings of us and others, GP-mediated binding may create an angle of 18 degrees between the planes of viral and endosomal membranes.
Collapse
|
278
|
Toropova K, Mladenov M, Roberts AJ. Intraflagellar transport dynein is autoinhibited by trapping of its mechanical and track-binding elements. Nat Struct Mol Biol 2017; 24:461-468. [PMID: 28394326 PMCID: PMC5420313 DOI: 10.1038/nsmb.3391] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Abstract
Cilia are multifunctional organelles that are constructed using intraflagellar transport (IFT) of cargo to and from their tip. It is widely held that the retrograde IFT motor, dynein-2, must be controlled in order to reach the ciliary tip and then unleashed to power the return journey. However, the mechanism is unknown. Here, we systematically define the mechanochemistry of human dynein-2 motors as monomers, dimers, and multimotor assemblies with kinesin-II. Combining these data with insights from single-particle EM, we discover that dynein-2 dimers are intrinsically autoinhibited. Inhibition is mediated by trapping dynein-2's mechanical 'linker' and 'stalk' domains within a novel motor-motor interface. We find that linker-mediated inhibition enables efficient transport of dynein-2 by kinesin-II in vitro. These results suggest a conserved mechanism for autoregulation among dimeric dyneins, which is exploited as a switch for dynein-2's recycling activity during IFT.
Collapse
|
279
|
Godwin ARF, Starborg T, Sherratt MJ, Roseman AM, Baldock C. Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomater 2017; 52:21-32. [PMID: 27956360 PMCID: PMC5402720 DOI: 10.1016/j.actbio.2016.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. STATEMENT OF SIGNIFICANCE Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Tobias Starborg
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Michael J Sherratt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Alan M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.
| |
Collapse
|
280
|
Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat Commun 2017; 8:14813. [PMID: 28332496 PMCID: PMC5376648 DOI: 10.1038/ncomms14813] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/27/2017] [Indexed: 11/08/2022] Open
Abstract
How cellular organelles assemble is a fundamental question in biology. The centriole organelle organizes around a nine-fold symmetrical cartwheel structure typically ∼100 nm high comprising a stack of rings that each accommodates nine homodimers of SAS-6 proteins. Whether nine-fold symmetrical ring-like assemblies of SAS-6 proteins harbour more peripheral cartwheel elements is unclear. Furthermore, the mechanisms governing ring stacking are not known. Here we develop a cell-free reconstitution system for core cartwheel assembly. Using cryo-electron tomography, we uncover that the Chlamydomonas reinhardtii proteins CrSAS-6 and Bld10p together drive assembly of the core cartwheel. Moreover, we discover that CrSAS-6 possesses autonomous properties that ensure self-organized ring stacking. Mathematical fitting of reconstituted cartwheel height distribution suggests a mechanism whereby preferential addition of pairs of SAS-6 rings governs cartwheel growth. In conclusion, we have developed a cell-free reconstitution system that reveals fundamental assembly principles at the root of centriole biogenesis. The centriole is an organelle composed of rings of SAS-6 proteins that form a cartwheel structure. Here the authors develop a cell-free system to examine core cartwheel assembly of C. reinhardtii proteins and discover that CrSAS-6 has autonomous properties that facilitates self-organized stacking of pairs of rings.
Collapse
|
281
|
Ikon N, Shearer J, Liu J, Tran JJ, Feng S, Kamei A, Beckstead JA, Kiss RS, Weers PM, Ren G, Ryan RO. A facile method for isolation of recombinant human apolipoprotein A-I from E. coli. Protein Expr Purif 2017; 134:18-24. [PMID: 28336201 DOI: 10.1016/j.pep.2017.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/14/2022]
Abstract
Apolipoprotein (apo) A-I is the major protein component of high-density lipoprotein (HDL) and plays key roles in the Reverse Cholesterol Transport pathway. In the past decade, reconstituted HDL (rHDL) has been employed as a therapeutic agent for treatment of atherosclerosis. The ability of rHDL to promote cholesterol efflux from peripheral cells has been documented to reduce the size of atherosclerotic plaque lesions. However, development of apoA-I rHDL-based therapeutics for human use requires a cost effective process to generate an apoA-I product that meets "Good Manufacturing Practice" standards. Methods available for production and isolation of unmodified recombinant human apoA-I at scale are cumbersome, laborious and complex. To overcome this obstacle, a streamlined two-step procedure has been devised for isolation of recombinant untagged human apoA-I from E. coli that takes advantage of its ability to re-fold to a native conformation following denaturation. Heat treatment of a sonicated E. coli supernatant fraction induced precipitation of a large proportion of host cell proteins (HCP), yielding apoA-I as the major soluble protein. Reversed-phase HPLC of this material permitted recovery of apoA-I largely free of HCP and endotoxin. Purified apoA-I possessed α-helix secondary structure, formed rHDL upon incubation with phospholipid and efficiently promoted cholesterol efflux from cholesterol loaded J774 macrophages.
Collapse
Affiliation(s)
- Nikita Ikon
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609, USA
| | - Jennifer Shearer
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
| | - Jesse J Tran
- Department of Chemistry and Biochemistry, California State University, Long Beach 1250, Bellflower Boulevard, Long Beach, CA 90840, USA
| | - ShiBo Feng
- Research Institute of the McGill University Health Centre, Glen Site, EM1.2220, 1001 Boul Decarie, Montreal, QCH4A 3J1 Canada
| | - Ayako Kamei
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609, USA
| | - Jennifer A Beckstead
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609, USA
| | - Robert S Kiss
- Research Institute of the McGill University Health Centre, Glen Site, EM1.2220, 1001 Boul Decarie, Montreal, QCH4A 3J1 Canada
| | - Paul M Weers
- Department of Chemistry and Biochemistry, California State University, Long Beach 1250, Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
| | - Robert O Ryan
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609, USA.
| |
Collapse
|
282
|
Zhang B, Chen L, Silacci C, Thom M, Boyington JC, Druz A, Joyce MG, Guzman E, Kong WP, Lai YT, Stewart-Jones GBE, Tsybovsky Y, Yang Y, Zhou T, Baxa U, Mascola JR, Corti D, Lanzavecchia A, Taylor G, Kwong PD. Protection of calves by a prefusion-stabilized bovine RSV F vaccine. NPJ Vaccines 2017; 2:7. [PMID: 29021918 PMCID: PMC5627276 DOI: 10.1038/s41541-017-0005-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bovine respiratory syncytial virus, a major cause of respiratory disease in calves, is closely related to human RSV, a leading cause of respiratory disease in infants. Recently, promising human RSV-vaccine candidates have been engineered that stabilize the metastable fusion (F) glycoprotein in its prefusion state; however, the absence of a relevant animal model for human RSV has complicated assessment of these vaccine candidates. Here, we use a combination of structure-based design, antigenic characterization, and X-ray crystallography to translate human RSV F stabilization into the bovine context. A "DS2" version of bovine respiratory syncytial virus F with subunits covalently fused, fusion peptide removed, and pre-fusion conformation stabilized by cavity-filling mutations and intra- and inter-protomer disulfides was recognized by pre-fusion-specific antibodies, AM14, D25, and MPE8, and elicited bovine respiratory syncytial virus-neutralizing titers in calves >100-fold higher than those elicited by post-fusion F. When challenged with a heterologous bovine respiratory syncytial virus, virus was not detected in nasal secretions nor in respiratory tract samples of DS2-immunized calves; by contrast bovine respiratory syncytial virus was detected in all post-fusion- and placebo-immunized calves. Our results demonstrate proof-of-concept that DS2-stabilized RSV F immunogens can induce highly protective immunity from RSV in a native host with implications for the efficacy of prefusion-stabilized F vaccines in humans and for the prevention of bovine respiratory syncytial virus in calves.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chiara Silacci
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Michelle Thom
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.,Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.,Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
283
|
Johnson ZL, Chen J. Structural Basis of Substrate Recognition by the Multidrug Resistance Protein MRP1. Cell 2017; 168:1075-1085.e9. [PMID: 28238471 DOI: 10.1016/j.cell.2017.01.041] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
The multidrug resistance protein MRP1 is an ATP-binding cassette (ABC) transporter that confers resistance to many anticancer drugs and plays a role in the disposition and efficacy of several opiates, antidepressants, statins, and antibiotics. In addition, MRP1 regulates redox homeostasis, inflammation, and hormone secretion. Using electron cryomicroscopy, we determined the molecular structures of bovine MRP1 in two conformations: an apo form at 3.5 Å without any added substrate and a complex form at 3.3 Å with one of its physiological substrates, leukotriene C4. These structures show that by forming a single bipartite binding site, MRP1 can recognize a spectrum of substrates with different chemical structures. We also observed large conformational changes induced by leukotriene C4, explaining how substrate binding primes the transporter for ATP hydrolysis. Structural comparison of MRP1 and P-glycoprotein advances our understanding of the common and unique properties of these two important molecules in multidrug resistance to chemotherapy.
Collapse
Affiliation(s)
- Zachary Lee Johnson
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and the Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and the Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
284
|
Epitopes and Mechanism of Action of the Clostridium difficile Toxin A-Neutralizing Antibody Actoxumab. J Mol Biol 2017; 429:1030-1044. [PMID: 28232034 DOI: 10.1016/j.jmb.2017.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
The exotoxins toxin A (TcdA) and toxin B (TcdB) are produced by the bacterial pathogen Clostridium difficile and are responsible for the pathology associated with C. difficile infection (CDI). The antitoxin antibodies actoxumab and bezlotoxumab bind to and neutralize TcdA and TcdB, respectively. Bezlotoxumab was recently approved by the FDA for reducing the recurrence of CDI. We have previously shown that a single molecule of bezlotoxumab binds to two distinct epitopes within the TcdB combined repetitive oligopeptide (CROP) domain, preventing toxin binding to host cells. In this study, we characterize the binding of actoxumab to TcdA and examine its mechanism of toxin neutralization. Using a combination of approaches including a number of biophysical techniques, we show that there are two distinct actoxumab binding sites within the CROP domain of TcdA centered on identical amino acid sequences at residues 2162-2189 and 2410-2437. Actoxumab binding caused the aggregation of TcdA especially at higher antibody:toxin concentration ratios. Actoxumab prevented the association of TcdA with target cells demonstrating that actoxumab neutralizes toxin activity by inhibiting the first step of the intoxication cascade. This mechanism of neutralization is similar to that observed with bezlotoxumab and TcdB. Comparisons of the putative TcdA epitope sequences across several C. difficile ribotypes and homologous repeat sequences within TcdA suggest a structural basis for observed differences in actoxumab binding and/or neutralization potency. These data provide a mechanistic basis for the protective effects of the antibody in vitro and in vivo, including in various preclinical models of CDI.
Collapse
|
285
|
Abstract
We describe a new implementation for the reconstruction of helical assemblies in the empirical Bayesian framework of RELION. Our approach calculates optimal linear filters for the 3D reconstruction by embedding helical symmetry operators in Fourier-space, and deals with deviations from perfect helical symmetry through Gaussian-shaped priors on the orientations of individual segments. By incorporating our approach into the standard pipeline for single-particle analysis in RELION, our implementation aims to be easily accessible for non-experienced users. Although our implementation does not solve the problem that grossly incorrect structures can be obtained when the wrong helical symmetry is imposed, we show for four different test cases that it is capable of reconstructing structures to near-atomic resolution.
Collapse
Affiliation(s)
- Shaoda He
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK.
| |
Collapse
|
286
|
Identical folds used for distinct mechanical functions of the bacterial flagellar rod and hook. Nat Commun 2017; 8:14276. [PMID: 28120828 PMCID: PMC5288503 DOI: 10.1038/ncomms14276] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/14/2016] [Indexed: 11/08/2022] Open
Abstract
The bacterial flagellum is a motile organelle driven by a rotary motor, and its axial portions function as a drive shaft (rod), a universal joint (hook) and a helical propeller (filament). The rod and hook are directly connected to each other, with their subunit proteins FlgG and FlgE having 39% sequence identity, but show distinct mechanical properties; the rod is straight and rigid as a drive shaft whereas the hook is flexible in bending as a universal joint. Here we report the structure of the rod and comparison with that of the hook. While these two structures have the same helical symmetry and repeat distance and nearly identical folds of corresponding domains, the domain orientations differ by ∼7°, resulting in tight and loose axial subunit packing in the rod and hook, respectively, conferring the rigidity on the rod and flexibility on the hook. This provides a good example of versatile use of a protein structure in biological organisms.
Collapse
|
287
|
De M, Oleskie AN, Ayyash M, Dutta S, Mancour L, Abazeed ME, Brace EJ, Skiniotis G, Fuller RS. The Vps13p-Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion. J Cell Biol 2017; 216:425-439. [PMID: 28122955 PMCID: PMC5294781 DOI: 10.1083/jcb.201606078] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/04/2016] [Accepted: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
VPS13 proteins are widely conserved in eukaryotes and associated with human neurodegenerative and neurodevelopmental diseases. De et al. describe the lipid specificity and structure of yeast Vps13p, providing insight into its role in both TGN late endosome transport and TGN homotypic fusion. Yeast VPS13 is the founding member of a eukaryotic gene family of growing interest in cell biology and medicine. Mutations in three of four human VPS13 genes cause autosomal recessive neurodegenerative or neurodevelopmental disease, making yeast Vps13p an important structural and functional model. Using cell-free reconstitution with purified Vps13p, we show that Vps13p is directly required both for transport from the trans-Golgi network (TGN) to the late endosome/prevacuolar compartment (PVC) and for TGN homotypic fusion. Vps13p must be in complex with the small calcium-binding protein Cdc31p to be active. Single-particle electron microscopic analysis of negatively stained Vps13p indicates that this 358-kD protein is folded into a compact rod-shaped density (20 × 4 nm) with a loop structure at one end with a circular opening ∼6 nm in diameter. Vps13p exhibits ATP-stimulated binding to yeast membranes and specific interactions with phosphatidic acid and phosphorylated forms of phosphatidyl inositol at least in part through the binding affinities of conserved N- and C-terminal domains.
Collapse
Affiliation(s)
- Mithu De
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Austin N Oleskie
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Mariam Ayyash
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Somnath Dutta
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Liliya Mancour
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Mohamed E Abazeed
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Eddy J Brace
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Georgios Skiniotis
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Robert S Fuller
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
288
|
Cotranslational folding of spectrin domains via partially structured states. Nat Struct Mol Biol 2017; 24:221-225. [DOI: 10.1038/nsmb.3355] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/07/2016] [Indexed: 11/09/2022]
|
289
|
Nodelman IM, Bleichert F, Patel A, Ren R, Horvath KC, Berger JM, Bowman GD. Interdomain Communication of the Chd1 Chromatin Remodeler across the DNA Gyres of the Nucleosome. Mol Cell 2017; 65:447-459.e6. [PMID: 28111016 DOI: 10.1016/j.molcel.2016.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/24/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Abstract
Chromatin remodelers use a helicase-like ATPase motor to reposition and reorganize nucleosomes along genomic DNA. Yet, how the ATPase motor communicates with other remodeler domains in the context of the nucleosome has so far been elusive. Here, we report for the Chd1 remodeler a unique organization of domains on the nucleosome that reveals direct domain-domain communication. Site-specific cross-linking shows that the chromodomains and ATPase motor bind to adjacent SHL1 and SHL2 sites, respectively, on nucleosomal DNA and pack against the DNA-binding domain on DNA exiting the nucleosome. This domain arrangement spans the two DNA gyres of the nucleosome and bridges both ends of a wrapped, ∼90-bp nucleosomal loop of DNA, suggesting a means for nucleosome assembly. This architecture illustrates how Chd1 senses DNA outside the nucleosome core and provides a basis for nucleosome spacing and directional sliding away from transcription factor barriers.
Collapse
Affiliation(s)
- Ilana M Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 302 Jenkins Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Franziska Bleichert
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashok Patel
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 302 Jenkins Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Ren Ren
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 302 Jenkins Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Kyle C Horvath
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 302 Jenkins Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 302 Jenkins Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
290
|
DiMemmo LM, Cameron Varano A, Haulenbeek J, Liang Y, Patel K, Dukes MJ, Zheng S, Hubert M, Piccoli SP, Kelly DF. Real-time observation of protein aggregates in pharmaceutical formulations using liquid cell electron microscopy. LAB ON A CHIP 2017; 17:315-322. [PMID: 27934977 PMCID: PMC5507349 DOI: 10.1039/c6lc01160h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the properties of protein-based therapeutics is a common goal of biologists and physicians. Technical barriers in the direct observation of small proteins or therapeutic agents can limit our knowledge of how they function in solution and in the body. Electron microscopy (EM) imaging performed in a liquid environment permits us to peer into the active world of cells and molecules at the nanoscale. Here, we employ liquid cell EM to directly visualize a protein-based therapeutic in its native conformation and aggregate state in a time-resolved manner. In combination with quantitative analyses, information from this work contributes new molecular insights toward understanding the behaviours of immunotherapies in a solution state that mimics the human body.
Collapse
Affiliation(s)
- Lynn M DiMemmo
- Analytical and Bioanalytical Development, Bristol-Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - A Cameron Varano
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA.
| | - Jonathan Haulenbeek
- Analytical and Bioanalytical Development, Bristol-Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Yanping Liang
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA.
| | - Kaya Patel
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA.
| | | | - Songyan Zheng
- Drug Product Science and Technology, Bristol-Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Mario Hubert
- Analytical and Bioanalytical Development, Bristol-Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Steven P Piccoli
- Analytical and Bioanalytical Development, Bristol-Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Deborah F Kelly
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA.
| |
Collapse
|
291
|
In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits. Proc Natl Acad Sci U S A 2017; 114:992-997. [PMID: 28096380 DOI: 10.1073/pnas.1612386114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We used electron cryotomography and subtomogram averaging to determine the in situ structures of mitochondrial ATP synthase dimers from two organisms belonging to the phylum euglenozoa: Trypanosoma brucei, a lethal human parasite, and Euglena gracilis, a photosynthetic protist. At a resolution of 32.5 Å and 27.5 Å, respectively, the two structures clearly exhibit a noncanonical F1 head, in which the catalytic (αβ)3 assembly forms a triangular pyramid rather than the pseudo-sixfold ring arrangement typical of all other ATP synthases investigated so far. Fitting of known X-ray structures reveals that this unusual geometry results from a phylum-specific cleavage of the α subunit, in which the C-terminal αC fragments are displaced by ∼20 Å and rotated by ∼30° from their expected positions. In this location, the αC fragment is unable to form the conserved catalytic interface that was thought to be essential for ATP synthesis, and cannot convert γ-subunit rotation into the conformational changes implicit in rotary catalysis. The new arrangement of catalytic subunits suggests that the mechanism of ATP generation by rotary ATPases is less strictly conserved than has been generally assumed. The ATP synthases of these organisms present a unique model system for discerning the individual contributions of the α and β subunits to the fundamental process of ATP synthesis.
Collapse
|
292
|
Structural Study of Heterogeneous Biological Samples by Cryoelectron Microscopy and Image Processing. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1032432. [PMID: 28191458 PMCID: PMC5274696 DOI: 10.1155/2017/1032432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022]
Abstract
In living organisms, biological macromolecules are intrinsically flexible and naturally exist in multiple conformations. Modern electron microscopy, especially at liquid nitrogen temperatures (cryo-EM), is able to visualise biocomplexes in nearly native conditions and in multiple conformational states. The advances made during the last decade in electronic technology and software development have led to the revelation of structural variations in complexes and also improved the resolution of EM structures. Nowadays, structural studies based on single particle analysis (SPA) suggests several approaches for the separation of different conformational states and therefore disclosure of the mechanisms for functioning of complexes. The task of resolving different states requires the examination of large datasets, sophisticated programs, and significant computing power. Some methods are based on analysis of two-dimensional images, while others are based on three-dimensional studies. In this review, we describe the basic principles implemented in the various techniques that are currently used in the analysis of structural conformations and provide some examples of successful applications of these methods in structural studies of biologically significant complexes.
Collapse
|
293
|
Bečková M, Gardian Z, Yu J, Konik P, Nixon PJ, Komenda J. Association of Psb28 and Psb27 Proteins with PSII-PSI Supercomplexes upon Exposure of Synechocystis sp. PCC 6803 to High Light. MOLECULAR PLANT 2017; 10:62-72. [PMID: 27530366 DOI: 10.1016/j.molp.2016.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/29/2016] [Accepted: 08/04/2016] [Indexed: 05/23/2023]
Abstract
Formation of the multi-subunit oxygen-evolving photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the localization and possible function of two homologous PSII assembly factors, Psb28-1 and Psb28-2, from the cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that FLAG-tagged Psb28-2 is present in both the monomeric PSII core complex and a PSII core complex lacking the inner antenna CP43 (RC47), whereas Psb28-1 preferentially binds to RC47. When cells are exposed to increased irradiance, both tagged Psb28 proteins additionally associate with oligomeric forms of PSII and with PSII-PSI supercomplexes composed of trimeric photosystem I (PSI) and two PSII monomers as deduced from electron microscopy. The presence of the Psb27 accessory protein in these complexes suggests the involvement of PSI in PSII biogenesis, possibly by photoprotecting PSII through energy spillover. Under standard culture conditions, the distribution of PSII complexes is similar in the wild type and in each of the single psb28 null mutants except for loss of RC47 in the absence of Psb28-1. In comparison with the wild type, growth of mutants lacking Psb28-1 and Psb27, but not Psb28-2, was retarded under high-light conditions and, especially, intermittent high-light/dark conditions, emphasizing the physiological importance of PSII assembly factors for light acclimation.
Collapse
Affiliation(s)
- Martina Bečková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Konik
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
294
|
Fujii T, Namba K. Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Nat Commun 2017; 8:13969. [PMID: 28067235 PMCID: PMC5227740 DOI: 10.1038/ncomms13969] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/16/2016] [Indexed: 11/18/2022] Open
Abstract
Muscle contraction is driven by cyclic association and dissociation of myosin head of the thick filament with thin actin filament coupled with ATP binding and hydrolysis by myosin. However, because of the absence of actomyosin rigour structure at high resolution, it still remains unclear how the strong binding of myosin to actin filament triggers the release of hydrolysis products and how ATP binding causes their dissociation. Here we report the structure of mammalian skeletal muscle actomyosin rigour complex at 5.2 Å resolution by electron cryomicroscopy. Comparison with the structures of myosin in various states shows a distinctly large conformational change, providing insights into the ATPase-coupled reaction cycle of actomyosin. Based on our observations, we hypothesize that asymmetric binding along the actin filament could function as a Brownian ratchet by favouring directionally biased thermal motions of myosin and actin.
Collapse
Affiliation(s)
- Takashi Fujii
- Graduate School of Frontier Biosciences, Osaka University, and Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, and Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
295
|
Ren Y, Schmiege P, Blobel G. Structural and biochemical analyses of the DEAD-box ATPase Sub2 in association with THO or Yra1. eLife 2017; 6. [PMID: 28059701 PMCID: PMC5218534 DOI: 10.7554/elife.20070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023] Open
Abstract
mRNA is cotranscrptionally processed and packaged into messenger ribonucleoprotein particles (mRNPs) in the nucleus. Prior to export through the nuclear pore, mRNPs undergo several obligatory remodeling reactions. In yeast, one of these reactions involves loading of the mRNA-binding protein Yra1 by the DEAD-box ATPase Sub2 as assisted by the hetero-pentameric THO complex. To obtain molecular insights into reaction mechanisms, we determined crystal structures of two relevant complexes: a THO hetero-pentamer bound to Sub2 at 6.0 Å resolution; and Sub2 associated with an ATP analogue, RNA, and a C-terminal fragment of Yra1 (Yra1-C) at 2.6 Å resolution. We found that the 25 nm long THO clamps Sub2 in a half-open configuration; in contrast, when bound to the ATP analogue, RNA and Yra1-C, Sub2 assumes a closed conformation. Both THO and Yra1-C stimulated Sub2’s intrinsic ATPase activity. We propose that THO surveys common landmarks in each nuclear mRNP to localize Sub2 for targeted loading of Yra1. DOI:http://dx.doi.org/10.7554/eLife.20070.001
Collapse
Affiliation(s)
- Yi Ren
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Philip Schmiege
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Günter Blobel
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
296
|
Conley M, Emmott E, Orton R, Taylor D, Carneiro DG, Murata K, Goodfellow IG, Hansman GS, Bhella D. Vesivirus 2117 capsids more closely resemble sapovirus and lagovirus particles than other known vesivirus structures. J Gen Virol 2017; 98:68-76. [PMID: 27902397 PMCID: PMC5370393 DOI: 10.1099/jgv.0.000658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023] Open
Abstract
Vesivirus 2117 is an adventitious agent that, in 2009, was identified as a contaminant of Chinese hamster ovary cells propagated in bioreactors at a pharmaceutical manufacturing plant belonging to Genzyme. The consequent interruption in supply of Fabrazyme and Cerezyme (drugs used to treat Fabry and Gaucher diseases, respectively) caused significant economic losses. Vesivirus 2117 is a member of the Caliciviridae, a family of small icosahedral viruses encoding a positive-sense RNA genome. We have used cryo-electron microscopy and three-dimensional image reconstruction to calculate a structure of vesivirus 2117 virus-like particles as well as feline calicivirus and a chimeric sapovirus. We present a structural comparison of several members of the Caliciviridae, showing that the distal P domain of vesivirus 2117 is morphologically distinct from that seen in other known vesivirus structures. Furthermore, at intermediate resolutions, we found a high level of structural similarity between vesivirus 2117 and Caliciviridae from other genera: sapovirus and rabbit hemorrhagic disease virus. Phylogenetic analysis confirms vesivirus 2117 as a vesivirus closely related to canine vesiviruses. We postulate that morphological differences in virion structure seen between vesivirus clades may reflect differences in receptor usage.
Collapse
Affiliation(s)
- Michaela Conley
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Edward Emmott
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Richard Orton
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - David Taylor
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Howard Hughes Medical Institute, 742 Stanley Hall, MS 3220 University of California, Berkeley, CA 94720-3220, USA
| | - Daniel G Carneiro
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
- Present address: School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Ian G Goodfellow
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Grant S Hansman
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Centre for Infectious Diseases, Department of Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - David Bhella
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
297
|
Daury L, Taveau JC, Salvador D, Glavier M, Lambert O. Reconstitution of Membrane Proteins into Nanodiscs for Single-Particle Electron Microscopy. Methods Mol Biol 2017; 1635:317-327. [PMID: 28755377 DOI: 10.1007/978-1-4939-7151-0_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The structure determination of integral membrane protein (IMP) in lipid environment is particularly challenging. Among emerging methods for exchanging detergent required for IMP purification by original compounds, the use of lipid nanodisc preserves a lipid environment. Compared with the classical method of proteoliposome formation, the nanodisc technology provides a better control of IMP molecules inserted in lipid membrane, therefore giving access to structural methodologies developed for soluble proteins. Here, we present the reconstitution of OprM membrane protein into nanodisc associated with a step of size-exclusion chromatography, an approach applicable to prepare IMPs for subsequent visualization by single-particle electron microscopy.
Collapse
Affiliation(s)
- Laetitia Daury
- CBMN UMR-CNRS 5248, University of Bordeaux, 14 Allée Geoffroy Saint Hilaire, Bât B14, 33600, Pessac, France
| | - Jean-Christophe Taveau
- CBMN UMR-CNRS 5248, University of Bordeaux, 14 Allée Geoffroy Saint Hilaire, Bât B14, 33600, Pessac, France
| | - Dimitri Salvador
- CBMN UMR-CNRS 5248, University of Bordeaux, 14 Allée Geoffroy Saint Hilaire, Bât B14, 33600, Pessac, France
| | - Marie Glavier
- CBMN UMR-CNRS 5248, University of Bordeaux, 14 Allée Geoffroy Saint Hilaire, Bât B14, 33600, Pessac, France
| | - Olivier Lambert
- CBMN UMR-CNRS 5248, University of Bordeaux, 14 Allée Geoffroy Saint Hilaire, Bât B14, 33600, Pessac, France.
| |
Collapse
|
298
|
Abstract
In the last decade, improvements in electron microscopy and image processing have permitted significantly higher resolutions to be achieved (sometimes <1 nm) when studying isolated actin and myosin filaments. In the case of actin filaments the changing structure when troponin binds calcium ions can be followed using electron microscopy and single particle analysis to reveal what happens on each of the seven non-equivalent pseudo-repeats of the tropomyosin α-helical coiled-coil. In the case of the known family of myosin filaments not only are the myosin head arrangements under relaxing conditions being defined, but the latest analysis, also using single particle methods, is starting to reveal the way that the α-helical coiled-coil myosin rods are packed to give the filament backbones.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Danielle M Paul
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
299
|
Abstract
During the 1930s and 1940s the technique of X-ray diffraction was applied widely by William Astbury and his colleagues to a number of naturally-occurring fibrous materials. On the basis of the diffraction patterns obtained, he observed that the structure of each of the fibres was dominated by one of a small number of different types of molecular conformation. One group of fibres, known as the k-m-e-f group of proteins (keratin - myosin - epidermin - fibrinogen), gave rise to diffraction characteristics that became known as the α-pattern. Others, such as those from a number of silks, gave rise to a different pattern - the β-pattern, while connective tissues yielded a third unique set of diffraction characteristics. At the time of Astbury's work, the structures of these materials were unknown, though the spacings of the main X-ray reflections gave an idea of the axial repeats and the lateral packing distances. In a breakthrough in the early 1950s, the basic structures of all of these fibrous proteins were determined. It was found that the long protein chains, composed of strings of amino acids, could be folded up in a systematic manner to generate a limited number of structures that were consistent with the X-ray data. The most important of these were known as the α-helix, the β-sheet, and the collagen triple helix. These studies provided information about the basic building blocks of all proteins, both fibrous and globular. They did not, however, provide detailed information about how these molecules packed together in three-dimensions to generate the fibres found in vivo. A number of possible packing arrangements were subsequently deduced from the X-ray diffraction and other data, but it is only in the last few years, through the continued improvements of electron microscopy, that the packing details within some fibrous proteins can now be seen directly. Here we outline briefly some of the milestones in fibrous protein structure determination, the role of the amino acid sequences and how new techniques, including electron microscopy, are helping to define fibrous protein structures in three-dimensions. We also introduce the idea that, from the known sequence characteristics of different fibrous proteins, new molecules can be designed and synthesized, thereby generating new biological materials with specific structural properties. Some of these, for example, are planned for use in drug delivery systems. Along the way we also introduce the various Chapters of the book, where individual fibrous proteins are discussed in detail.
Collapse
|
300
|
Stobart CC, Rostad CA, Ke Z, Dillard RS, Hampton CM, Strauss JD, Yi H, Hotard AL, Meng J, Pickles RJ, Sakamoto K, Lee S, Currier MG, Moin SM, Graham BS, Boukhvalova MS, Gilbert BE, Blanco JCG, Piedra PA, Wright ER, Moore ML. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation. Nat Commun 2016; 7:13916. [PMID: 28000669 PMCID: PMC5187593 DOI: 10.1038/ncomms13916] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization and there remains no pediatric vaccine. RSV live-attenuated vaccines (LAVs) have a history of safe testing in infants; however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we seek to engineer an RSV LAV with enhanced immunogenicity. Genetic mapping identifies strain line 19 fusion (F) protein residues that correlate with pre-fusion antigen maintenance by ELISA and thermal stability of infectivity in live RSV. We generate a LAV candidate named OE4 which expresses line 19F and is attenuated by codon-deoptimization of non-structural (NS1 and NS2) genes, deletion of the small hydrophobic (SH) gene, codon-deoptimization of the attachment (G) gene and ablation of the secreted form of G. OE4 (RSV-A2-dNS1-dNS2-ΔSH-dGm-Gsnull-line19F) exhibits elevated pre-fusion antigen levels, thermal stability, immunogenicity, and efficacy despite heavy attenuation in the upper and lower airways of cotton rats.
Collapse
Affiliation(s)
- Christopher C. Stobart
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Christina A. Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Zunlong Ke
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Rebecca S. Dillard
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Cheri M. Hampton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Joshua D. Strauss
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Hong Yi
- Robert P Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322, USA
| | - Anne L. Hotard
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Jia Meng
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Raymond J. Pickles
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | - Sujin Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Michael G. Currier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Syed M. Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | | | - Brian E. Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Elizabeth R. Wright
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
- Robert P Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322, USA
| | - Martin L. Moore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| |
Collapse
|